

Software Test Data generation using Genetic Algorithm

A dissertation submitted in the partial fulfillment for the award of Degree of

Master of Technology

In

Software Engineering

Submitted by

Ashish Gupta (2K11/ST/02)

Under the esteemed guidance of

Dr. Ruchika Malhotra

DELHI TECHNOLOGICAL UNIVERSITY

BAWANA ROAD, DELHI

2014

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page ii

DECLARATION

I hereby declare that the thesis entitled ―Software Test Data generation using Genetic

Algorithm” which is being submitted to the Delhi Technological University, in partial

fulfillment of the requirements for the award of degree of Master of Technology in

Software Technology is an authentic work carried out by me. The material contained in this

thesis has not been submitted to any university or institution for the award of any degree.

Ashish Gupta

Department of Software Engineering

Delhi Technological University,

Delhi.

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page iii

CERTIFICATE

Date: __________

This is to certify that the Major Project entitled ―Software Test Data generation using

Genetic Algorithm” submitted by Ashish Gupta (2K11/ST/02); in partial fulfillment of the

requirement for the award of degree Master of Technology in Software Technology to Delhi

Technological University, Bawana Road Delhi; is a record of the candidate‘s own work

carried out by him under my supervision. The matter embodied in this thesis is original and

has not been submitted for the award of any other Degree.

Dr. Ruchika Malhotra

Asst. Professor, Department of Software Engineering,

Delhi Technological University

Bawana road, Delhi - 110042

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page iv

ACKNOWLEDGEMENT

July 2014

I would like to take this opportunity to thank my project guide Dr. RUCHIKA MALHOTRA

for her invaluable and consistent guidance throughout this work. I would like to thank her for

giving me the opportunity to undertake this topic. I am very appreciative of her generosity

with her time, advice, data, and references, to name a few of her contributions. It is her

wonderful association that enabled me to achieve the objectives of this work. I humbly

extend my grateful appreciation to my friends whose moral support made this study possible.

Lastly, I would like to thank all the people directly and indirectly involved in successfully

completion of this project.

Ashish Gupta

2K11/ST/02

Master of Technology (Software Technology)

Delhi Technological University

Bawana road, Delhi – 110042

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page v

Table of contents

CERTIFICATE ... iii

ACKNOWLEDGEMENT ... iv

Table of contents ... v

List of Figures .. viii

List of Tables .. x

ABSTRACT .. xi

INTRODUCTION ... 1

1.1 Software Testing ... 1

1.2 Automated Test Data Generation .. 2

1.3 Motivation of the Work... 3

1.4 Goals & Major Thesis Contributions .. 4

1.5 Organization of Thesis .. 5

RELATED WORK & RESEARCH .. 6

2.1 Introduction ... 6

2.2 Software Testing Techniques .. 6

2.2.1 Static Testing ... 7

2.2.2 Dynamic Testing ... 8

2.2.3 Black Box Testing.. 8

2.2.4 White Box Testing ... 10

2.3 Genetic Algorithms Based Test Data Generator (BTDG) .. 10

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page vi

ANALYSIS OF DEVELOPED TOOL ... 18

3.1 Design & Implementation of Tool .. 18

3.1.1 Flow Chart: Genetic Algorithm ... 18

3.1.2 Crossover ... 22

3.1.3 Mutation ... 24

3.1.4 Fitness value .. 26

3.3.1 Generation 1 .. 30

3.3.2 Generation 2 .. 31

3.3.3 Generation 3 .. 32

3.3.4 Generation 4 .. 32

3.3.5 Experimental Settings .. 33

3.3.6 Output .. 34

3.3.7 Priority Function.. 36

3.3.8 User Input .. 36

GENETIC ALGORITHM & RANDOM ALGORITHM ... 38

4.1 Introduction ... 38

4.2 Comparison between Genetic Algorithm and Random Algorithm ... 40

4.2.1 Genetic Algorithm .. 40

4.2.2 Random Algorithm ... 41

4.2.2.1Generation 1 .. 42

4.2.2.2 Generation 2 ... 42

4.2.2.3 Generation 3 ... 43

4.2.2.4 Generation 4 ... 43

4.2.3 Genetic Algorithm & Random Algorithm: Generation Comparison 44

4.3 Experimentation Results & Comparison Charts ... 47

4.3.1 Total Fitness Value Comparison .. 47

CONCLUSION AND FUTURE WORK ... 56

5.1 Summary ... 56

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page vii

5.2 Scope ... 58

5.3 Tool limitation .. 58

5.4 Future work ... 59

Publications .. 60

References.. 61

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page viii

List of Figures

Figure 2.1: Black-Box Texting .. 9

Figure 2.2: Genetic Algorithm Cycle... 12

Figure 2.3. Genetic Algorithm: Phases .. 14

Figure 3.1. Flow chart for Genetic Algorithm Used .. 20

Figure 3.2. Flow chart Used for Genetic Algorithm .. 21

Figure 3.3. Flow chart for Cross Over ... 24

Figure 3.4. Flow chart for Mutate .. 26

Figure 3.5. Flow chart for Case Selection.. 27

Figure 3.6. Flow chart for Use-Case .. 29

Figure 3.7. Generation 1 .. 31

Figure 3.8. Generation 2 .. 31

Figure 3.9. Generation 3 .. 32

Figure 3.10. Generation 4 .. 33

Figure 3.11. Test Data Fitness ... 35

Figure 3.12. Priority Function .. 36

Figure 3.13. User input .. 36

Figure 4.1. Flow Diagram .. 39

Figure 4.2. Generation 1 .. 42

Figure 4.3. Generation 2 .. 43

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page ix

Figure 4.4. Generation 3 .. 43

Figure 4.5. Generation 4 .. 44

Figure 4.6. Total Fitness Values .. 50

Figure 4.7. GA & RA (up to 51st Generation) .. 51

Figure 4.8. GA & RA (up to 101st Generation) .. 52

Figure 4.9. GA & RA (up to 151st Generation) .. 53

Figure 4.10. GA & RA (up to 201st Generation) .. 54

Figure 4.11. Genetic Algorithm & Random Algorithm (up to 251st generation) 55

[1] Malhotra, R., Gupta, A., ―Study & Analysis for Software Test-Data Generation using

Genetic Algorithm for a Use Case‖, (Under IEEE International Conference submission) 60

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page x

List of Tables

Table 3.1: Single Point Crossover ... 22

Table 3.2: Two Point Crossover .. 23

Table 3.3: Mutation .. 25

Table 4.1: Genetic Algorithm: Generation .. 45

Table 4.2: Random Algorithm: Generation ... 45

Table 4.3: Total Fitness Value Comparison (part a) .. 48

Table 4.4: Total Fitness Value Comparison (part b) .. 49

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page xi

ABSTRACT

A small change in the software system may lead to malfunctioning of the existing software

system. Thus, there arises the need for efficient and selective Software Testing. Software

Testing is the process of testing a software system after it has undergone development and up

-gradation. It aims to detect faults, if any, that may have been introduced into the software

system as a result of these changes. In software engineering research, Genetic Algorithm is

used to generate and refine the automated test-data for developed software product in an

efficient & quick manner. Genetic Algorithm is an adaptive search technique that improves

the software testing process in an efficient manner. It improves the testing-automation, where

traditional methods are considered too complex and time consuming. In this thesis we

propose and validate a test case refinement framework based on Genetic Algorithm (GA)

Further, comparison of test data generation and refinement using Genetic Algorithm as well

as Random Algorithm is discussed and presented. A tool has been developed which gives

comparison table as well as comparison graph of fitness values. The proposed and developed

tool can be used with different types of software systems. Based on the results; it is

concluded that the Genetic Algorithm proves to be better than Random Algorithm in terms of

automated generation and refinement of software test data.

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 1

Chapter 1

INTRODUCTION

As a part of Software development process, Software testing is done to increase the quality of

the Software system by minimizing the number of faults that reside in the code. It is quiet

common to see software testing tools being applied to predict software faults before the

product is delivered to market. These tools help managers to align resources to critical areas

of the project and also help developers to concentrate on problem areas more prone to critical

faults. This in turn will result in high quality and timely delivery of software products.

Improper testing or incomplete testing may result in software that is prone to failures and this

can cause minor to major problems in real life [1].

1.1 Software Testing

 ―Software Testing is the process of executing a program with the intent of finding errors‖

[1]. ―Software Testing is an investigation that is conducted to provide stakeholders the

information about the quality of the product/service under test‖ [2].Software maintenance is

an essential activity that allows developers to modify an existing software system as and

when required, in order to meet desired software quality of the product. Software quality

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 2

includes the fixing of defects that are reported by the clients, after the software product has

been delivered. Software defects can also be found after the software product gets deployed

during the time of execution of the software product. Software testing increases the Software

quality attributes such as accuracy, reliability and fault tolerance of the software [4].

 There have been many tools developed for the purpose of software testing which are

commonly used by software developers and testers to make their software product fault free.

Any wrong or faulty implementation during the software development is detected early

because of software testing [4]. The objective of these tools is to increase the efficiency and

the speed to find failures in the source code of the software product.

 For software product to be tested in an efficient manner, automated test data should be

generated. Out of the automated test data generated, certain test data can catch errors in a

better and efficient way as compared to other test data generators. An efficient and systematic

testing tool can generate difference between good automated test data and poor test data.

1.2 Automated Test Data Generation

As discussed earlier, Software testing is an integral and important phase of software

development life cycle. Despite its criticality and importance in making the software product

more stable, software testing has certain limitations and problems. One of the problems in

software testing is to generate data set for testing the software product. Primary objective of

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 3

these testing data set is to cover each path and line of code of the software product [6] for

detailed level of testing the source code of the software product.

 Generation of these test data is a typical activity which has to be accomplished

through any standard automated test data generation tool. There are various test data

generator tools are available such as: random test data generator, symbolic evaluator, function

minimization methods [4].

1.3 Motivation of the Work

To assure, that the probability of post-release failure is minimized, it is important that the

proper testing of the software product is performed [2].There is a need for Test data

generation and efficient processing after software development to provide timely faults in the

software product and to cover all paths in the source code of the software product. The

fundamental principles for auto test data are given below:

a. Exhaustive Testing is not possible. This implies that the entire set of possible test

cases cannot be executed. Therefore it is important to minimize, prioritize and refine test

cases so that faults can be detected at a higher rate.

b. Early Testing. This implies that testing activities should be started early and move

parallel with the development of software. Thus, test case prioritization should focus on

prioritizing the test cases on the basis of requirement specification.

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 4

c. Testing shows presence of errors. This implies that one cannot assure error free

software. It implies that testing cannot prevent all error to be discovered and fixed.

d. Testing depends on context. No two systems are the same and therefore, cannot be

tested in the same way. Volume and time for the testing to be conducted for a software

product must be defined individually for each system depending on complexity, requirement,

and time to market.

1.4 Goals & Major Thesis Contributions

The thesis focuses majorly on the following topics and areas:

• Software Testing & GA

• Development of ―Genetic Algorithm Based‖ ―Test Data Generators‖ (GAB TDG)

• Comparison of ―GA Based Test Data Generators (GAB TDG)‖ & ―Random

Algorithm

 Based Test Data Generators (RAB TDG)‖

It can be observed that our primary goal is to understand Genetic Algorithm (GA) and how it

is an efficient algorithm to refine automated test cases when compared with Random

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 5

algorithm (RA). To accomplish this goal, we intend to build a tool which will take test cases

as input and provide comparative analysis of Fitness function values of GA and RA.

1.5 Organization of Thesis

The rest of the thesis is organized as follows:

Chapter 2 discusses about different software testing techniques. It also focuses on different

test adequacy criteria. The chapter also gives the introduction about Genetic Algorithms. The

chapter presents a set of attributes for evaluating GA-based test data generators (BTDG).

Chapter 3 discusses first, about the design and implementation of the tool whose objective is

to generate the fitness function values for the test cases. Secondly, the chapter discusses about

the logic in terms of flowchart that is being used to decide the attribute of GA and next action

to be performed. Lastly, a use case is discussed by using Genetic Algorithm based testing tool

which refines the tests cases in an automated fashion.

Chapter 4 discusses on Genetic Algorithm approach which refines and selects effective test

cases. Research has been done to compare the efficiency of generated test cases using GA

and RA. The chapter also focuses on the detailed comparison result of GA and RA based on

Fitness function values.

Chapter 5 presents the scope of the tool, conclusions of the thesis and future-work to be

conducted.

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 6

Chapter 2

RELATED WORK & RESEARCH

This chapter discusses various software testing techniques which are being used widely to

make software product stable and fault free. The main objective of software testing is to

increase software product quality and reliability [1] to make minimal software product error.

This chapter also discusses about the introduction of GA. The chapter presents a set of

attributes for evaluating GA-based test data generators. The following sections describe the

brief introduction about various software testing techniques.

2.1 Introduction

This chapter explains basic terminology regarding all the techniques and the differences

among them. It also discusses that attributes of GA provides a better mechanism to refine test

cases and hence proved to be useful in software testing.

2.2 Software Testing Techniques

This section discusses:

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 7

• Static Testing and

• Dynamic testing

2.2.1 Static Testing

The static testing is conducted with the help of various activities like mere review of software

product (checking out source code and the comments inserted in the code), walkthroughs (the

developer walkthroughs the software product and helps reviewers to understand the flow of

the source code of the product), inspections (it is more formalized approach as compare to

walkthroughs & reviews). Static testing is majorly dependent on the reviewer‘s expertise and

experience in the related domain.

Typical static testing methods are:

• Code inspections

• Code walkthroughs

• Desk checking

• Code reviews

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 8

2.2.2 Dynamic Testing

Dynamic testing is used to test dynamicity of the software product and can be done when the

software product is in running condition [6]. It checks the dynamic behaviour of the source

code of the software product [4].

Another categorization for software testing is:

• Black-box Testing

• White-box Testing

2.2.3 Black Box Testing

In black box testing, a software product is considered as a black box and its implementation

logic, structure and intelligence is not considered during testing phase. The only objective is

to provide input parameters and to take output of the software product with respect to given

inputs. During black box testing inputs/ output are analyzed as shown in below figure 2.1.

Below figure indicates Black-Box testing structure along with input and output signals [6].

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 9

Figure 2.1: Black-Box Texting

Software Product

Considered as

Black-Box

Output Input

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 10

2.2.4 White Box Testing

As against black box testing, White-box testing executes by considering internal structure,

flow of the source code, intelligence of the software product. It is therefore termed as glass

box testing. As, all paths available in the source code have to be traversed for effective

testing, it is also called as logic-coverage testing. White Box testing considers statement

coverage, path coverage, condition coverage in the source code for efficient testing.

2.3 Genetic Algorithms Based Test Data Generator (BTDG)

The term genetic algorithm, almost universally abbreviated nowadays to GA, was first used

by John Holland, whose book ―Adaptation in Natural and Artificial Systems‖ of 1975 was

instrumental in creating something which is now a flourishing field of research and

application that goes beyond the original GA [7]. Many people now use the term evolutionary

computing or evolutionary algorithms (EAs), in order to cover the developments of the last

10 years [8].

However, it is probably fair to say that GAs in their original form encapsulate most of what

one needs to know. Holland‘s contribution and influence in the development of the topic has

been very important, but several other scientists with different backgrounds were also

involved in developing similar ideas [8]. In 1960s in Germany, Ingo Rechenberg and Hans-

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 11

Paul Schwefel developed the idea of the Evolutionsstrategie (in English, evolution strategy),

while also in the 1960s Bremermann, Fogel and others in USA implemented their idea for

what they called evolutionary programming [9]. The common thread in these ideas was the

use of mutation and selection—the concepts at the core of the neo-Darwinian theory of

evolution. Although some promising results were obtained, evolutionary computing did not

really take off until the 1980s. Not the least important reason for this was that the techniques

needed a great deal of computational power [10].

The term Genetic Algorithm has its origin in the Biological Sciences. It works on the famous

Darwins Theory which emphasizes on the survival of the fittest. The work presented here

emphasizes on using the genetic algorithm with modified APBC as fitness function to search

for the fittest candidate (a test case sequence) [11].

Genetic algorithm explains the notion of evolution. The fittest candidates in a population are

carried to the next generation of population. The Genetic Algorithm is a heuristic search [12].

The input of the algorithm is a collection of some permutations of the test suite and output of

the algorithm is a prioritized test case sequence. The figure 2.2 below gives an overview of

the working of Genetic algorithm [8].

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 12

Figure 2.2: Genetic Algorithm Cycle

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 13

The following sections explain the various phases of genetic algorithm [13]. The genetic

algorithm has four phases primarily Initialization, Evaluation, Selection, Breeding (Crossover

and Mutation) [14]. These phases are explained below.

Genetic Algorithms, In short with evolution strategies and evolutionary programming,

Holland‘s original research objective was to formally study the adaptation trend.

Genetic Algorithms have been interesting area of research in many disciplines. It was

published and now days very popular. Researchers are growing rapidly. It indicates this is an

efficient and quality method to do same. Some applications of Genetic Algorithm are:

• Optimization,

• Testing of the software programs,

• Automatic programming,

• Machine learning and social systems etc. [11].

Among the features owned by Genetic Algorithms, that considered search procedures do not

have [13]:

• Direct manipulation of solution to a problem

• Search from a population

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 14

• Search via sampling

• Search using stochastic operators

The following sections explain the various phases of genetic algorithm which are used during

software testing [13]. The genetic algorithm has various phases primarily Initialization,

Evaluation, Selection, Breeding (Crossover and Mutation) a shown in below figure 2.3 [14].

Figure 2.3. Genetic Algorithm: Phases

 These phases are explained below [10]:

Genetic Algorithm

Initialization Evaluation & Selection

Breeding

(Crossover and Mutation)

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 15

• INITIALIZATION

The first phase focuses on initializing the population and it is important to identify the

candidate solutions for a problem and the way they are encoded in the population. Brief

description of various strategies for encoding is given below [9].

 Binary Encoding: In this a chromosome is usually represented as a string of 0‘s and

1‘s. This had been the most commonly used form of encoding strategy mainly because of its

simplicity. The binary digits usually represent presence or absence of some property in the

chromosomes of the string, for instance the knapsack problem uses this kind of encoding [9].

 Permutation Encoding- A candidate encoded using this strategy is represented as a

sequence of numbers which usually denotes a permutation [15].

 Value Encoding : In this a chromosome is represented using a string of values like

real numbers, names, complicated objects, etc. for instance the problem of finding the

optimal size for the various files in the cloud network uses this kind of encoding [14].

 Tree Encoding: In this a chromosome is represented as tree with objects as functions,

commands or operators in a programming language, etc. The problem using this kind of

encoding is to find a mapping from given user inputs to defined outputs. Different techniques

are applied to randomly generate some candidates. The convergence of the algorithm depends

upon these candidates, better the candidates results in faster the algorithm converges [9].

• EVALUATION

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 16

A fitness function is used to evaluate each of the candidates in the current population under

Genetic Algorithm. There are several fitness criteria that have been proposed in the prior art

for the purpose of test case prioritization [11].

• SELECTION

Few candidates are selected on the basis of their fitness function under Genetic Algorithm.

These are propagated to the next generation intact or their offspring, created after breeding,

are propagated. Several prior art methods have been proposed for selecting the good

candidates during selection process. The candidate that is more fit occupies a larger area of

the wheel so that it‘s chances of getting selected is higher. In order to select N candidates, the

wheel is rotated N times under Genetic Algorithm [9].

• CROSSOVER

Crossover is a breeding process. This operator is used to recombine two individuals under

Genetic Algorithm. During crossover process, recombination is used to generate changed

entities in the consecutive groups. There shall be no new individuals forming during

crossover. For crossover, novel entities are shaped by swapping material under Genetic

Algorithm [9]. The two crossover-operation entities are reflected as parental individuals. The

consequential entities are reflected as off-springs. However this is not a matter of serious

concern.

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 17

• MUTATION

A genetic operator called as Mutation is used to preserve genetic diversity. It holds genetic

diversity from one generation of a population of genetic algorithm chromosomes to the next.

It is analogous to biological mutation. Random mode for genetic search is used with Mutation

to augment material. Mutation performance basically depends on Pm Mutation Probability.

The process of Mutation causes two test cases in the offspring produced by crossover to be

exchanged and this produces diversity in the population [12]. Mutation Operator provides

benefit of fast searches and it reduces the search time [14].

Genetic Algorithms have been used extensively in the problem area where there are many

variant are present. GA offers efficient search mechanism and it works by calculating a

fitness function [9]. GAs are now been used in wide variety of applications and problems.

GA‘s are much better than conventional algorithms as it improves automated test data

generation [11].

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 18

Chapter 3

ANALYSIS OF DEVELOPED TOOL

The chapter, firstly, discusses about the testing tool in detail with respect to design and

implementation. Functionality of the tool has been described with the help of series of

flowcharts. Secondly, use case diagram has been discussed to showcase interaction of

tester and software developer with the tool. Thirdly, sample generations have been

discussed to showcase the GA based fitness value functions with respect to the given

input.

3.1 Design & Implementation of Tool

GA offers better test case selection results when compared to other search algorithms and

can work with complex real time situations. It can easily handle large population of input

variables. GA offers better flexibility, time efficient ways to come to a solution of a given

problem [11].

3.1.1 Flow Chart: Genetic Algorithm

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 19

There are majorly two operators on which GA works (1) Mutation and (2) cross-over.

Input to GA algorithm is a population of variables. Generally GA is applied where

member of variable is large. Upon input of population, these two operators are applied to

the population and the resultant value is compared to a fitness value. If the resultant value

is more than fitness value, it gets selected and passed on to next generation else it is

dropped out. Generating test data by using Genetic Algorithms reduces the processing

time and effort and overall test data quality gets enhanced [12].

The below Figure 3.1 indicates a flow chart which is a broad level overview of the

functionality flow of the pool. It shows step by step working of the toll in order to achieve

optimal solution in a real time environment. As the flow chart shows, a fitness value has to

be calculated. Following three states have been formed [14]:

• MUTATE

• CROSSOVER

• SATISFIED

If the normalized fitness value is less than 0.3, then the operation is set to ―MUTATE‖. If

the normalized fitness is less or equal to 0.7, then the operation is set to ―CROSSOVER‖.

If the normalized fitness is greater than 0.7, then the operation is set to ―SATISFIED‖.

Once the value is ―SATISFIED‖, it is passed on to next generation level [15].

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 20

START

Get Initial
Test Cases

Add test Cases to
Generation Table

Calculate fitness value and
normalized Fitness

Is
Each Tescase

Covered?

Is
normalize
Fitness <

0.3

Set Operation to
MUTATE Is normalize

fitness <= 0.7

Set Operation to
CROSSOVER

Set Operation to
SATISFIED

NO
YES

YES NO

YES
NO A

B

Figure 3.1. Flow chart for Genetic Algorithm Used

The below Figure 3.2. indicates a flow chart which is a broad level overview for checking

test covered or not, mutation or crossover possible. The two common operations

Crossover and Mutation are performed to produce efficient solution for a target problem

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 21

under Genetic Algorithm Procedure [7].

A

IS
Test cases
Covered?

Is
Operation type
= MUTATION

Mutate CrossOver

NO

YES

NO

YES

B

Is
 Mutation or
Cross Over
Possible?

END

Figure 3.2. Flow chart Used for Genetic Algorithm

 The two common operations that are performed to produce efficient solution for a target

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 22

problem after selection operation are Crossover and Mutation under Genetic Algorithm

Procedure [7].

3.1.2 Crossover

Crossover works on two chromosomes. There are different techniques, through which

crossover can be carried out. Few of different techniques are described below [11]:

• Single point crossover: during this task one crossover point is selected, it means

only one position is selected. One portion of binary string from one parent is copied and

second portion of binary string from second parent is copied. Example is below [14]:

Table 3.1: Single Point Crossover

C1 00101000111

C2 01101011011

Output

(Single point crossover)

001010 11011

Two point crossover: during this task two crossover points are selected, it means two

positions are selected. One portion of binary string from one parent is copied and two

copies of the other two portions of binary string from second parent are copied. Example

is below [14]:

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 23

Table 3.2: Two Point Crossover

C1 010 111 0011 00

C2 101 001 1111 10

Output

(Two point crossover)

010 001 1111 00

Crossover flow chart is shown in below figure 3.3 under Genetic Algorithm procedure,

during this phase two test cases are selected and converted to the binary strings. The

positions are selected in a random fashion and positions are swapped [14].

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 24

Figure 3.3. Flow chart for Cross Over

3.1.3 Mutation

As discussed earlier, GA majorly have two operations Mutation and crossover. In the

developed tool, both the operators have been used extensively. Mutation generally can be

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 25

one of the two types, normal mutation or weighted mutation. But is our tool, we have used

general mutation [14]. Mutation happens once crossover process has been accomplished.

In mutation any one of the gene is randomly selected (selected by random function) and its

bit is flipped. This means if a bit is originally ‗0‘, then as a result of mutation, it is flipped

to ‗1‘ and the bit is flipped to ‗0‘ if the gene is ‗1‘ originally. Mutation is generally based

on mutation probability [15]. Below is an example:

Table 3.3: Mutation

Chr. 1 00 101 0 100 111 01

(Flip)

Chr. 2 00 101 1 100 111 01

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 26

Below figure 3.4 Shows flow chart for mutate under Genetic Algorithms.

Figure 3.4. Flow chart for Mutate

3.1.4 Fitness value

A fitness function under Genetic Algorithm procedure for test data generation is

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 27

established. The two test cases are selected as shown in below figure 3.5 based on the

fitness function. The fitness values are compared to decide best test cases. This iterative

process stops when the Genetic Algorithm finds optimal test data [9].

Figure 3.5. Flow chart for Case Selection

3.2 Use Case Diagram

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 28

Genetic Algorithm is very effective and beneficial for tester and developer. Following is

the general use case diagram (figure 3.6.) which shows how a tester and an algorithm

developer are interacting with the system [14]. The system includes various steps:

• Writing priority function

• Provide Initial Test cases

• Provide number of Test cases

• Provide number of inputs for priority function

• Changes in Algorithm

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 29

Figure 3.6. Flow chart for Use-Case

3.3 Tool Output

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 30

This is phase 1 output of the tool. Normalized fitness values are generated during all

iterations. Based on normalized fitness values, decision making is done for the next

operation o be carried out. Basic rule is [13]:

• If normalized fitness value is less than 0.3, mutation operation is performed

• If the value of normalized fitness lies between 0.3 and 0.7, crossover operation

is performed

• If the value of normalized fitness value is more than 0.7, then it is considered as

selected

Below are the few generation tables and screen shoots that are generated as output of the

tool when there are four sets of input {(2, 5), (5, 3), (2, 8), (8, 1)} are given to the tool.

 Below are some screen shots of this tool output in terms of generation. The below figures

indicates the generations 1 to 4 showing chromosomes, Inputs, fitness, normalized fitness

and operations [12].

3.3.1 Generation 1

The below figure 3.7 indicates the generation 1 showing chromosomes, Inputs, fitness,

normalized fitness and operations.

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 31

Figure 3.7. Generation 1

3.3.2 Generation 2

The below figure 3.8 indicates the generation 2 showing chromosomes, Inputs, fitness,

normalized fitness and operations.

Figure 3.8. Generation 2

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 32

3.3.3 Generation 3

The below figure 3.9 indicates the generation 3 showing chromosomes, Inputs, fitness,

normalized fitness and operations.

Figure 3.9. Generation 3

3.3.4 Generation 4

The figure 3.10. below indicates the generation 4 showing chromosomes, Inputs, fitness,

normalized fitness and operations.

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 33

Figure 3.10. Generation 4

3.3.5 Experimental Settings

The following sets of parameters were considered for test data generation using GA [11].

• Fitness function

• Coding Binary String

• Length of the string in the chromosome

• Population Size (N)

• Selection method

• Two-point crossover and (pc)

• Mutation probability (pm)

• Stopping Criteria; number of generation

First set of test data was created randomly. The test Data that we derived based on the set

of basis paths depends on the programs with an aim to traverse executable statement in the

program. Fitness function used was derived on the basis of branch distance [12].

The input variables were represented in binary form and considered as optimization

problem. One of the qualities of using Genetic Algorithms is search and optimization

process. In way that, they are close to the input domain [10].

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 34

3.3.6 Output

The approach followed for test data creation for path testing using GA [11]. Following

four basic steps were processed viz.

• Controller Flow Graph Building

• Target Path Range

• Test Data creation and Performance

• Test Result Appraisal

Below figure 3.11. indicates test data fitness value range. User input and the classification

of individual chromosome into their respective classes based on fitness value [11].

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 35

Figure 3.11. Test Data Fitness

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 36

3.3.7 Priority Function

Below figure 3.12. indicates priority function used in this tool.

Figure 3.12. Priority Function

3.3.8 User Input

Below figure 3.13. indicates user input used in this tool.

Figure 3.13. User input

3.4 Analysis

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 37

GA based tool has been developed, analyzed and based on the research study; it is shown

that the fitness functions under Genetic Algorithm achieve optimum test data. Genetic

Algorithms concentrates, exploits information, prevents the search from stagnating.

Further other advantage are population of solutions, create new solutions with improved

performance [12]. The major merit of Genetic Algorithms is to perform software program

testing having automation, easy to get results and quality output [11].

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 38

Chapter 4

GENETIC ALGORITHM & RANDOM ALGORITHM

This chapter firstly, discusses the second phase of the developed tool, where the comparison

of GA and RA is presented. Implemented pseudo code of GA and RA has been discussed in

detail. Secondly, a set of test cases are given as input to the tool and sample generation data is

displayed. Thirdly, comprehensive table, showing the fitness value comparison for all

iterations for GA and RA has been discussed. Lastly, various graphical representations for the

comparison of fitness values generated by GA and RA have been discussed and presented

[12].

4.1 Introduction

As discussed in last chapter, Genetic Algorithm is one of the widely used search based

Algorithm which takes two genetic operators mutation and crossover as input. On the other

hand, random Algorithm takes only one operator mutation and keeps on mutating the

provided test cases until all test cases are not satisfied [10].

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 39

Figure 4.1 indicates various steps for generating normalized test cases using GA. The test

cases are generated and optimized using Genetic Algorithm and Random Algorithm and

comparison is done and comparison result is analyzed [8].

Figure 4.1. Flow Diagram

 In our research, we applied Genetic Algorithm and Random Algorithm techniques for

Comparison

Result

Test cases

Generation

Genetic &
Random
Algorithms

Analysis

Test cases

Optimization

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 40

refining the provided test cases. The refined test case results are analyzed to find out the best

option for the test data [11].

4.2 Comparison between Genetic Algorithm and Random Algorithm

4.2.1 Genetic Algorithm

Genetic Algorithm has two genetic operations – mutation and crossover. Mutation is

performed on one tastcase at a time. Crossover is performed using two test cases. For

selecting two test cases for crossover operation, SELECTION Algorithm is followed [8].

Genetic Algorithm: Steps:

1. Take initial provide Test-cases.

2. Add Test cases to GENERATION TABLE.

3. Calculate Fitness value and normalized fitness according to provided fitness function.

4. If Normal Fitness <0.3 ==> MUTATION (involves one gene, i.e., test-case)

 If Normal Fitness <= 0.7 ==> CROSSOVER (involves two genes, i.e., test-cases)

 Otherwise, SATISFIED, i.e., no genetic operation is required.

5. If NO. OF ITERATIONS is complete or each test-case of current generation is

satisfied, finish. Otherwise, GOTO 2.

MUTATION: Steps

(Involves one gene, i.e., test-case)

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 41

1. Convert the test case into a binary string.

2. Randomly pick a position in the bit string.

3. Switch the left and right substrings along the selected position.

CROSSOVER: Steps

(Involves two genes, i.e., test-cases)

1. SELECT two test cases from the available test cases in the generation.

2. Convert the two test cases into two binary strings.

3. Randomly select a position in the binary string.

4. Swap right substrings of the two binary strings at the selected position.

SELECTION: Steps

Refer use case Diagram in the previous chapter.

4.2.2 Random Algorithm

Random algorithm has only one operation – mutation. It keeps on mutating the provided test

cases until all the test cases are not satisfied. We can limit the execution duration of random

algorithm by declaring an iteration count [14].

Random Algorithm: Steps:

1. Take initial provide Test-cases.

2. Add Test cases to GENERATION TABLE.

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 42

3. Calculate Fitness value and normalized fitness according to provided fitness function.

4. Perform MUTATTION.

5. If NO. OF ITERATIONS is complete or each test-case of current generation is

satisfied, finish. Otherwise, GOTO 2.

Below are some screen shots of this tool output in terms of generation for random

algorithm. The below figures indicates the generations 1 to 4 showing chromosomes,

Inputs, fitness, normalized fitness and operations [12].

4.2.2.1Generation 1

The below figure 4.2 indicates the generation 1 showing chromosomes, Inputs, fitness,

normalized fitness and operations.

Figure 4.2. Generation 1

4.2.2.2 Generation 2

The below figure 4.3 indicates the generation 2 showing chromosomes, Inputs, fitness,

normalized fitness and operations.

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 43

Figure 4.3. Generation 2

4.2.2.3 Generation 3

The below figure 4.4. indicates the generation 3 of the tool to show chromosomes, Inputs,

fitness, normalized fitness and operations.

Figure 4.4. Generation 3

4.2.2.4 Generation 4

The below figure 4.5 indicates the generation 4 showing chromosomes, Inputs, fitness,

normalized fitness and operations.

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 44

Figure 4.5. Generation 4

4.2.3 Genetic Algorithm & Random Algorithm: Generation Comparison

Below table (table 4.1 and 4.2) shows comparative table between Genetic Algorithm and

Random Algorithm for various generation outputs.

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 45

Table 4.1: Genetic Algorithm: Generation

GENERATION Genetic Algorithm

GENERATION

-> 50

GENERATION

-> 100

GENERATION

-> 150

GENERATION

-> 200

GENERATION

-> 250

Table 4.2: Random Algorithm: Generation

GENERATION Random Algorithm

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 46

GENERATION

-> 50

GENERATION

-> 100

GENERATION

-> 150

GENERATION

-> 200

GENERATION

-> 250

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 47

4.3 Experimentation Results & Comparison Charts

A comparative performance assessment has been discussed by showing below the

comparison of the fitness values generated by GA and RA for all iterations.

4.3.1 Total Fitness Value Comparison

The below table (table 4.3 & table 4.4) indicates 250 fitness values that are generated by GA

and RA. Total 250 iterations have been shown.

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 48

Table 4.3: Total Fitness Value Comparison (part a)

S.No. GA RA S.No. GA RA S.No. GA RA S.No. GA RA
S.No. GA RA

1 49 49 26 118 18 51 146 44 76 194 32
101 180 16

2 87 102 27 150 26 52 146 45 77 210 37
102 196 60

3 87 114 28 156 95 53 126 33 78 210 31
103 208 54

4 59 122 29 131 95 54 126 81 79 188 25
104 144 75

5 67 74 30 151 46 55 129 113 80 221 65
105 144 86

6 58 120 31 126 40 56 122 130 81 191 97
106 150 106

7 56 121 32 154 48 57 126 62 82 154 71
107 160 108

8 57 42 33 158 71 58 126 41 83 154 79
108 160 43

9 81 98 34 158 100 59 134 26 84 158 85
109 151 43

10 114 13 35 158 97 60 126 55 85 160 72
110 147 6

11 137 48 36 179 67 61 138 76 86 158 10
111 151 2

12 125 60 37 174 74 62 162 36 87 144 50
112 173 68

13 125 74 38 184 42 63 168 47 88 144 50
113 152 66

14 126 98 39 174 33 64 192 48 89 144 54
114 149 66

15 114 109 40 126 35 65 208 33 90 149 8
115 149 52

16 115 103 41 130 21 66 208 43 91 149 54
116 149 60

17 115 103 42 108 36 67 173 56 92 159 42
117 149 52

18 125 66 43 108 53 68 201 109 93 159 42
118 150 98

19 134 30 44 108 97 69 193 85 94 165 42
119 152 98

20 138 3 45 120 84 70 209 71 95 153 50
120 152 120

21 138 1 46 120 76 71 189 64 96 146 50
121 152 58

22 110 3 47 120 70 72 201 36 97 144 70
122 156 114

23 134 9 48 147 48 73 189 52 98 144 82
123 204 90

24 134 13 49 130 48 74 152 70 99 144 70
124 184 97

25 134 9 50 134 48 75 168 70 100 144 70
125 174 118

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 49

Table 4.4: Total Fitness Value Comparison (part b)

S.No. GA RA S.No. GA RA S.No. GA RA S.No. GA RA
S.No. GA RA

126 174 34 151 183 10 176 174 61 201 147 50 226 145 20

127 174 60 152 195 79 177 150 39 202 165 63 227 144 48

128 170 67 153 180 29 178 150 26 203 159 38 228 160 74

129 182 90 154 144 39 179 148 70 204 144 24 229 163 43

130 164 111 155 156 22 180 150 70 205 164 26 230 163 16

131 180 63 156 180 27 181 162 38 206 148 10 231 171 18

132 194 52 157 173 38 182 148 30 207 148 10 232 179 34

133 156 54 158 175 31 183 162 28 208 144 18 233 157 40

134 170 10 159 181 101 184 163 14 209 144 81 234 148 44

135 166 27 160 177 108 185 162 68 210 144 87 235 144 73

136 165 26 161 177 110 186 150 58 211 148 87 236 147 66

137 163 80 162 149 68 187 151 77 212 164 103 237 149 70

138 159 52 163 149 84 188 151 67 213 180 63 238 162 85

139 163 34 164 151 60 189 149 73 214 180 37 239 180 69

140 162 33 165 144 58 190 145 97 215 156 24 240 180 59

141 164 34 166 144 62 191 145 86 216 168 34 241 154 47

142 164 46 167 144 91 192 147 117 217 168 28 242 148 43

143 152 59 168 168 64 193 159 77 218 171 25 243 147 81

144 146 17 169 172 56 194 156 39 219 199 13 244 147 41

145 146 16 170 172 57 195 174 52 220 185 63 245 159 33

146 146 38 171 156 45 196 150 89 221 178 66 246 159 33

147 146 28 172 176 37 197 157 85 222 178 52 247 159 69

148 154 32 173 164 41 198 157 45 223 150 48 248 159 98

149 154 20 174 150 43 199 151 26 224 152 0 249 167 57

150 167 20 175 172 40 200 151 25 225 149 0 250 173 80

Below Figure 4.6. shows the graphical representation of the Total Fitness Values for the

Genetic algorithm.

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 50

Figure 4.6. Total Fitness Values

 This unit considers the pool test cases. It selects out the highest mutation score test cases

under Genetic Algorithm procedure. Here we set major score as 95.0%. It is stored in the test

cases storehouse for future creations. Symbol displays the mutation score. Quality &

efficiency of test cases is improved [9].

The below figure 4.7 – figure 4.11 shows the graphs of the generated fitness value

comparison between GA and RA till varied number of iterations. As an observation, Genetic

Algorithm generated fitness value score high than random algorithm [6].

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 51

Figure 4.7. GA & RA (up to 51st Generation)

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Genetic Algo

Random Algo

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 52

Figure 4.8. GA & RA (up to 101st Generation)

0

50

100

150

200

250

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

Genetic Algo

Random Algo

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 53

Figure 4.9. GA & RA (up to 151st Generation)

0

50

100

150

200

250

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

Genetic Algo

Random Algo

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 54

Figure 4.10. GA & RA (up to 201st Generation)

0

50

100

150

200

250

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

Genetic Algo

Random Algo

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 55

Figure 4.11. Genetic Algorithm & Random Algorithm (up to 251st generation)

0

50

100

150

200

250

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

Genetic Algo

Random Algo

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 56

Chapter 5

CONCLUSION AND FUTURE WORK

This chapter focuses on summary of thesis chapters. It also discusses the conclusion of the

work done and scope. It also puts light on future research work in Genetic Algorithm Area.

The primary objective of this research is to study and analyze Genetic Algorithm as well as

―software test data generator‖. It also demonstrates its feasibility with a use case. In this

research, it is considered to generate test cases automatically by using Genetic Algorithms

based test generator. The Genetic Algorithms and random algorithms are analyzed with the

developed tool.

5.1 Summary

During this research test data generation using Genetic Algorithm is presented. A tool is

developed for study and analysis purpose. The proposed, developed Genetic Algorithm

testing tool is used with different types of software systems/ small programs with different

complexity.

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 57

The test data results are also compared with Random Algorithm to show that Genetic

Algorithms can be used effectively in automatic software testing to generate automatic test

data for unit testing or system testing. Genetic Algorithm performance is checked and

analyzed for test cases. We have used approach against the Random algorithm technique. We

concluded that Genetic Algorithm approach generates quality test cases.

The research report has resulted in the following as chapter wise:

• Chapter 2: Genetic Algorithm delivers the interpreted result as problem solution by

considering progressive GA. The GA demonstration can be stretched into higher numbering

system. Numerous progressive GA‘s operatives have been explored.

• Chapter 3: It summarizes study, development and analysis for Genetic Algorithm

constructed test data generator for the developed software. The main work of research is to

study and analyze GA-constructed test data generator for a defined software use case.

 Further, this chapter demonstrates feasibility with a use case with automated testing tool.

During this research, the genetic algorithms are reflected to produce selected test cases

automatically. The foremost excellence of Genetic Algorithms in software program testing is

its automation. GA produces easy results along with quality test cases. This research

discusses that the GA reduces the long Testing Time (TT) by generating selected automatic

test cases using Genetic Algorithms.

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 58

• Chapter 4: The evolutionary algorithms like Genetic Algorithms and random

algorithms are implemented and compared for generating test cases for a software program.

The test cases are optimized based on path coverage, mutation score as fitness values. Hence,

comparatively Genetic Algorithm produces nearly optimum test cases.

5.2 Scope

The work provided in the thesis focuses mainly on the refinement of the test cases using

fitness function. Two algorithms: - GA and RA have been used and implemented to refine

test cases. Comparison of fitness function using both algorithms has been shown in tabular

and graphical representation. The work concludes that GA offer better result by generating

more refined test cases as compared to RA. Decision making for using GA for generation of

test cases can be made which eventually results in resource, cost and time saving.

5.3 Tool limitation

The tool does only:-

1. Refinement: This algorithm does not ‗produce‘ new test-cases. It only refines already

provided ones.

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 59

2. Fitness Function: Currently the fitness function is hard coded in the tool. If, we have

to use and apply another Fitness function value, then accordingly the tool source code

has to be modified.

3. Input: The purpose of the tool is to show the comparison between GA & RA. So,

currently input has been fixed. In future, the tool will be extended to have user

defined input at run time.

 5.4 Future work

Various Search methods for testing which are based on biological systems are developed for

software testing. Such methods are developed to get an optimum problem-solution.

1. Crossover operation has to be changed to increase quality of test case in each

generation. Currently, Single point crossover operation is being used in the too. In

Future, two point crossover OR uniform crossover will be used to have better quality

test cases.

2. Method of selection before crossover can be optimized to retain and create test-cases

with better fitness function in each new generation.

3. Fitness function selection can be enhanced by developing criteria for fitness function.

4. The parameters of the genetic algorithms such as chromosomes representation,

genetic operators, and initial population can be improved to be suitable according to

some criteria.

5. Provision for dynamic input to the tool will be developed.

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 60

Publications

[1] Malhotra, R., Gupta, A., ―Study & Analysis for Software Test-Data Generation using

Genetic Algorithm for a Use Case‖, (Under IEEE International Conference submission)

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 61

References

[1] Aggarwal, K.K, Singh, Y., ―Software Engineering‖, New Age International Publishers,

Second ed., 2006.

[2] Kaner, C., ―Exploratory Testing,‖ Quality Assurance Institute Worldwide Annual

Software Testing Conference Florida Institute of Technology, Orlando, FL, 2006

[3] H. H. Sthamer, J. Wegener, and A. Baresel, ―Using evolutionary testing to improve

efficiency and quality in software testing‖, In Proceedings of the second Asia-Pacific

Conference on Software Testing Analysis & Review, Australia, 22-24th July 2002

[4] S. Kanmani & P. Maragathavalli, ―Search-based software test data generation using

evolutionary testing techniques‖, International Journal of Software Engineering (IJSE),

Volume (1): Issue (5), 2012

[5] R. Ferguson, R. and B. Korel, ―The chaining approach for software test data generation‖,

ACM Transactions on Software Engineering and Methodology, January 1996

[6] P. McMinn, ―Search-based software test data generation: a survey‖, Softw. Test. Verif.

Reliab., John Wiley & Sons, Ltd., 2004

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 62

[7] Rathore, A. Bohara, R. Gupta, L. Prashanth, P. R. Srivastava ―Application of Genetic

Algorithm and Tabu Search in Software Testing‖, COMPUTE 2011, March 25-26,

Bangalore, Karnataka, India

[8] M. S. Mohamad, S. Deris, S. M. Yatim and M. R. Othman, ―Feature selection method

using genetic algorithm for the classifcation of small and high dimension data‖, First

International Symposium on Information and Communications Technologies. October 7-8,

2004. Putrajaya, Malaysia

[9] Y. Suresh and S. Rath, ―Genetic algorithm based approach for test data generationin basis

path testing‖, The International Journal of Soft Computing and Software Engineering

[JSCSE], Vol. 3, No. 3, The Proceeding of International Conference on Soft Computing and

Software Engineering 2013 [SCSE‘13], San Francisco State University, CA, U.S.A., March

2013

[10] P. R. Srivastava1 and T. Kim, ―Application of genetic algorithm in software testing‖,

International Journal of Software Engineering and Its Applications Vol. 3, No.4, October

2009

[11] R. P. Pargas, M. J. Harrold and R. R. Peck, ―Test data generation using genetic

algorithms‖, Software Testing Verification and Reliability, Vol. 9, pp. 263-282, 1999

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 63

[12] D. J. Berndt, and A. Watkins, ―Investigating the performance of genetic algorithm-based

software test case generation‖ Eighth IEEE International Symposium on High Assurance

Systems Engineering (HASE'04), pp. 261-262, University of South Florida, March 25-26,

2004

[13] J. C. Lin, and P.L. Yeh, ―Using genetic algorithms for test case generation in path

testing‖, 9th Asian Test Symposium (ATS‘00). Taipei, Taiwan, December 4-6, 2000

[14] Langdon, W.B., Harman, M., Jia, Y. ―Efficient multi-objective higher order mutation

testing with genetic programming‖. Journal of Systems and Software, 2010, ACM, Vol 83

No. 12, p 2416-2430

[15] Thengade, A., Dondal, R., ―Genetic Algorithm – Survey Paper‖. MPGI National Multi

Conference 2012 (MPGINMC-2012), Proceedings published by International Journal of

Computer Applications

[16] N. Narmada and D. P. Mohapatra, ―Automatic test data generation for data flow testing

using particle swarm optimization‖, Communications in Computer and Information Science,

Vol. 95, No. 1, pp. 1-12, 2010

Software Test Data generation using Genetic Algorithm

Ashish Gupta Page 64

