
Delhi Technological University Page i

A

Dissertation

On

Bluetooth enabled secure ABE based IoT health sensor

Submitted in Partial Fulfillment of the Requirement

For the Award of the Degree of

Master of Technology

in

Computer Science and Engineering

By

Suraj Singh
University Roll No. 2K14/CSE/19

Under the Esteemed Guidance of

Ms Divyashikha Sethia

Assistant Professor

Computer Science & Engineering Department, DTU

COMPUTER SCIENCE & ENGINEERING DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY

DELHI - 110042, INDIA

2014-2016

Delhi Technological University Page ii

ABSTRACT

Electronic Health data is having a profound and increasing impact in the area of mobile health

services. This electronic health data is stored, transferred and processed in these systems with

which comes the privacy, authentication, secure storage and accountability issues. In this paper,

we propose an approach which provides end-to-end security by encrypted data storage and

transmission. We propose a unique Secure Health Sensor Data (SHSD) system with embedded

secure microcontroller. This system communicates with systems such as laptop, mobile etc.

through Bluetooth interface. Our design at present comprises use of motion sensor i.e.

accelerometer based sensor which can be used to detect the x, y, z coordinates of human body as

well as fall detection of elderly people. The data is generated, stored and transferred by SHSD by

making use of Raspberry Pi (a single board computer system) to a mobile device for e.g.

Laptops, Phones etc. We propose a novel approach to implement this on embedded Java Card

OS and energy and cost efficient single board system such as Raspberry Pi. Java Card API

provides secure and efficient OS defined objects for storage of sensitive data and for

cryptographic mechanisms. Access to the data stored in the microcontroller can be safeguarded

by controlled access policies enforced by an Applet. The security issues has been addressed in

multiple ways. Firstly, the loss of sensor data is prevented by making use of wired connection

from Raspberry Pi to ADXL motion sensor chip. Secondly, a secure communication is ensured

by encryption of the sensor data. Thirdly, the symmetric key is stored in the tamper resistant

secure element of the Java Card. Fourth, Attribute based encryption (ABE) which is fine grained

secure access control technique. Thereby, make it impossible for adversary to gain access to

sensor data. The combined use of Raspberry Pi and Java Card increase the security of the system

and make it more accountable.

Keywords: Health Services, Raspberry Pi, Java Card, Privacy, Authentication, Secure Storage,

Motion Sensor, CP-ABE

Delhi Technological University Page iii

ACKNOWLEDGEMENT

First of all, I would like to express my deep sense of respect and gratitude to my project

supervisor Ms Divyashikha Sethia for providing the opportunity of carrying out this project and

being the guiding force behind this work. I am deeply indebted to her for the support, advice

and encouragement she provided without which the project could not have been a success.

Secondly, I am grateful to Dr. O.P. Verma, HOD, Computer Science & Engineering

Department, DTU for his immense support. I would also like to acknowledge Delhi

Technological University library and staff for providing the right academic resources and

environment for this work to be carried out.

Last but not the least I would like to express sincere gratitude to my parents and friends for

constantly encouraging me during the completion of work.

Suraj Singh

University Roll no: 2K14/CSE/19

M.Tech (Computer Science &

Engineering)

Department of Computer Science

& Engineering

Delhi Technological University

Delhi - 110042

Delhi Technological University Page iv

Certificate

This is to certify that the dissertation titled “Bluetooth enabled secure ABE based

IoT health sensor ” is a bonafide record of work done by Suraj Singh, Roll No.

2K14/CSE/19 at Delhi Technological University for partial fulfilment of the requirements for

the degree of Master of Technology in Computer Science & Engineering. This project was

carried out under my supervision and has not been submitted elsewhere, either in part or full, for

the award of any other degree or diploma to the best of my knowledge and belief.

 (Ms Divyashikha Sethia)

Date: __ __ ____

 Project Guide

 Department of Computer Engineering

 Delhi Technological University

Delhi Technological University Page v

TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENT .. ii

CERTIFICATE ..iii

LIST OF FIGURES AND TABLE .. vi

LIST OF ABBREVIATION………………………………………………………………………………vii

Chapter 1: Introduction…………………………………………………………….……………………….1

1.1 Motivation……………………………………………………………………………………………...3

1.2 Research Objectives…………………………………………………………………………………….4

1.3 Organization of Thesis………………………………………………………………………………….4

Chapter 2: Literature Review……………………………………………………………………………….5

2.1 Cryptographic Techniques……………………………………………………………………………..5

2.1.1 PKC Versus Symmetric-Key Cryptography…………………….………………………………8

2.1.2 Public-Key Encryption…………………………………………………………………………..8

2.1.3 Public Key Signatures…………….……………………………………………………………..9

2.1.4 PKI……………………………………………………………………………………………..10

2.1.5. Identity-Based Cryptography………………………………………………………………….11

2.1.6 Signature and Certificate Scheme in SHS……………………………………………………...13

2.2 Secure Health Sensor Components…………………….…...…………………………………………14

2.2.1 Major Components …………………………………………………………………………….15

2.2.1.1 Single Board Computer……………………………………………………………15

2.2.1.2 Accelerometer, ADXL345……………………………………………………...…17

2.2.1.3 Digital Heart Beat Sensor ………………………………………………………... 19

2.2.1.4 Subsidiary Components ………………………………………………………….. 20

2.2.1.5 Bluetooth low energy dongle……………………………………………………....21

2.3 Encryption Algorithm ………………..……………………………………………………………….22

Delhi Technological University Page vi

2.3.1 Attribute Based Encryption – ABE………….……………………………………………….. 24

2.3.1.1 Key-Policy ABE…………………………………………………………………25

2.3.1.2 Ciphertext-Policy ABE………………………………………………………….25

2.4 Public Key Infrastructures and Digital Certificates for IOT...…...29

2.4.1 Public Key Infrastructures………………………………………………………..30

2.4.1.1. Components of a PKI……………………………………………….31

2.4.1.2 Non – Repudiation …………………………………………………31

Chapter 3: Proposed Work…………………………………...……………………………………………33

3.1 Problem Statement……………………………………….……………………………………………33

3.2 Proposed Solution……………………………………………………………………………………..33

3.3 System Design…………………………………………………………………………………………34

3.4 Implementation………………………………………………………………………………………..35

3.4.1 Setting up raspberry Pi/Personalization………………………………………….35

3.4.2 Connections of the Secure Sensor Node…………………………………………35

3.4.3. Receiving Data from the Accelerometer Based Sensor…………………………36

3.4.4 Encryption………………………………………………………………………..37

3.4.5 Openssl…………………………………………………………………………...39

3.4.6 Decryption………………………………………………………………………..44

3.4.7 Bluetooth Interfacing…………………………………………………………….44

3.4.8 Data Transformation……………………………………………………………..46

Chapter 4: Results and Analysis ……………………………………………………………………….....47

4.1 Environmental Setup Specification……………………………………………………………….......47

4.2 CPABE Secret Key Generation……………………………………………………………………….48

4.3 CPABE – AES Symmetric Key Encryption Time……………………………………………………48

4.4 Sensor Data Encryption and Decryption Time for AES algorithm…………………………………...49

4.5 Signature Generation………………………………………………………………………………….49

Delhi Technological University Page vii

4.5.1 ECC based Signatures……………………………………………………….49

4.5.2 RSA based Signature………………………………………………………50

4.6 Key Generation and Certificates..50

4.6.1 ECC Key and Certificate Generation Time………………………………..50

4.6.2 RSA Key and Certificate Generation Time……………………………….50

4.7 Data Transmission time over Bluetooth……………………………………………………………….51

Chapter 5 Conclusion and Future Work…………………………………………………………………..52

References…………………………………………………………………………………………………54

Delhi Technological University Page viii

List of Figures

Figure 2.1: Cryptographic Primitives 6

Figure 2.2: Body sensor 16

Figure 2.3: Raspberry Pi Top View 17

Figure 2.4: Pin Diagram of Raspberry Pi 19

Figure 2.5: ADXL345 Sensor Chip 20

Figure 2.6: ADXL345 Pin Diagram 21

Figure 2.7: Digital Heart Beat Sensor 22

Figure 2.8: Bluetooth LE Dongle 23

Figure 2.9: Access tree structure example 28

Figure 2.10: Attack Vectors in Network Communication 34

Figure 3.1: SHS System Architecture 37

Figure 3.2: Body Sensor Data Flow Diagram 39

Figure 3.3: Program Flow of SHS 41

Figure 3.4: Sequence Diagram of SHS 49

Figure 4.1: attributes 51

Figure 4.2: – attributes 52

Delhi Technological University Page ix

List of Tables

Table 2.1: Raspberry Pi Specifications 16

Table 2.2: ADXL Connections with Raspberry Pi 19

Table 2.3: Heart Sensor Connections with Raspberry Pi 23

Table 2.4: Pin Diagram of Raspberry Pi 19

Table 3.1:Different Notations used in Sequence Diagram 46

Table 4.1: Software/Hardware Configuration 47

Table 4.2: Sensor Data Encryption and Decryption Time 49

Table 4.3 : ECC – Signature Generation and Verfication Time 49

Table 4.4 : RSA – Signature Genreation and Verification Time 50

Table 4.5 : ECC – Certificate and Key Generation Time 50

Table 4.6 : RSA – Certificate and Key Generation Time 50

Delhi Technological University Page x

List of Abbreviations

SHS : Secure Health Sensor

PKC : Public Key Cryptography

SKC : Symmetric Key Cryptography

BLE : Bluetooth Low Energy

AES : Advanced Encryption Standard

ABE : Attribute Based Encryption

CPABE : Ciphertext Policy Attribute Based Encryption

KPABE : Key Policy Attribute Based Encryption

RSA : Rivest Shamir Adleman

ECC : Elliptic Curve Cryptography

CA : Certificate Authority

PKI : Public Key Infrastructure

PKE : Public Key Encryption

PKS : Public Key Signature

WSN : Wireless Sensor

IBC : Identity Based Cryptogrphy

PKG : Public Key Generator

ECDLP : Elliptic Curve Discrete Logarithmm Problem

IFP : Integer Factorization Problem

SBC : Single Board Computer

FIFO : First In First Out

TTL : Time To Live

BPM : Beats Per Minute

RBAC : Role Based Access Control

HTTPS : Hyper Text Transport Protocol Security

TLS : Transport Layer Security

CSR : Certificate Signing Request

Delhi Technological University Page xi

DES : Data Encryption Standard

Department of Computer Engineering, DTU Page 1

CHAPTER 1

INTRODUCTION

E-health is the transfer of health resources and health care by electronic means. E-health

defines the usage of health information, for health professionals and health consumers, via

Internet and web communications. Providing e-health using the power of information

technology to improve public health services, example through the education and training of

health workers [1]. The patient concerned with medical data administration service platform

is a healthcare service platform that matches the Health Care 3.0 era to meet the needs of the

construction of smart healthcare service platform. The architecture comprehensively handles

both aspects that are medical data of hospital or patient care system and patient health related

data measured using devices such as medical sensors, medical watch tags that provide twenty

hour surveillance on patient health. It also provide health information not only to their own

medical supervisors and specific hospital information system under the patient‟s consent but

also to patients and general users [1][2].

When employing personalized patient oriented healthcare service platform, the perimeter of

health service is extended from the health center to a patient home area, business place or

other fitness centers.

The system can reduce repeated visits to the hospital and save in national healthcare costs.

Therefore, personal healthcare service platform to support the whole management of personal

health data using the smart mobile devices is necessary to customize day life healthcare.

The health information is stored in the database for future retrieval of the patient health status

or health history. The data can be used in the future medical diagnosis of the patient. The

previous measures can be used to trace up the history of the health status and medication that

the patient have been through. In this way the health professional has the guide in his/her

health analysis. If not secured the Bad guy can modify the medical record of the patient and

this will lead to wrong diagnosis. Health services is a major requirement for both developed

countries, where the cost of healthcare is high and security and privacy are critical issues and

developing countries like India, where there is huge population to control in hospitals. A

Department of Computer Engineering, DTU Page 2

large population will reside in nursing homes and hospitals in near future. According to a

study [4], within the next decade, there will be more people aged 65 years and older, than

children under five in the world. More number of senior citizens are admitted to hospitals to

mitigate the dangers of elderly falling. Among elderly persons, 55 percent of fall injuries

occur in person‟s home. And 23 percent fall accidents occur outside old person‟s home [3].

This has cause a major shift of these elderly persons to hospitals, care centers where they are

put on continuous monitoring. Various sensors are attached to these patients to make

continuous health monitoring a possible scenario. With this, these health centers will require

continuous medical monitoring, medical data access and emergency communication. An

efficient, reliable, robust and secure health flow is important to manage patients, their health

records securely and to take the right health service accessible to the patient at the right time.

Privacy and security is a very important aspect of healthcare [5]. The body sensor module

will be extremely beneficial to the patients and their caretakers who will be able to monitor

their patient‟s health and improve the quality of healthcare, increasing safety and reducing the

overall cost of the healthcare incurred by patients. These devices are useful in biometric and

medical applications for real time monitoring of a patient‟s state or for acquiring sensitive

data which can be used to provide the correct medical diagnosis. Identification of objects for

secure medical procedures is very essential for a secure workflow.

Body sensor networks monitor health parameters using body sensor devices [6]. These

devices are useful in biometric and medical applications for real-time monitoring of a

patient‟s state or for acquiring sensitive data which can be subsequently analyzed to provide a

medical diagnosis. The initial motivation of the work was to develop a secure sensor node

prototype for developing secure body sensors. Most of the sensors in the market overlook the

security aspect. Raspberry Pi [7] has been used for initial deployment of a secure body sensor

based on accelerometer which can be used as a fall detection sensor in elderly people. The

system has used accelerometer sensor for initial development of a prototype since we can get

the changes in the readings promptly. With this design the sensors for temperature, blood

pressure, oxymeter etc can similarly be incorporated in the design to gather vital health

parameters. Raspberry Pi has been chosen rightly as the single board computer for this

application because it has the highest performance to cost ratio and is one of the smallest

single board computers available in the market. This paper describes in detail, the

components, design and functioning of one secure sensor node prototype which has been

developed, tested and verified for the development of a body sensor module. The sensor

Department of Computer Engineering, DTU Page 3

information gathered can be communicated wirelessly to the mobile phone using any of the

following three connectivity options: Bluetooth, Bluetooth light or NFC, depending on the

application. In this project, Bluetooth technology has been used. It is also important to protect

the access structure (defined rules) which is associated with the encrypted data, because

sometimes theses access structure might contain vital information about the persons, who are

encrypting and decrypting the actual information. Sometimes these access structure may

become more important because malicious user may guess the actual information by using

the access structure defined by the encryptor.

1.1 Motivation

In recent years, the rapid improvement in technology has been influential in designing the

healthcare system. Consequently, many researchers are focusing in u-healthcare system

development. The u-healthcare system application and devices were given much attention to

provide ubiquity in healthcare services. Now a day, the used of the internet is very essential

in our daily transactions. Almost everything rely on the use of the internet, like business,

education, security and others are using internet as the main medium to deliver information.

Now, medical field is also adopting the use of IT. System used internet-based because this is

the best way to deploy the system which can be access anytime, anywhere in internet. This

practice is very helpful for the Physician to access the previous medical history of the patient

that they are handling. In this case they have the background, and this could help them in

their analysis. Mobile devices communicating in networks are extremely vulnerable to

software-based attacks and require secure communication with sensor nodes. In this paper,

system are SHS system is developed based on work [8] where system used encryption of

sensor data using RC4 encryption algorithm. Here, system make use of AES for symmetric

encryption and CP-ABE for fine grained access control. The Plug-n-Trust module [6], where

a mobile phone is responsible to collect the data from the various sensors (connected to the

body) suffers from security issues [9].The secure sensor node prototype designed with the

Raspberry Pi [22] make use of similar architecture but does not make use of fine grained

access control to safeguard the application. [23][24] use Raspberry Pi and sensors to gather

the data but data storage and transmission does not incorporate any security. [25] used Beagle

Bone Black development board with an embedded Linux distribution in IoT based system but

also does not provide security of data transmission as well as storage. Our system guarantees

more security as compared to Plug-n-Trust module [6], Wireless Sensor network using

Department of Computer Engineering, DTU Page 4

Raspberry Pi and ZigBee [23], portable spectrometric sensor platform [24], data collector

service [25] and secure sensor node using Raspberry Pi [22]:

 Wired communication occurs between the Raspberry Pi and the sensor so there is no

fear of information loss or security.

 The collected sensor data is stored in the encrypted form.

 The data transmission always happens in encrypted form.

 Encryption is used twice to increase the security of the system. First, the sensor data is

encrypted using the 128-bit AES key followed by encrypting the same AES key using

the fine grained access control technique CP-ABE.

1.2 Research Objective

With the motivation explained in the previous section, the objective of our research work can

be identified as:

 The system should be energy efficient.

 The system should provide APIs to safely record the patient readings.

 The system should be able to store the readings in a secure storage.

 Data should be encrypted before transmission.

 The system should allow users with necessary attributes to decrypt the sensitive

medical data in multi-user environments.

 The system should provide mechanism to do the auditing to provide the non-

repudiation property.

 The system should provide way for cipher text transmission using Bluetooth

transmission or web interface.

1.3 Thesis Organization

We start this dissertation with introduction in chapter 1. A detailed description of background

is presented in chapter 2 which includes cryptographic techniques & its applications,

different threats to wireless networks such as SHS and signature and certificate schemes to

strengthen the security and provide confidentiality, non-repudiation, integrity which are very

important parameters in any wireless sensor networks. The components of SHS are also

described in detail. Chapter 3 explains about proposed problem statement with its proposed

solution. Chapter 3 also gives a brief about the system design of SHS and the

Department of Computer Engineering, DTU Page 5

implementation. Chapter 3 also explains in detail about signature and certificate schemes

used in SHS. We evaluate the performance of the proposed design and signature and

certificates technique in chapter 4. We conclude about the work done and observations in

chapter 5. This includes the future scope; which is promising with the use of Java card as

storage element for key.

Department of Computer Engineering, DTU Page 6

CHAPTER 2

LITERATURE REVIEW

2.1 Cryptographic Techniques

Cryptography is the study of mathematical techniques related to aspects of information

security such as confidentiality, data integrity, entity authentication, and data origin

authentication [10]. Cryptographic goals are confidentiality, authentication, data integrity and

non-repudiation. Cryptographic techniques are typically divided into two generic types:

symmetric-key and public-key. Figure 2.1 provides a schematic listing of the cryptographic

primitives considered and how they relate [10].

Figure 2.1: Taxonomy of Cryptographic Primitives

2.1.1 PKC Versus Symmetric-Key Cryptography

Symmetric-key cryptography (SKC) is also known as shared key, single-key, and private-key

Department of Computer Engineering, DTU Page 7

cryptography. In this type of message encryption, sender and receiver only have to share the

same private key in the beginning and then they can begin to encrypt and decrypt messages

between them using that key. This key pre distribution process is very difficult. SKC cannot

achieve non-repudiation, as both sender and receiver use the same key, messages cannot be

verified to have come from a particular user. PKC, also known as asymmetric cryptography

uses two keys: a private key, which has to be kept secret, and a public key, which is publicly

known. Any operation done with the private key can only be reversed with the public key,

and vice versa. This nice property makes all PKC-based algorithms useful for secure

broadcasting and authentication purposes. It is also an invaluable tool for allowing the secure

exchange of private keys between previously unknown partners. The public key in PKCs

must be authenticated. Public-Key Infrastructure (PKI) solves the public key authentication

problem using a public-key certificate issued by a Certification Authority (CA).

Computational cost of PKC had hindered its application in highly-constrained devices, such

as sensor nodes, while an approach using SKC offers advantages in terms of low

communication and computational overhead. One may believe that SKC is more suitable for

SHS based wireless sensor networks used in health monitoring applications which requires

only confidentiality or data integrity. To apply SKC to these health monitoring WSNs, the

shared-key distribution is needed. The key pre distribution methods have the following three

types :

 A single network-wise private key: this causes a single point failure, i.e., if the private

key of a node is revealed then the entire network is broken.

 A pairwise key between a node and the BS or between two nodes: the pairwise keying

is very difficult and inefficient, i.e., each node must share
n
C2 = n(n−1)2 private keys,

where n is the number of the sensor nodes or stakeholders . This creates a problem

with managing and ensuring the security of all these keys. If the private key of a node

is revealed, then the other node with the same key is also compromised.

 A group key among a set of nodes: group keying is more inefficient than the pair wise

keying as it is required heavy computational overhead and interactions with more

than two rounds among nodes. If the group key of a node in a group is revealed, then

all the group of nodes is compromised.

To minimize the effects of private key exposure is an important factor. In fact, the security

schemes should guarantee that no matter how many nodes are captured, the private

Department of Computer Engineering, DTU Page 8

information extracted from the compromised nodes cannot affect the security among non-

compromised nodes, i.e., communications among non-compromised nodes remain secure.

However, the three types above cannot satisfy this requirement, while PKC satisfies this

requirement.

 In the case of using a public-key encryption scheme, it doesn‟t matter, as sensor

nodes encrypt any message under the BS‟s (in our case secure health sensor SHS)

public key without requiring the nodes‟ private key. However, if the BS‟s or SHS

private key is compromised to an eavesdropper, then the attacker can decrypt all past

cipher texts encrypted by the public key corresponding to the secret key. Thus, the

secret key of the BS must be securely stored to prevent such an exposure.

 In the case of using a public-key signature scheme, even though a user‟s secret key is

compromised to an attacker, the security of communications among non

compromised nodes cannot be affected.

A number of applications of WSNs such as Secure Health Sensor require various security

attributes and functionalities including authentication with non-repudiation, homomorphic

property, aggregation, batch verification, signature with message recovery, etc. PKC makes it

possible to achieve these functionalities. PKC is considered to be too computationally

expensive for small devices if not accelerated by cryptographic hardware. Recent studies

[28], [29], [30], [31] showed that it is feasible to apply PKCs to small wireless devices with

very limited resources by choosing public key cryptographic algorithms.

2.1.2 Public-Key Encryption

In public-key encryption (PKE) techniques, all entities say A has pair of keys i.e. public key

denoted by e and corresponding secret key denoted by d. The challenge of breaking the PKE

is given e, find d, which is computationally hard. The public key e is used to encrypt the

information which the private/secret key d is used for decryption of the cipher text to

generate the plaintext. If some entity, say B wants to communicate with A, it needs to follow:

A. Obtain authentic copy of A‟s public key, generally this is accomplished my means of

digital certificates.

B. Use A‟s public key to encrypt the information/message say m to generate the cipher

text.

Department of Computer Engineering, DTU Page 9

C = ENCe(m)

where C is the generated cipher text corresponding to message m

ENC is the encryption mechanism used.

e is A‟s public key obtained from digital certificate or trusted third party.

C. A uses its secret key i.e. d to decrypt the cipher text C.

m = DECd(C)

where m is the original plaintext or message

DEC is the decryption mechanism.

d is A‟s secret key.

The public key of A need not be kept private, in fact should be distributed to all shareholders

communicating with A through trusted third party or by means of digital certificates.

2.1.3 Public Key Signatures

A public key signature (PKS) or named formally digital signature is a dual in concept to PKE

technique : it digitally signs a message with the secret key of the sender and then obtained

digital signature can be publicly verified with the corresponding secret key. PKSs have a lot

of applications in entity authentication, data integrity, information security and non-

repudiation. The PKS techniques can be classified in following two categories :

 Signature Schemes with Appendix.

This signature scheme require the original message for verification purpose.

 Signature Schemes with Message Recovery.

This signature scheme does not necessitate the original message content for the

verification purpose. In this case, the original message is recovered from the signature

itself.

Different types of forgeries or attacks on PKS are broadly classified into following three

classes:

 Universal Forgery or Total Break.

An attacker has the ability to either extract the private key used to generate the

signature, or to find an efficient signature mechanism that is logically equivalent to

the original signature algorithm but provided with the original secret key. So, anyone

Department of Computer Engineering, DTU Page 10

can forge signatures of any messages.

 Selective Forgery.

An adversary is able to create a valid signature for a particular message or a class of

messages chosen a priori.

 Existential Forgery.

An adversary is able to forge a valid signed message that signer has not created, but

the adversary has little or no control over which message will be the target.

Types of Attacks are divided into the following three classes:

Key - Only Attack.

An adversary knows publicly available information on the scheme.

Known - Message Attack.

An adversary can get valid signatures for a set of messages which are known to the adversary

but not chosen by it.

Chosen - Message Attack.

An adversary can obtain valid signatures from a chosen list of messages before attempting to

forge another signed message.

Adaptive Chosen - Message Attack.

An adversary is allowed to use a signer as an oracle: the adversary may request signatures of

messages which may depend on the signer‟s signing key and previously obtained signed

messages. That is, at any time, the adversary can query the signer with messages chosen at its

will, except for the target message.

2.1.4 PKI

Although PKCs which have some advantages than SKCs are computationally feasible on

sensor nodes, one of factors which make it difficult to apply the PKCs to real time health

monitoring nodes applications is the public-key authentication problem. PKC has two kinds

of keys: a public key and a private key. Public keys must be authenticated, as one can be

absolutely sure that a public key belongs to the person. Public-key infrastructure (PKI) is an

Department of Computer Engineering, DTU Page 11

arrangement that binds public keys with respective users‟ identities by means of public-key

certificates issued by a Certificate Authority (CA). This PKI causes several problems of

certificate management including storage, distribution and the computational cost of

certificate verification. According to PKIX which pursued the goal of developing Internet

standards to support X.509-based PKIs developed by the ITU-T [32], the major components

of a PKI are the following:

 Clients, which are the users of public-key certificates.

 CA, which establishes identities and creates digital certificates.

 Registration Authority(RA), which is responsible for the registration and initial

authentication of the clients.

 Repository, which stores the certificates and the Certification Revocation Lists

(CRLs).

In order to provide the services of PKI, these components and their functionalities must be

mapped to the entities of SHS based wireless sensor networks. In order to deploy PKI into

SHS based wireless sensor networks, it is also obligatory to select an appropriate hierarchy

model. Fortunately, in most cases, the architecture of sensor networks is extremely simple:

one BS that serves as the interface to hundreds or thousands of sensor nodes can

communicate with the nodes belonging to the same network. Therefore, it is enough to

consider that most sensor networks will use a simple hierarchical PKI architecture, with only

one root CA. The basic functionalities of PKI, that is, registration, initialization, key

generation, certification, and certification retrieval, are done in SHS based wireless sensor

networks as follows:

 The BS creates the public/private key pair of a sensor node, assigns an unique

identification to it, and creates a certificate that links that unique identification with its

public key. Later, it initializes the contents of the sensor node (such as configuration

data and internal programming), including its certificate and the certificate of the root

CA (i.e., the BS itself).

 When a sensor node retrieves the certificate of one of its neighbors, it will be able to

check its validity using the root CA‟s certificate.

2.1.5 Identity-Based Cryptography

Department of Computer Engineering, DTU Page 12

Identity-based cryptography (IBC) introduced by Shamir [33] allows a user‟s public key to

be easily derived from its known identity information such as an email address or a cellular

phone number by eliminating the need for public key certificates. Such cryptosystems

alleviate the certificate overhead and solve the problems of PKI technology. A Secret Key

Generator (PKG) having a master public/private key pair is responsible for generating secret

keys for users. IBC is more suitable for WSNs, as the BS can naturally play the role of the

PKG. The BS generates sensor nodes‟ identities and the corresponding secret keys and then

embeds the secret keys in the nodes prior to its use in the field, and no private channel is

needed for key setup. Thus, only the identities of the sensors are exchanged without sending

public keys and their certificates. This results in energy saving for the communication

between sensors. In PKI, each sensor node stores its own public key/private key pair together

with the corresponding public key certificate issued by CA. Then, any external party that

wishes to interact with nodes also requires the nodes‟ public key certificates. Although the

real-time access to the CA is difficult in WSNs, this pre-installation method of the certificates

makes it possible to use the PKI. As mentioned in the previous subsection, this PKI is

suitable for node-to-BS communications, but it is not suitable for node-to-node

communications, as they require exchange of the nodes‟ public-key certificates. Thus, ID-

based schemes are more suitable for these WSN scenarios: each sensor node which has its

unique identification information such as serial numbers gets the corresponding secret keys

from the BS which serves as the PKG. To authenticate each other, only the identity

information should be exchanged without extra public key data. The length of an identity is

much shorter than that of a public key and its certificate. Then the validity of the identity

information is determined when its signature related to the identity is verified, i.e., if the

signature verification ends successfully then the legitimacy of the identity information is also

guaranteed. In particular, IBC makes it possible to establish a session key without any

interaction. Two parties, each knowing only the identity of the other and without

communicating, are then able to derive a private unknown to any other party, and use that

private to compute the same cryptographic key for secure communications. In node-to-BS

communications, the BS stores only nodes‟ IDs instead of their relatively large-size public

keys. Therefore, ID-based schemes are more suitable for these WSN scenarios, as it does not

require the transmission of the public-key certifications and verifications of CA‟s signatures

on the public keys for node-to-node communications as well as node-to-BS communications.

Department of Computer Engineering, DTU Page 13

2.1.6 Signature And Certificate Scheme in SHS

ECC and RSA are mature public-key cryptographic algorithms that have been researched by

the academic community for many years: RSA was conceived by Rivest, Shamir and

Adleman in 1977 [34] and Koblitz and Miller independently proposed ECC in 1985 [35],

[36]. Base Problems and Algorithms for Solving the Problems: The fundamental operation of

RSA is a modular exponentiation in integer rings and its security stems from the difficulty of

factoring large integers. ECC operates on the groups of points over elliptic curves and derives

its security from the hardness of the elliptic curve discrete logarithm problem (ECDLP).

While sub-exponential algorithms can solve the integer factorization problem (IFP) and

discrete logarithm problem (DLP), only exponential algorithms are known for the ECDLP

except those over pairing – friendly curves.

 Integer Factorization Problem(IFP).

Given a composite number n=pq, to find prime factors p or q.

 Discrete Logarithm Problem (DLP).

Given a group G, a generator g of G, and h = g
x
, to compute x, where we denote

x = loggh.

ECC achieves the same level of security with smaller key sizes and higher computational

efficiency than RSA: ECC-160 (resp., ECC 224) provides comparable security to RSA-1024

(resp., RSA-2048). Small key sizes offer potential reduction in processing power, memory,

bandwidth, and energy. Some factoring algorithms are tailored to perform better when the

integer n=pq being factored is of a special form: these are called special-purpose factoring

algorithms. The running time of such algorithms depends on certain properties of the factors

of n. The special-purpose factoring algorithms include trial division, Pollard‟s rho algorithm,

Pollard‟s p−1 algorithm, the elliptic curve algorithm, and the special number field sieve[37].

The security of ECC is based on the intractability of the ECDLP, which is an elliptic curve

version of the DLP. There are several known algorithms for solving discrete logarithms:

generic algorithms and group-specific algorithms. The generic algorithms can be generally

applied to any type of cyclic group. The group-specific algorithms are specialized algorithms

that make use of the structure in the group elements and apply only within certain families of

groups. The generic algorithms include Shank‟s algorithm, which is also called the Baby-

Step Giant-Step algorithm, Pollard‟s Rho and Pollard‟s Kangaroo algorithms [10] which are

Department of Computer Engineering, DTU Page 14

applied to any cyclic group including elliptic curve groups and subgroups of Zp. These are

standard “square-root” methods to compute discrete logarithms in a group of prime order l: if

we write the group operation multiplicatively, write g for the standard generator of the group,

and write h for the DLP input: the objective is to compute loggh, i.e., the unique integer x

modulo l such that h=gx. “Square-root” means that. the algorithms take O(√l) multiplications

on average over all group elements.

2.2 Secure Health Sensor Components .

A unique design and implementation of a secure sensor node has been carried out based on

three major components: a single board computer, an accelerometer based sensor- ADXL345

[12], digital heart beat sensor and a possible and promising GoTrust sd-card based Java Card.

Currently, libraries for this java card are not provided by the vendor and thus could not be

incorporated in our SHS. Subsidiary components have been used to setup the secure sensor

node prototype.

Figure 2.2: Real image of connections of Body sensor

Department of Computer Engineering, DTU Page 15

2.2.1 Major Components

2.2.1.1 Single Board Computer

The choice of the single board computer depends on the kind of application which the sensor

node uses. Here, we are using it to design a body sensor module which will interface with a

number of sensors. Raspberry Pi has been chosen for this application [13]. Among other

SBCs, Raspberry Pi is the cheapest single board computer available with the best

performance/cost and RAM/cost ratio. Its small size, low cost, low power consumption and

high processing power makes it suitable for the design of this body sensor.

Figure 2.3: Raspberry Pi

Raspberry Pi provides a lot of features at a very low cost. Below are some of the technical

specifications of raspberry Pi which makes is versatile among other single board computers.

S.No Feature Description

1 Chip Broadcom BCM2835 SoC

2 Core Architecture ARM 11

3 CPU 700 MHz Low Power ARM1176JZFS Applications

Processor GPU

4 GPU Dual Core VideoCore IV® Multimedia Co-Processor

Provides Open GL ES 2.0, hardware-accelerated

OpenVG, and 1080p30 H.264 high-profile decode

Department of Computer Engineering, DTU Page 16

Capable of 1Gpixel/s, 1.5Gtexel/s or 24GFLOPs with

texture filtering and DMA infrastructure

5 Memory 512MB SDRAM

6 Operating System Boots from Micro SD card, running a version of the

Linux operating system

7 Dimensions 85 x 56 x 17mm

8 Power Micro USB socket 5V, 2A

9 Ethernet 10/100 BaseT Ethernet socket

10 Video Output HDMI (rev 1.3 & 1.4) Composite RCA (PAL and

NTSC)

11 GPIO Connector 40-pin 2.54 mm (100 mil) expansion header: 2x20

strip Providing 27 GPIO pins as well as +3.3 V, +5 V

and GND supply lines

12 Memory Card Slot SDIO

Table 2.1 : Raspberry Pi Specifications

Some of the advantages and advance features that Raspberry Pi provides are :

 Broadcom BCM2836 Arm7 Quad Core Processor powered Single Board Computer

running at 900MHz

 1GB RAM that can now run bigger and more powerful applications

 Identical board layout and footprint as the Model B+, so all cases and 3rd party add-

on boards designed for the Model B+ will be fully compatible.

 Fully HAT compatible

 40 pin extended GPIO to enhance your “real world” projects. GPIO is 100%

compatible with the Model B+ and A+ boards as shown in Figure 2.4. First 26 pins

are identical to the Model A and Model B boards to provide full backward

compatibility across all boards.

 Connect a Raspberry Pi camera and touch screen display (each sold separately)

 Stream and watch Hi-definition video output at 1080P

 Micro SD slot for storing information and loading your operating systems.

 Advanced power management:

Department of Computer Engineering, DTU Page 17

 You can now provide up to 1.2 AMP to the USB port – enabling you to connect more

power hungry USB devices directly to the Raspberry PI. (This feature requires a

2Amp micro USB Power Supply)

 10/100 Ethernet Port to quickly connect the Raspberry Pi to the Internet

 Combined 4-pole jack for connecting your stereo audio out and composite video out

Figure 2.4: Pin Diagram of Raspberry Pi

2.2.1.2 Accelerometer, ADXL345

Accelerometers are devices that measure acceleration, which is the rate of change of the

velocity of an object. They measure in meters per second squared (m/s2) or in G-forces (g). A

single G-force for us here on planet Earth is equivalent to 9.8 m/s2, but this does vary slightly

with elevation (and will be a different value on different planets due to variations in

Department of Computer Engineering, DTU Page 18

gravitational pull). Accelerometers are useful for sensing vibrations in systems or for

orientation applications. Accelerometers can measure acceleration on one, two, or three axis.

3-axis units are becoming more common as the cost of development for them decreases.

Figure 2.5: ADXL345 Sensor Chip

The ADXL345 [12] is a x, y and z axis accelerometer with a high resolution. It covers a range

of ±16 g. The output data present in the data register is formatted as 16bit 2‟s complement

and can be accessed through an SPI (4- or 3-wire) or a I2C digital interface. The ADXL345 is

small thin and low-power, hence it is suitable for mobile device applications. It measures

static acceleration due to gravity in tilt-sensing applications, and also dynamic acceleration

resulting from motion or shock. It has a high resolution (3.9 mg/LSB) which enables

measurement of inclination changes of less than 1.0°.

It comes with a 32-level first in, first out (FIFO) buffer which can be used to store data to

lower overall system power consumption[12]. This sensor module is chosen since it provides

high accuracy and less complex sensor data.

Features:

 3V-6V DC Supply Voltage

 On board LDO Voltage regulator

 Built in Voltage level convertor (MOSFET based)

 Can be interface with 3V3 or 5V Microcontroller.

 All necessary Components are populated.

 Ultra Low Power: 40uA in measurement mode, 0.1uA in standby@ 2.5V

 Tap/Double Tap Detection

Department of Computer Engineering, DTU Page 19

 Free-Fall Detection

 SPI and I2C interfaces

Figure 2.6: ADXL345 Pin Diagram

Connections with Raspberry Pi:

S.No ADXL345 Module Raspberry Pi

1 GND GND

2 VCC 3.3 V

3 SCL0 SCL

4 SDA0 SDA

5 CS 3.3 V

6 SDO GND

Table 2.2 : ADXL Connections with Raspberry Pi

2.2.1.3 Digital Heart Beat Sensor

The Heart Beat Sensor is designed to provide digital output of heart beat when a finger is

placed on it. When the Heart detector starts working, the top most LED will starts flashing

with every heart beat. The output of this sensor can be connected to Micro Controller directly

to measure the heart beat per minute (BPM) rate. It functions on the principle of light

modulation by blood flow through the nerves of the finger at every pulse. The module output

mode, Digital output mode is simple, Serial Output is with exact readings.

Department of Computer Engineering, DTU Page 20

Features:

 Heart beat indication by LED

 Instant output digital signal for directly connecting to micro controller

 Total heartbeat count can be obtained serially (TTL) every minute.

 Module dual output mode, digital output is simple, serial output with exact readings.

 Compact Size

 Working Voltage +5V DC

 High quality PCB FR4 Grade with FPT Certified.

Figure 2.7: Digital Heart Beat Sensor

Connections with Raspberry Pi:

S.No Heart Beat Sensor Raspberry Pi

1 Tx Tx

2 Rx Rx

3 GND GND

4 VCC 3.3 V

Table 2.3 Heart Sensor Connections with Raspberry Pi

2.2.1.4 Subsidiary Components

A powered USB hub consisting of four USB ports, a micro USB port (to connect to the USB

port of the Pi) and a power jack (to provide a connection to an external power source) is used.

It is used during the design of the secure sensor node prototype to connect keyboard and

Department of Computer Engineering, DTU Page 21

mouse. A monitor, an HDMI to VGA converter, a power source (Samsung Charger) with

output current rating of 700mA-1000mA and output voltage rating of 5V, a USB keyboard, a

USB mouse, a PCB board and 8 single pin connectors are other subsidiary components that

are used during the design of the secure sensor node prototype.

Note – SHS also used without keyboard and other wired connections providing our model the

typical terminal capability. This mode of operation is called headless mode of operation. The

system is basically accessed using ssh command from our system to connect to the Raspberry

Pi device using terminal window from any Linux based system. More information can be

found from [20].

2.2.1.5 Bluetooth Low Energy Dongle

Leoxsys LB4 Bluetooth low energy wireless USB adapter is a plug and play device used to

add Bluetooth capability to single board computer such as Raspberry Pi. When plugged in,

the micro dongle quickly installs itself and user has Bluetooth capability. This dongle

supports dual-mode Bluetooth transmission just by plugging into Raspberry Pi‟s USB slot.

This low energy Bluetooth dongle provide with a 3MB/s data rate for distances of up to 15-20

meters. This Bluetooth dongle can be used in different environments for work, in the office

and at home.

Figure 2.8 : Bluetooth LE Dongle

The Leoxsys LB4 has a low profile and rounded edges so leaving it plugged in full time will

not be an issue. The dongle is compatible with many windows operating systems such as

windows 7, Windows 8, Windows Vista and Windows XP.

Department of Computer Engineering, DTU Page 22

 Bluetooth low energy wireless USB adapter

 Wireless local area network share interface

 15-20 meter sending range

Specifications:

 Bluetooth V4.0 class2 (also compliant Bluetooth 2.1+EDR)

 Operation System: Windows 7, Windows 8, Vista, XP

 Dual-mode Blutooth

 Universal serial USB interface: USB 2.0/3.0

 Transmission speed: 20MB/s

 Enhanced Data Rate (EDR)

 Receiving/sending range: 20m

 Main product dimensions : 25x11x5mm (L x W x D)

2.3 Encryption Algorithm

There is one-to-one communication in the conventional cryptography, which means, owner

encrypt the message by receiver‟s public key and that message can only be decrypt by the

receiver, because only the receiver will have the corresponding secret key. In identity-based

encryption, public key can be any identity, such as social security number of a person. But in

real life situation, there are many application of one-to-many communication, therefore there

is a need of broadcast encryption. For example, in a shared environment many user can

access the same documents (files), if anyone wants to send any documents to more number of

persons and if he will encrypt the information by using the individual‟s public key then surely

it will be secure but increase the computation overhead. It will also increase the

communication overhead because for many number of users, encryptor will store the

encrypted data (same information) on the cloud again and again. Thus to avoid these

overheads one prefer the efficient broadcast encryption.

 Popularity of cloud storage is growing day by day, nowadays most of the organizations and

enterprises prefers cloud storage to store and distribute the information. Protecting the

information in cloud computing is very important, because it is out of the user‟s control, after

being stored on the cloud and the cloud service provider may not be reliable. There are many

real life examples of distributed system in which accessing of information are defined by

some rules and these rules can lead to a complex access structure defined on the set of

Department of Computer Engineering, DTU Page 23

attributes of users. Information is encrypted under this complex structure and a user can

access the information if he/she satisfies the access structure.

In attribute-based encryption (ABE) scheme, without having the exact knowledge of the

receivers set, an owner can encrypt the information that can be decoded only by those users,

who are eligible to decrypt it. Attribute based encryption applies the access structures,

defined on the set of attributes, during the encryption mechanism. Fuzzy IBE scheme is

introduced by Sahai and Waters [2], an application where both encoded message and secret

keys are associated with set of attributes. In which if there is an overlap of at least (t) attribute

between the attributes associated with ciphertext and attributes associated with secret keys of

a user then only user should be eligible to decipher the ciphertext.

There are two kinds of ABE schemes. Key-policy attribute based encryption (KP-ABE) [14]

and Ciphertext - policy attribute based encryption (CP-ABE) [15]. This categorization of

ABE scheme depends on the association of access structure, whether it is associated with

ciphertext or private keys of a user. If the access structure is associated with the private keys

of a user, then it is a KP-ABE scheme, and a user can decrypt the encrypted message only if

the attributes associated with ciphertext satisfy the access structure. In CP-ABE scheme,

ciphertext is labeled with access structure and user‟s private key is labeled with attributes, if

attributes associated with user‟s private key fulfill the requirement of the access structure

then only the user can decipher the ciphertext.

There are six main properties of a model ABE scheme, these properties are discussed as

follows.

(1) Data confidentiality- malicious user cannot know that, what was the actual information

before encryption? (2) Access control- encryptor defines some rule before encrypting the

information, is called access structure. Access structure defines who can access the encrypted

information and who cannot? (3) Scalability- if the number of users increases and the users

are authorized, then it does not affect the overall performance of the system. (4)

Attribute/User revocation-if any user leaves the system then all the access rights of that

particular user is revoked by the scheme, means that user cannot access the information in

future. Sometimes attributes revocation is also possible. (5) Collusion resistance-there might

also be a situation, where two or more no. of users can combine their private keys and try to

decrypt the encrypted information, it must be avoided by an ideal ABE scheme. (6)

Department of Computer Engineering, DTU Page 24

Accountability- an ideal ABE scheme should also be accountable because key abuse can be

prohibited by the accountability.

Sometimes access structures may contain important information about the users, who are

encoding or decoding the information, or about the data being encrypted. Cheung and

Newport [17] proposed a CP-ABE scheme and this scheme supports do not care element for

the attributes, which are not present in the AND gate access structure of the ciphertext and

also deals with the negative attributes but the policies need to be publicized. Kapadia et al.

[19] also presented a CP-ABE scheme that have the same flexibility and realizes hidden

access structures, but this scheme does not prevent the collusion of user private keys, means

more than one user can collude and combine their private1s key and be able to decrypt the

ciphertext, provided that individually, no one is able to decrypt the ciphertext, and also

requires an online semi-trusted authority. This type of authority can compromise with the

effectiveness of the overall system.

Katz et al. [21] proposed a predicate encryption scheme that supports inner product

encryption. This scheme can realize both key-policy ABE and ciphertext-policy ABE. In

predicate encryption scheme, ciphertexts are labeled with attributes and private1e keys

corresponds to predicates. Private keys would be able to decrypt the ciphertexts if and only if

attributes associated with ciphertexts satisfy the corresponding predicates.

Nishide et al. [18] presented the idea of hiding the access structure associated with the

ciphertext and gave two constructions. The permissible structures are AND gate based

structures. In [18] they have considered the access structures of attributes connected with the

AND gates. In this paper they also consider the do not care condition for some attributes in

the access structure, means if, some attributes are not present in the access structures then

users need not to have private keys for those attributes. In [18], only the authorized user can

decrypt the encrypted data and not authorized users cannot decrypt the encrypted data or even

know something about the attributes of the access structures, means malicious users cannot

get any information about the encryptor and decryptor of the encrypted data and also he

cannot guess about the actual information.

2.3.1 Attribute Based Encryption - ABE

Attribute-based encryption (ABE) is a relatively new asymmetric key cryptography technique

in which the secret key of the user and cipher text are dependent on the attribtues. Generally,

Department of Computer Engineering, DTU Page 25

in asymmetric key cryptography, data is enciphered for a specific receiver using the

receiver‟s public-key. ABE on the other hand, defines the identity of users not as atomic but

as a set of attributes, e.g., age, data of birth etc., and messages can be enciphered with a set of

attributes (key-policy ABE - KP-ABE) or policies defined over a set of attributes (ciphertext-

policy ABE - CP-ABE).

2.3.1.1 Key-Policy ABE

KP-ABE was introduced by Goyal et al. [14], for sharing the information among the multiple

users. In KP-ABE scheme owners encrypt the information and labeled it with a set of user‟s

attributes and secret-key of users is labeled with the access structure. Secret-key are given in

advance to the users according to their corresponding attributes from the trusted authority. To

enable the decryption, set of attributes must satisfy the access structure.Key-policy attribute-

based encryption (KP-ABE) is an important type of ABE, which enables senders to encrypt

messages under a set of attributes and secret keys are associated with access structures that

specify which ciphertexts the key holder will be allowed to decrypt. In most existing KP-

ABE scheme, the ciphertext size grows linearly with the number of attributes embedded in

ciphertext. KP-ABE is the dual to CP-ABE in the sense that an access policy is encoded into

the users private key, e.g., (A and C) or D, and a ciphertext is computed with respect to a set

of attributes, e.g., {A,B}. In this example the user would not be able to decrypt the ciphertext

but would for instance be able to decrypt a ciphertext with respect to {A,C}.

2.3.1.2 Ciphertext-Policy ABE

CP-ABE was first introduced by Sahai and Waters [22]. In CP-ABE cipher text is labeled

with access structure and attributes are labeled with the user‟s secret-keys, a user would be

able to decode the encoded information only if the set of attributes associated with secret-key

of user satisfies the access structure. In CP-ABE access structures needs to be public along

with the cipher rtext, because decryptor should know, how private key components will be

combined to cipher text component to decrypt the encrypted data.

In CP-ABE model [22], secret keys will be identified with a set S of descriptive attributes. A

party that wishes to encrypt a message will specify a policy (access tree) that secret keys must

satisfy in order to decrypt. Access tree T. Each non-leaf node of the tree represents a

threshold gate, described by its children and a threshold value. If numx is the number of

Department of Computer Engineering, DTU Page 26

children of a node x and kx is its threshold value, then 0 <kx ≤ numx. Each leaf node x of the

tree is described by an attribute and a threshold value kx =1 .

2.3.1.2.1 Satisfying an access tree.

 Let T be an access tree with root r. Denote by Tx the sub-tree of T rooted at the node x.

Hence T is the same as Tr. If a set of attributes γ satisfies the access tree Tx, we denote it as Tx

(γ)=1. We compute Tx (γ) recursively as follows: if x is a non-leaf node, evaluate Tx (γ) for

all children x of node x. Tx (γ) returns 1 if and only if at least kx children return 1. If x is a

leaf node, then Tx (γ) returns 1 if and only if att(x) ∈ γ. Figure 2 shows the access tree

structure with 4 attributes with the policy as given below :

Doctor and (Nurse or (Cardiology and Neurology))

Figure 2.9: Example of Access tree structure with 4 attributes

2.3.1.2.2 CPABE toolkit

The cpabe toolkit provides a set of programs implementing a ciphertext-policy attribute-

based encryption scheme. It uses PBC (Pairing Based Cryptography) library for the algebraic

operations. The cpabe toolkit might not compile against versions of PBC older than 0.5.4.

The code is split into two packages, libbswabe (a library implementing the core crypto

operations) and cpabe (higher level functions and user interface). We need to install the

libbswabe library first since cpabe has dependency on it.

In a cipher text policy attribute-based encryption scheme, each user‟s secret key is associated

with a set of attributes representing their capabilities, and a cipher text is encrypted such that

AND

AND

Nurse Cardiology

OR Doctor

Neurology

Department of Computer Engineering, DTU Page 27

only users whose attributes satisfy a certain policy can decrypt. For example, we can encrypt

a cipher text such that in a health monitoring system such as SHS, cipher text related to

patient can be deciphered only by person having roles “Doctor”, “Nurse”, “Health

Professional” or “Caretaker” of the patient. One interesting application of this tool is that we

can do Role-Based Access Control (RBAC) without requiring trusted data storage. The

toolkit provides four command line tools used to perform the various operations of the

scheme.

Below are the different steps used in cpabe implementation using cpabe toolkit [16]:

1. Setup

It produces the public parameters public key (pub_key) and master key (master_key) as

outputs using the cpabe-setup command.

2. Key-Generation (master_key,pub_key, S)

This step takes three inputs, master private key (master_key), public key (pub_key) and set of

attributes of a user S. It uses cpabe-keygen command provided by cpabe-toolkit[16]. It

outputs the secret key (SK) for the user according to the set of attributes.

3. Encrypt (pub_key, M ,w)

This step uses the public key and policy access structure(w) defined by a set of attributes to

encrypt the message (M). The cpabe-enc command is used to encrypt the message M. The

output of this step is cipher text with .cpabe extension to input message file. For example, if

the input file is directions.txt then the output file will be directions.txt.cpabe.

4. Decrypt (pub_key,C, SK)

The Decryption step takes three inputs, public parameter (pub_key), a ciphertext (C)

containing embedded access policy(w), and private key(SK). If the attribute set on which

private key is defined, satisfies the access structure, the algorithm will decipher the ciphertext

and generate the plaintext, otherwise it returns error message that user attribute set does not

satisfy the policy.

2.3.1.2.3 CPABE Toolkit Commands

2.3.1.2.3.1 Library Installation

Department of Computer Engineering, DTU Page 28

First download, untar, compile, and install the most recent tarball of libbswabe, the support

library. Each can be can be installed with the standard GNU build system commands.

1. $./configure

2. $ make

3. $ make install

The "$" denotes your shell‟s prompt.

2.3.1.2.3.2 Set-Up

To generate the public key and master keys, user need to run cpabe-setup command.

$ cpabe-setup

$ ls
master_key pub_key

The master_key file is used to produce secret keys associated with various sets of attributes.

To generate the private keys for different stakeholders in health monitoring system such as

SHS to provide role based access mechanism, we need to use cpabe-keygen.

2.3.1.2.3.3 cpabe-keygen command

$ cpabe-keygen -o user2_priv_key pub_key master_key \
 doctor hospital_employee health_professional

$ cpabe-keygen -o user1_priv_key pub_key master_key \
 health_professional hospital_staff health_professional

$ ls
master_key pub_key user2_priv_key user1_priv_key

Some attributes are assigned a value, while others a key simply "has" without further

qualification. If later someone wants to encrypt a sensitive document. All is needed is the

public key, then can use cpabe-enc to encrypt it under a specified policy.

2.3.1.2.3.4 cpabe-enc Command

$ ls
pub_key patient_record.pdf

$ cpabe-enc pub_key patient_record.pdf
 (doctor and hospital_employee) or
 (hospital_staff and health_professional)

Department of Computer Engineering, DTU Page 29

^D
$ ls
pub_key patient_record.pdf.cpabe

In this case, they typed the policy on stdin. Note that the attributes of User‟s 1 key satisfy this

policy, but the attributes of User2‟s key do not.

If User1 wants to decrypt the document, he can use cpabe-dec

2.3.1.2.3.5 cpabe-dec

$ ls
pub_key user1_priv_key patient_record.pdf.cpabe

$ cpabe-dec pub_key user1_priv_key patient_record.pdf.cpabe

$ ls
pub_key user1_priv_key patient_record.pdf

If User2 were to try to decrypt it, an error would be reported.

2.4 Public Key Infrastructures and Digital Certificates for the Internet of Things

Peer-to-peer (P2P) network communication can be compromised via the principal attack

mechanisms of interception (e.g. eavesdropping), interruption (i.e. DoS attacks), modification

(i.e. packet payload manipulation in transit) and fabrication (see Figure 1). In an IoT

environment communications take place between autonomous embedded devices (i.e. sensors

and actuators) or IoT devices and their (cloud) backend. The above attack mechanisms

enforce the need for a set of IoT-specific requirements for machine-to-machine (M2M)

communication as shown in the example in Figure 2: Confidentiality and integrity are

concerned with the data itself that is being transmitted between peers. Both provide a

foundation (complementary to additional protocol features like protocol sequence numbers or

timestamps) to deal with interception, interruption and modification. Furthermore,

authentication and authorisation provide assurance that (i) a peer is an entity it claims to be

and (ii) a peer is authorized to conduct a certain action, i.e. a smart meter backend server

being allowed to reset a smart meter. Therefore it is a viable mechanism to protect against

fabrication. The above data-centered requirements are dealt with by modern P2P

communication protocols like TLS on transport layer, IEEE 802.15.4 / MACSec on data-link

layer or IPSec on network layer. An additional piece of information these protocols require is

a shared private token that is used to provide (i) confidentiality and (ii) integrity, i.e. a shared

Department of Computer Engineering, DTU Page 30

128 bit AES key to encrypt and decrypt either (i) packet payloads or (ii) payload hash values.

2.4.1 Public Key Infrastructures

Public Key Infrastructure is a centralized solution to the problem of trust. The idea is to have

a trusted entity (organization, corporation) that will do the job of certifying that a given

public key belongs really to a given person. This person must be identified by his name,

address and other useful information that may allow to know who this person is. Once this

work his done, the PKI emits a public certificate for this person. This certificate contains

between others:

 All the information needed to identify this person (name, birth date, ...).

 The public key of this person.

 The date of creation of the certificate.

 The date of revocation of the certificate (a certificate is valid during 1 or 3 years in

practice).

 The digital signature of all this previous information emitted by the PKI.

So now, if a user want to send a secret message to Bob, he/she can ask for his certificate.

When a user received the certificate, he must check the signature of the PKI who emitted it

and for the date of revocation. If verifications pass then user can safely use the public key of

the certificate to communicate with Bob. Indeed, in practice the way a PKI works is much

more complicated. For example sometimes a certificate may be revocated before the date of

end of validity has been reached. So a kind of list of revocated certificated has to be

maintained and accessed every time you want to use a certificate. The problem of certificate

revocation is really difficult in practice.

A PKI provides indirectly a mechanism to provide such a shared private token between two

peers. Its principal task is to provide and manage digital certificates (also called identity

certificates) that bind a public key to a peer (or end-entity) identity in such a way that a 3rd

party can validate this binding. The required steps to issue a digital certificate can be seen in

Figure 3: An end-entity (EE) sends a certificate request (containing identity descriptors and a

public key) to a registration authority (RA), which validates the request (i.e. the end-entity

details) before sending the request to the CA for signing. The CA is in possession of a public

Department of Computer Engineering, DTU Page 31

/ secret master key pair (i.e. a RSA or ECC key pair). It generates a certificate based on the

parameters passed, calculates a hash value over it and signs it using its secret key. The CA

then returns the created digital certificate back to the end entity. The public key of the CA is

known to all parties (e.g. via a self-signed certificate issued by the CA to itself), so the end-

entity‟s certificate can be independently validated by a 3rd party to which it wants to

connects to. The 3rd party can also request the status of the certificate (e.g. valid or revoked)

by querying a validation authority (VA) that keeps track on all issued certificates.

PKI provides the core framework for a wide variety of components, applications, policies and

practices to combine and achieve the three principal security functions (integrity,

authentication and non- repudiation). A PKI is a combination of hardware and software

products, policies and procedures. It provides the basic security required for secure

communications so that users who do not know each other or are widely distributed, can

communicate securely through a chain of trust. Digital certificates are a vital component in

the PKI infrastructure as they act as „digital passports‟ by binding the user‟s digital signature

to their public key.

2.4.1.1 Components of a PKI

 Security policy

 Certificate Authority (CA)

 Registration Authority (RA)

 PKI-enabled applications

Today‟s secure internet communication is provided by 3 principal components: (i) Network

protocols (on data link, network or application layer) that provide secure and authenticated

peer-to-peer communication, (ii) a verifiable digital identity for each peer and (iii) an

infrastructure that allows for the generation, management and revocation of the latter. The

de-facto standards for (i) are on application and network layer the TLS and the IPSec

protocol respectively, while MACSec provides a similar service on data link layer.

Components (ii) and (iii) are provided by digital certificates and public key infrastructures

respectively as defined by X.509.

2.4.1.2 Non – Repudiation

Non-repudiation guarantees that a party cannot deny having received/sent the message. Even,

Department of Computer Engineering, DTU Page 32

if it is not the most used security property, it can come in handy for scenarios involving trust

during sensitive exchanges. Different types of non repudiation have been proposed,

depending on who (sender or recipient) is applying the non-repudiation mechanism. From the

sender point of view, one would be willing to be sure that her/his message was received by

the recipient (non-repudiation of receipt (NRR)) or her/his message was well sent to the

recipient (non-repudiation of submission (NRS)) or her/his message has been delivered to the

recipient (non-repudiation of delivery (NRD)). From the recipient point of view, one would

be willing to be sure that the message she/he received has been sent by a genuine sender

(non-repudiation of origin (NRO)). NRR is quite simple to implement because it only needs a

nuncio (i.e. a particular document that attests the validity of the transaction). The nuncio is

generated by the sender and transmitted to the recipient. In order to terminate the transaction,

the recipient needs to send the nuncio back.

Department of Computer Engineering, DTU Page 33

CHAPTER 3

PROPOSED WORK

3.1. Problem Statement

In multi user environment providing role based access. The objective is to design and

implement a system that satisfies the following constraints.

1. The system should be energy efficient.

2. The system should provide APIs to safely record the patient readings.

3. The system should be able to store the readings in a secure storage.

4. Data should be encrypted before transmission.

5. The system should allow users with necessary attributes to decrypt the sensitive

medical data in multi-user environments.

6. The system should provide mechanism to do the auditing to provide the non-

repudiation property.

7. The system should provide way for cipher text transmission using Bluetooth

transmission or web interface.

3.2. Proposed Solution

• Wired connections provided between sensors and the processor to remove the loss of

sensor readings.

• CP-ABE provides the role based access mechanism.

• Symmetric AES key is used to encrypt the medical data

Department of Computer Engineering, DTU Page 34

• Use of Bluetooth low energy dongle make system efficient.

• CP-ABE has been found as one of the recent encryption scheme to provide role based

access mechanism.

• Web Interface provided to gather and store the readings in database.

3.3. System Design

In our system SHS, the medical data is gathered at patient site through the bio-medical sensor

and is sent over the air through Bluetooth medium to remote site. The data is generally

collected by medical professionals who are also responsible for creating the access policy for

the doctors, nurses etc. The transmitted data is accessible to anyone having the required set of

attributes; thus making it possible for multiple shareholders to access this sensitive medical

data such as doctors, relatives of the patient etc. Thus, SHS is very flexible and provide fine

grained access control over the medical data.

Figure 3.1: SHS System Architecture

Department of Computer Engineering, DTU Page 35

Figure 3.1 shows the architecture as well as the flow of medical data starting from sensors

and till finally it is collected at remote site by user. The bio-medical sensors are attached to

patient to take the readings. The readings are then securely transmitted through the wires to

the raspberry pi device. Raspberry pi performs the encryption using the CP-ABE to provide

the fine grained access control. This encrypted data is then transmitted through the Bluetooth

device over the air to the remote user on demand. At remote site, the doctors, nurses,

caretakers of the patient etc will be able to see this sensitive medical data. Any user without

having valid set of attributes will not be able to decrypt the file.

3.4. Implementation

3.4.1 Setting up Raspberry Pi / Personalization

We used Raspberry Pi SBC to store following components on it:

 Raspbion Operating System – Jessie Lite.

 Latest stable version of Debian based Wheezy.

 Debian Jessie Lite, provides the GUI which makes it easier to interface with

Raspberry Pi.

 Updated version GTK 3+ for user interface.

 Ease of use and wide developer support.

3.4.2 Connections of the Secure Sensor Node

The accelerometer based sensor consists of eight pins, two of which are the power and

ground pins. Two Interrupt pins are available but are left unconnected. The CS‟ and VDD

pins are supplied with 3.3 V from the Raspberry Pi. The SDO and the GND pin of the

accelerometer based sensor are connected to the GND pin of the Raspberry Pi. The SDA pin

for data interchange is connected to the third pin of the Raspberry Pi and the SCLK pin to the

fifth pin of the Raspberry Pi. Communication between the accelerometer based sensor and the

Raspberry Pi can take place using either of the two serial protocols: SPI [8] or I2C [8].

The accelerometer based sensor (ADXL345) supports standard (100 kHz) and fast (400 kHz)

data transfer modes if the given timing parameters are met.

Department of Computer Engineering, DTU Page 36

Figure 3.2: Body Sensor Flow Diagram

I2C address of 0x53 (followed by the R/W bit) is chosen by grounding the SDO/ALT

ADDRESS pin. If other devices are connected to the same I2C bus, these devices cannot

have an operating voltage exceeding VDD I/O by more than 0.3 V [8]. Therefore external

pull-up resistors, Rp are necessary for proper I2C operation. The I2C driver [13] is enabled

and the I2C modules [13] and the python-smbus module [13] are downloaded and installed.

Figure. 1 shows how the Raspberry Pi is connected to the accelerometer based sensor in this

project. The Program Flow of the secure sensor prototype is shown in Figure. 6.

3.4.3 Receiving Data from the Accelerometer Based Sensor

The accelerometer based sensor is set to measurement mode. The range of measurement of

the accelerometer based sensor is set according to the user. After this, the 16 bit Two‟s

Complement data of each axis is retrieved from the registers of the accelerometer based

sensor, ADXL345. The Raspbian Jessie comes with a pre-installed version of Python 2.7

where the program is written. The secure sensor node prototype program aims to achieve the

following objectives:

• Retrieving sensor data from the data registers of the sensor and processing it to give

acceleration in m/s2.

• Encryption of this processed data.

• Sending this data to the phone using Bluetooth.

Department of Computer Engineering, DTU Page 37

The following modules have been imported in the python program to assist in the above

processes:

• The „SMbus‟ module, known as python-smbus: it is a Python module which allows

SMbus access through the I2C/dev interface on Linux hosts.

• The os and the sub-process module: they are used to execute command line instructions

in python.

3.4.4 Encryption

The encryption is a two step process. Before starting the encryption, the secure node requests

the secure symmetric key from the java card applet stored on secure pi node. This is required

since we assume that the secure node will never store the symmetric key in plain text

anywhere in its memory. We store the symmetric key on card to increase the security of the

system. Once we get the symmetric key, we can start the encryption mechanism. We used

Cpabe toolkit to perform the encryption of the symmetric key so that it can be transferred

over the air to the mobile user so that only authenticated users can determine the sensor data.

We have used encrypted Bluetooth transfer from the raspberry pi to the smart phone. This

section provides a brief description of the encryption algorithm used in the program. The first

step in the encryption step is encrypting the sensor data file using the symmetric AES key.

We used symmetric key KAES(128-bit) AES key for our program, though to increase the

strength of the encryption we can use 24 byte (192-bit) or 32 byte (256-bit) AES key. The

results in generation of cipher text, say C1. Now, to secure this symmetric key we again

encrypt it using our cpabe setup. This results in cipher text, say C2. The secure sensor node

sends this combined cipher text (C1 + C2) over the air through the Bluetooth dongle to the

mobile user.

Bluetooth is used in the secure sensor node to perform below major tasks:

• Sending the file, „sensor_data.txt‟ containing the encrypted data to a mobile phone

• Sending the file, „AES_key.cpabe‟ containing the encrypted symmetric key.

Note, mobile phone user MAC address is hard coded in the program. At the receiver side, the

sequence of operations will be in reverse order.

Department of Computer Engineering, DTU Page 38

Figure 3.3: Program Flow of SHS

 START

Personalization

-setup and Key-
Generation commands to generate
private keys for users.

COLLECTING DATA FROM ADXL SENSOR

-process and
time.

pins.

Encryption

Request symmetric AES key on card

symmetric key to generate cipher text C1

key to encrypt the symmetric key to
generate cipher text C2

Data Transmission

Bluetooth dongle to mobile devices

DECRYPTION

setup to decrypt cipher C2 to get the
symmetric key.

C1 to generate the sensor data.

 END

Department of Computer Engineering, DTU Page 39

3.4.5 Openssl

OpenSSL is a versatile command line tool that can be used for a large variety of tasks related

to Public Key Infrastructure (PKI) and HTTPS (HTTP over TLS). This cheat sheet style

guide provides a quick reference to OpenSSL commands that are useful in common,

everyday scenarios. This includes OpenSSL examples of generating secret keys, certificate

signing requests, and certificate format conversion. It does not cover all of the uses of

OpenSSL. To find list of all possible commands supported in a specific version of OpenSSL

the following command can be used:

openssl list-standard-commands

Let‟s see a brief description of each command:

 ca To create certificate authorities.

 dgst To compute hash functions.

 enc To encrypt/decrypt using private key algorithms. It is possible to generate using a

password or directly a private key stored in a file.

 genrsa This command permits to generate a pair of public/secret key for the RSA

algorithm.

 password Generation of “hashed passwords”.

 pkcs12 Tools to manage information according to the PKCS #12 standard.

 pkcs7 Tools to manage information according to the PKCS #7 standard.

 rand Generation of pseudo-random bit strings.

 rsa RSA data management.

 rsautl To encrypt/decrypt or sign/verify signature with RSA.

 verify Checkings for X509.

 x509 Data managing for X509.

To perform encryption, below command can be used:

openssl rsautl -encrypt -in <input_file> -inkey <llave> -out <output_file>

Department of Computer Engineering, DTU Page 40

where:

 input_file is the file to encrypt. This file must no be longer that 116 bytes

=928 bits because RSA is a block cipher, and this command is low level command,

i.e. it does not do the work of cutting your text in piece of 1024 bits (less indeed

because a few bits are used for special purposes.)

 key File that contains the public key. If this file contains only the public key (not both

secret and public), then the option -pubinmust be used.

 output_file the encrypted file.

To decrypt only replace -encrypt by -decrypt, and invert the input / output file as for

decryption the input is the encrypted text, and the output the plain text.

3.4.5.1 Signature Generation using OpenSSL

The next step is to be create a digital signature and to verify it. It is not very efficient to sign a

big file using directly a public key algorithm. That is why first we compute the digest of the

information to sign. Note that in practice things are a bit more complex. The security

provided by this scheme (hashing and then signing directly using RSA) is not the same (is

less in fact) than signing directly the whole document with the RSA algorithm.

A). Openssl Command to create signatures :

openssl dgst -<hash_algorithm> -out <digest> <input_file>

where:

 hash_algorithm is the hash algorithm used to compute the digest. Among the available

algorithm there are: SHA-1 (option -sha1which computes a 160 bits

digests), MD5(option -md5) with 128 bits output length and RIPEMD160 (option -

ripemd160) with 160 bits output length.

 digest is the file that contains the result of the hash application on input_file.

 input_file file that contains the data to be hashed.

Department of Computer Engineering, DTU Page 41

This command can be used to check the hash values of some archive files like the openssl

source code for example.

B). To compute the signature of the digest:

openssl rsautl -sign -in <digest> -out <signature> -inkey <key>

C). To check to validity of a given signature:

 openssl rsautl -verify -in <signature> -out <digest> -inkey <key> -pubin

-pubin is public key, which is natural as we are verifying a signature.

D) To complete the verification, one needs to compute the digest of the input file and to

compare it to the digest obtained in the verification of the digital signature.

3.4.5.2 Certificate Generation

SSL makes use of what is known as asymmetric cryptography, commonly referred to

as public key cryptography (PKI). With public key cryptography, two keys are created, one

public, one secret. Anything encrypted with either key can only be decrypted with its

corresponding key. Thus if a message or data stream were encrypted with the server's secret

key, it can be decrypted only using its corresponding public key, ensuring that the data only

could have come from the server.

A certificate is not really necessary -the data is secure and cannot easily be decrypted by a

third party. However, certificates do serve a crucial role in the communication process. The

certificate, signed by a trusted Certificate Authority (CA), ensures that the certificate holder

is really who he claims to be. Without a trusted signed certificate, the data may be encrypted,

however, the party you are communicating with may not be whom sender think. Without

certificates, impersonation attacks would be much more common.

Steps In Public Certificate Generation:

a). Generate Secret Key:

The openssl toolkit is used to generate an RSA Secret Key and CSR (Certificate Signing

Request). It can also be used to generate self-signed certificates which can be used for testing

purposes or internal usage.

Department of Computer Engineering, DTU Page 42

The first step is to create your RSA Secret Key. This key is a 1024 bit RSA key which is

encrypted using Triple-DES and stored in a PEM format so that it is readable as ASCII text.

openssl genrsa -des3 -out server.key 1024

Output:

Generating RSA secret key, 1024 bit long modulus

...++++++

........++++++

e is 65537 (0x10001)

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

Where pass phrase is used as a private whenever the user wants to use his secret key in

certificate generation process.

b). Generate a Certificate Signing Request.

Once the secret key is generated a Certificate Signing Request can be generated. The CSR is

then used in one of two ways. Ideally, the CSR will be sent to a Certificate Authority, such as

Thawte or Verisign who will verify the identity of the requestor and issue a signed

certificate. The second option is to self-sign the CSR.

During the generation of the CSR, user will be prompted for several pieces of information.

These are the X.509 attributes of the certificate. One of the prompts will be for "Common

Name (e.g., Certificate User name)". It is important that this field be filled in with the fully

qualified domain name of the server to be protected by SSL. If the website to be protected

will be https://public.akadia.com, then enter public.akadia.com at this prompt. The command

to generate the CSR is as follows:

openssl req -new -key server.key -out server.csr

Output:

Country Name (2 letter code) [GB]:IN

State or Province Name (full name) [Berkshire]:DELHI

Department of Computer Engineering, DTU Page 43

Locality Name (eg, city) [Newbury]:ROHINI

Organization Name (eg, company) [My Company Ltd]:DELHI TECHNOLOGICAL

UNIVERSITY

Organizational Unit Name (eg, section) []:Information Technology

Common Name (eg, your name or your server's hostname) []:dtu.org

Email Address []:surajrider@gmail.com

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []: Delhi Technological University

c). Remove passphrase from key:

One unfortunate side-effect of the pass-phrased secret key is that Web Server such as Apache

will ask for the pass-phrase each time the web server is started. Obviously this is not

necessarily convenient as someone will not always be around to type in the pass-phrase, such

as after a reboot or crash. mod_ssl includes the ability to use an external program in place of

the built-in pass-phrase dialog, however, this is not necessarily the most secure option

either. It is possible to remove the Triple-DES encryption from the key, thereby no longer

needing to type in a pass-phrase. If the secret key is no longer encrypted, it is critical that this

file only be readable by the root user! If system is ever compromised and a third party obtains

your unencrypted secret key, the corresponding certificate will need to be revoked. The

following command can be used to remove the pass-phrase from the key:

cp server.key server.key.org

openssl rsa -in server.key.org -out server.key

The newly created server.key file has no more passphrase in it.

d). Generate a Self Signed Certificate

At this point you will need to generate a self-signed certificate because you either don't plan

on having your certificate signed by a CA, or you wish to test your new SSL implementation

while the CA is signing your certificate. This temporary certificate will generate an error in

the client browser to the effect that the signing certificate authority is unknown and not

trusted.

To generate a temporary certificate which is good for 365 days, issue the following

command:

openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt

Department of Computer Engineering, DTU Page 44

Output:

Signature ok

subject=/C=CH/ST=Bern/L=Oberdiessbach/O=Akadia AG/OU=Information

Technology/CN=public.akadia.com/Email=martin dot zahn at akadia dot ch

Getting Secret key

3.4.6 Decryption

The decryption process is actually 2- step process which is reverse of the encryption process.

First, the mobile user uses his secret key to decrypt the cipher text C2 (encrypted AES key by

cpabe) to obtain the symmetric AES key. After this, the user uses this symmetric key, say

KeyAES to decrypt the cipher text, C1 (encrypted using AES at sender site) to finally obtain

sensor data. Code for sensor interfacing is written in python. Implementation of the command

line compilation as well as the execution of the encryption code is done in the python

program using sub-process module.

3.4.7 Bluetooth Interfacing

Bluetooth is a wireless technology (IEEE 802.15.1) used to exchange data over short

distances (using short-wavelength radio transmissions in the ISM band from 2400–2480

MHz).

Bluez package has been used in the design of this secure sensor system SHS, which contains

the Bluetooth protocol stack for Linux. A Bluetooth USB dongle namely LB4 – Bluetooth 4.0

Dongle is connected to one of the USB ports of the Raspberry Pi to establish a connection

with a mobile phone. Any mobile device having the Bluetooth technology is able to receive

the files from the Raspberry Pi device over the bluetooth. Obexftp has been used for the

transfer of files using Bluez. It is implemented as a collection of command line instructions in

the python program by using os and subprocess modules. Different mobiles have different

data channel numbers (OPush channel number). Real time values are received from the

accelerometer based sensor continuously for a specified period of time. Command line

instructions are implemented in the python program to complete the above process of reading

and storing values. The Raspberry Pi runs a python script which requests the private key

stored on the memory/Java card used by Raspberry Pi to boot up. This symmetric key

KAES(128-bit) is then used by python script to encrypt the sensor data containing a list of

readings of accelerometer sensor. The mobile device, which is an Android device in our case

simply starts the Bluetooth and simply awaits the encrypted sensor data as well as AES key

Department of Computer Engineering, DTU Page 45

Figure 3.4 : Sequence Diagram of SHS system

which is encrypted. The mobile device receives the encrypted data and then decrypts it for

further processing.

Department of Computer Engineering, DTU Page 46

3.4.8 Data Transmission

The encrypted data can be transmitted to user over the Bluetooth medium. For this Bluetooth

sockets and Client-Server architecture was used. On SHS, a server application is initiated

which listens for incoming connections and transmits the encrypted data. Bluetooth client

application at the user knows the mac address of SHS and requests the data. Data can also be

transmitted over the web using network sockets with the help of similar Client-Server

architecture. For transmission over Bluetooth, Pybluez and bluetooth python packages were

used for making the server application at the Health Sensor node.

Key Abbreviation Description

KCPABE_Pub CPABE Public key

KAES_SYM AES symmetric key

KPRIV CPABE - User Secret key

EK1 Encrypted AES key

C1 Encrypted Medical Data

P1 Patient Data

master_key CPABE- Master Key

Table 3.1 : Different Notations used in Sequence Diagram

Department of Computer Engineering, DTU Page 47

CHAPTER 4

RESULTS & ANALYSIS

In this chapter, the experimentation results of SHS described in implementation part of

previous chapter is done. The system basically comprised of secure health sensor SHS which

also acts as a server (service provider) which can be contacted by a client (service requestor)

using traditional web browser or a smart phone with Android operating system. The

performance of the proposed design is shown in terms of number of users, execution time for

symmetric encryption and decryption, cpabe encryption time and decryption time,

comparison of ECC and RSA on certification generation, key generation, signature

generation and verification times.

4.1 Environment Setup Specifications

SHS employed various hardware and software to accomplish the desire task of secure data

transmission between different stack holders while providing the role based access

mechanism. There are two ways provided for data transfer:

(1) Using Web Interface

(2) Bluetooth Transmission.

The overall software and hardware configurations used for experimentation are shown in

below tables :

Software’s Configuration:

Operating System Raspbion – Jessie Lite

Platform Python Flask

Technology Python, PyBluez, Openssl

Language Python

Editor GEdit, Vim

Backend SQLite 3

Design HTML, JQuery, Java Script

Department of Computer Engineering, DTU Page 48

Hardware’s Configuration:

Chip Broadcom BCM2835 SoC

Core Architecture ARM11

CPU 700 MHz Low Power ARM1176JZFS

Applications Processor GPU

Memory 512MB SDRAM

Table 4.1 Software/ Hardware Configuration

The hardware configuration listed above is specific to SHS which employs Raspberry Pi as a

sensor node with networking and computation capability. The client or different stakeholders

will need traditional web browser to interface with SHS.

4.2 CPABE Secret Key Generation Time

Graph 4.1, we found that cpabe secret key generation time increases with number of

attributes.

Graph 4.1 : Key Generation Time against number of attributes

4.3 CPABE – AES Symmetric Key Encryption Time

Graph 4.2: CPABE – KEY1 Encryption Time against number of attributes

0.00
0.50
1.00
1.50
2.00
2.50
3.00

2 4 6 8 10 12 14 16 18 20

0.00

0.40

0.80

1.20

1.60

2.00

4 6 8 10 12 14 16 18 20

Department of Computer Engineering, DTU Page 49

Graph 4.2 above shows that time required for KEY1 encryption depends upon the number of

attributes used in the policy.

4.4 Sensor Data Encryption and Decryption Time for AES algorithm

Table 2 shows the time taken for encryption and decryption on Raspberry Pi. We used

different length AES key KEY1 for encrypting the sensor readings and time was nearly same

on all three cases. While decryption time increases with key size KEY1.

Length of KEY1

(bytes)

Average Encryption Time

(millisecond)

Average Decryption Time

(millisecond)

16 2.4229 20.6866

24 2.6389 21.4863

32 2.6252 22.0068

Table 4.2 : Sensor data Ecnrytion and Decryption Time

4.5 Signature Generation

4.5.1 ECC based Signatures

S.No

Curve

Type

Signature Generation

Time Signature Verification

1 secp112r1 42 ms 41 ms

2 secp128r2 43 ms 41 ms

3 secp160r2 44 ms 43 ms

4 secp192k1 47 ms 46 ms

5 secp224k1 49 ms 48 ms

6 secp256k1 52 ms 52 ms

7 secp384r1 57 ms 66 ms

8 secp521r1 92 ms 101 ms

Table 4.3 : ECC - Signature Generation and Verification Time

http://s.no/

Department of Computer Engineering, DTU Page 50

4.5.2 RSA based Signature

S.NO Key Size Signature Gen Verification Time

1 512 3.639 ms 0.613 ms

2 768 6.639 ms 0.596 ms

3 1024 11.485 ms 0.91195 ms

4 2048 63.215 ms 2.01 ms

5 4096 371.656 ms 6.39 s

Table 4.4 : RSA - Signature Generation and Verification Time

4.6 Key Generation and Certificates

4.6.1 ECC Key and Certificate Generation Time

S.No
Curve
Type Key Generation Time

Certificate Generation
Time

1 secp112r1 70 ms 90 ms

2 secp128r2 73 ms 92 ms

3 secp160r2 75 ms 85 ms

4 secp192k1 85 ms 101 ms

5 secp224k1 97 ms 108 ms

6 secp256k1 102 ms 112 ms

7 secp384r1 104 ms 159 ms

8 secp521r1 138 ms 240 ms

Table 4.5 : ECC – Certificate and Key Generation Time

4.6.2 RSA Key and Certificate Generation Time

S.NO Key Size Key Generation Certificate Generation

1 512 0.130 s 0.0092 s

2 768 0.0876 s 0.005 s

3 1024 0.5303 s 0.01306 s

4 2048 6.068 s 0.059628 s

5 4096 48.276 s 0.3737

Table 4.6 : RSA – Certificate and Key Generation Time

http://s.no/

Department of Computer Engineering, DTU Page 51

4.7 Data transmission time over Bluetooth

The average transmission time over bluetooth medium was found to be 4.756 seconds. The

experiment was conducted several times and the average of all times is taken.

Department of Computer Engineering, DTU Page 52

CHAPTER 5

 CONCLUSION AND FUTURE WORK

In this work, we have designed a secure health sensor (SHS) node capable of securing

sensitive medical data. SHS designed is flexible and provides fine grained access control. The

size of the Raspberry Pi being that of a mobile device provides compactness and portability

to the sensor node. The use of Bluetooth Low Energy dongle makes system more energy and

cost efficient. The encryption, key generation and transmission time suggests that our system

can be incorporated in existing health care centres providing health services. The Raspberry

Pi along with Bluetooth Low Energy has interfaces which are easy to use, and can help

designers in investigation and development of new sensors as well as encryption and

compression algorithms for future sensors. The web interface can be used to remotely access

the SHS by different stakeholders.

Java cards can be used as memory element for secure symmetric key storage on secure

element (SE), thus enhancing the security of SHS. Instead of storing the symmetric key

(KAES_SYM) in encrypted form as EK2, it can be stored securely in java card and accessed by

java card APIs, for encrypting sensor data. We could not incorporate it into the current design

because java card interaction libraries with Raspberry pi (Arm platform) were not provided.

We have implemented this on Linux based Intel 64-bit architecture systems. But, we could

not replicate the same on raspberry pi since the libraries were not compatible with it and we

couldn‟t get the compatible ones from the java card supplier. However, we can use Single

Board Computer (SBC) like Intel Galileo 2 based on Intel architecture for implementing SHS

using Java cards which can support java applet libraries. Raspberry Pi is based on ARM

architecture.

Currently, our system includes sensors with wired connections. Wireless sensors can be

incorporated into SHS by including appropriate wireless inventor kit for Raspberry Pi. We

plan to improve upon the design of SHS by making it battery operated with switches to start

the sensor. The limitation of data transmission through Bluetooth can be removed by making

use of cloud servers to store the data. Users can request the data from the cloud server

through appropriate user interface APIs. We are also planning to use QR codes for pairing

between SHS and user mobile device used for accessing sensor information. This is an

Department of Computer Engineering, DTU Page 53

alternate to using NFC controller. We use Bluetooth since it has higher throughout and

supports easy bidirectional security handshake.

Department of Computer Engineering, DTU Page 54

References

1. Shin, M. S.; Jeon, H. S.; Ju, Y. W.; Lee, B. J.; Jeong, S.P.; “Constructing RBAC Based

Security Model in u-Healthcare Service Platform”, The Scientific World Journal, (2015),

Volume 2015 pp. 1-13,

2. Mohammed, S.; Fiaidhi, J.; “Ubiquitous Health and Medical Informatics: The Ubiquity

2.0 Trend and Beyond”, Medical Information Science Reference, (2010) ISBN 978-1-

61520-777-0

3. Chen, J.; Kwong, K.; Chang, D.; Luk, J.; Bajcsy, R. “Wearable Sensors For Reliable Fall

Detection”, Engineering in Medicine and Biology 27th Annual Conference(IEEE)

Shanghai China, September 1-4, 2005.

4. “World‟s elderly to overtake number of infants”,an article in the The Telegraph, UK,18th

June ,2013.

5. Avancha, S.; Baxi, A.; Kotz, D.; “Privacy in mobile technology for personal healthcare”,

ACM Computing Surveys (CSUR), vol. 45 Issue 1, article 3, 2012.

6. Plug-n-Trust: Practical Trusted Sensing for mHealth .Jacob Sorber, Minho Shiny, Ron

Peterson, David Kotz,Institute for Security, Technology, and Society, Dartmouth College,

Hanover, NH, USA Dept. of Computer Engineering, Myongji University, South Korea

7. https://www.raspberrypi.org/

8. Banerjee, S.; Sethia, D.; Mittal, T.; Arora, U.; Chauhan, A., "Secure sensor node with

Raspberry Pi," Multimedia, Signal Processing and Communication Technologies

(IMPACT), 2013 International Conference on , vol., no., pp.26,30, 23-25 Nov. 2013.

9. Dimitriou, T.; Ioannis, K.; “Security Issues in Biomedical Wireless Sensor Networks”,

Applied Sciences on Biomedical and Communication Technologies First International

Symposium, conference publication, 2008.

10. Menezes, A. J.; Oorschot, P. C.; Vanstone, S. A.; “Handbook of Applied Cryptography”

Boca Raton, FL, USA: CRC Press, 1997.

11. Amini, S.; Verhoeven, R.; Lukkien,J.; Chen,S.; “Toward a Security Model for a Body

Sensor Platform”, IEEE International Conference on Consumer Electronics (ICCE), 2011

12. Datasheet archives, contains datasheet of various ICs(ADXL345),

www.datasheetarchive.com.

13. Getting started with Raspberry Pi ,Matt Richardson and Shawn Wallace, published by

O‟Reilly Media, First release December 2012.

https://www.raspberrypi.org/
http://www.datasheetarchive.com/

Department of Computer Engineering, DTU Page 55

14. Goyal, V., Pandey, O., Sahai,A., Waters,B.(2006) “Attribute –based encryption for fine

grained access control of encrypted data”, ACM Conference on Computer and

Communication Security, pp. 89-98.

15. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In:

IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer Society, Los

Alamitos (2007)

16. http://acsc.cs.utexas.edu/cpabe/

17. Cheung, L.; Newport, C. (2007) “Provably secure Ciphertext police ABE”, CCS 2007:

Proceedings of the 14th ACM conference on Computer and Communications security,

pp.456 -465, ACM Press, New York.

18. Nishide, T., Yoneyama, K., Ohta, K.,(2008) “ABE with partially hidden encryptor
specified access structure”, ACNS‟08, LNCS 5037, pp 111-129, Springer.

19. Kapadia, A., Tsang, P.P. and Smith, S.W. (2007) „Attribute-based publishing with hidden

credentials and hidden policies‟, in NDSS, Vol. 7, pp.179–192.

20. Smart Card Standards for contact and contactless interfaces,

http://www.smartcardalliance.org/pages/smart-cards-intro-standards

21. R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme.

Journal of Cryptology, 20(3):265–294, 2007

22. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In:

IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer Society, Los

Alamitos (2007)

23. https://www.raspberrypi.org/forums/viewtopic.php?f=91&t=74176

24. Sudhir G. Nikhade, “Wireless Sensor Network System using Raspberry Pi and Zigbee for

Environmental Monitoring Applications” Smart Technologies and Management for

Computing, Communication, Controls, Energy and Materials (ICSTM), 2015

International Conference on, vol., no., pp 376-381 May 2015

25. Anuradha Kar, Asim Kar “A novel design of a portable double beam-in-time

spectrometric sensor platform with cloud connectivity for environmental monitoring

applications”

26. M. Saari, P. Sillberg, P. Rantanen, J. Soini and H. Fukai, “Data Collector Service –

Practical Approach with Embedded Linux”, MIPRO 2015, 25-29 May 2015

27. V. Vujović, and M. Maksimović, “Raspberry Pi as a wireless sensor node: performances

and constraints,” 37th International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO) , pp. 1247–1252, 2014.

http://acsc.cs.utexas.edu/cpabe/
http://www.smartcardalliance.org/pages/smart-cards-intro-standards
https://www.raspberrypi.org/forums/viewtopic.php?f=91&t=74176

Department of Computer Engineering, DTU Page 56

28. L. B. Oliveira, A. Kansal, B. Priyantha, M. Goraczko, and F. Zhao, “Secure-TWS:

Authenticating node to multi-user communication in shared sensor networks,” Comput. J.,

vol. 55, no. 4, pp. 384–396, 2012.

29. P. Czypek, S. Heyse, and E. Thomae, “Efficient implementations of MQPKS on

constrained devices,” Cryptogr. Hardware Embedded Syst., vol. 7428, pp. 374–389, 2012.

30. N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Comparing elliptic curve

cryptography and RSA on 8-bit CPUs,” Cryptogr. Hardware Embedded Syst., vol. 3156,

pp. 119–132, 2004.

31. A. S. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz, “Energy analysis of

public-key cryptography for wireless sensor networks,” Proc. IEEE PerCom, 2005, pp.

324–328.

32. Public-Key Infrastructure (X.509), (pkix). [Online]. Available: http://

www.ietf.org/proceedings/59/211.htm

33. A. Shamir, “Identity-based cryptosystems and signature schemes,” in Proc. Crypto, 1984,

pp. 47–53.

34. R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and
public-key cryptosystems,” Commun. ACM, vol. 32, no. 2, pp. 130–126, Feb. 1978.

35. N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput., vol. 48, pp. 203–209, 1987

36. V. S. Miller, “Use of elliptic curves in cryptography,” in Proc. CRYPTO, 1986, pp. 417–

426.

37. X. Chen, K. Makki, K. Yen, and N. Pissinou, “Sensor network security: A survey,”IEEE

Commun. Surveys Tuts., vol. 11, no. 2, pp. 52–73, 2nd Quart. 2009.

http://www.ietf.org/proceedings/59/211.htm

