A Dissertation On

Configuring Situational Specific methods

Submitted in fulfillment of the requirements of the degree of

Doctor of Philosophy

(Computer Engineering)

By

RINKY DWIVEDI

(University Roll no. 07/Ph.D./CoE/2009)

Under the supervision of:

Dr. Daya Gupta

Professor, Dept. of CoE, Delhi Technological University (DTU)

To the

DEPARTMENT OF COMPUTER ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY

NEW DELHI -110042

2016

© Copyright Delhi Technological University – 2016 All rights reserved.

DECLARATION

I, Rinky Dwivedi, Ph.D. student (roll no. 07/Ph.D./CoE/2009), hereby declare that the thesis entitled "Configuring Situational Specific Methods" which is being submitted for the award of the degree of Doctor of Philosophy in Computer Engineering, is a record of bonafide research work carried out by me in the Department of Computer Engineering, Delhi Technological University. I further declare that the work presented in the thesis had not been submitted to any University or Institution for any degree or diploma.

Date:	
Place: New Delhi	Rinky Dwivedi
	(Candidate)
	07/Ph.D./COE/09
	Department Of Computer Engineering
	Delhi Technological University (DTU)
	New Delhi -110042

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

CERTIFICATE

Date:
This is to certify that the work embodied in the thesis entitled "Configuring Situational
Specific Methods" submitted by Rinky Dwivedi with Roll no. 07/Ph.D./CoE/2009 as a part-
time research scholar in the Department of Computer Engineering, Delhi Technological
University, is an authentic work carried out by her under my guidance and is submitted to
Delhi Technological University for the award of the Degree of Doctor of Philosophy .
This work is original research and has not been submitted, in part or full, to any other
University or Institute for the award of any degree.

Supervisor

Dr. Daya Gupta

Professor,

Department of Computer Engineering

Delhi Technological University

Delhi-110042

SHAHBAD DAULATPUR, BAWANA ROAD, DELHI-110042, INDIA

OFF.:91-11-27871018 FAX: +91-11-27871023 WEBSITE: www.dtu.ac.in

DEDICATED TO MY Lovely Kids Aryan & Jeanie

ACKNOWLEDGEMENT

Firstly, I would like to express my sincere gratitude to my supervisor **Prof. Daya Gupta** for

her continuous support of my Ph. D study and related research, for her patience, motivation,

and immense knowledge. Her guidance helped me in all the time of research and writing of

this thesis. I could not have imagined having a better advisor and mentor for my Ph. D study.

Besides my supervisor, I would like to thank **Prof. Vishal Verma**, Ph.D. Coordinator, **Prof.**

O. P. Verma (DRC Chairman), Prof. Ashutosh Trivedi, Dean (IRD) and Dr. Anil Kumar

AR (IRD) for their support and encouragement.

Last but not the least, I would like to thank my husband Mr. Chandra Pratap Dwivedi (an

International Airport Professional (IAP) and academic), my kids (Aryan and Jeanie), my

parents, my sisters (Pooja & Ankita) and my colleagues & friends for supporting me

spiritually throughout writing this thesis and my life in general. It would have been

impossible to achieve whatever I have achieved in life, without your unconditional love and

support. Thank you for being an endless source of happiness and comfort.

JAI MATA DI

Rinky Dwivedi

May, 2016

IV

ABSTRACT

Method engineering models and techniques have been extensively used for turning traditional methods into project-specific methods. However, it is increasingly being recognized that there exists a 'dynamic' and 'light-weight' methodology as well. These methodologies are popularly addressed as an agile methodology. Agile methodologies are gaining importance in many organisations.

The thesis addresses the issue of providing project-specific methods for both traditional paradigm and agile paradigm. The solution starts by providing a decision support system that helps to predict the appropriate methodological model for the current project. The Decision support system based on the defined the set of weighted project characteristics along with the project-specific input metrics for these project characteristics.

Further, thesis move towards the method configuration process for providing project-specific methods for both traditional paradigm and agile paradigm. The proposed method configuration process is analogous to system configuration. The system configuration is based on the construction of a 'configurable system model' that represents the essential system concepts and the interrelationship between these. Similarly, method configuration processes based on 'configurable methods' having as *essentiality* attribute.

The process starts by developing a configurable Metamodel capable enough to model the concepts of the configurable method. The configurable Metamodel is an instantiation of decisional Metamodel that is an instantiation of generic Metamodel. Therefore, the proposed Metamodel is an instantiation of the generic model.

Now just as the system configuration process yields a family of configured methods so also the method configuration process produces a family of methods. Further, the process was validated with the help of case studies in different domains.

PUBLICATIONS FROM THE THESIS

INTERNATIONAL JOURNAL PAPERS:-

1. **Dwivedi, R.** and Gupta, D. (2015). The Agile Method Engineering: Applying fuzzy logic for evaluating and configuring agile methods in practice. *In International Journal of Computer Aided and Engineering Technology*. (In Press).

[SCOPUS ENLISTED]

2. **Dwivedi, R.** and Gupta, D. (2015). Applying machine learning for configuring agile methods. *In International Journal of Software Engineering and its Application*, 9(3), 29-40.

[SCOPUS ENLISTED]

3. Gupta, D. and **Dwivedi, R.** (2015). A frame work to support evaluation of project-in-hand and selection of software development method. *In Journal of Applied and Theoretical Information Technology*, 73(1), 137-148.

[SCOPUS ENLISTED]

- 4. **Dwivedi, R.** and Gupta, D. (2015). A Complete method configuration process for configuring project-specific methods. In *Journal of Software*, 9(3), 29-40.
- 5. Gupta, D. and **Dwivedi, R.** (2012). Method Configuration from Situational Method Engineering. *In ACM SIGSOFT*, 37(3), 1-11.
- 6. Gupta, D. and **Dwivedi, R**. (2012). A step towards Method Configuration from Situational Method Engineering. *Software Engineering International Journal*, 2(1), 51-59.

INTERNATIONAL CONFERENCE PAPERS:-

- 1. **Dwivedi, R.** and Gupta, D. (2014). Customizing agile methods using genetic algorithms. In *CNC 2014* Elsevier track.
- 2. Gupta, D., **Dwivedi, R.** and Kumar, S. (2012). Domain specific priority based implementation of mobile services- an agile way. In International Conference on Software Engineering Research and Practice 2012, Las Vegas, USA.

LIST OF ABBREVIATIONS

ArCME Architectural Centric Method Engineering

AME Agile Method Engineering

AOSD Aspect Oriented Software Development

ASD Adaptive Software Development

ATC Air Traffic Control

BPM Business Process Model

CAME Computer Aided Method Engineering

CASE Computer Aided Software Engineering

CD Class Diagram

CM Configurable Meta Model

CMC Configurable Method Component

CMP Configured Method Part

CoP Community of Practice

CP Configuration Package

CT Configuration Template

Dep Dependencies

DFD Data Flow Diagram

DM Decisional Metamodel

DSB Development Sprint Backlog

DSDM Dynamic System Development Method

ER Entity-Relationship

ERconf ER-Configured

FDD Feature Driven Development

FLC Fuzzy Logic Controller

GOPRR Graph Object Property Role Relationship

IEEE International Institute of Electrical and Electronics Engineers

IS Information System

ISD Information System Development

ISDM Information System Development Method

JAD Joint Application Development

MAD Mobile Application Development

MAP Method Application

MC Method Configuration

MCP Method Configurable Part

ME Method Engineering

MERU Method Engineering Using Rules

MIA Method Intension Architecture

MLF Life Cycle of Method

MMC Method for Method Configuration

MMT Method Management Tool

MN Method Nature

MRS Method Requirement Specification

MRSC Method Requirement Specification Component

MTP Method Type

MVM Method View Model

NCM Number of Coupled Modules

OMT Object Modelling Technique

OOA Object-Oriented Analysis

OPF OPEN Process Framework

OPRR Object Property Role Relationship

OSB Object Specification Base

PB Product Backlog

PMSB Product Management Sprint Backlog

SME Situational Method Engineering

UCD Use Case Diagram

UML Unified Modelling Language

UMLconf UML-Configured

WPD Work Product Descriptor

XP Extreme Programming

Content

Acknowle	edgement	IV
Abstract.		V
Publication	ons	VII
List of Al	obreviations	IX
Contents		XIII
List of Fig	gures	XVI
List of Ta	ables	XVIII
Chapter 1	l	1
Methods	and Method Engineering	1
1.1 I	mportance of Method	1
1.2 N	Method Engineering	4
1.2.1	Meta Model	5
1.2.2	Project Characteristics	5
1.2.3	Method Component	6
1.2.4	4 Method Base	6
1.2.6	CAME tool.	6
1.3 I	Different forms of Method Engineering	7
1.4 N	Method Engineering Approaches	8
1.4.1	Method Assembly approaches	9
1.4.2	Method Generation approaches	16
1.4.3	Architectural based SME process.	23
1.4.4	Method Configuration	29
1.4.5	Industrial Case studies on Configuration	33
1.5 F	Problem statement	36
1.5.1	Selection of Methodology Paradigm	38
1.5.2	Configuring Traditional methods	38
1.5.3	Configuring Agile methods	38
1.5.4	Extending Methods	
1.6 T	hesis approach	39

1.7	Outline of the thesis	
Chante	er-2	44
_	re development paradigm selection	
2.1	Software Development Lifecycle Paradigm	
2.2	Domain analysis.	
2.3	Decision Support System for Software Development Methodology Selection	
2.3		
2.3		
2.4	Proposed Algorithm	
2.5	Case studies for paradigm selection	
2.5	-	
2.5	5.2 Case Study 2: On Air Traffic Control (ATC)	
2.6	Implementation Details	
	Summary	
	er 3	
Metho	d Configuration process-Traditional methods	78
3.1	Configurable Meta Model	
3.1	.1 Structure	82
3.1	.2 The Operation	83
3.1	.3 Purposes	84
3.1	.4 Dependencies	84
3.2	Configurable Method	86
3.2	2.1 Atomic Configurable method	87
3.2	2.2 Compound Configurable Method	88
3.3	Retrieval of Methods	90
3.3	3.1 Global Properties of Method	90
3.3	3.2 Method Base	91
3.4	Architecture of Method Configuration Process	97
3.5	Method Extension	103
1	Summary	104
Chapte	er 4	105
Config	uring Agile Methods	105

4.1	Essentialities in agile methods	107
4.1.	1 Mapping between agile values and agile method practices	108
4.1.	2 Determining the essentialities in agile methods	109
4.1.	3 Configurable Model for agile methods	114
4.2	Gathering Project requirements as Organisational Requirements	117
4.3	Retrieving the suitable agile methods	121
4.4	Configuring the agile method.	122
4.5	Case studies	122
4.6	Functional Architecture of AME process.	127
Summa	ry	129
Chapter	r 5	131
Method	Extension	131
5.1	Extending method with missing product entities	131
5.1.	1 Rules for adding a new method concept in method conceptual model	132
5.1.	2 Rules for adding a new method component in method compound mod	el135
5.2	Extending the FDD- for complex project applications	137
5.3	Method extending its functionality by assembling with other methods	139
5.3.	1 Assigning values to method practices	139
5.3.	2 Assigning the colour scheme	139
5.3.	Assembling the individual highly weighted configured methods	140
5.3.	4 Method Representation	140
5.4	Empirical grounding: The illustrations	140
S	ummary	145
Chapter	r 6	146
Conclus	sion, Contribution and Future work	146
Contr	ibution of the thesis	149
Future	e work and open problems	150
Referen	ices	152
Append	lix A - Questionnaire	165
Biograp	ohy of the Author	171

LIST OF FIGURES

Fig 1.1	Fragment Meta Model	10
Fig 1.2	GOPRR Meta Model	12
Fig 1.3	Method Management tools in MetaEdit+	15
Fig 1.4	Contextual Meta Model	16
Fig 1.5	Decisional Metamodel	19
Fig 1.6	Method View Model	20
Fig 1.7	Architecture-Centric Method Engineering Approach	25
Fig 1.8	OPEN process Framework	28
Fig 1.9	MMC Framework	31
Fig 1.10	Internal View of a Method Component	32
Fig 2.1	Graph for weighted project characteristics	55
Fig 2.2	Scale showing the output for MAD	67
Fig 2.3	Weighted input for MAD	67
Fig 2.4	Scale showing the output for ATC	69
Fig 2.5	Weighted input for ATC	69
Fig 2.6	General Architecture of Neural Network	70
Fig 2.7	Two-layer neural network	71
Fig 2.8	Screenshot for creating network	73
Fig 2.9	Screenshot for training the network	74
Fig 2.10	Output Screen for MAD	76
Fig 2.11	Output Screen for ATC	77
Fig 3.1	Configurable Metamodel	80
Fig 3.2	Design of the method base	92

Fig 3.3	Method Configuration architecture	98
Fig 3.4	ER configurable model	99
Fig 3.5	View of basic life cycle purposes	99
Fig 4.1	Agile Method Engineering Framework	106
Fig 4.2	Scrum Product model	124
Fig 4.3	Configured model of Scrum for case project 1.	124
Fig 4.4	Configured model of Scrum for case project 2.	127
Fig 4.5	Functional Architecture of AME process	128
Fig 5.1	Extended FDD process framework for complex project application	s138
Fig 6.1	The Generic Framework.	148

LIST OF TABLES

Table 2.1	Metric for "volatility of requirement"	56
Table 2.2	Metric for "Complexity"	56
Table 2.3	Metric for "Flexibility	57
Table 2.4	Metric for "Modularization of task"	58
Table 2.5	Metric for "Time to market"	58
Table 2.6	Metric for "amount of requirements known initially"	59
Table 2.7	Metric for "clarity and completeness of requirements"	59
Table 2.8	Metric for "coupling"	60
Table 2.9	Metric for "Tool experience"	60
Table 2.10	Metric for "Platform volatility"	61
Table 2.11	Metric for "Application experience"	61
Table 2.12	Metric for "Add-on function"	62
Table 2.13	Metric for "Necessary function"	62
Table 2.14	Metric for "Reuse of existing code"	63
Table 2.15	Metric for "Develop for reuse"	63
Table 2.16	Metric for "Platform experience"	64
Table 2.17	Weight distribution, input values, their product and	66
	total sum for MAD	
Table 2.18	Weight distribution, input values, their product and	68
	total sum for ATC	
Table 2.19	Final weight adjusted by neural network	75
Table 3.1	Instantiation of Decisional Metamodel	81
Table 3.2	Types of Dependencies	85

Table 3.3	Mapping between methods and global properties	95
Table 3.4	Instances of ER configured method.	100
Table 4.1	Mapping between agile values and agile method practices	109
Table 4.2	Commonality and variability in popular agile methods	115
Table 4.3	Instances of XP configured method	116
Table 4.4	Organisational requirements and corresponding	118
	method support	
Table 4.5	Set of elicited Organisation Requirements	121
Table 4.6	Extracted Functional Requirements for case study 1	123
Table 4.7	Weighted practices of scrum for the case project 1	123
Table 4.8	Extracted Functional Requirements for case study 2	126
Table 4.9	Weighted practices of scrum for the case project 2	126
Table 5.1	Retrieved Methods for the current organisational	141
	requirements	
Table 5.2	Extracted Requirements of the case project	141
Table 5.3	The configurable model of DSDM	142
Table 5.4	Instances of DSDM configured method	142
Table 5.5	The configurable model of FDD	143
Table 5.6	Instances of FDD configured method	143