
 

 

BOTNET DETECTION AND OPTIMIZATION 

                                             USING 

                                        HONEYPOT 
 

A Major Project Report submitted in the partial fulfillment 

of the requirements for the award of the degree of 

MASTER OF TECHNOLOGY 

(INFORMATION SYSTEMS) 

 

 

                                                     Submitted By: 

PRAKHAR SRIVASTAVA 

(Roll No. 2K13/ISY/16) 

 

                                                         Under the esteemed guidance of 

Dr. N.S. RAGHWA 

Assistant Professor 

 

 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING      

DELHI TECHNOLOGICAL UNIVERSITY 



 

BAWANA ROAD, DELHI-110042 

SESSION: 2013-2015 

CERTIFICATE 

 

This is to certify that  work entitled “Botnet Detection And Optimization Using Honeypot” 

submitted by Prakhar Srivastava (2k13/ISY/16), to Delhi Technological University, Delhi for the 

award of the degree of Master of Technology is a bonafide record of research work carried out by him 

under my supervision. 

The content of this thesis, in full or parts have not been submitted to any other institute or university for 

the award of any degree or diploma. 

 

 

 

 

 

Dr. N.S.Raghava 

Project Guide 

Assistant Professor 

Department of Computer Science and Engineering 

Delhi Technological University 

Shahbad Daultpur, Bawana Road, Delhi-110042 

 

 

 



 

ACKNOWLEDGEMENT 

 

I would like to thank my project guide, Dr. N.S. Raghwa for his valuable guidance and wisdom in 

coming up with this project. I humbly extend my words of gratitude to Dr. O. P. Verma, Head of 

Department, and other faculty members of IT department for providing their valuable help and time 

whenever it was required. I thank all my friends at DTU who were constantly supporting me throughout 

the execution of this thesis. 

 

Special thanks to the Almighty Lord for giving me life and the strength to persevere through this work. 

Last but not least, I thank my family for believing in me and supporting me.  

 

 

 

 

 

 

Prakhar Srivastava 

Roll No. 2k13/ISY/16 

M.Tech (Information Systems) 

E-mail:   prakhar42@gmail.com  

Department of Computer Science and Engineering         

Delhi Technological University 

 

 

 

 

 

 

 

 

 

 

 

 



 

ABSTRACT 

Botnet is the most extensive and thoughtful threat which follows commonly in today's cyber-

attacks. A botnet is a collection of bargained computers which are at all controlled by hackers to 

launch various network attacks, such as Botnet attack, spam, click fraud, identity theft and 

information phishing. Botnet has developed a popular and creative tool overdue many cyber-

attacks. The important characteristic of botnets is the use of command and control channels 

through which they can be efficient and absorbed. Lately malicious botnets change into HTTP 

botnets out of typical IRC botnets. This makes the detection of botnet command and control a 

stimulating problem. The Thesis then classifies and inspects problems common to many current 

packet sniffing applications, shows how these problems can effortlessly undermine the network 

administrator's intents and lead to a false intellect of security, and proposes solutions to these 

problems. Lastly, in this thesis accomplishes that botnet identification number follow by support 

vector classifier (SVM) that would distribute on the basis of header length such as h1, h2 and h3 

although h3 would combine balance packet for h1 and h2 which currently a viable network 

security mechanism, but that its utility could be greatly improved with the extensions proposed 

in the Thesis. 

 



 

 

LIST OF FIGURES  

Fig.No                                                   Title                                                                         Page No. 

 1.1            Bots and Target                                                                                                           5 

 1.2            Multiple solutions to one problem                                                                              7 

 1.3           Hyperplane                                                                                                                   7 

 3.1           Basic IRC Operation                                                                                                   19 

 3.2           Structure of an IRC Channel Botnet                                                                           20 

 3.3           Deploy a GenII Honeynet                                                                                           21 

 3.4           Centralized topology                                                                                                   26 

 3.5            Bot-Net Attack Life Cycles                                                                                        27 

 3.6            Framework for detecting botnet/bot                                                                           29 

 3.7           Botnet Model for detecting bots                                                                                  30 

 4.1           SVM classification                                                                                                        37 

 4.2           Data Classification                                                                                                        37 

 4.3           Botnet Sniffer                                                                                                               39 

 4.4           Example of Net-Flow architecture                                                                                40 

 5.1           Module for BOTNET detection and Prevention                                                           42 

 5.2           Enter Host IP Address with no of packet for BOT network                                        43 

 5.3           Bot analyzer with its packet length and botnet identification number from                43 

5.4            Bot analyzer with its packet length and botnet identification number in TCP             44 

 5.5           Different sequence numbers for Botnet identification for 32 header length                44 

 5.6           Different sequence numbers NoBotnet identification                                                  45                                     

 5.7           BOTNET prevention modules from theft IP Pinging Blocker                                     45 

 5.8           BOTNET prevention modules from theft IP Pinging Blocker                                     46 

 5.9           Start monitoring from host IP                                                                                       46 

 5.10         Total number of packet monitoring under TCP/UDP                                                   47 

 5.11         Scan port then close to prevent directory of support h1, h2 and h3                             47 

 5.12         Block unauthenticated access from web browser                                                         48 

 5.13          block URL from web browser for preventing                                                             48 



 

 5.14          kill process which enter in bot that provide by support vector machine                     49 

 5.15         IP address already in SVM container                                                                        49 

 5.16         IP contain in SVM cluster                                                                                         50 

5.17         SVM ready to allow executing the directory                                                             50 

 

 

 

LIST OF TABLES 

 

 2.1          Comparison of various malware detection techniques                                             17  

 3.1          Malware threats                                                                                                         25 

 

 



 

TABLE OF CONTENTS 

 

Title                                                                                                              Page No. 

Certificate.....................................................................................................................................................ii 

Acknowledgement........................................................................................................................................iii 

Abstract........................................................................................................................................................iv 

List of figures and tables...........................................................................................................................v 

 

Chapter 1 

Introduction.................................................................................................................................................1 

1.1 Overview of Botnet…………………….………………………………………………………………1 

1.2 Problem Identification………………..…………………………………………….…………………..3 

1.2.1 Command and Control Server………………………………………………………………………..3 

1.3 Research Objectives...………………………………………………………………………………….6 

1.4 Research Methodology.………………………………………………………………………………...6 

1.5 ThesisOrganization…………………………………………………………………………………..…8 

 

Chapter 2 

 Literature Survey………………………………………..….…………………………………………...10 

2.1 Literature Survey……………………………………………………………………………………….9 

2.2prevailing analysis and detection Techniques……………………..………………………………….14 
23 Three Data Mining Algorithms To Produce New Classifiers …..…………………………………14 

2.4 Malware Detection  methods…………………………………….……………………………………15 

2.5 Classification Of Malicious Emails Using Naïve Bayes Classifier …………………………………..15 

2.6 Data mining applications and several classification algorithms………………………………………16 

 

Chapter3 

 Bots and Botnets……………………………..……………………………………………………….....19 

3.1 Bots and IRC History..………………………………………………………………………..……….19 

3.2 Type of Botnets……………….……………………………………………………………………….20 

3.3 Detect the Botnets…...……………………...…………………………………………………………21 

3.4 Getting Information with the help of Honeynets……………………………………………………...21 

3.5 Observing Botnets……………………………………………………………………………………..22 



 

3.6 Botnet detection and prevention of phishing attacks………………………………………………….23 

3.7 Background and Terminology………………………………………………………………………...24 

3.8 Botnet Architectures…………………………………………………………………………………..25 

3.8.1 Centralized …………………………………………………………………………………………25                                        

3.8.2  Design  ……………………………………………………………………………………………..26                                                                    

3.9 Framework for Botnet/Bot detection………………………………………………………………….28 

3.10 Categories of Malware……………………………………………………………………………….30 

3.10.1 Viruses …………………………………………………………………………………………….30                                               

3.10.2 Worms ……………………. ……………………………………………………………………...31 

3.10.3 Spyware………………………………………………………………………………………….. .31 

3.10.4 Adware…………………………………………………………………………………………… 31 

3.10.5 Trojans…………………………………………………………………………………………..   31 

3.10.6   Botnet   …………………………………………………………………………………………..31 

3.11 Malware Detection Techniques……………………………………………………………………...32 

3.11.1 Signature Based Detection…………………………………………………………………………32 

3.11.2 Behavior Based Detection………………………………………………………………………….32 

3.11.3 Specification Based Detection……………………………………………………………………..33 

3.11.4 Anomaly Based Detection…………………………………………………………………………33 

 

Chapter4 

Methodology……………………………..……………………………………………...………………..34 

4.1 Botnet Detection……………………………………..……………………………………..…………34 

4.2 A brief description of SVM Algorithms...…………………………………………………...………..36 

4.3 Snifferes (Passive Attacks)…...……………………………………………………………………….38 

4.4 Botnet Packet Analyzer..……………………………………..……………………………………….39 

4.5 Port Scanner…………………………………………………………………………………………..41 

Chapter 5 

Results and Implementation…………………………………………………………………….………50 

Chapter 6 

 Conclusion and Future Work…………………………………...……………………………………...51 

References……………………………………………………………..………..…………………….52 

 

                                                           



 

 

 

 

                                                            CHAPTER 1 

 

INTRODUCTION 
 



 

 

1. INTRODUCTION 

 

1.1 OVERVIEW OF BOTNET 

 

One of the most insidious cyber threats for security community is represented by diffusion of botnets, 

networks of infected computers (bots or zombies) managed by attackers due the inoculation of malware. 

The controller of a botnet, also known as botmaster, controls the activities of the entire structure giving 

orders through communication channels; the use of botnets is very commons in various IT contexts, from 

cybercrime to cyber warfare. 

A botnet could be used to conduct cyber-attacks, such as a DDoS, against a target or to conduct a cyber-

espionage campaign to steal sensitive information. There are various classifications of botnets, it’s 

possible to discriminate them from the architecture implemented, the used network protocol or technology 

on which they are based. Bots are also called \zombies" because a computer (infected with a bot) 

performs a task given by its master.  

 

A botnet herder (also called a botnet master) is a person or a group, who control the whole botnet: they 

can give instructions or upload data to the botnet. Botnets are used to perform a wide variety of tasks but 

some of the most popular ones are sending spam or coordinating a DDoS 1 attack. As the traditional" 

botnets are being shutdown (as IRC botnets can be easily detected because they have a single point of 

failure), the newer and more dangerous botnets are moving to more resilient architectures. The newer 

generation botnets are also using new techniques to hide their botnet and their tracks and are using a more 

sophisticated encryption method. This will make them ever harder to track and fight. 

 

As we will see in the post the diffusion of botnet is increased due various factors such as the availability 

of unprotected mobile platforms and the presence in the underground market of cyber criminals that rent 

services and structures to compose the malicious systems. Infected machines receive commands from 

Command & Control (C&C) servers that instruct the overall architecture to operate to achieve the purpose 

for which it has been composed such as creation of SMTP mail relays for targeted spam campaign, 

implementation of a fraud scheme (e.g. Banking information gathering) or to launch a denial of service 

attack. 

This thesis aims to research botnets and other related threats in order to develop an application designed 

to detect the possible activities of a botnet and, particularly, how it can be detected at an early stage. 



 

Along with this the thesis will analyze the possible data remnants that a botnet agent can leave on a 

machine, so that it can be analyzed for future use. 

Bots have been around since the late 90’s and they were originally created to perform automated 

repetitive tasks. One of the main uses was on IRC chat servers providing statistical and administrative 

functions. Search engines, such as Google, also use bots to find new and updated websites making it 

possible to find the most up-to-date information easily.  It has only been in the last few years that bots 

have become a tool used by criminals for malicious purposes such as to extract credit card, banking and 

other information for financial gain.   

 

Bots accomplish this by running ambiguously on a user’s computer. The bot is part of a collection of bots 

called a Botnet. Botnets can be made up of thousands, potentially millions of bots which are typically 

controlled by a bot master. They command the bots to perform various tasks from delivering spam to 

stealing banking account information. Botnets are getting more and more sophisticated and have 

infiltrated millions of personal and business computers including almost all of the Fortune 500 

companies.  The latest development is the discovery of the Stuxnet Botnet. It has concerned many 

security experts and has been called “groundbreaking” because it is so sophisticated. It appears to have 

been design specifically to disrupt power grids in Iran. One of the targets is the Iranian nuclear power 

stations. Many speculate that it must have been created with government backing such as Israel or the 

USA .  

 

Botnet is a collection of internet-connected computers whose security defenses have been breached and 

control ceded to a malicious party, blackhat community. The concept of botnet refers to a group of 

compromised computers remotely controlled by one attacker or a small group of attackers working 

together called a „„botmaster”. These large groups of hosts are assembled by turning vulnerable hosts into 

so-called zombies, or bots, after which they can be controlled from afar. A collection of bots, when 

controlled by a single command and control (C2) infrastructure, form what is called a botnet. The 

botmaster�s ability to carry out an attack from hundreds or even tens of thousands of computers means 

increased bandwidth, increased processing power, increased memory for storage and a large number of 

attack sources making botnet attacks more malicious and difficult to detect and defend against. Computer 

networks and the Internet, by their nature, support the free flow of information; nevertheless we have 

thousands of reasons to break this rule. Even for publishing website on the internet, we may not want 

everybody to read that. For small businesses or individuals, we can restrict our web contents accessible 

only to authorized users by deploying firewall or AAA server, but the simplest and cheapest solution to 

this general concern might be installing a traffic filter on the IIS web server.  



 

In many circumstances, HTTP server can act as a portal to the internal network, thus packet filter even 

provides a basic level of security for controlling access to internal network.  

 

1.2 PROBLEM IDENTIFICATION 

 

In pure SVM there is some room for optimization, they are as follows  

• Optimize binary SVM classification rules,  

• Train conventional linear classification SVMs optimizing error rate in time that is linear in the size of 

the training data through an option, but corresponding formulation of the instruction problem [9]. This 

could be much faster than pure SVM for large training sets. In the previous IDS pure SVM is used, if we 

will use modified SVM with above mention point can improve overall performance of IDS. 

1.2.1 Command and Control Server 

“Command and Control” (C&C) servers are centralized machines that are able to send commands 

and receive outputs of machines part of a botnet. Anytime attackers who wish to launch a DDoS 

attack can send special commands to their botnet’s C&C servers with instructions to perform an 

attack on a particular target, and any infected machines communicating with the contacted C&C 

server will comply by launching a coordinated attack. 

Botnet C&C servers often exist in one of four structures each with pros and cons: star, multi-

server, hierarchical, and random:  

• Star topology botnets rely on one central C&C server, which sends commands to every 

bot in the botnet. This configuration allows for reliable, low-latency communication, but 

renders the botnet fairly easy to disable, as there is only one C&C server to take offline 

before the botnet is inoperable. 

• Multi-server topology botnets are very similar to star topology botnets, except that the 

central “server” consists of a series of interconnected servers that allow for redundancy 

(preventing the single point of failure problem of star topology botnets); however, setting 

up multiple connected C&C servers may require more planning and overall be more 

difficult than just using a single server. 

• Hierarchical topology botnets (involving a series of C&C servers in a hierarchy) allow 

for botnet owners to more easily divide their botnet up into “separate” chunks for re-sale 

or renting, as well as prevent researchers from enumerating the location of all other C&C 

servers and bots within a network with only a few captured C&C servers due to the 

restricted visibility of the entire botnet from lower hierarchy certain 



 

servers.  Additionally, commands that have to travel through a large hierarchy of C&C 

servers in order to reach bots may add to latency. 

• Attacker: initiates and controls the attack Master: compromised host that controls the 

agents and invokes commands  

• Agent: bots that perform P2P attacks on victims based on commands invoked by master 

The contribution of our work is as follows:  

 

 

Figure 1.1 Bots  and Target 

 

• A two pronged approach towards detecting Botnets. An algorithm that based on 

standalone host activity analysis triggers a network analysis to find Botnets in the given 

network.  

• A method for identifying similarities between filtered Bot traffic using Dynamic Time 

Warping (DTW) algorithm, K-means clustering and graphical analysis.  

• We also present an experimental simulation of UDP flood attack and perform analytical 

calculations on UDP packet flows retrieved from the same, based on the Dynamic Time 

Warping (DTW) algorithm.  

 

• Our solution does not assume the existence of a particular type of Bot and is hence 

generic. It can deal with both C&C and P2P Bots because of our two pronged approach. 

The advantage of our solution is that it can evolve to identify new Bot patterns thus 



 

making it a learning based approach. The chances of false positives are also reduced 

because of the two pronged strategy adopted. The rest of the Thesis is structured as 

follows: Section 2 explains the data structure that we use for network traffic flow 

collection, Sections 3, 4 explain our solution which comprises of Stand Alone and 

Network Algorithm. These sections also include required experimental analysis. In 

Section 5 we summarize our work followed by the future work and references in Section 

6. 

 

1.3 RESEARCH OBJECTIVES 

 

The final aim of the thesis is to develop a system which can detect the activity of   botnet .  

To meet this aim, the following five main objectives must be met: 

 

1. There have to panel such as admin and user. 

2. Admin detect the activity of all users PC and he will get the activity of the other system. 

3. Design an agent host-based system that will be able to successfully detect a bot on a machine. 

4. Admin will detect the no of packet transfer to other system using distributed environment. 

5. Implement and evaluate the detection software created in objective 2. 

6. Research into botnet taxonomy, current botnets and related threats. As well as detection methods 

and evaluation techniques for testing the proposed detection application. 

 

1.4 RESEARCH METHODOLOGY 

 

1.4.1 SVM (support vector machine) 

 

A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating 

hyper plane. In other words, given labeled training data (supervised learning), the algorithm 

outputs an optimal hyper plane which categorizes new examples. For a linearly separable set of 

2D-points which belong to one of two classes, find a separating straight line. 



 

 

Figure 1.2 Multiple solutions to one problem 

 

In the above picture you can see that there exists multiple lines that offer a solution to the 

problem. If any of them better than the others, we can intuitively define a criterion to estimate the 

worth of the lines: A line is bad if it passes too close to the points because it will be noise 

sensitive and it will not generalize correctly. Therefore, our goal should be to find the line passing 

as far as possible from all points. Then, the operation of the SVM algorithm is based on finding 

the hyper plane that gives the largest minimum distance to the training examples. Twice, this 

distance receives the important name of margin within SVM’s theory. Therefore, the optimal 

separating hyper plane maximizes the margin of the training data. 

 

Figure 1.3 Hyperplane 

 

1.5 THESIS ORGANIZATION 

 

This thesis is split into five main chapters. They are described as follows:  



 

 

1. Chapter 1 – Introduction: This chapter provides the thesis overview and background to the 

subject of botnets. The key aim and objectives of the thesis are also defined along with the thesis 

structure.  

 

2.  Chapter 2 – Literature Review: This chapter identifies trends and provides taxonomy of Botnets 

that currently exist. It will also investigate detection methods, such as Intrusion system by 

administrator panel and he having the right to detect all activity.  

 

3. Chapter 3 – Design: Based on the findings found in the literature review, this chapter introduces 

a design for the botnet detection software together with the synthetic bot that will be required for 

the evaluation to be carried out on the detection software.  

 

4.  Chapter 4 – Methods: This chapter will implement and document the introduction of the 

detection software.  

 

5. Chapter 5 – Result: This chapter will use an evaluation technique researched in the Literature 

Review to determine the performance of the detection software.  

 

6. Chapter 6 – Conclusion: This chapter will conclude the thesis reviewing the aims and objectives 

and provide a critical analysis and comment on possible future work.  

 

 

 

 

 

 

 



 

 
 

 

 

 

CHAPTER 2 

 

LITERATURE SURVEY 
 



 

 

2. LITERATURE SURVEY 
 

Barford et al. [1] present an in-depth analysis of Bot software source code. They reveal the complexity 

of Botnet software, and discuss implications for defense strategies based on the analysis. BotTracer [21] 

detects three phases of Botnets with the assistance of virtual machine techniques. Three phases include 

the automatic startup of a Bot without requiring any user actions, a command and control channel 

establish with its Botmaster, and local or remote attacks. Binkley et al. [2] propose an anomaly-based 

algorithm for detecting IRC-based Botnet meshes. Using an algorithm, which combines an IRC mesh 

detection component with TCP scan detection, they can detect IRC Botnet channel with high work weight 

hosts.  

 

Ramachandran et al. [25] develop techniques and heuristics for detecting DNSBL reconnaissance 

activity, whereby Botmaster perform lookups against the DNSBL to determine whether their spamming 

Bots have been blacklisted. This approach is derived from an idea that detects DNSBL reconnaissance 

activity of the Botmaster but it is easy to design evasion strategies.  

 

Zhuang et al. [31] develop techniques to map Botnet membership using traces of spam email. To group 

Bots into Botnets they look for multiple Bots participating in the same spam email campaign. They apply 

the technique against a trace of spam email from Hotmail web mail services.  

 

Karasaridis et al. [19] propose an approach using IDS-driven dialog B correlation according to a defined 

Bot infection dialog model. They combine heuristics that assume the network flow of IRC 

communication, scanning behavior, and known models of Botnet communication for backbone networks.  

 

BotHunter [12] models the Botnet infection life cycle as sharing common steps: target scanning, 

infection exploit, binary download and execution, command-and-control channel establishment, and 

outbound scanning. It then detects Botnets employing IDS-driven dialog correlation according to the Bot 

infection life-cycle model. Malwares not conforming to this model would seemingly go undetected.  

 

BotSniffer [13] is designed to detect Botnets using either IRC or HTTP protocols. BotSniffer uses a 

detection method referred to as spatial-temporal correlation. It relies on the assumption that all Botnets, 

unlike humans, tend to communicate in a highly synchronized fashion. BotSniffer has a similar concept 

with BotGAD in respect of capturing the synchronized Botnet communication. Different from BotGAD, 



 

BotSniffer performs string matching to detect similar responses from Botnets. Botnet can encrypt their 

communication traffic or inject random noise packets to evade.  

 

BotMiner [11] presents a Botnet detection method which clusters Botnet�s communication traffic and 

activity traffic. Communication traffic flow contains all of the flows over a given epoch including flows 

per hour (fph), packets per flow (ppf), bytes per packet (bpp), and bytes per second (bps). The activity 

traffic identifies hosts which are scanning, spamming, and downloading any Portable Executable binary. 

Clustering algorithms are applied and performed cross-plane correlation to detect Botnets. Hence this 

section some existing approach to detect Botnet specially HTTP Botnet. Now in next section we have to 

present our proposed framework to detect HTTP Botnet using AIS. 

 

Dredze et al .[8] proposes a new and simple methodology to detect phishing emails utilizing Confidence-

Weighted Linear Classifiers. They use the contents of the emails as features without applying any 

heuristic based phishing specific features and obtain highly accurate results compared to the best that 

have been published in the literature. Phishing is a criminal mechanism employing both social 

engineering and technical subterfuge to steal consumers’ personal identity data and financial account 

credentials. Dredze et al. recently proposed confidence weighted linear classifiers (CWLC), a new class 

of online learning method designed for Natural Language Processing(NLP) problems based on the notion 

of parameter confidence. Online learning algorithms operate on a single instance at a time, allowing for 

updates that are fast, simple and make few assumptions about the data, and perform well in wide range of 

practical settings. Online algorithm processes its input piece-by-piece in a serial fashion, i.e., in the order 

that the input is fed to the algorithm, without having the entire input available from the start. 

 

Lee et.al [7] in his Thesis, for spam detection, proposed parameter optimization and feature selection to 

reduce processing overheads with guaranteeing high detection rates. In previous Thesiss, either parameter 

optimization or feature selection, but not both. Parameters optimization is to regulate parameters of spam 

detection models to figure out optimal parameters of the detection model. Feature selection is to choose 

only important features or feature set out of all the features. Feature selection enables to eliminate 

irrelevant features to avoid processing overheads.  

 

Razmara et.al in [4] his work, present a novel solution toward spam filtering by using a new set of 

features for classification models. These features are the sequential unique and closed patterns which are 

extracted from the content of messages. After applying a term selection method, we show that these 

features have good performance in classifying spam messages from legitimate messages. The achieved 



 

results on 6 different datasets show the effectiveness of our proposed method compared to close similar 

methods. Authors outperform the accuracy near +2% compared to related state of arts. In addition this 

method is resilient against injecting irrelevant and bothersome words. This method is outlined as the 

following steps: 

• Preprocessing and stemming datasets  

• Selecting best discriminating terms based on a term selection method  

• Looking for frequent sequential patterns in corpus 

• Using patterns as features 

• Feature selection and classification The vector model for representation of texts has been offered in 

Salton's works. In the elementary case, the vector model assumes comparison to each document of a 

frequency spectrum of words. The dimension of space is reduced by rejection of the most common words 

that increases thereby percent of the importance of the basic words in more advanced vector models. The 

possibility of ranging of documents according to similarity in vector space is the main advantage of vector 

model. Applied Computational Intelligence and Soft Computing Clustering is one of the most useful 

approaches in data mining for detection of natural groups in a data set. The up-to-date survey of 

evolutionary algorithms for clustering. 

 

M. Mangalindan et al [3]., proposed a complex-network, which is based on SMS filtering algorithm that 

compares an SMS network with a phone- calling communication network. Although such comparison can 

provide some new features, that obtains well-aligned phone-calling networks and SMS networks that can 

be aligned perfectly is difficult in practice. In this Thesis, we present an effective SMS anti-spam 

algorithm that only considers the SMS communication network. We first analyze characteristics of the 

SMS network, and then examine the properties of different sets of meta-features including static features, 

temporal features and network features. We incorporate these features into an SVM classification 

algorithm and evaluate its performance on a real SMS dataset and a video social network benchmark 

dataset. We also compare the SVM algorithm to a KNN based algorithm to reveal the advantages of the 

former. Our experimental results demonstrate that SVM based on network features can get 7%-8% AUC 

(Area under the ROC Curve) improvement as compared to some other commonly used features.  

 

Borg et.al in [26]his Thesis presents a method that can use several social networks for detecting spam 

and a set of metrics for representing OSN data. The Thesis investigates the impact of using social network 

data extracted from an E-mail corpus to improve spam detection. The social data model is compared to 

traditional spam data models by generating and evaluating classifiers from both model types. The results 

in this Thesis show that accurate spam detectors can be generated from the low-dimensional social data 



 

model alone, however, spam detectors generated from combinations of the traditional and social models 

were more accurate than the detectors generated from either model in isolation. Online Social Networks 

(OSNs) contain more and more social information, contributed by users. OSN information may be used to 

improve spam detection.  

 

McCord et.al [27]in his Thesis discuss some user-based and content-based features that are different 

between spammers and legitimate users. These features are then used to facilitate spam detection. Using 

the API methods provided by Twitter, they crawled active Twitter users, their followers/following 

information and their most recent 100 tweets. Then, detection scheme is evaluated based on the suggested 

user and content-based features.  

 

Zhang et al., [28]2008 describes a genetic programming approach to feature extraction for a cost-

sensitive classification task of spam. The fitness used comprised three objectives: an approximation to the 

Bayes error, misclassification cost and number of tree nodes used to encode a particular solution. The 

solution proposed in (Zhang et al., 2008) is the most analogous to the one presented in this Thesis, since 

an EA is used for the feature selection.  

 

Dudley et al., [29]2008 proposed an EA to analyse different configurations for Spam Assassin, a widely-

used open source spam filter. Their approach consisted in using an EA to achieve an optimal setup, at a 

personalized level, for the set of weights that is used to infer if a given message is spam. In this case, the 

EA minimized the number of false positives and false negatives.  

 

Araujo et.al [30] in his Thesis, present an efficient spam detection system based on a classifier that 

combines new link-based features with language-model (LM)-based ones. These features are not only 

related to quantitative data extracted from the Web pages, but also to qualitative properties, mainly of the 

page links. He considers, for instance, the ability of a search engine to find, using information provided 

by the page for a given link, the page that the link actually points at. This can be regarded as indicative of 

the link reliability. He also checks the coherence between a page and another one pointed at by any of its 

links. Two pages linked by a hyperlink should be semantically related, by at least a weak contextual 

relation. Thus, he applies an LM approach to different sources of information from a Web page that 

belongs to the context of a link, in order to provide high-quality indicators of Web spam. They have 

specifically applied the Kullback–Leibler divergence on different combinations of these sources of 

information in order to characterize the relationship between two linked pages. The result is a system that 



 

significantly improves the detection of Web spam using fewer features, on two large and public datasets 

such as WEBSPAM-UK2006 and WEBSPAM-UK2007.  

 

Lee et.al in [20] his Thesis, for spam detection, planned parameter optimization and has choice to cut 

back process overheads with guaranteeing high detection rates. In previous Thesiss, either parameter 

optimization or feature selection are used, however not each. Parameter optimization could be a method 

that regulates parameters of spam detection models to work out optimum parameters of the detection 

model. Feature selection could be a method that chooses solely necessary options or feature commenced 

of all the options. Feature selection allows eliminating orthogonal options to avoid process overheads.  

 

Wan et.al [22] in his Thesis proposed a spam detection method that uses Sobel operators for edge 

detection and a multiple filter using Sobel operators and OCR. As spam filters easily catches text, so 

spam senders uses images to send spam instead of text. Traditional image spam filters have weaknesses in 

scanning documents and photographs. However, to transmit information, text is always used in image 

spam. Therefore, in this study, author classifies mail images by the configuration of letters and images.  

 

A. PREVAILING ANALYSIS AND DETECTION TECHNIQUES  

[23] Kirti Mathur in April, 2013 highlighted the prevailing analysis and detection techniques that are 

used for obfuscated malicious code. The major threat to computer system security is various malware that 

do the malicious actions. AV Scanners, Intrusion Detection System, and Firewalls are the various 

solutions that are used to detect these threats. Traditionally, all of these solutions for detection of malware 

detect their presence in our system by using malware signatures. But malware authors employ some 

obfuscation methods for which these methods proved unsuccessful. 

 

B. THREE DATA MINING ALGORITHMS TO PRODUCE NEW CLASSIFIERS  

[24] Milan Jain in August, 2014 proposed three data mining algorithms to produce new classifiers with 

separate features. The three algorithms are RIPPER, Naïve – Bayes and a Multi Naïve Bayes Classifier. 

The author also compared these three algorithms. Three phases comprising it is root kit data collection, 

pre-processing of data, then its classification and evaluation of performance. With the growth in high-

speed Internet connections, malware are spreading very rapidly. Therefore, it is very essential to detect 

and delete benign malware in an effective way. 

 

C. DEFINITION, TYPES, PROPAGATION OF MALWARE, AND THEIR DETECTING 

TECHNIQUES  



 

[14] Mohsen Damshenas, Ali Dehghantanha, Ramlan Mahmoud in 2013 closely looked into the 

concept of malware, to know the definition, types, propagation of malware, and their detecting techniques 

so as to enhance the method of protection and security. The security experts practice all promising 

techniques, strategies and methods to halt and eliminate the threats whereas the malware authors exploit 

new types of malwares that bypass employed security features. 

 

D. SEVERAL MALWARE DETECTION METHODS 

[15] Vinod P. focused on several malware detection methods like signature based detection methods, 

reverse engineering of obfuscated code, for detecting malicious codes. Malwares are malicious 

software’s. They are intended to harm computer systems devoid of the knowledge of the owner of the 

system. Software’s that came from trustworthy vendors also contain malicious code which disrupts the 

system and discloses private information to remote servers. Malware’s consist of computer viruses, 

spyware, ad-ware, Trojans etc. [16] Nwokedi Idika and Aditya P. Mathur in February 2007 had examined 

45 malware detection methods and provided a chance to compare them with one another which would 

help in the process of decision making involved in the development of a secure application. The survey 

also provided a comprehensive bibliography to assist the researchers in malware detection. Malware 

detectors are the chief tools that provide protection against malware. The technique used by such malware 

detectors determines their effectiveness. Therefore it is very important to study malware detection 

techniques and recognize their merits and demerits. 

 

E. CLASSIFICATION OF MALICIOUS EMAILS USING NAÏVE BAYES CLASSIFIER  

[17] B.V.R.R.Nagarjuna in July 2013 explained how the malicious emails are classified and how these 

are deleted and how to know the contents of messages. The author used Bayesian spam filtering, Email 

filtering and J48 process for classification which overcomes the difficulties arose in linear C-Support 

Vector Machine (C-SVM). This machine had given the correct results when compared to the existing one. 

There are three steps to examine first one is to detect the malicious email, next step is to apply classifier 

to classify according to the emails received and send to trash automatically and delete directly.  

[18] Ion Androutsopoulos, John Koutsias, Konstantinos, Constantine D. Spyropoulos and V. Chandrinos 

in Aug, 2000 proposed a method in which a Naïve Bayesian classifier is automatically trained to identify 

spam messages. The author tested this method on a large set of personal e-mail messages, which are 

available in encrypted form publicly. The author presented proper cost-sensitive measures. The author 

also examined the influence of training data size, lemmatization, size of attribute set, stop lists and the 

issues that had not been explored till then. Lastly, the Naive Bayesian classifier is compared to a filter 

makes use of keyword patterns to find its effectiveness. 



 

 

F. Data mining applications and several classification algorithms 

[5] Vishnu Kumar Goyal in April, 2014 had worked with diverse data mining applications and several 

classification algorithms. The algorithms had been applied on different dataset to find out the 

effectiveness of the algorithms. Classification is an important technique of data mining. It has wide 

applications in classifying the various kinds of data used in almost every field of human life. The author 

analysed the five main classification algorithms: Decision Tree (DT), Decision Stump (DS), k-nearest 

neighbourhood (KNN), Naive Bayes (NB) and Rule Induction (RI) and compared their performance. The 

results were verified on five datasets namely Golf, Iris, Weighting, Deals and Labor using Rapid Miner 

Studio. 



 

Table 2.1: Comparison of various malware detection techniques 

 

 

 

 

 



 

 
 

 

 

 

CHAPTER 3 

 

BOTS AND BOTNETS 



 

 

BOTS AND BOTNETS 

 

3.1 BOTS AND IRC HISTORY 

 

IRC stands for Internet Relay Chat, which provides a way of communication with connected users in a 

real time [84][113][159][168]. It is mainly designed for group (many-to-many) communication in 

discussion forums called channels. In addition, IRC allows uni-cast communication [118]. The user can 

monitor a conversation between multiple users and can participate in the conversation. IRC was created in 

late August 1988 by Jarkko Oikarinen to replace a program called MUT (Multi-User Talk) on a BBS 

called OuluBox in Finland and to allow a maximum of 100 users to communicate concurrently 

[84][118][168]. In 1993, the first IRC protocol was defined by RFC1459. Later on, it was updated to 

include RFC2810, RFC2811, RFC2812, and RFC2813 [79]. 

 

IRC Operations Once a user connects to the IRC server, s/he can join a channel where other users are 

already there as shown in Figure 2.1. If s/he is the first user who joins the channel, s/he will be the 

channel operator. Any user submits a message to the server publicly, the other users can see her/his 

message on the channel [84][113][26]. 

 



 

Figure 3.1: Basic IRC Operation 

IRC has multiple channels. Therefore, if any user wishes to join a channel s/he should have the IRC 

client, know the IP server and also should know the channel name. A user can connect to IRC server 

through predefined ports (6660-7000/tcp). The most common port of the IRC server is 6667/tcp. Each 

channel has one or more operators to manage the channel. The channel operator’s privileges can be 

obtained by one of the following methods. The first method is that the user creates that channel and 

becomes its operator. The second method to obtain operator privileges is through an Approved Channel 

Operator (AOP) list. In addition to sharing text messages between users on the channel, IRC has other 

functionalities. For example, IRC can allow file transfer between users, execute peer-to-peer capabilities, 

and run an automated program, termed ’a bot’, to monitor IRC channels. Moreover, IRC hasmany 

commands that can be used by users. In this section, we will define the most common commands, which 

are used by users. • NICK and USER: are used to label a user and user’s host equivalent to an ID. • PASS: 

set or send a password. • JOIN: enter a channel, often secret. • MODE: modify channel settings (eg. 

invisible). • PING and PONG: maintain the connection to IRC server. • PRIVMSG: send a message to a 

channel or user. • DCC SEND: transfer files from one user to another. 

 

3.2 TYPE OF BOTNETS 

 

There are many types of botnet; hub-leaf and channel. The Hub-leaf botnet is made by installing two bots 

on the victim’s machine. The first bot is configured as a hub while the other bot is configured as a leaf. 

Additional bots can be configured as leaves, which connect to the hub bot. The resulting connection will 

form a star architecture. Hub-leaf botnets do not typically communicate through an IRC, but rather on 

configurable ports. Another type of botnet is called a channel botnet as shown in Figure 2.2, which allows 

bots to communicate through an IRC channel. Once a bot is configured on a victim’s machine, it joins a 

predefined channel. The botmaster issues commands by posting messages to the IRC server. Bots read 

these messages, interpret and react to them. Another type of bot includes AOL bot which logs on to a set 

of AOL servers to receive commands. In addition, P2P bot uses peer-to-peer file sharing applications to 

spread, or to communicate with other bots. 



 

 

Figure 3.2: Structure of an IRC Channel Botnet. 

 

 

3.3 DETECT THE BOTNETS 

This can for example be obtained via an analysis of captured malware. Afterwards one can hook a client 

in the networks and gather further information. In the first part of this section we thus want to introduce 

our techniques to retrieve the necessary information with the help of honeypots. And thereafter we present 

our approach in observing botnets. 

 

3.4 GETTING INFORMATION WITH THE HELP OF HONEYNETS 

 

As stated before, we need some sensitive information from each botnet that enables us to place a fake bot 

into a botnet. The needed information include: 

• DNS/IP-address of IRC server and port number 

• (optional) password to connect to IRC-server 

• Nickname of bot and ident structure 



 

• Channel to join and (optional) channel-password. 

Using a GenII Honeynet containing some Windows honeypots and snort_inline enables us to collect this 

information. We deployed a typical GenII Honeynet with some small modifications as depicted in the 

next figure: 

 

Figure 3.3: Deploy a GenII Honeynet 

 

The Windows honeypot is an unpatched version of Windows 2000 or Windows XP. This system is thus 

very vulnerable to attacks and normally it takes only a couple of minutes before it is successfully 

compromised. It is located within a dial-in network of a German ISP. On average, the expected lifespan of 

the honeypot is less than ten minutes. After this small amount of time, the honeypot is often successfully 

exploited by automated malware. The shortest compromise time was only a few seconds: Once we 

plugged the network cable in, an SDBot compromised the machine via an exploit against TCP port 135 

and installed itself on the machine. 

 

3.5 OBSERVING BOTNETS 

 

Now the second step in tracking botnets takes place, we want to re-connect into the botnet. Since we have 

all the necessary data, this is not very hard. In a first approach, you can just setup an irssi (console based 

IRC client) or some other IRC client and try to connect to the network. If the network is relatively small 

(less then 50 clients), there is a chance that your client will be identified since it does not answer to valid 

commands. In this case, the operators of the botnets tend to either ban and/or DDoS the suspicious client. 

To avoid detection, you can try to hide yourself. Disabling all auto response triggering commands in your 

client helps a bit: If your client replies to a "CTCP VERSION" message with "irssi 0.89 running on 



 

openbsd i368" then the attacker who requested the Client-To-Client Protocol (CTCP) command will get 

suspicious. If you are not noticed by the operators of the botnets, you can enable logging of all commands 

and thus observe what is happening. 

But there are many problems if you start with this approach: Some botnets use very hard stripped down 

IRCds which are not RFC compliant so that a normal IRC client cannot connect to this network. A 

possible way to circumvent this situation is to find out what the operator has stripped out, and modify the 

source code of your favorite client to override it. Almost all current IRC clients lack well written code or 

have some other disadvantages. So probably you end up writing your own IRC client to track botnets. 

Welcome to the club - ours is called drone.  

• No Threading: Threaded software defines hard to debugging Software. 

• Non-blocking connecting and DNS resolve 

• poll(): Wait for some event on a file descriptor using non blocking I/O we needed an multiplexer, 

select() could have done the job, too 

• Written in C# since OOP offers many advantages writing a Multi-server client 

• Modular interface so you can un/load (C#) modules at runtime 

• libcurl: This is a command line tool for transferring files with URL syntax, supporting many 

different protocols. libcurl is a library offering the same features as the command line tool. 

• Perl Compatible Regular Expressions (PCRE): The PCRE library is a set of functions that 

implement regular expression pattern matching using the same syntax and semantics as Perl 5. 

PCRE enable our client to guess the meaning of command and interact in some cases in a 

"native" way. 

Drone is capable of using SOCKS v4 proxies so we do not run into problems if it's presence is noticed by 

an attacker in a botnet. The SOCKS v4 proxies are on dial-in accounts in different networks so that we 

can easily change the IP addresses. Drone itself runs on a independent machine we maintain ourselves. 

We want to thank all the people contributing to our project by donating shells and/or proxies. 

 

3.6 BOTNET DETECTION AND PREVENTION OF PHISHING 

ATTACKS: 

 

Phishing is a new type of network attack where the attacker creates a replica of an existing web page to 

fool users in to submitting personal, financial, or password data to what they think is their service 

provider’s website. The concept is a end-host based anti-phishing algorithm, called the link guard, by 

utilizing the generic characteristics of the hyperlinks in phishing attacks. The link guard algorithm is the 



 

concept for finding the phishing emails sent by the phisher to grasp the information of the end user. Link 

guard is based on the careful analysis of the characteristics of phishing hyperlinks. Each end user is 

implemented with link guard algorithm. After doing so the end user recognizes the phishing emails and 

can avoid responding to such mails. Since link guard is characteristics based it can detect and prevent not 

only known phishing attacks but also unknown ones. The project uses the java technologies and oracle xe. 

Link guard is light-weighted. 

In other words, You use the languages you know. Basically you need to be able to parse emails as they 

come in, perhaps by intercepting the traffic on your network. I would expect that it's a case of looking for 

things like links in mails that link to a different address to the one shown, and that are generally suspect in 

the way they are formed, which would be through rules that you would consider and write. Get a gmail 

account, wait a month and look through the spam folder.   

 

 

3.7 BACKGROUND AND TERMINOLOGY 

 

Malicious botnets are networks consisting of large numbers of bots. Bot is actually short for robot 

Symantec [39]. Bots are similar to worms and Trojans, but earn their unique name by performing a wide 

variety of automated tasks on behalf of their master. 

 

Bots are also called \zombies" because a computer (infected with a bot) performs a task given by its 

master. A botnet herder (also called a botnet master) is a person or a group, who control the whole botnet: 

they can give instructions or upload data to the botnet. Botnets are used to perform a wide variety of tasks 

but some of the most popular ones are sending spam or coordinating a DDoS 1 attack.  

 

There are different ways to infect a computer with a bot (see table 1 for an overview). Often it searches 

the Internet to look for \unprotected" computers to infect by exploiting known software vulnerabilities but 

it can also being sent through email, or hidden in another program or installed by a malicious website, this 

software is also known as malware. 

 

A peer-to-peer botnet incorporates a P2P protocol in his code. Although such a protocol already existed 

for a couple of years it is but recently that we have encountered this in botnets. Some peer-to-peer bots 

have used existing peer-to-peer protocols while others have developed custom protocols [14]. 



 

 

Table 3.1: Malware threats (Source: Microsoft.com [1]) 

 

3.8 BOTNET ARCHITECTURES 

 

There are a few topologies described in this chapter. They differ from each other in how big they can get 

how easy they can be detected and disrupted and how they exchange messages and commands (command 

and control). 

 

3.8.1 Centralized 

The oldest type of topology is the centralized form, see figure 1 on the following page. There is 

one central point that forwards commands and data between the botnet herder and his botnet 

clients. The big advantage is that there is little latency. The biggest drawback is that they can be 

more easily detected then decentralized, since all the connections lead to a few nodes. Also when 

a IRC server gets disrupted or disconnected, an entire branch or perhaps the whole botnet could 

be taken offline because the botnet herder cannot pass any messages to the bots anymore. Passing 

commands and data in centralized systems go through a central point: in most cases they all 

connect to a central C&C node or a central IRC server where they will receive their 

commands.[27] These IRC servers can be setup on hacked computers, or the botnets could use 

public IRC servers. When the IRC server has been taken offline, the botnet will become \lost", 

meaning that the botnet herder will not be able to send commands and data to the bots, rendering 

his bots useless. The more modern IRC botnets are more resilient because they use a list of IP 

addresses of alternate IRC servers, which they will use in case an IRC server has been taken 

offline. 

 



 

 

Figure 3.4: Centralized topology 

 

3.8.2 Design 

 

The aim of the thesis is to create a detection application that will monitor network and host 

activity and also to create an application that will mimic a malicious Botnet. In the Literature 

review the basic models of Botnets have been researched, enabling the design component of this 

thesis to begin.  

 

The programming language used is important for the creation of both the detection software and 

the Botnet. Following research on the subject it was found that the majority of botnets are 

Windows-based and most of these are Window XP [78]. The language that will be used is C# and 

.NET which allows good integration with the operating system and will work with Windows XP, 

Vista and Windows 7.  

 

Section 3.2 details the scenario for a working model of the synthetic botnet and describes the 

different types of attacks that will be emulated. The design of the bot will be described in Section 

3.3. In Section 3.4 the design of the detection software will be described and will be split into two 

parts: network-based and host-based detection. 

 



 

 

Figure 3.5 Bot-Net Attack Life Cycles 

 

� Initial setup of configuration settings of the Bot parameters such as infection vectors, 

payload, stealth, C&C details 

� Register a dynamic DNS (DDNS) 

� Register a static IP 

� Bot Herder infect PC's with the Bot(s) 

� Bot propagates the infection according to the configuration settings 

� Bot scans for vulnerabilities that it may encounter 

� Idle 

� Performs actions received by other Bots above it in the chain of command 

� Bot dies: 

� Bot may be taken over by another Botnet 

� The owner of an infected PC with a Bot realizes the PC is a zombie so it kills 

the Bot. 

� The chain of command may be compromised above the level. 



 

This invasion technique has evolved not only to an illegal way of profit, but also to a way of violating 

people's information privacy privilege. What have been Botnets being used for? Is the whole concept 

of Botnet Evil? What actions are being taken to control this terrible plague? On the following 

sections, this article will discuss how has this threat being used (mainly as one effective malicious 

way of breaking into data integrity, availability and confidentiality of a computer network) and ways 

to detain it. 

 

3.9 FRAMEWORK FOR BOTNET/BOTS DETECTION  

 

To detect a botnet or an individual bot, we designed a framework which is mainly based on monitoring 

API function calls executed by a process to determine if that process is anomalous or not, as shown in 

Figure 3.4. The framework consists of two modules. The first module is responsible for detecting the 

botnet while the second module is responsible for detecting an individual bot on the system. From Figure 

3.4, three main API function calls are monitored, K for key logging function calls, C for communication 

function calls and F for file access and registry function calls. The botnet module uses the APITrace tool 

to generate log files from different systems. Each file is monitored by another program which produces 

the change of log file data. The data is processed and analyzed to detect similar changes from different 

log files which may indicate botnet activity. The bot detecting module also uses the APITrace tool to 

monitor the same API function calls. To begin with, we use a simple correlation algorithm (i.e the 

Spearman’s Rank Correlation - SRC) to detect an individual bot on a host by correlating different 

activities generated by a process. A more intelligent way (i.e. the Dendritic Cell Algorithm - DCA) of 

correlating different activities is used later to detect the existence of an individual bot on a system. Next, 

we will describe the framework in more details hosts. The aim of using log correlation is to develop a 

host-based algorithm that is capable of detecting similar activities of similar type of IRC bots by 

monitoring the change of behaviours in log file sizes across several hosts and find the correlation between 

these changes. The detection technique is based on monitoring the change of behaviours from one state to 

another state in each host and observes the common actions or responses generated by bots in all hosts. 

This is due to the fact that bots are responding to the commands simultaneously which produce the same 

rate of change in each log file. The advantage of applying this approach is that this detection technique 

does not require searching for specific patterns when analysing network traffic. Therefore, the amount of 

processing time required to detect botnets is reduced. In addition, this technique does not monitor 

standard ports and can deal cryption techniques or hidden from the attacker. We also assume that the 

attacker cannot modify or delete these files remotely as they require administrator privileges. 

 



 

 

Figure 3.6: Framework for detecting botnet/bot 



 

Figure 3.7: Botnet Model for detecting bots 

 

3.10 CATEGORIES OF MALWARE 

Malware code can be classified in to various classes: 

3.10.1 Viruses  

A small program having malicious intent and the ability to create copies of itself is termed as 

virus. Virus code attaches itself with other programs and then replicates [3]. It works by inserting 

virus code in an executable file. Virus code gets executed when the file is run. Metamorphic 

viruses evolve into new variants by changing itself. A program in which virus has inserted itself 

is denoted as the host for the virus. A virus requires an existing host program so as to cause 

damage. 

 

3.10.2 Worms  

The software which makes its copies by executing its own code regardless of any other program 

is known as worm. It sends copies of itself to other systems in the network unnoticeably without 



 

the authorization of the user. Worms consume the bandwidth of the network to halt it. Worms 

spread through network linkages and have the aim to infect most of the computer systems 

associated with the network. Worms do not require the existence of any file unlike virus. It could 

encrypt files, delete files or send junk email. 

 

3.10.3 Spyware 

The software which monitors and collects private information of the user is termed as spyware. It 

usually gathers data like the key pressed by user, email address, pages regularly visited, credit 

card number etc [4]. This can happen when users download free or trial software. The users are 

monitored by scouts in this type of malware therefore their account numbers, passwords and 

every second personal element become exposed. 

 

           3.10.4 Adware  

              Adware also known as advertising-supported software presents, plays, or downloads 

advertisements in a computer system automatically once malicious software is installed or 

application is used. The code of this malware is normally embedded into free software. Its main 

objective is to monitor the activities of the user of the system. Free games and peer-to-peer clients 

are some examples of the common adware programs. 

 

         3.11.5 Trojans 

            A Trojan horse is a malware injected by its designer in an application or system. The application 

or system is accomplishing some illegal action but seems to carry out certain valuable function. 

Remote hijackers use this malware to launch their attack and they use our system for their own 

purpose. They could acquire our passwords, monitors what is happening on our system or corrupt 

the system files. 

 

         3.12.6 Botnet 

           Botnet is a type of malware that takes the control of our system distantly and sends spam or 

spyware. Mostly, botnets are like zombie and work under the command of the party who runs it. 

Bot doesn’t wait for a command from the third party by sitting around the infected machine. On the 

other hand, it looks for the communication having like occurrences of bots awaiting instructions. 

Simple and hierarchical are the two types of botnets. 

 



 

3.11 MALWARE DETECTION TECHNIQUES 

 

Malware detection is referred as classifying the code in to two classes: genuinely benign and malicious. 

Malware detection technique should have the capability of handling obfuscated malware efficiently for 

robust malware detection. The main idea behind code obfuscation is that it modifies only malware syntax 

but preserves its proposed behaviour [1]. A system that tries to recognize malware using signatures and 

other heuristics factors is known as malware detector. Four methods employed for malware detection are: 

 

3.11.1 Signature-Based Detection  

Signatures are typically a sequence of bytes which the various antivirus scanners seek inside the 

malware code to state that the program scanned is malicious in nature. By observing the 

disassembled code of malware binary, these signatures are designed. Several debuggers and 

disassemblers are present for disassembling the portable executable. After that features are 

extracted by analyzing the disassembled code. These features are then used in the creation of the 

signature of specific category of malware. 

 

3.11.2 Behavior-Based Detection  

Behavior based detection focuses on the actions performed by the malware instead of the binary 

sequence. The programs having identical behavior but different syntax are recognized. 

Consequently several illustrations of malware are recognized by a single behavior. The main aim 

is to analyse the behaviour of well-known or unfamiliar malwares. Several elements such as 

source and destination address of malwares, attachments types and other statistical features 

constitute the behavioral parameters. These forms of detection mechanisms are helpful in 

discovering those malwares that continuously generates novel mutants as system resources and 

services are used by them in a similar way. 

 

3.11.3 Specification-based Detection  

Specification-based detection is derived from anomaly based detection. Specification-based 

detection estimates the necessities of an application or a system rather than estimating their 

execution. There is a training phase in specification-based method in which we try to acquire 

information about the legal behavior of a program or system which is being examined[4].The 

chief drawback of specification based technique is that it is very challenging to correctly specify 

the behavior of the system or program. 



 

3.11.4 Anomaly-based detection  

The anomaly detection technique is based on the idea of a baseline of the network behavior. The 

baseline specifies the accepted network behavior, which is stated by the network administrators. 

Any behavior that does not correspond with the predefined or accepted model of behavior causes 

events in an anomaly detection engine. It is a two-step approach that involves first training a 

system with data to create certain conception of normality and then use the established profile on 

actual data to report deviations. This approach gives anomaly-based IDSs the power to detect new 

attacks which are new and for which signatures are not present. 

 

Why are Botnets dangerous today 

Botnets today are one of the most dangerous species of network-based attack because they use large, 

coordinated groups of hosts to execute both brute-force and subtle attacks. A collection of bots, when 

controlled by a single command and control (C&C) infrastructure, forms a botnet [11], [18], [19]. Since 

the bots work together in large groups taking orders from a centralized botmaster, they can cripple a 

large-scale network in a short time. 

A lot of work has been done trying to mitigate the efforts of botnets to avoid data and financial loss. 

However hard the industry works towards patching the known vulnerabilities in hosts and networks, there 

are always more unpatched or unknown vulnerabilities that malicious developers and cyber criminals may 

exploit. 

 

 

 

 



 

 

 

 

 

 

CHAPTER 4 

 

METHODOLOGY 
 



 

 

 METHODOLOGY 

 

4.1 BOTNET DETECTION  

 

Generally, a botnet applies for a area name for each of bots and allocates the domain names (usually in 

the form of URLs) via various channels, such as spam mails or web blogs. Though, if a machine is in 

down time, the bot cannot be measured and the URL will be provisionally inaccessible.  

Furthermore, control of the bot could be misplaced due to removal of the malicious software. In this case, 

the bot herder will not gain any more assistances from the domain name except it is re-mapped to another 

IP address (of another bot). 

 

A TCP based botnet (called a botnet for short), solves the above-mentioned problems because of two 

architectural innovations:  

1) The mapping between domain names and IP addresses, and  

2) The method sincere users' requirements are processed. 

 

First, in a botnet, a domain name is mapped to a number of IP addresses (possibly hundreds, or even 

thousands) rather than a single IP address. As a result, if the mapping is fingered properly, i.e., a domain 

name is always determined to a manageable and live bot, the productivity (in terms of the access rate of 

malicious services) will be higher than that of a traditional botnet.  In adding, if it is known that a bot has 

been detected, the area name's link to the bot can be finished directly so that their association cannot be 

discovered. 

Second, legitimate users' requests are indirectly handled by other machines called motherships, rather 

than the bots the users contact. In other words, when a genuine user accesses a facility providing by a 

botnet via a URL, the bot that the URL connects to and receives needs from does not handle the 

requirements itself. Instead, it helps as a proxy by giving the requests to a mother-ship, and then 

advancing the mother-ship's responses to the user.  

By so doing, bot herders can update a malicious service (and the content it offers) anytime because they 

have more control over the mother-ship and the number of mother-ship nodes is relatively small likened 

to that of bots. In addition, since malicious services do not reside on bots, it is easier for bot herders to 

reduce the footprint of the malicious software so that it is less likely to be noticed by anti-malware 

solutions. 



 

 

- Returned DNS records at time t - 

;; ANSWER SECTION: 

f07b42b93.com.   300   IN A   68.45.212.84 

f07b42b93.com.   300   IN A   68.174.233.245 

f07b42b93.com.   300   IN A   87.89.53.176 

f07b42b93.com.   300   IN A   99.35.9.172 

f07b42b93.com.   300   IN A   116.206.183.29 

f07b42b93.com.   300   IN A   174.57.27.8 

f07b42b93.com.   300   IN A   200.49.146.20 

f07b42b93.com.   300   IN A   204.198.77.248 

f07b42b93.com.   300   IN A   207.112.105.241 

f07b42b93.com.   300   IN A   209.42.186.67 

 

 

Returned DNS records at time t+300 second - 

;; ANSWER SECTION: 

f07b42b93.com.   300   IN A   64.188.129.99 

f07b42b93.com.   300   IN A   69.76.238.227 

f07b42b93.com.   300   IN A   69.225.51.55 

f07b42b93.com.   300   IN A   76.10.12.224 

f07b42b93.com.   300   IN A   76.106.49.207 

f07b42b93.com.   300   IN A   76.127.120.38 

f07b42b93.com.   300   IN A   76.193.216.140 

f07b42b93.com.   300   IN A   99.35.9.172 

f07b42b93.com.   300   IN A   200.49.146.20 

f07b42b93.com.   300   IN A   204.198.77.248 

 

Above is an example of how a botnet rapidly changes the mapping of IP addresses to its domain names. 

These two consecutive DNS lookups are 300 seconds apart. 

 

To unclear the link between a domain name and the IP addresses of available bots, botnets often 

employment an approach that resolutions a domain name to different sets of IP addresses over time. For 



 

example, we experiential that the malicious service f07b42b93.com, which hosts a phishing webpage that 

two-times users by getting them to disclose their iPhone serial numbers, adopts this strategy.  

As shown in figure during a DNS query at time t, the domain's DNS server replies with 10 A records, any 

of which will lead users to the phishing webpage. The short time-to-live (TTL) value, i.e., 300 seconds, 

designates that the records will expire after 300 seconds, so a new DNS query will then be compulsory. 

At t+300 seconds, we re-issued the same query and obtained another set of IP addresses.  

In  total, there are 19 IP addresses with one duplication in the two sets, which indicates that the bot herder 

presently owns a minimum of 19 bots. The duplication could occur because the DNS server returns IP 

addresses randomly, or the bot herder does not have enough bots and cannot deliver any more unseen IP 

addresses.  

A single botnet domain name may be determined to a huge number of IP addresses. For example, we 

observed a total of 5,532 IP addresses by resolving the domain name nlp-kniga.ru between October 2009 

and March 2010. The larger the IP address pool, the higher will be the "productivity" of the botnet. As a 

result, the link between any two bots that serve the same bot herders will be less clear, which is exactly 

what the bot herder’s longing. 

 

4.2 A BRIEF DESCRIPTION OF SVM ALGORITHMS 

 

For small problems, customary algorithms from optimization theory exist.  Examples include conjugate 

gradient decent and interior point’s approaches.  For larger problems, these algorithms do not work well 

because of the big space requirements to store the kernel matrix.  Often they are slow since they do not 

make use of the features of real-world SVM problems, for example that the number of support vectors are 

usually sparse. 

Classification Data  

Pairs of observations (xi , yi) generated from some distribution P(x, y), e.g., (blood status, cancer), (credit 

transaction, fraud), (profile of jet engine, defect) 

Task 

Approximation y given x at a new location.  

Modification: find a function f(x) that does the task 



 

 

Figure 4.1 SVM classification 

Though the SVM can be functional to various optimization problems such as regression, the classic 

problem is that of data classification. The basic idea is shown in figure 4.1.  The data points are 

recognized as being positive or negative, and the problem is to find a hyper-plane that separates the data 

points by a best margin. 

 

Figure 4.2: Data Classification 

 

The overhead figure only shows the 2-dimensional case where the data points are linearly separable.  The 

mathematics of the problem to be solved is the following: 

 

 

 

 

 

 

 

 (1) 

 

The identification of the each data point xi is yi, which can take a value of +1 or -1 (representing positive 

or negative respectively).  The solution hyper-plane is the following: 

,
2

1
min

,

w
bw

r

11

11.

−≤−⋅⇒−=

+≥+⋅⇒+=

bxwy

bxwyts

ii

ii

vr

vr

ibxwyts ii ∀≥+⋅ ,1)(.
vr



 

 

                                                   

(2) 

The scalar b is also termed the bias. 

 

A standard method to solve this problem is to apply the theory of Lagrange to convert it to a dual 

Lagrangian problem.  The dual problem is the following: 

 

 

 

 

 

 

 

(3) 

 

The variables αi are the Lagrangian multipliers for corresponding data point xi. 

 

 

4.3 SNIFFERS (PASSIVE ATTACKS) 

 

bxwu +⋅=
vr

∑∑∑
== =

−⋅=Ψ

N

i

i

N

i

N

j

jijiji xxyy
11 1

2

1
)(min)(min αααα

αα

vrr

∑
=

=

N

i

ii y
1

0α

ii ∀≥ ,0α



 

 

Figure 4.3 Botnet sniffer 

 

• Passively watches for 3-way handshake 

• Vulnerable services include telnet, ftp ,rlogin, IMAP, POP ... 

• Logs N packets, or until FIN, RST, or timeout 

• Stuffs everything into a log file 

• Newer sniffers unlink themselves, unlink their log files, send logged data to collectors in ICMP 

packets 

 

4.4 BOTNET PACKET ANALYZER  

 

This protocol allows the compilation of information concerning the information of IP traffic of a network 

for its following analysis. The routers and switches that support this protocol not only allocate traffic 

through the network but also send metadata from the above-mentioned traffic (IPs, ports…) to a 

specialized compilation server.  

This server transmits out the consistent analysis aimed at classifying anomalous traffic patterns, 

communications with other ports that are in theory filtered, connections to malicious IPs, excesses of a 



 

certain type of traffic, sessions that go on for too long…which can specify whether a network or some of 

its members have been cooperated. 

 

Figure 4.4 Example of Net-Flow architecture 

The analysis of network traffic flow can detect both unidentified threats, by detecting anomalous conduct 

such an unidentified botnet, and before recognized threats, such as known IPs from the central C&C of a 

botnet. 

Another advantage of the analysis technique is the option of storing the reduced metadata from 

communications, thanks to which retrospective analyses of threats or attacks can be carried out, with the 

aim of reviewing the system’s response and improving the current counter-measures. On the other hand, 

this technique makes a considerable overflow of traffic, since the routing devices send all the metadata 

from communications to the server which is accountable for storing and processing this information. 

 

4.5 PORT SCANNER 

 

Port scanner implement can be used to classify obtainable services running on a server, it uses raw IP 

packets to find out what ports are open on a server or what Operating System is running or to checkered if 

a server has firewall allowed etc.  

The service can also detect uptime of a host if the host is running one of the known Operating Systems 

which the scanner can analyze to conjecture uptime To scan a host just enter the host name or the IP 



 

address in the box above and give a range of ports to scan, if the host has firewall permitted then you can 

try a dissimilar type of scan in the advance mode.  

The optional scan type is "connect()", however other scan types can also be useful contingent on the 

network of the target host, a "SYN Stealth" scan type can also show to be valuable when there's a firewall 

blocking the ports. 

 

 

 

 



 

 

 

 

 

 

CHAPTER 5 

 

RESULTS AND IMPLEMENTATION 



 

 

5. RESULTS AND IMPLEMENTATION 

 

In this method we have to classify the botnet detector /intruder that will detect host-name, IP address. 

Finally we mature an application in C# using some networking outline and some related networking 

programming which will identify the botnet detector, using botnet attack will evaluate the operative, and 

that will monitor the Intruder activity and this tool also measure of capture the concept of intruder 

conduct, and it denial at the 2 time of intruder time until it will monitor by administrator panel  

 

 

Figure 5.1: Module for BOTNET detection and Prevention 

 



 

 

Figure 5.2: Enter Host IP Address with no of packet for BOT network 

 

 

Figure 5.3: Bot analyzer with its packet length and botnet identification number from source to 

destination 

 



 

 

Figure 5.4: Bot analyzer with its packet length and botnet identification number in TCP tracing 

 

 

 

Figure 5.5: Different sequence number for Botnet identification for 32 header length 



 

 

 

Figure 5.6: Different sequence number No- Botnet identification for 141 header length and ofservice is 

0x00 

 

 

 

Figure 5.7: BOTNET prevention module from theft IP Pinging Blocker 



 

 

Figure 5.8: BOTNET prevention module from theft IP Pinging Blocker towards selected range 

 

 

 

Figure 5.9: Start monitoring from host IP   

 



 

 

Figure 5.10: Total number of packet monitoring under TCP/UDP  

 

 

Figure 5.11: Scan port then close to prevent directory of support h1, h2 and h3 



 

 

Figure 5.12: Block unauthenticated access from web browser  

 

 

Figure 5.13: block URL from web browser for preventing  



 

 

Figure 5.14: kill process which enter in bot that provide by support vector machine 

 

 

Figure 5.15: IP address already in SVM container 



 

 

Figure 5.16: IP contain in SVM cluster 

 

 

Figure 5.17: SVM ready to allow to execute the directory 

 

We syndicate to application which is window application and another web application, window 

application will monitor the admin side and intruder movement and remaining intruder activity rest web 

application which is www, major activity timely updating on admin side. 

 

 

 

 

 

 

 



 

 

 

 

 

 

CHAPTER 6 

 

CONCLUSION  

AND  

FUTURE WORK 



 

 

CONCLUSION AND FUTURE WORK 

 

 

6. 1 CONCLUSION AND FUTURE WORK 

 

Botnet detection based on machine learning  SVM classifier has been the subject of interest of the 

research community resulting in the numerous detection methods that are based on different botnet 

heuristics that target different types of botnets using diverse machine learning algorithms and that 

consequently provide varying performances of detection. This Thesis presents a review of some of the 

most prominent contemporary botnet detection methods that use machine learning as a tool of identifying 

botnet-related traffic. The presented study addresses 20 detection methods, proposed over the last decade. 

The methods have been analyzed by investigating bot-related heuristic assumed by the detection systems 

and machine learning techniques used in order to capture botnet-related knowledge. Furthermore, the 

methods have been examined by analyzing their characteristics, performances, and limitations. The 

analysis of these detection approaches indicates a strong ability of this class of approaches to be used for 

identifying botnet network traffic. However, the study also indicates several aspects of machine learning-

based approaches that could be further improved. 

 

In addition, our proposed algorithm also outperformed the state-of-the-art CW algorithm when applied to 

large-scale botnet data obtained from an ISP. Future work will include more detailed textual analysis of 

the botnets' domain names. 

 

 

 

 

 

 



 

 

REFERENCES 

 

[1] Zeidanloo, H.R.; BT Manaf, A.; Vahdani, P.; “Botnet Detection Based on Traffic Monitoring”, 

International Conference on Networking and Information Technology, 2010.  

 

[2] Hossein Rouhani Zeidanloo, Azizah BT Abdul Manaf et.al “A proposed framework to detect P2P 

Bots”, IACSIT International Journal of Engineering and Technology, Vol.2, No.2, April 2010 ISSN: 

1793-8236. 

 

[3] M. Mangalindan, ―For bulk E-mailer, pestering millions offers path to profit,� Wall Street Journal, 

November 13, 2002. 

 

[4] Qian Xu, Evan Wei Xiang and Qiang Yang, ―SMS Spam Detection Using Non-Content Features� 

publication in IEEE Intelligent Systems, Nov.-Dec. 2012 (vol. 27 no. 6)pp. 44-51. 

 

[5] Vishnu Kumar Goyal, Dept. of Computer Engineering. “A Comparative Study of Classification 

Methods in Data Mining using RapidMiner Studio”. International Journal of Innovative Research in 

Science & Engineering, April 2014. 

 

[6] Sang Min Lee, Dong Seong Kim, Ji Ho Kim, Jong Sou Park, ―Spam Detection Using Feature 

Selection and Parameters Optimization�, pp. 883-888, 2010,IEEE. 

 

[7] Ram B. Basnet, Andrew H. Sung, ―Classifying Phishing Email Using Confidence-Weighted Linear 

Classifiers�, pp. 108-112, 2010 IEEE. 

 

[8] Keisuke Takemori1, Masakatsu Nishigaki2 et.al, “Detection of Bot Infected PCs Using Destination-

based IP and Domain Whitelists during a Non-operating Term”, IEEE, 2008  

 

[9] L.N. de Castro, J. Timmis. “Artificial Immune Systems: A New Computational Intelligence 

Approach” Springer, 2002.  

 



 

[10] Fu, H., Yuan, X. and Hu, L. “Design of a four-layer model based on danger theory and AIS for IDS”, 

International Conference on Wireless Communications, Networking and Mobile Computing. IEEE, 2007.  

 

[11] Mohsen Damshenas, Ali Dehghantanha, Ramlan Mahmoud. “A survey on malware propagation, 

analysis and detection”. International Journal of Cyber-Security and Digital Forensics (IJCSDF), 2013. 

 

[12] Vinod P. “Survey on Malware Detection Methods”. Department of Computer Engineering, Malaviya 

National Institute of Technology. 

 

[13] Nwokedi Idika and Aditya P. Mathur. “A Survey of Malware Detection Techniques”. Research 

supported by Committee on Institutional Cooperation, February 2007.  

 

[14] B.V.R.R.Nagarjuna, V. Sujatha. “An Innovative Approach for Detecting Targeted malicious E-

mail”. International Journal of Application or Innovation in Engineering & Management (IJAIEM), 

Volume 2, Issue 7, July 2013. 

 

[15] Ion Androutsopoulos, John Koutsias, Konstantinos V. Chandrinos, and Constantine D. Spyropoulos. 

“ An experimental comparison of naive Bayesian and keyword-based anti-spam filtering with personal e-

mail messages”. In Proceedings of the 23rd annual international ACM SIGIR conference on Research and 

development in information retrieval, Aug 2000. 

 

[16] S. Hofmeyr, S. Forrest, “Architecture for an artificial immune system”, Evolutionary Computation. 

2000. 7 (1) 1289–1296.  

 

[17] Sang Min Lee, Dong Seong Kim, Ji Ho Kim, Jong Sou Park, ―Spam Detection Using Feature 

Selection and Parameters Optimization�, pp. 883-888, 2010,IEEE. 

 

[18] Tao Wang , Shun-Zheng Yu “Centralized Botnet detection through traffic aggregation”, IEEE 

International Symposium on Parallel and Distributed Processing with Applications, 2009.  

 

[19] Peng Wan, Uehara, ―Multiple Filters of Spam Using Sobel Operators and OCR� IEEE, pp.164-

169,July,2012 

 



 

[23] Kirti Mathur. “A Survey on Techniques in Detection and Analyzing Malware Executable”. 

International Journal of Advanced Research in Computer Science and Software Engineering, Volume 3, 

Issue 4, April 2013.  

 

[24] Milan Jain. “Malicious Detection Using Multiple Classification Algorithms & Their Comparison 

Using Different Clustering Techniques”. International Journal of Advanced Research in Computer 

Science and Software Engineering, Volume 3, Issue 4, April 2013. 

 

[25] Oda, T.White, T. “Increasing the accuracy of a SPAM-detecting artificial immune system”. In: 

Proceedings of the IEEE CEC, 2003, vol. 1, pp. 390 396.  

 

[26] Anton Borg, Niklas Lavesson, ―E-mail Classification using Social Network Information� Seventh 

International Conference on Availability, Reliability and Security,IEEE,2012 

 

[27] M. McCord and M. Chuah, ―Spam Detection on Twitter Using Traditional Classifiers� pp. 175–

186, 2011.© Springer-Verlag Berlin Heidelberg 2011 

 

[28] Zhang, Y., Li, H., Niranjan, M., and Rockett, P. (2008). Applying cost-sensitive multi objective 

genetic programming to feature extraction for spam e-mail filtering. In Proc. of the 11th European 

conference on Genetic programming, pages 325–336. Springer-Verlag.  

 

[29] Dudley, J., Barone, L., and While, L. (2008). Multi objective spam filtering using an evolutionary 

algorithm, pages 123–130. IEEE.  

 

[30] Lourdes Araujo and Juan Martinez-Romo, ―Web Spam Detection: New Classification Features 

Based on Qualified Link Analysis and Language Models� IEEE Transactions On Information Forensics 

And Security, Vol. 5, No. 3, September 2010 

 

[31] J. Greensmith, U. Aickelin, and S. Cayzer.” Introducing dendritic cells as a novel immune-inspired 

algorithm for anomaly detection”, In ICARIS-05, LNCS 3627, pages 153–167, 2005.  

 


