
A

Dissertation

On

Representing Access Control Policies in OWL

Submitted in Partial Fulfilment of the Requirement

For the Award of the Degree of

Master of Technology

In

Computer Science & Engineering

Submitted By

Varsha Rani Sharma

2K14/CSE/26

Under the Esteemed Guidance of

Mr. Manoj Kumar

(Associate Professor)

DEPARTMENT OF COMPUTER ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

JUNE 2016

Department of Computer Engineering

Delhi Technological University

Delhi-110042

CERTIFICATE

This is to certify that the dissertation titled “Representing Access Control Policies in OWL” is a

bonafide record of work done at Department of Computer Engineering, Delhi Technological

University by Ms. VARSHA RANI SHARMA, Roll No. 2K14/CSE/26, in partial fulfilment of the

requirements for the award of the degree of Master of Technology in Computer Science and

Engineering.

This project work was carried out by her under my guidance and supervision. The matter embodied in

this project work has not been submitted earlier for the award of any degree or diploma in any

university/institution to the best of my knowledge and belief. Her work is found to be outstanding and

her discipline impeccable during the course of the project.

I wish her success in all her endeavours.

(Mr. Manoj Kumar)

Associate Professor and Project Guide

Department of Computer Engineering

Date: __________ Delhi Technological University

ACKNOWLEDGEMENT

First of all, let me thank the almighty god, my parents and my dear friends who are the most graceful

and merciful for their blessing that contributed to the successful completion of this project.

I would like to devote my gratitude and thanks to my guide Sh. Manoj Kumar, Associate Professor,

Department of Computer Engineering, Delhi Technological University, Delhi for his valuable guidance,

constant encouragement and helpful discussions throughout the course of this work. Obviously, the

progress I had now will be uncertain without his guidance.

I would also like to thank Prof. (Dr.) O.P. Verma, H.O.D. Computer Engineering Department, Delhi

Technological University, Delhi for providing me better facilities and constant encouragement.

I would like to take this opportunity to express the profound sense of grati- tude and respect to all those

who helped us throughout the duration of this project. DELHI TECHNOLOGICAL UNIVERSITY, in

particular has been the source of inspiration, I acknowledge the effort of those who have contributed

significantly to this project.

Varsha Rani Sharma

University Roll No.: 2K14/CSE/26

MTech (Computer Science and Engineering)

Department of Computer Engineering

Delhi Technological University

ABSTRACT

Organizations need access control to restrict the use of information related to them. Contextual

parameters play a key role to control the access to the information. However, classical access control

models do not have an explicit way to include context in access control. In this thesis, we propose an

extension to the existing Role Based Access Control (RBAC) system where the context parameters can

also be included. We have modelled context information like time, day, location, group membership etc.

The proposed framework is extensible enough to add more contextual parameters as per the need.

Access control, in organizations, is driven by policies captured according to the access control model in

use. There is always a need to have an automatic and adaptive access control system. In this work, we

propose the representation of policies and the access control model in Web Ontology Language (OWL).

This representation provides a formal way to achieve automation. We enforce these policies by making

use of an inference based reasoner. This process is based on deducing additional facts from given data

and leverages the semantic nature of OWL. We use this information, collectively, in making access

control decisions.

We also show that the proposed framework can be used in many real world organizations by

demonstrating its application to academic domain. Ontologies have been written to capture different

aspect of the academic system including roles, permissions and contextual parameters. As a specific

example, an access control system for the examination portal at DTU has been designed and developed.

This system shows how access to different webpages is governed by different contexts. The system also

provides features like adding new policies and modifying existing ones. The developed system shows

the potential capability of our proposed framework and can be extended to other applications as well.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objective and Research Challenges 3

1.3 Contribution . 4

1.4 Outline . 5

2 Literature Review 6

2.1 Access Control Models . 6

2.1.1 Discretionary Access Control (DAC) 7

2.1.2 Mandatory Access Control (MAC) 7

2.1.3 Role Based Access Control (RBAC) 8

2.1.4 Access Control Model Issues and Challenges 11

2.2 Access Control Policies Specification 13

2.3 Reasoning Based Policy Enforcement 15

3 Representation of Context Aware RBAC Model in OWL 17

3.1 Basic Strategy for RBAC . 17

3.2 Example Domain . 19

3.3 Defining Role Hierarchies . 20

3.4 Defining Separation of Duties 21

3.5 Defining Permission Assignment 21

c© 2016, Delhi Technological University, Delhi

3.6 Representation of Contextual Information 22

3.6.1 Access Control Based on Time 22

3.6.2 Access Control Based on Day 23

3.6.3 Access Control Based on Group Membership 24

3.6.4 Access Control Based on Location 24

3.7 Enforcement of Authorization Policies 25

4 Access Control System for Academic Environment 31

4.1 System design . 31

4.2 Access Control System for Examination Portal at DTU 33

4.2.1 Login Page . 33

4.2.2 Administrator Page . 34

4.2.3 Activation and Deactivation of Roles 38

4.2.4 Dynamic Separation of Duties 39

4.2.5 Access Control Based on Time 39

4.2.6 Access Control Based on days of Week 41

4.2.7 Access Control Based on Location 42

5 Conclusion and Future Work 45

Bibliography 47

List of Figures

2.1 Hierarchical Role Based Access Control with Static Separation

of Duties as Proposed in [1]. 11

3.1 Example Role Hierarchy . 19

4.1 The Overall Design of the Developed Access Control System . 32

4.2 Login Page to Access Examination Portal of DTU 34

4.3 After Login Page for Administrator to Access Examination

Portal of DTU . 35

4.4 Policy Management Main Page 35

4.5 Policy Management Page for View Role Hierarchy 36

4.6 Policy Management Page for Add New Rule 37

4.7 Policy Management Page for Modify Existing Rule 37

4.8 After Login Page to Access Examination Portal of DTU . . . 38

4.9 Page Showing DSOD Constraint 39

4.10 Result Page Displayed at Particular Time 40

4.11 Access denied to Result Page 41

4.12 Faculty Page When Accessed on Particular day 42

4.13 Access Denied to Faculty Page 42

4.14 Marksheet Page when Accessed from Particular Location . . . 43

4.15 Access Denied to MarkSheet Page 44

c© 2016, Delhi Technological University, Delhi

List of Tables

2.1 Comparison of Classical Access Control Models 12

Chapter 1

Introduction

1.1 Motivation

Access control is a one of the important issues in information security. Access

control is used to control the flow of information which is related to the

organization. Access control systems determine that if access to resources

are allowed or not. And if the access is allowed then what are the criteria

for that. The process of access control is governed by an underlying access

control model and authorization policies. The policy dictates the intent of

the organization as to what is permitted under which situations.

There are many access control models available for the organization to

choose. However, every model comes with its own advantages and disadvan-

tages. While selecting the access control models, organization analyze how

much flexibility is provided by that model. They also consider what happens

to the model when the operating environment changes. This issue deals with

the extensibility of the access control model.

There are mainly three access control models which are quite popular.

These are Discretionary Access Control (DAC), Mandatory Access Control

(MAC), and Role Based Access Control (RBAC). Although we cover these

model in detail in chapter 2, we give some salient features of these models to

explain the motivation behind our work.

DAC restricts access to resources based on the identity of subjects while

c© 2016, Delhi Technological University, Delhi

1.1 Motivation 2

MAC provide access control based on the security levels associated with sub-

jects and resources or objects. In RBAC, access permissions are encapsulated

in roles. Roles are then assigned to subjects or users. The problem with DAC

is that resources or information may be accessed by users which are not au-

thorized because it does not provide a way to control the access of multiple

copies of the same object. MAC deals with this problem by associating dif-

ferent security levels with subjects and objects. However, DAC and MAC do

not provide flexible access control because policies in these models are fixed.

RBAC addresses these issues by proposing the concept of roles. Ob-

jects can only be accessed by those subjects who have compatible roles with

respect to that object. This compatibility is decided by the system adminis-

trator and guided by the authorization policy of the organization. RBAC has

become the most prevalent access control model in practice today. However,

RBAC suffers with the problem of role explosion. It is due to the fact that

organization may end up having too many different roles to handle different

types of situations. The problem becomes very difficult when contextual in-

formation like day, time etc. need to be incorporated in the access control

decision.

In order to cover access control for practical situations, we need an au-

tomatic way of access control. For achieving this, we need a formal way to

represent policy and access control model that can be understood by the ma-

chine. The Web Ontology Language (OWL) is a policy language which can

be used for writing authorization policies and defining access control models.

Policies written in OWL can be reused across different organisations of dif-

ferent domains. Organizations also want to combine authorization policies

and access control model and enforce access control based on inference based

reasoning process.

All these factors clearly state the requirement to design and develop an

access control framework where policies and access control models can be

combined and used for automated policy enforcement.

c© 2016, Delhi Technological University, Delhi

1.2 Objective and Research Challenges 3

1.2 Objective and Research Challenges

The main aim of this work is to represent access control model based on roles

and associate contextual information with them. We need to come up with

a framework which should be flexible and extensible enough to add more

features as and when the need arise. Further, the representation is required

to be in a machine understandable format for automatic enforcement. Tra-

ditional access control models are very rigid in nature and does not provide

a flexible and adaptable framework. It is difficult to represent context infor-

mation like from where the request is made or at what time or on what day

request is made with traditional access control systems. The scope of our

work includes addressing these issues and adding the required flexibility to

provide better access control options in organizations.

There are some associated challenges with the design and development

of this access control framework. The first one is that organisations have

different policies which tells the intent of an organisation. These policies are

generally written in higher level language. We need a way to represent these

policies such that they can be understood by machines so that access control

can be automatized. The next one is how contextual information would be

added and how much flexibility can be provided.

Next issue deals with the fact that most organizations already have

RBAC system in place. The challenge is to integrate our framework with

their existing system seamlessly. Finally, the performance of the reasoning

process is an important issue. The time taken should be acceptable to most

of the practical situations.

Hence we can say that the objective of this work is to represent access

control policies in OWL. The representation must be flexible enough and

contextual information should be included in the model representation. The

access control system should provide automatic access control and should

also be reusable or customizable across different domains.

c© 2016, Delhi Technological University, Delhi

1.3 Contribution 4

1.3 Contribution

The project work was carried out as per the set objectives. We have addressed

the key research issues mentioned in the previous section. The contributions

made towards the project work are summarized below:

1. Representing Policies and Access Control Model: We have rep-

resented the Role Based Access Control (RBAC) for academic domain.

Ontologies have been written to represent various roles and the rela-

tionship among them. The instantiation has been done in data on-

tology. We have written various policy rules captured by underlying

RBAC model. The language used for the representation was OWL.

Although OWL is a language to represent the we information, it has

been successfully used to represent security policies.

2. Incorporate Contextual Information: The RBAC model has been

extended to incorporate various contextual information. Examples in-

clude day, time, location etc.. The extended framework is flexible

and many more contextual information can be added as per the need.

3. Enforcement based on Reasoning: The combination of contextual

RBAC and authorization policy is subjected to a reasoning framework.

The nature of OWL is semantic which means additional facts can be

inferred from the given data facts. This feature helps us to reason

about the access request and decide what is permitted. We have used

two different reasoners in our work, viz. EYE [2] and Cwm [3]. EYE

is proven to outperform other reasoners for all practical purpose [4].

4. Demonstration of a Working System: We have demonstrated the

capability of our representation framework by implementing an access

control system for the examination portal of DTU. The developed ac-

cess control system shows how real time restriction can be imposed on

different types of information. This also shows how different kind of

contextual information can be incorporated while making the access

control decisions.

c© 2016, Delhi Technological University, Delhi

1.4 Outline 5

1.4 Outline

This thesis work is henceforth organized as follows. Chapter 2 deals with

basic overview of the access control concept, issues and challenges in current

access control systems and over view of policy language used. Chapter 3

provides representation of proposed access control model and representation

of ontologies for the current working domain defined in OWL.

Chapter 4 Provides implementation details of the developed access con-

trol system for the examination portal at Delhi Technological University

(DTU). This chapter also covers the policy administration part. Finally, we

conclude in chapter 5 with brief comments on our future work.

c© 2016, Delhi Technological University, Delhi

Chapter 2

Literature Review

Organizations need an automatic access control system where policies can be

defined and enforced based on varying context information. There has been

considerable efforts in this area in last few years. We now present the related

work which has been done in this area. The related work in the area can be

catagorized into three parts: access control models, the access control policies

specification and reasoning based policy enforcement. The need to design and

develop a distributed, dynamic access control system where authorization is

decided dynamically at run-time, is achieved by combining all these parts

using semantic logic. We now discuss all these parts, in detail, based on the

extensive literature review.

2.1 Access Control Models

Access control is a way to control or restrict the access to resources. Access

control systems are used in organizations to control the flow of information

related to the organisation. This is guided by authorization policies which

represent the intent of the organization. Usually different organisations have

different policies. These policies are captured using one of the access control

model. There are three most popular access control models which are used

in practice. These are Discretionary Access Control(DAC) [5], Mandatory

Access Control (MAC) [6] and Role Based Access Control (RBAC) [1].

c© 2016, Delhi Technological University, Delhi

2.1 Access Control Models 7

2.1.1 Discretionary Access Control (DAC)

In discretionary access control, permissions to access resources are assigned

on the basis of user identity. The identity of the user decides authorization

associated with each resource in the system. In this type of access control

each object in the system has associated allowed access modes for each user

based on the identity. For example, a user Bob is allowed to read and write

a file but not allowed to execute that. Generally this is specified using the

data structure called as access control list for each object. In this list the

identity of each user is specified with the access modes that she has on that

object. Each access request for a particular resource is checked against the

specified authorization associated with that resource and it is determined if

the user is allowed to access this resource in specific mode. If so, then access

is granted otherwise access is denied.

One major drawback of DAC is that this model does not specify the

control on the flow of information through the system in case of multiple

copies of an information object. For example, if a user makes copy of a file

which he can read then associated authorization information will be lost in

the new copy of the resource. Any other user which is not authorized to

access that resource in original, can access the new copy of that resource.

Other drawback is that if a user leaves the organization then all entries of

that user associated with all object in the system must be removed which is

a tedious task in large organisations.

2.1.2 Mandatory Access Control (MAC)

In mandatory access control, each subject and object in the system are as-

signed security levels with them. The security level for a subject is known as

its clearance and the level associated with an object is known as classification.

Permission to access particular object is granted if there exists some

consistent relationship between the clearance of the subject and the classifi-

cation of the object. This is generally specified by some multi-level security

model. For example, Bell LaPadula [7] security model assigns four security

levels. These levels are specified, in decreasing order of their significance, as:

c© 2016, Delhi Technological University, Delhi

2.1 Access Control Models 8

Top Secret, Secret, Confidential and Unrestricted. MAC is generally

used in military arenas where information is classified into multiple levels.

According to the Bell Lapadula [7] model, the access to objects are

allowed based on two simple rules: Read Down and Write Up. The first rule

says that subjects can read only those object which have a classification level

equal to lower than the clearance of the subject. The second rule says that

for writing an object, the clearance level of the subject must be lower than

the classification level of the object.

Although MAC solves the problem of DAC as the security levels also

apply on the newly created copy, it has the drawback that it is very rigid in

the sense that information is classified into very few levels. Because of this,

mandatory access control is not really useful for commercial organisation

where information can not be classified in few levels .

2.1.3 Role Based Access Control (RBAC)

Role based access control overcome the limitations of discretionary access

control and mandatory access control by introducing the concept of roles.

In RBAC, access permissions are granted on the basis of the activated roles

of the users which they have in an organisation. Role based access control

is flexible as in this model permissions are assigned to the roles and roles

are further assigned to users or subjects. In RBAC, subjects are the entities

which makes the request to access particular resource on behalf of user.

In order to design a RBAC system, roles are identified on the basis of

activities in the organization which are supposed to be performed. Roles

are then assigned to users based on the responsibilities of the users which

they bear as a part of system. Permissions are then assigned to roles. A

user can perform all actions which are permitted to perform by her role. In

some systems users can have multiple roles and one role can be assigned to

multiple users.

It is easy to manage authoriaztion using RBAC system. Authorization

management is required, for example, when a user leaves the organization

or the responsibilities of an existing user change. In order to manage the

c© 2016, Delhi Technological University, Delhi

2.1 Access Control Models 9

change of responsibility case, the only thing which is required is to reassign

the required role to the user and deactivate some of the previously assigned

roles, if required. The case when the user leaves the organization is handled

by assigning her role to some other user to carry out her duties. This is a

huge advantage as only few change would be required in RBAC as contrast

to DAC in which major changes must be done in the access control list of

every objects in the system.

The RBAC model adopted by NIST [1] is divided into four levels of in-

creasing operational capabilities and called as flat RBAC, hierarchical RBAC,

constrained RBAC and symmetric RBAC. These levels are progressive and

each adds exactly one new functionality. The basic structure of RBAC con-

trols access of user to system based on the activities of user which he can

perform. Roles are identified based on the activities in the system and as-

signed permissions. After this, users are associated with roles and get the

permissions conjoined with the roles. Users can activate roles from one of

the associated roles in any sessions. A request made by a user to perform

an action is permitted if user’s currently activated role is allowed to perform

that action. Advanced RBAC features are role hierarchy and constraints. In

next section we discuss the various RBAC forms in detail:

2.1.3.1 Flat RBAC

The Flat RBAC is the basic version of RBAC and covers only the essential

features of RBAC. The main idea behind RBAC is that subjects (or users)

are associated with roles, permissions are assigned to roles, and subjects (or

users) get rights to access an object permissions based on the role they hold.

The NIST RBAC [1] states that relationship between user and role can be

many-to-many. The same is the case for relationship between permission

and role assignment. This means that one single user can be assigned to

many roles and a single role can have many users. Flat RBAC poses the

requirement that roles assigned to a particular user and users assigned to a

particular role should be determined. Flat RBAC also requires that users

should be able to simultaneously hold permissions assigned to multiple roles.

c© 2016, Delhi Technological University, Delhi

2.1 Access Control Models 10

2.1.3.2 Hierarchical RBAC

Hierarchical RBAC introduces the concept of role hierarchies and provide a

support for that. Role hierarchy is a natural way in organizations to dis-

tribute the responsibilities among its users. This directly corresponds to the

type of job function associated with the user. For example, in an academic

institute, student is identified as a role. However, there are different types

of students based on the course they do. This may include UG Student, PG

Student. The PG Student can be further subdivided to MTech Student and

Phd Student and so on.

The role hierarchy states that the action which is allowed for a higher

level role user, is also allowed for a specific subdivision of that role. For

example, if student is allowed to access library printer then it implies that

all types of students down in the hierarchy are allowed to do so. This al-

lows for more flexibility in the system for managing roles and authorizations

associated with them.

2.1.3.3 Constrained RBAC

Constrained RBAC introduces the concept of separation of duties constraints.

These constraints can be of two types: static separation of duties and dy-

namic separation of duties.

The static separation of duties constraint says that the user cannot hold

two different roles. For example, the roles student and librarian have

static separation of duties between them. A user cannot have these two

possible roles. The dynamic separation of duties constraints, on the other

hand, dictates that user can have these roles but they cannot be activated

simultaneously in a session at the same time. The example is loan manager

and customer. Although, the loan manager can also apply for loan but he

would not be the sanctioning authority for the same. So if the customer role

is activated then loan manger role cannot be activated in that session.

Figure 2.1 shows the the concept of Static Separation of Duties (SSD)

in role hierarchy. The Permission Role Management System (PRMS) keeps

track of which operations (OPS) are allowed on which objects (OBS). This

c© 2016, Delhi Technological University, Delhi

2.1 Access Control Models 11

is managed through different roles defined in the system. The Dynamic

Separation of Duties (DSD) would be applicable for session roles which has

not been shown explicitly in the figure.

Figure 2.1: Hierarchical Role Based Access Control with Static Separation
of Duties as Proposed in [1].

2.1.3.4 Symmetric RBAC

Symmetric RBAC requires permission role review. In this, we can determine

the roles which are assigned to particular permissions and we can also de-

termine the permissions which are assigned to a particular role. Permission

role review is required in various practical scenarios in policy administration.

For example, if a user leaves the organisation or changes his responsibilities

within the organisation, then the administrator needs to identify his respon-

sibilities and permissions assigned so that he can revoke user’s permissions

and roles and can reassign permissions and roles to another user .

2.1.4 Access Control Model Issues and Challenges

The features and limitations associated with the classical access control mod-

els are summarised in table 2.1. The current access control models like DAC

and MAC do not cover the requirements of most of the organizations for the

c© 2016, Delhi Technological University, Delhi

2.1 Access Control Models 12

Table 2.1: Comparison of Classical Access Control Models

Access Control
Model

Main Features Limitations

DAC
Based on user identities.
Makes use of
Access Control Lists (ACL).

No control over multiple
copies of the data.

MAC

Based on security levels.
These are called
clearances for subjects and
classification for objects.

Few levels are not
sufficient to address
the need of many
organizations.

RBAC
Based on roles. Need to
preassign permission
to roles.

Role explosion. No explicit
provision to include
contextual parameters.

reasons described previously. They are also not very flexible in addressing

the needs of different organizations.

RBAC covers most of the issues of DAC and MAC, however it also suffers

from the problem of role explosion. We need to create a different role in order

to fulfil the need of every situation. The problem becomes more challenging

for context based access control requirements like at what time request to

access a particular resource is initiated, on what day access request is made

and from which location the access request is made. In current pervasive

computing environment where things changes dynamically, these issues need

to be looked at seriously.

Research is going on in this field to address these real life requirements.

But most of them proposes a new type of model [8], [9]. Although these

models can be implemented but it is difficult to integrate them with existing

access control system seamlessly. Most organisation have a RBAC system in

place and they seek to improve over their existing underlying model.

Therefore we need an extension in role based access control model so

that context information can be included with existing model without doing

many changes. Although new ways are being looked at but still there is no

standard way to include this information in the RBAC. The expectation to

have an automatic access control system is also gaining popularity. This is

c© 2016, Delhi Technological University, Delhi

2.2 Access Control Policies Specification 13

possible if we can feed the policies and access control model as an input to

the system in a formal way. In next section, we cover that all has been done

to specify the policy and access control model in a machine understandable

format.

2.2 Access Control Policies Specification

In last few year, quite a lot effort has been put to come up with automatic,

inference based access control system. This requires to formally specify the

authorization policies captured in some access control model framework. The

intention is to develop a flexible framework where more information can

be added as and when required. XACML [10] is eXtensible Access Control

Markup Language which is based on XML. It provides a framework which

can be used for any organization and not tied up to any specific entity. This

is possible due to the useful feature of XML to represent semi-structured data

specific to particular organization. It helps in capturing the authorization

policy model specification [10]. XACML uses attributes to enforce access

control. However XACML has a limitation that it is not based on seman-

tics or meanings of the underlying policies. That is why despite being more

useful than RBAC, the use of XACML is limited. The Web Ontology Lan-

guage (OWL) [11] is another way to formally represent the security polices

and access control model. The semantic nature of OWL helps in deductive

reasoning. That is the reason that researchers have tried combining OWL

and XACML [12]. In this work the policy specification is done is separately

from that of specification of access control model constructs. For example,

managing static and dynamic separation of duties is separated out from the

specification of access control polices and their enforcement.

There is another framework proposed which is based on OWL. This

framework is KAOS [13]. In this framework, authorization policies are spec-

ified using OWL. The framework provide some basic constructs and expect

from the user to input the policies using these constructs. In this sense, the

user is allowed to feed in the input policy in English but with some con-

straints. Formal policy representation is done using OWL. Another layer is

c© 2016, Delhi Technological University, Delhi

2.2 Access Control Policies Specification 14

used to ensure that access is granted as per the polcies. The KAOS multi-

layer framework also introduces the concept of guards. A user can use these

to get information about policy and then use it for further analysis.

Researchers have come up with some policy languages in which deontic

concepts are used. Examples include Rei [14] and Rein [15]. Rei defines var-

ious entities like user, action, agent, services etc. and uses their properties

along with access rights with different credentials. The language is designed

to be used where the request can be made from a wide variety of devices. An

example scenario is that a university server can be accessed from machines

in the labs and from mobile devices in the campus as well. The language

defines the concept of policy objects which can be used to capture different

rights, dispensations, obligations and prohibitions. It also defines meta poli-

cies which are policies about policies. These are used to set the modality and

priority among policies whenever there is a conflict among them. Lastly, Rei

specifies speech acts to cater for the need of a dynamically changing system.

It is used to express and modify policies like delegate, cancel or revoke some

access dynamically in the system. Like XACML and OWL, Rei framework is

also general purpose and custom implementation can be done without much

trouble.

The Rein [15] framework proposes to incorporate N3 [16] rules in the

existing Rei framework. The main feature introduced by this framework

is to enforce access control based on distributed policies across the web.

The process becomes efficient as it is based on the semantic logic inbuilt in

OWL. Many organizations use the information specified in other distributed

policies to control the uses of their resources. Thus it is useful where we have

a distributed network of policies and enforcement is done by considering the

data available in all these policies. Rein is based on inference based reasoning

and specifically uses Cwm [3].

Although all these policies frameworks are quite useful, however they

do not provide a formal synergy between policy language and access con-

trol model. This limitation was addressed in ROWLBAC [17] which tries

to model RBAC in OWL. They have defined different ontologies to define

roles, actions etc. and showed how formalism can be incorporated in the au-

c© 2016, Delhi Technological University, Delhi

2.3 Reasoning Based Policy Enforcement 15

tomatic access control system. However, they have not addressed the issue

of including contextual information in existing RBAC and advocated for a

different access control model based on attributes. In our work we improve

ROWLBAC further by including context based formalism in the framework.

2.3 Reasoning Based Policy Enforcement

The access control process is guided by high-level policies. The policies are

mapped to rules in the framework. When all parts of the rule are true then

that particular rule gets fired and its conclusion becomes true. However, in

order to check if all parts of a rule are true, we need the process of inference.

This is required as all required information may not be directly available in

the system and we may need to deduce additional facts from the given data.

The process of policy enforcement should be based on the inference based

reasoning. By inference we mean deducing additional facts from the given

data. This process helps in capturing the essence of the high level policy.

As an example, consider the policy that PRAN account web page can only

be accessed by employees covered under new pension system. Now if Suresh

has joined the office on August 17, 2007 then, based on reasoning, we can

deduce that he is covered under new pension system and the access would be

granted. This is possible because we have this information available in the

system that people who join after January 01, 2004, are covered under this

scheme. As the joining date of Suresh is after this date, so we conclude that

he is covered by this scheme.

Sometimes information required to deduce addition facts, may be dis-

tributed across different data sources. We need to use the semantic nature

of the representation and fetch all the required information in order to infer

facts about the involved entities. For example, an organization allows to

access its intranet resources by its internal departments or by its partners or-

ganizations. In order to implement this rule, we may make use of IP address

of incoming requests and then we use some other data source which keeps

the information as which IP address belongs to which organization. This

mapping information may be provided by the ISP and may be present at

c© 2016, Delhi Technological University, Delhi

2.3 Reasoning Based Policy Enforcement 16

different location. We need to include this information to infer if the request

has been generated from an allied parter or the internal department.

Cwm [3] and Euler Yet another proof Engine (EYE) [2] are examples of

reasoning engines used extensively. However there is an issue associated with

the performance of the reasoner. Based on a study [4] it is proved that EYE

is better than Cwm. Both are based on Prolog but the working methodology

is different. Both the reasoners are compatible with N3 and can be used in a

distributed way. We experimented with both these and finally decided to go

with EYE due to its better performance.

In the following chapter we present an OWL representation of existing

RBAC and its proposed extension to incorporate contextual information. We

have written OWL ontologies for academic domain. Later in chapter 4 we

explain the design and development of a practical access control system and

demonstrate how our framework can be useful for organizations.

c© 2016, Delhi Technological University, Delhi

Chapter 3

Representation of Context

Aware RBAC Model in OWL

In this chapter, we first present how the Role Based Access Control can be

represented as defined in ROWLBAC [17]. The representation is done in

OWL as per the ROWLBAC guidelines. We have defined basic RBAC con-

struct as OWL classes. We have written ontologies in OWL and represented

domain ontologies pertaining to academic environment of DTU.

However, the ROWLBAC representation does not contain a way to in-

corporate contextual information. Therefore we, then, present the extension

to the RBAC system for incorporating contextual information. We define

constructs related to time, day and location and propose an extension frame-

work for the existing RBAC model by defining contextual ontologies.

3.1 Basic Strategy for RBAC

Basic RBAC constructs include Subject, Object, Action and Role. Action

correspond to the request to access a particular resource or object. Each

Action is associated with exactly one Subject and exactly one Object.

While Subject represents the initiator of an action, Object represents the

resource which needs to be accessed. Thus, we can say that Actions are the

access operations which a Subject wants to perform on an Object. Role,

c© 2016, Delhi Technological University, Delhi

3.1 Basic Strategy for RBAC 18

on the other hand, is related to the permission and helps in deciding if an

Action is permitted or not.

We define these basic entities in OWL as follows:

Subject a owl:Class.

Object a owl:Class.

Action a owl:Class.

Role a owl:Class.

Action has been associated with two generic properties: subject and ob-

ject. These properties connect the Action class to its corresponding Subject

and Object. These are defined as:

Action a owl:Class.

subject a owl:Property;

rdfs:domain Action;

rdfs:range Subject.

object a rdfs:Property;

rdfs:domain Action;

rdfs:range Object.

Later, we present a way to add context aware properties with Action

class. These properties are accessTime, accessLocation and accessDay which

represent at what time, from what location and on what day the request is

made to perform an action.

Roles are associated with Subject using two properties: role and ac-

tiverole. While the first one states the possible roles which a subject can take,

the last tells about which of those roles are actually activated. The access

grant decision would be taken based on activated roles. These properties are

defined as:

Role a owl:Class.

role a owl:Property;

rdfs:domain Subject;

rdfs:range Role.

activeRole rdfs:subPropertyOf role.

c© 2016, Delhi Technological University, Delhi

3.2 Example Domain 19

Figure 3.1: Example Role Hierarchy

3.2 Example Domain

We have selected academic environment as an example domain and later

show demonstration of the developed RBAC system for the same.

Figure 3.1 shows the role heirarchy for our example domain. In this

heirarchy, roles are identified based on the responsibilities and possible ac-

tivities of different persons in the academic system. The role heirarchy

consists of one main class: User. Faculty, Student and Staff are sub-

classes of User class. All other classes in the heirarchy are subclasses of

these three classes. Faculty have two subclasses: VistingFaculty and

PermanentFaculty. PermanentFaculty is further divided into two sub-

classes: Dean and HOD. Similarly, Staff has two subclasses: AdministrativeStaff

and TechnicalStaff. AdministrativeStaff is divided in to three sub-

classes: Registrar, Librarian and Accountant. TechnicalStaff has two

subclasses: LabAssistant and ProjectAssociate. Student class has two

subclasses: UGstudent and PGstudent.

We have captured only a small portion for the demonstration purpose.

More roles can be added in the hierarchy as and when required.

c© 2016, Delhi Technological University, Delhi

3.3 Defining Role Hierarchies 20

3.3 Defining Role Hierarchies

We have represented role hierarchies using subRole property which is defined

as:

subRole a rdfs:transitiveProperty;

rdfs:domain Role;

rdfs:range Role.

The subRole property connects two roles in a hierarchical way. We have

used this property and defined academic domain role hierarchy in following

way:

User a rbac:Role.

Student a rbac:Role.

Faculty a rbac:Role.

Staff a rbac:Role.

Student rbac:subRole User.

UGStudent rbac:subRole Student.

PGStudent rbac:subRole Student.

Faculty rbac:subRole User.

VisitingFaculty a rbac:Role.

VistingFaculty rbac:subRole Faculty.

PermanentFaculty a rbac:Role.

PermanentFaculty rbac:subRole Faculty.

Dean rbac:subRole PermanentFaculty.

HOD rbac:subRole PermanentFaculty.

Staff rbac:subRole User.

AdministrativeStaff rbac:subRole Staff.

TechnicalStaff rbac:subRole Staff.

LabAssistance rbac:subRole TechnicalStaff.

ProjectAssociate rbac:subRole TechnicalStaff.

Registrar rbac:subRole AdministrativeStaff.

Librarian rbac:subRole AdministrativeStaff.

Accountant rbac:subRole AdministrativeStaff.

c© 2016, Delhi Technological University, Delhi

3.4 Defining Separation of Duties 21

In this role hierarchy, we have defined User as an instance of Role class

which is a base class and defined in ROWLBAC ontology. All other roles

in hierarchy are subRoles of the User. For example, Student is subRole of

User. Student is further divided into two roles: UGStudent and PGStudent

which are associated with Student using subRole property.

This ontology is defined in appDomain namespace. In order to access

this ontology in other ontologies, the prefix appDoamin is used. For example,

we can use Student role in other domain by writing appDomain:Student in

the ontology and define the appDomain prefix in the beginning of the file.

3.4 Defining Separation of Duties

Separation of duties constraints are used in conflict situations where multiple

roles are assigned to single user. Separation of duties constraints are of two

types: Static Separation of Duties (SSoD) and Dynamic Separation of Duties

(DSoD). The first constraints tells that one subject cannot have two roles.

DSoD constraint tells that although it is possible for the user to have multiple

roles but there are some roles which cannot be activated in same session at

the same time. SSoD and DSoD are represented using the ssod and dsod

properties in following way:

VisitingFaculty rbac:ssod PermanentFaculty.

TA rbac:dsod PGStudent.

The first fact asserts that an individual cannot have both VisitingFaculty

and PermanentFaculty roles. The second fact asserts that it is possible for

any individual to have both TA and PGStudent roles but these roles cannot

be activated in same session at the same time.

3.5 Defining Permission Assignment

We have used two properties for assigning permissions to roles: permitted

and prohibitted. For example, faculty members and students are allowed to

c© 2016, Delhi Technological University, Delhi

3.6 Representation of Contextual Information 22

access the result page. This association is represented in following way in

our ontology:

Faculty rbac:permitted AccessResult.

Student rbac:permitted AccessResult.

Here AccessResult is defined as an Action in our ontology. The per-

mitted property connects instances of Role class (Faculty, Student) with

instances of Action (AccessResult) class.

3.6 Representation of Contextual Information

We now propose an extension to the existing ROWLBAC [17] based RBAC

framework to include context based information. We need to have this exten-

sion as real world situations require to control the flow of information based

on context. This includes information like at what time the access request is

made, from which location the access request has come from or on what day

the request is made to access a specific resource. We now formally present

how the context information can be incorporated in existing framework.

3.6.1 Access Control Based on Time

The access control requests based on time are handled by associating ac-

cessTime property with Action class. We introduce this property as follows:

accessTime a owl:Property;

rdfs:domain Action;

rdfs:range xsd:time.

Here, accessTime is defined as an OWL property which associates an

Action with the time at which it is requested. We have used datatypes

provided by XML schema for this purpose. This datatype is defined in xsd

namespace.

We also need to use the concept of event which should be characterized

by its start time and end time. The concept of Event is defined in event

c© 2016, Delhi Technological University, Delhi

3.6 Representation of Contextual Information 23

[18] namespace. This namespace also defines other time related classes and

properties. We introduce two new properties to defines the startTime and

endTime as follows:

startTime

a owl:DatatypeProperty, owl:FunctionalProperty;

rdfs:domain event:Event;

rdfs:range xsd:time.

endTime

a owl:DatatypeProperty, owl:FunctionalProperty;

rdfs:domain event:Event;

rdfs:range xsd:time.

Based on above representation, we have defined events like normalWorkHour,

morningWorkHour and afternoonWorkHour with different start and end time

in the following way:

normalWorkHour a event:Event;

startTime "09:00:00"^^xsd:time;

endTime "17:00:00"^^xsd:time.

morningWorkHour a event:Event;

startTime "09:00:00"^^xsd:time;

endTime "11:59:00"^^xsd:time.

afternoonWorkHour a event:Event;

startTime "12:00:00"^^xsd:time;

endTime "17:00:00"^^xsd:time.

In order to check whether the accessTime of an Action lies within the

particular event, we have written specific policy rules which we explain later

while discussing the enforcement of the policies.

3.6.2 Access Control Based on Day

Many times organizations put restriction on the use of a resource based on

a particular day of week. We introduce another property accessDay which

tells that on what day of the week the request is made to access a particular

resource. We have defined this property as follows:

c© 2016, Delhi Technological University, Delhi

3.6 Representation of Contextual Information 24

accessDay a owl:Property;

rdfs:domain Action;

rdfs:range event:day.

The concept of day is defined in the event namespace. We later show

how the day associated with an Action is checked against the allowed day

list.

3.6.3 Access Control Based on Group Membership

We have also defined UserGroup class in rbac namespace which represents

the group of user for a specific role. For example, we can group the faculty

form CSE department in one UserGroup and faculty from EE department in

another UserGroup.

UserGroup a owl:class.

For associating a subject with a particular group we have defined the

property hasMember.

hasMember a rdfs:Property;

rdfs:domain UserGroup;

rdfs:range Subject.

For example, if we want to associate swamy with MtechCSE14 which is

a group of students who joined in 2014 for MTech course in CSE then we

write:

MtechCSE14 a rbac:UserGroup;

rbac:hasMember swamy.

3.6.4 Access Control Based on Location

Another important contextual information is the location from which the

request has been made. Organizations restrict the access to resources based

on the source location. For example, most organizations have some resources

which can only be accessed from within the internal network. In some other

c© 2016, Delhi Technological University, Delhi

3.7 Enforcement of Authorization Policies 25

cases, the information is allowed only for some particular departments within

the internal network.

We propose to map the location of users based on their IP address. We

introduce the concept of AddressGroup which groups a set of IP addresses

based on the physical locations. This is done with the help of a new property

hasIP. This property connects the AddressGroup to the IP addresses which

belong to this group. For example, we define the group for the IP addresses

which belong to CSE department as follows:

hasIP a rdfs:Property;

rdfs:domain Action;

rdfs:range AddressGroup.

AddressCSE a rbac:AddressGroup;

rbac:hasIP "172.16.124.140".

Here we have associated IP address 172.16.124.140 with AddressCSE

group by using property hasIP. We can add many more addresses using

this way. We later show how to use the property hasIP for checking the

membership in a particular AddressGroup.

For representing location, i.e., from where the access request is made,

we have defined property accessLocation whose domain is Action class and

range is AddressGroup. This is the way to incorporate location context in

the access request.

accessLocation a owl:Property;

rdfs:domain Action;

rdfs:range rbac:AddressGroup.

3.7 Enforcement of Authorization Policies

In this section, we present how some high level authorization policies, which

are expressed in some natural language, can be converted in OWL rules and

enforced. For writing policy rules, N3 notation has been used due to its better

readability. These rules are enforce using the EYE reasoner which is based

on inference based reasoning. We now present some example policies and

their enforcement.

c© 2016, Delhi Technological University, Delhi

3.7 Enforcement of Authorization Policies 26

1. As the first example consider a higher level policy statement says that

access to result page is allowed by students and faculty from 10:00 AM

to 5:00PM. For enforcing this policy, we write the corresponding rule

as:

{ ?ACT a ?REQACTION;

subject ?SUB;

accessTime ?T.

?REQACTION a Action.

?SROLE permitted ?REQACTION.

?SUB activeRole ?SROLE.

normalWorkHour time:includes ?T.

} => {?ACT a PermittedAction;

role ?SROLE;

action?REQaction;

Subject ?SUB.

}

In specifying policy rules if all the statements on the left hand side of

the implication operator are true then the rule will be fired and we

assert (consider true) the facts specified in the right hand side of the

implication operator.

The explanation of the above rule is as follows. We say that Act is

an Action. This is specified in two steps. We first say that Act is

REQACTION and then specify that REQACTION is a type of Action. The

associated subject of the Action is SUB and associated access time is T.

We now check if there is any role (SROLE) which is permitted to perform

the requested action and it is one of the activated roles of the subject.

We also check if the access time T lies within the normal work hour

range. If all these conditions are satisfied then the requested action

will be a permitted action.

Above rule includes the context parameter access time which tells the

time at which the request is made by a subject to access the specific

object. In above rule, we need to check if access time falls within

normalWorkHour. We have to compare access time with respect to the

start time and end time of normalWorkHour. We have written rules to

check this thing as:

c© 2016, Delhi Technological University, Delhi

3.7 Enforcement of Authorization Policies 27

{

?e startTime ?begin.

?A a ?REQACTION;

accessTime ?T.

?REQACTION a Action.

?begin math:equalTo ?T .

} =>

{

?e time:includes ?T .

} .

Above rule checks the access time with respect to start time of the

event. If they happen to be equal then the access time is within the

time limits of the event. Here equalTo property is defined in math

namespace and includes property is defined in time namespace.

Following rule checks the access time against end time of the event.

{

?e endTime ?ending.

?A a ?REQACTION;

accessTime ?T.

?REQACTION a Action.

?ending math:equalTo ?T .

} =>

{

?e time:includes ?T.

} .

We need to write one more rule to check if the access time is between

the start time or end time of the event. This is done as follows:

{

?e startTime ?begin.

?e endTime ?ending.

?A a ?REQACTION;

accessTime ?T.

?REQACTION a Action.

?begin math:lessThan ?T .

?ending math:greaterThan ?T .

} =>

{

?e time:includes ?T.

} .

c© 2016, Delhi Technological University, Delhi

3.7 Enforcement of Authorization Policies 28

2. As another example, we now present how to write policy rules which

restrict the access based on the location. For example, consider the

policy rule access to a web page is allowed if the request has come from

the CSE department. This policy rule is written in following way:

{

?ACT a ?REQACTION;

subject ?SUB;

object ?OBJ;

hasIP ?IP.

?REQACTION a Action.

?SROLE permitted ?REQACTION.

?SUB activeRole ?SROLE.

data:AddressCSE hasIP ?IP.

} => {?ACT a PermittedAction;

role ?SROLE;

action ?REQACTION;

subject ?SUB.

}.

In above rule, the requested action has associated subject SUB and

has the IP address IP. Apart from checking the required activated

role as explained in previous example, we also check if the source IP

address belongs to the CSE department machines. The hasIP property

associates requested action with the IP address of machine from where

request is generated. For enforcing policies which require access from

particular IP we define a set of IP addresses which belong to some

particular location. In above example this set is AddressCSE which is

defined in data namespace.

3. Organizations also need a way to enforce access control based on days

of a week. Consider a high level policy rule saying that access to faculty

page is allowed on Thursday and Friday by faculty of Electrical Engi-

neering Department. For enforcing these types of policies, it requires

to check whether access to an object by a subject from a particular

department is allowed on particular day. We have written this rule in

following manner:

{

?ACT a ?REQACTION;

c© 2016, Delhi Technological University, Delhi

3.7 Enforcement of Authorization Policies 29

subject ?SUB;

object ?OBJ;

accessDay ?d.

?REQACTION a Action.

?SROLE permitted ?REQACTION.

?SUB activeRole ?SROLE.

data:FacultyEE hasMember ?SUB.

?d list:in ("Thursday" "Friday").

} => {?ACT a PermittedAction;

role ?SROLE;

action ?REQACTION;

subject ?SUB.

}.

In above rule, the requested action has associated subject SUB and con-

text day d. In above example, we are associating context information

with the subject in the form of group membership. In this, we check if

a user from a particular UserGroup can access the requested page on a

particular day. Here we are checking whether the subject is a member

of FacultyEE UserGroup. Similarly for the policy statement access

to faculty page is allowed on Monday, Tuesday and Wednesday by the

faculty of Computer Science and Engineering Department, the rule is

written in following way:

{

?ACT a ?REQACTION;

subject ?SUB;

object ?OBJ;

accessDay ?d.

?REQACTION a Action.

?SROLE permitted ?REQACTION.

?SUB activeRole ?SROLE.

data:FacultyCSE hasMember ?SUB.

?d list:in ("Monday" "Tuesday" "Wednesday").

} => {?ACT a PermittedAction;

role ?SROLE;

action ?REQACTION;

subject ?SUB.

}.

4. In organizations where multiple roles are assigned to single person there

need to be some constraints on activation of roles. These constraints

are driven by separation of duties as explained earlier. We have written

rule for checking DSoD constraint as follows:

c© 2016, Delhi Technological University, Delhi

3.7 Enforcement of Authorization Policies 30

{

?ACT a ?RACTIVATEROLE;

subject ?SUB;

object ?NEWROLE.

?RACTIVATEROLE a Action.

?SUB activeRole ?R.

?R dsod ?NEWROLE.

} => { ?ACT a prohibittedAction;

subject ?SUB;

object ?NEWROLE.

}.

In above rule, the requested action has associated subject SUB and

the proposed new role NEWROLE. We check if there is any other existing

activated role which has a dynamic separation of duties constraint with

NEWROLE. In that case the requested would be prohibited.

In this chapter, we have formally presented the extension to the RBAC

framework to include contextual information. We have presented sufficient

examples to show how context based policies can be enforced. In next chap-

ter, we describe the developed access control system for DTU examination

portal. We also demonstrate how our framework can be integrated into prac-

tical systems.

c© 2016, Delhi Technological University, Delhi

Chapter 4

Access Control System for

Academic Environment

In this chapter, we present how the theoretical framework introduced in pre-

vious chapter can be used to implement a practical access control system of

interest. We have implemented an access control system for academic envi-

ronment. In particular, the examination portal of DTU is used for demon-

stration. The developed system is context aware and fulfils most of the

realtime access control requirements. In order to enforce policy based access

control user roles and contextual information are used primarily. These roles

are assigned to users based on the activities in which he or she is involved as

part of Delhi Technological University. Context information associated with

access request can be time, day of week or location from where request is ini-

tiated. This system clearly demonstrate the potential of our representation

framework for access control in practical scenarios.

4.1 System design

The overall design of the developed system is shown in figure 4.1. Imple-

mented access control system shows that how it can be used in practical

situations. When some user wants to access some resource (a web page in

our system), she would make a request for that resource using her client

c© 2016, Delhi Technological University, Delhi

4.1 System design 32

(e.g. browser). The incoming requests are handled by the front end at the

server. The front end authenticates the user and, according to the request

made, it creates a session. The session contains information about what is

requested along with other access control parameters. The front end of the

server extracts relevant information from the incoming request. The relevant

information, for example, can be parameters like subject, object, time, day

or location. The front end also communicates with policy database to get

authorization policies of the organization and invoke the reasoner. The rea-

soner also takes the access control model specification and application related

information (roles, permissions etc.) as input. Reasoner does the necessary

work required for inference based reasoning and produces the output which

contains the authorization decision. Based on the output of the reasoner, the

desired information is then returned to the client.

Figure 4.1: The Overall Design of the Developed Access Control System

For example, consider the case when a user swamy wants to access the

result page at the examination portal. As a first step the user would login

to the system using his credentials. These credentials are then authenticated

c© 2016, Delhi Technological University, Delhi

4.2 Access Control System for Examination Portal at DTU 33

by the server. If the authentication is successful then the server creates a

session for the user swamy. It also communicates with the policy database

and records the currently activated role of the user.

When swamy clicks on the result page link then the front end of the

server creates the action which contains the subject (swamy), object (result

page) and context information (time, day and location) as parameters and

add this request to currently activated session for the user swamy. Server

then invokes the reasoner. Reasoner takes input as access control model spec-

ification, application specific data, authorization policies and session infor-

mation. The reasoner performs the inference based reasoning and produces

the output which contains the authorization decision. This output is then

send back to the front end of the server. The front end analyses the output

and, based on the authorization decision, it returns the result to the browser

of the user. Thus if authorization decision says that requested action is per-

mitted then server renders the desired page to the browser of the user and if

requested action is not permitted, according to authorization decision, then

server sends the message to the browser that access to the requested page is

denied along with possible reasons.

4.2 Access Control System for Examination

Portal at DTU

We have selected the examination portal of DTU for demonstration of the

access control system. As of now the examination portal at Delhi Techno-

logical University does not have any access control system in place. We have

added few more pages to this portal for demonstrating our system. In the

following, we explain the functionality of these pages along with description

of the developed access control system.

4.2.1 Login Page

We have added login page on top of the examination portal of DTU for au-

thentication of user. We require this page because, for access control, there

c© 2016, Delhi Technological University, Delhi

4.2 Access Control System for Examination Portal at DTU 34

is a need to identify the user. From user credentials, we get the informa-

tion that who has logged in to the system, who wants to access the system

resources and what permissions he has. The page is shown in figure 4.2.

Figure 4.2: Login Page to Access Examination Portal of DTU

Login page helps to get the information which are necessary to decide

access control. For example, if a user has an administrator role activated

then he is allowed to access all system resources. However, if the user is not

an administrator then his access to the system resources would be based on

his possible and activated roles and associated context information.

4.2.2 Administrator Page

If the logged-in user is an administrator then, after successful login, admin-

istrator page will be displayed as shown if figure 4.3. Administrator can go

directlly to the examination portal by clicking on Go To Examination Portal

link and can access any page of the examination portal he wants to access.

Additionally, administrator can also manage the authorization policies.

Every organisation requires management of policies for effective access

control. Policy management includes viewing the existing policies, modify-

ing the existing policies and writing new policies. We have created policy

c© 2016, Delhi Technological University, Delhi

4.2 Access Control System for Examination Portal at DTU 35

management page for this purpose. Figure 4.4 shows the snapshot of policy

management page.

Figure 4.3: After Login Page for Administrator to Access Examination Portal
of DTU

Figure 4.4: Policy Management Main Page

We have provided view menu and edit menu on this page. Using view

c© 2016, Delhi Technological University, Delhi

4.2 Access Control System for Examination Portal at DTU 36

menu existing policies can be viewed and analysed by the administrator while

edit menu is designed so that the administrator can edit existing policies

while. For going back to administrator page, a home link is provided.

In the view menu, we have three sub menus for viewing role heirarchy,

existing rbac policies and rbac model representation. Figure 4.5 shows the

policy management page with view menu selected for role heirarchy.

Figure 4.5: Policy Management Page for View Role Hierarchy

c© 2016, Delhi Technological University, Delhi

4.2 Access Control System for Examination Portal at DTU 37

Figure 4.6: Policy Management Page for Add New Rule

We have provided edit menu on policy management page so that admin-

istrator can edit existing policies. Administrator can add new rules or modify

existing rules using the sub menus provided in the edit menu. Figure 4.6 and

figure 4.7 show these functionalities.

Figure 4.7: Policy Management Page for Modify Existing Rule

c© 2016, Delhi Technological University, Delhi

4.2 Access Control System for Examination Portal at DTU 38

4.2.3 Activation and Deactivation of Roles

A user should be able to activate or deactivate her roles during her session.

However, this process is subject to the constraint imposed by Dynamic Sep-

aration of Duties. We explain that part in the next section.

We have provided options for activation and deactivation of roles for

users. This is applicable for users other then the administrator. If the user

is not an administrator then after successful login, the page shown in fig-

ure 4.8 is displayed. This page displays the default activated role of user

and provides the option to activate role from his possible roles. However,

not all combinations of multiple roles can be simultaneously activated due

to dynamic separation of duties constraint. We have also provided option

for user to deactivate his or her active role. Each activated role is associated

with a set of permissions and helps in deciding access grant along with con-

textual information to access different pages of the examination portal. For

going to examination portal we have provided separate button named Go to

examination portal.

Figure 4.8: After Login Page to Access Examination Portal of DTU

c© 2016, Delhi Technological University, Delhi

4.2 Access Control System for Examination Portal at DTU 39

4.2.4 Dynamic Separation of Duties

As explained in previous section, we check for dynamic separation of duties

constraint during activation of roles. In order to implement this check, we

have written separate rules which are already discussed in chapter 3.

For example, consider the case where swati is a subject and whose possi-

ble roles are VisitingFaculty and PGStudent. There exist dynamic separa-

tion of duty constraint between these two roles as these two roles can not be

simultaneously activated. In our implementation if swati has activated one

role (for example, VisitingFaculty here) and want to activate another role

(PGStudent) at the same time then this action is not allowed. The figure 4.9

shows that the same page will be displayed with a warning message.

Figure 4.9: Page Showing DSOD Constraint

4.2.5 Access Control Based on Time

Many times, in practical scenarios, the access permission is be based on the

time at which the access request is presented to the system. This may be

because the organization may not have enough capability to serve all users

at the same time.

c© 2016, Delhi Technological University, Delhi

4.2 Access Control System for Examination Portal at DTU 40

We have enforced time based access control on result page of examination

portal. If a user, other than the administrator, clicks on the result page

link, then the server creates the action which contains the information of

subject, object and access time at which request is presented to the server.

Server also identifies the user group from which user belongs to, and sends

this information as an input to the reasoner. Reasoner then performs the

inferencing and based on the role of the user and the time at which request

is presented, produces the authorization decision. If the decision says that

requested action is permitted then server renders the desired page.

For example our policy says that the access to result page is allowed

to students from MtechCSE14 group between 9:00 AM to 11:59AM and for

students from MtechEE14 group between 12:00 PM to 5:00 PM. Thus if a

student from MtechCSE group wants to access the result page at 11:00 AM

he would see the page displayed as shown on figure 4.10.

Figure 4.10: Result Page Displayed at Particular Time

Similarly when a student from the MtechEE group wants to access the

result page at 11:00 AM, he will get the access denied page as shown in

figure 4.11.

c© 2016, Delhi Technological University, Delhi

4.2 Access Control System for Examination Portal at DTU 41

Figure 4.11: Access denied to Result Page

4.2.6 Access Control Based on days of Week

Access restriction based on a particular day of a week is another way to

distribute the work load of the system. We have incorporated access control

on the basis of on what day of week access request is generated by a particular

subject to access an object. We have implemented the access control based

on day on the Faculty page of the examination portal.

For example, out policy rule says that Faculty from CSE department

can access the faculty page on Monday, Tuesday and Wednesday while Faculty

from EE department can access the faculty page on Thursday and Friday.

Figure 4.12 shows that the faculty page is displayed when accessed by a

faculty of CSE department on Monday. On the other hand, access to the fac-

ulty page is denied when accessed by a faculty of EE department on Monday

as shown in figure 4.13.

c© 2016, Delhi Technological University, Delhi

4.2 Access Control System for Examination Portal at DTU 42

Figure 4.12: Faculty Page When Accessed on Particular day

Figure 4.13: Access Denied to Faculty Page

4.2.7 Access Control Based on Location

We have implemented location based access control over the marksheet page

of examination portal at DTU.

c© 2016, Delhi Technological University, Delhi

4.2 Access Control System for Examination Portal at DTU 43

Figure 4.14: Marksheet Page when Accessed from Particular Location

Location based access control are useful when the organizations want to

restrict their information to their internal users or to some other users who

belong to some alliance organizations. In order to implement this type of

access control, we have used the IP address of the machine from which the

request to access a web page is generated. We have inferred the group to

which the IP address of the source machine belongs. If that group is an ally

then the access is granted otherwise the request is denied.

Even if a user whose role is allows him to access the marksheet page,

accesses this page from a wrong location then the access is denied. In this

case, the context, i.e., location plays a key role in deciding the access grant.

The page must be accessed from particular allowed locations along with the

permissible roles. In that case the access would be granted.

Result of accessing the marksheet page from allowed location is shown

in figure 4.14. Figure 4.15 shows that access is denied when the page is

requested from other locations.

c© 2016, Delhi Technological University, Delhi

4.2 Access Control System for Examination Portal at DTU 44

Figure 4.15: Access Denied to MarkSheet Page

In this chapter, we have described the access control system designed and

developed for the examination portal of DTU. We have not only covered the

traditional access control based on roles but also covered the access control

based on contextual parameters. This work demonstrates the capability of

using our proposed framework for practical domains. This is not limited to

the academic environment but can be easily extended to other domains.

We also point out and highlight the extensibility of our framework where

different parameters can be added as and when needed. This keeps the role

management simple and avoids problem like role explosion. The proposed

framework deals with many real world policies and paves a way to implement

a dynamic and adaptable access control system.

c© 2016, Delhi Technological University, Delhi

Chapter 5

Conclusion and Future Work

In this thesis, we have shown how the Access Control model and Authoriza-

tion Policies can be represented using Web Ontology Language (OWL). The

importance of this representation is driven from the fact that organizations

need access control systems which are dynamic in nature and access grants

are decided at run time. These access decisions are mainly guided by the

contextual information like time, day, location etc.

We have started with representing the basic access control system for

academic domain. We have written ontologies to represent various entities

defined in the academic environment. These correspond to the various activ-

ities performed by different users in the domain. We have defined different

roles, identified conflicts among them and associated permissions with dif-

ferent actions. We have implemented flat, hierarchical and constrained Role

Based Access Control (RBAC) system for this example domain.

However, the RBAC model has a specific need to preassign permissions

to roles and does not provide an explicit way to include contextual informa-

tion. We have extended the RBAC system so that different context param-

eters can be included while deciding the access grant. We modelled time,

day, location and group membership which are the most practical contextual

parameters to help in access control. Various sample high-level policy state-

ments and their corresponding conversion in OWL rules have been shown.

The representation is based on a flexible and extensible framework where

more parameters can be added as and when the need arises. The high level

c© 2016, Delhi Technological University, Delhi

46

policy rules are enforced using an inference based reasoning process. We have

used the EYE reasoner which has very good performance in comparison to

other reasoners.

We have designed and developed a working access control system for the

examination portal at DTU. This system demonstrates how the theoretical

framework can be extended to meet the need of many organizations. In

this system, we have shown enforcement of different high level policy rules

with different contextual information. This framework also includes policy

administration where existing rules can be modified and new rules can be

added. This demonstration shows the particle use of semantic reasoning

where different existing facts can be used to derive new information which

ultimately helps in access control.

In future, we would like to develop the access control system for different

domains including my sponsors. Exploring different access control models,

other than classical models, would be an interesting task. Writing more com-

plex policy rules based on wide variety of context would also be considered

in the future.

c© 2016, Delhi Technological University, Delhi

Bibliography

[1] R. Sandhu, D. Ferraiolo, and R. Kuhn, “The nist model for role-based

access control: towards a unified standard,” in Fifth ACM Workshop on

Role-Based Access Control, (Berlin), July 2000.

[2] R. Verborgh and J. D. Roo, “Drawing conclusions from linked data on

the web the eye reasoner,” in IEEE Software, May-June 2015.

[3] T. B. Lee, “Cwm,” 2000.

[4] “Deep taxonomy benchmark.” http://eulersharp.sourceforge.net/

2003/03swap/dtb-note.

[5] R. S. Sandhu and P. Samarati, “Access control: principle and practice,”

Communications Magazine, IEEE, vol. 32, no. 9, pp. 40–48, 1994.

[6] R. S. Sandhu, “Lattice-based access control models,” Computer, vol. 26,

no. 11, pp. 9–19, 1993.

[7] D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathematical

foundations,” tech. rep., The MITRE Corporation, 1973.

[8] J. Park and R. Sandhu, “The ucon abc usage control model,” ACM

Transactions on Information and System Security (TISSEC), vol. 7,

no. 1, pp. 128–174, 2004.

[9] X. Jin, R. Krishnan, and R. Sandhu, “A unified attribute-based ac-

cess control model covering dac, mac and rbac,” in Proceedings of 26th

Annual IFIP WG 11.3 Working Conference on Data and Applications

Security and Privacy (DBSec 2012), (Paris, France), July 2012.

c© 2016, Delhi Technological University, Delhi

http://eulersharp.sourceforge.net/2003/03swap/dtb-note.
http://eulersharp.sourceforge.net/2003/03swap/dtb-note.

BIBLIOGRAPHY 48

[10] S. Godik and T. Moses, “Oasis extensible access control markup lan-

guage (xacml). oasis committee secification cs-xacml-specification-1.0,”

November 2002.

[11] M. Dean and G. Schreiber, “Owl web ontology language guide,” 2004.

[12] R. Ferrini and E. Bertino, “Supporting rbac with xacml+ owl,” in Pro-

ceedings of the 14th ACM symposium on Access control models and tech-

nologies, (Stresa,Italy), pp. 145–154, ACM, June 2009.

[13] J. M. Bradshaw, A. Uszok, M. Breedy, L. Bunch, T. Eskridge, P. Fel-

tovich, M. Johnson, J. Lott, and M. Vignati, “The kaos policy services

framework,” in Proc. 8th Cyber Security and Information Intelligence

Research Workshop, 2013.

[14] L. Kagal, “Rei : A policy language for the me-centric project,” tech.

rep., HP Labs, Sep. 2002.

[15] L. Kagal and T. Berners-Lee, “Rein: Where policies meet rules in the

semantic web,” Computer Science and Artificial Intelligence Laboratory,

Massachusetts Institute of Technology, Cambridge, MA, vol. 2139, 2005.

[16] T. Berners-Lee, D. Connolly, E. Prud’hommeaux, and Y. Scharf, “Ex-

perience with n3 rules.,” in Rule Languages for Interoperability, 2005.

[17] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough, and

B. Thuraisingham, “Rowlbac: Representing role based access control

in owl,” in Proceedings of the 13th ACM symposium on Access control

models and technologies, pp. 73–82, June 2008.

[18] “Event ontology.” http://eulersharp.sourceforge.net/2003/

03swap/event.

c© 2016, Delhi Technological University, Delhi

http://eulersharp.sourceforge.net/2003/03swap/event.
http://eulersharp.sourceforge.net/2003/03swap/event.

	Introduction
	Motivation
	Objective and Research Challenges
	Contribution
	Outline

	Literature Review
	Access Control Models
	Discretionary Access Control (DAC)
	Mandatory Access Control (MAC)
	Role Based Access Control (RBAC)
	Access Control Model Issues and Challenges

	Access Control Policies Specification
	Reasoning Based Policy Enforcement

	Representation of Context Aware RBAC Model in OWL
	Basic Strategy for RBAC
	Example Domain
	Defining Role Hierarchies
	Defining Separation of Duties
	Defining Permission Assignment
	Representation of Contextual Information
	Access Control Based on Time
	Access Control Based on Day
	Access Control Based on Group Membership
	Access Control Based on Location

	Enforcement of Authorization Policies

	Access Control System for Academic Environment
	System design
	Access Control System for Examination Portal at DTU
	Login Page
	Administrator Page
	Activation and Deactivation of Roles
	Dynamic Separation of Duties
	Access Control Based on Time
	Access Control Based on days of Week
	Access Control Based on Location

	Conclusion and Future Work
	Bibliography

