
Investigating the Effects of Refactoring on Software

Maintainability

A dissertation submitted in the partial fulfillment for the award of Degree of

Master of Technology

In

Software Technology

by

Sachin Gaur (Roll no. 2K11/ST/17)

Under the guidance of

 Dr. Ruchika Malhotra

DEPARTMENT OF SOFTWARE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

BAWANA ROAD, DELHI

2014

Department of Software Engineering, Delhi Technological University Page ii

DECLARATION

I hereby want to declare that the thesis entitled “Investigating the Effects of Refactoring on

Software Maintainability” which is being submitted to the Delhi Technological University, in

partial fulfillment of the requirements for the award of degree in Master of Technology in

Software Technology is an authentic work carried out by me. The material contained in this

thesis has not been submitted to any institution or university for the award of any degree.

Sachin Gaur

Department of Software Engineering

Delhi Technological University,

Delhi.

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page iii

CERTIFICATE

DELHI TECHNOLOGICAL UNIVERSITY

BAWANA ROAD, DELHI-110042

Date:

This is to certify that the thesis entitled “Investigating the Effects of Refactoring on Software

Maintainability” submitted by Sachin Gaur (Roll Number: 2K11/ST/17), in partial

fulfillment of the requirements for the award of degree of Master of Technology in Software

Technology, is an authentic work carried out by him under my guidance. The content embodied

in this thesis has not been submitted by him earlier to any institution or organization for any

degree or diploma to the best of my knowledge and belief.

Dr. Ruchika Malhotra ,

Asst. Professor, Department of Software Engineering ,

Delhi Technological University, Delhi-110042

Department of Software Engineering, Delhi Technological University Page iv

ACKNOWLEDGEMENT

I would like to take this opportunity to express my appreciation and gratitude to all those who

have helped me directly or indirectly towards the successful completion of this work.

Firstly, I would like to express my sincere gratitude to my guide Dr. Ruchika Malhotra,

Assistant Professor, Department of Software Engineering, Delhi Technological University,

Delhi whose benevolent guidance, encouragement, constant support and valuable inputs were

always there for me throughout the course of my work. Without her continuous support and

interest, this thesis would not have been the same as presented here.

Besides my guide, I would like to thank Mr. Nakul Pritam, PhD. Scholar DTU for his valuable

suggestions. I would also like to thank my wife, Ms. Shikha Sharma for her continuous

motivation and understanding. Also I would like to extend my thanks to the entire staff in the

Department of Software Engineering, DTU for their help during my course of work.

SACHIN GAUR

ST 2K 11/ 17

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page v

ABSTRACT

Software evolution is a term used for repeated modifications in a software system caused by

changing existing requirements, emerging new requirements or bug fixes. Refactoring is a

process where a code is restructured is such a manner that certain attributes of the code improve,

without having any effect on its external behavior. It improves the code design, making it easier

to be understood and to be extended and it becomes quicker if any complicated feature or system

is to be accommodated in it. The internal structure is improved. It removes bad smells from the

code, which essentially means getting rid of unclear, duplicate or complicated design problems.

There are a number of Refactoring techniques available. It has been observed that different

techniques have a different effect on various quality attributes of the code. Because each

technique has a varied effect on various codes, it is difficult for a designer to decide which

technique to opt for to get the desired effect. Each technique essentially has a different purpose

and effect.

This study intends to generate a heuristics on these techniques. This classification will be based

on the measurable effects that these Refactoring techniques have on various software quality

attributes. These heuristics will help the designer develop an understanding as to which

technique will change their code attributes in what manner and hence it will be easy for them to

predict the change that their software quality will undergo after a particular Refactoring

technique is applied to it.

Department of Software Engineering, Delhi Technological University Page vi

In this study, we take into consideration the effect of Refactoring on four software quality

attributes of software. This research focuses on presenting refactoring heuristics based on their

quantifiable outcome on software quality attributes which takes into account its internal and

external quality attributes. Also we have taken into consideration forty three Refactoring

techniques out of all those suggested by Martin Fowler in his catalog [1], in order to study their

effects on four software quality attributes namely Effectiveness, Flexibility, Reusability and

Extendibility and thus affecting the overall maintainability. Also QMOOD quality model has

been used to relate design measures to software quality attributes.

After a detailed logical analysis of these effects a heuristic has been generated which suggests

that which refactoring technique improves a specific software quality and which one is

susceptible to deteriorate it. Also which refactoring technique has no effect on it. Such heuristic

results have been validated by an industrial survey. The refactoring heuristics deduced from our

study was shared with a team of developers who work in real world industrial environment. They

were asked to pick and apply the refactoring technique as suggested by this study and share his /

her views on the same. They were then asked to fill up a survey form which pertained to the

changes in quality of the software after applying refactoring. The results received in this survey

are mostly in line with the observed heuristic data.

Overall, it is sure to help design engineers who have a particular design objective in their mind

to pick the most suited Refactoring technique which will drift the quality attributes of their

design towards the desired value. When any quality attribute needs to be changed then the most

fitting Refactoring technique can be applied.

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page vii

Table of Contents

Declaration ii

Certificate iii

Acknowledgement iv

Abstract v

Table of Contents vii

List of Tables x

List of Figures xi

Chapter 1

Introduction 1

 1.1 Software Evolution and Refactoring 2

 1.2 Motivation of Work 3

 1.3 Goals of the Thesis 4

Department of Software Engineering, Delhi Technological University Page viii

 1.4 Organization of the Thesis 5

Chapter 2

Literature Survey 7

Chapter 3

Refactoring Techniques 11

 3.1 Composing Methods 11

 3.2 Moving Feature Between Objects 13

 3.3 Organizing Data 15

 3.4 Simplifying Conditional Expressions 16

 3.5 Making Method calls simpler 16

 3.6 Dealing with Generalization 17

Chapter 4

Research Methodology 20

 4.1 Objectives 20

 4.2 Quality Model 22

 4.3 Design Metrics 25

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page ix

 4.4 Software Refactoring 26

Chapter 5

Analysis of Refactoring 30

 5.1 Establishing Refactoring Heuristics 30

 5.2 Correlation between Refactoring techniques and Quality Factors 38

 5.3 Impact analysis of refactoring on quality factors in statistical form 43

 5.4 Validation 44

 Chapter 6

Conclusion and Future work 45

 6.1 Conclusion 45

 6.2 Limitations and future work 46

References 48

Appendix A 52

Appendix B 53

Department of Software Engineering, Delhi Technological University Page x

List of Tables

Table No Table Name Page No

1. Relation between quality factors and design properties 24

2. The impact of Extract Class on design measures 28

3. Effect of Composing methods 31

4. Effect of moving features between objects 31

5. The effect of Organizing Data 32

6. The effect of Simplifying Conditional Expressions 33

7. The effect of Making Method Calls Simpler 34

8. The effect of Dealing with Generalizations 35

9. Categorization of measures depending upon effect of refactoring on them 37

10. Safe Refactoring techniques (Their effect on quality factors) 39

11. Unsafe Refactoring Techniques and their effect on Quality Factors 41

12. Statistics relating the effect of refactorings to quality factors 43

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page xi

List of Figures

Figure no Figure Name Page no

1. Extract Method 12

2. Inline Method 12

3. Replace Method with Method Object 13

4. Move Method 13

5. Extract Class 14

6. Inline Class 14

7. Replace Data Value with Data 15

8. Replace Array with Object 15

9. Decompose Conditional 16

10. Rename Method 16

11. Replace Parameter with Method 17

12. Pull Up Method 17

13. Push Down Method 18

14. Extract Sub Class 18

15. Flow chart for research methodology 21

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 1

CHAPTER 1

INTRODUCTION

Every developer would agree with two facts: first it is extremely difficult to write a perfectly

designed code in the first shot and secondly with changing times, the requirements from the

software change and thus the software quality needs to be modified. Here comes in

Refactoring. This activity of refactoring a code is basically making a succession of small

transformations in the code so that the internal quality of the code changes without disturbing

its external behavior. It is believed that Refactoring can positively impact the quality factors

of a software like its effectiveness, Reusability, Flexibility and so on. Refactoring is not a

magic wand and does all this improvement to the code by taking care of the bad smells of the

code, by eliminating bad bugs and by fixing flaws and getting rid of the irregularities of the

code. There is a very vast pool of Refactoring techniques available that can be intelligently

used by developer to achieve their design goals with minimum effort and risk. These kind of

changes are required to keep the software fit for the long run, to maintain it for a longer time.

Also this will keep the code from decaying. Also its complexity stays within human

acceptance range. There are a number of instances available that confirm that refactoring is

done in real world industrial environments for effective quality up gradation. But it has also

been observed that actually there is no definite comprehensive study available which

empirically shows a relation between refactoring and its impact on software quality of a

system. In our study here, we have attempted to address this problem of developers. We

Department of Software Engineering, Delhi Technological University Page 2

intend to put forward a refactoring heuristic which will guide software developers regarding

their choice of a Refactoring technique when they are looking to improve a particular

software quality. This Refactoring heuristic will not only suggest the most suitable

refactoring technique but will also warn them about those Refactoring techniques which

might actually cause some quality factor to deteriorate.

1.1. SOFTWARE EVOLUTION AND REFACTORING

Every developer faces a situation where he needs to have some changes in the software.

These changes are constantly required to generate a more suitable and cleaner code as

compared to the existing one. But while doing this it is extremely important to avoid

introducing any new bugs and there should be no side effects of the changes being made.

This is where refactoring techniques come in. These techniques ensure that required changes

are done with minimal introduction of bugs. As Fowler says [1] that refactoring is essentially

a procedure where the attempt is to bring about a positive change in the internal behavior of

the code, while taking care that these changes do not alter its external behavior at all. While

refactoring we do a number of small changes in the code and the cumulative effect of these

small changes can bring radical changes in the design of the code. Kent Beck gave a term

"bad smell" for all the flaws in the software that stop it from qualifying as good quality

software. Some examples of such bad smell can be:

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 3

 Duplicate code. This means that the same change has to be done at a number of

places.

 Bad organization of classes and methods. They can be either too small or too big.

 Loose coupling between structures.

 Too much or too little delegation.

Various Refactoring Techniques are used to remove such bad smells and introduce and

enhance good qualities in software. Refactoring has its own advantages such as

 It ensures that the code does not lose its structure because of being constantly

changed by the programmers (who generally do not know the complete design

objective)

 The readability of the code is enhanced. This is good both for the user and he

 programmer himself. The intention of the code is conveyed in an effective manner.

 Refactoring makes it easy to introduce new functions down the line and to maintain it.

 It removes bad smells in a very controlled manner, with no side effects.

A software has to regularly evolve to stay useful. New functionalities are regularly added to

the existing software to make it satisfying for new requirements.

1.2. Motivation of the work

Department of Software Engineering, Delhi Technological University Page 4

The need for Refactoring has its roots in the four fundamental principles of Software design.

These fundamental principles are as follows:

a. Improving the existing design. This implies that the improving the following

parameters - reliability, portability, efficiency, maintainability and usability.

b. Decreasing the complexity. This implies that testing activities should be started early

and move parallel with the development of software. Thus, test case prioritization should

focus on prioritizing the test cases on the basis of requirement specification.

c. Minimize the Code duplication and redundancy. This implies that code duplication

which usually occurs from copy-and-modify operations.

d. Reduce the development time and make the process of Maintenance and Evolution,

simple and effortless.

This simply means that we develop a code that is of high quality and is well factored. A code

that is easy to be maintained and if there is a requirement then it can be extended with

minimum difficulty. They say that a good program is one that can be easily understood by

humans & not just computers, and we support that. Many changes to the system are now

easier to make because they have smaller impact and it's more obvious how to make the

appropriate changes.

1.3. Goals of this thesis

The goal of the work in this thesis is summarized below:

a. To apply the various Refactoring techniques on User interface framework code of

mobile software - As discussed earlier, refactoring intends to increase the quality of existing

software but it can lead to change in existing design. There are a number of refactoring

techniques proposed with few of these orthogonal to each other e.g. Extract Class is

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 5

orthogonal to Inline Class. Applying these to Complex Mobile software code which is

multithreaded based on android platform.

b. To validate the proposed heuristic and measure various parameters before and after

refactoring of code- We also aim to validate the proposed heuristic and calculate different

metrics like Design Size, Abstraction etc. The results derived from these are again compared

by survey done by a team of developers, so we wish to generalize the results.

c. To analyze the change in metrics due to refactoring and find correlation between

actual heuristic results and developer opinion- We also try to correlate the results shown by

heuristics, and actual developer’s opinion. We aim to analyze the results for effectiveness in

terms of user effectiveness.

It can be observed that our goals are focused on improving the quality of existing design and

help designers and code reviewers to improve the metrics parameters to increase the overall

quality of code.

1.4. Organization of thesis

This thesis is organized as follows:

Chapter 2 discusses the previous work done in the field of measuring various software

attributes after the application of refactoring techniques. This includes the extensive study of

various refactoring techniques and measurements that have been proposed in the literature so

far. It also highlights some of the most relevant works in the direction of field of work

presented in the thesis

Chapter 3 gives a comprehensive study of Refactoring Techniques and their pros / cons. This

chapter is dedicated to a profound study of historical background of Refactoring including

Department of Software Engineering, Delhi Technological University Page 6

details of its origin. We also exemplified the working of these techniques with some sample

data.

Chapter 4 is about research methodology used herein. It describes the objectives of this

research and also the quality model used for the same. It shows how refactoring changes

various quality matrices of a software which in turn affects the software quality attributes,

both internal and external. It also defines the various design metrics which are considered.

And finally it gives us the effects of refactoring techniques on quality factors.

Chapter 5 In this chapter we analyses the impact of refactoring techniques on various

software qualities under consideration. We derive heuristics which establish a relationship

between the refraction techniques and the software qualities of a code.

Chapter 6 In this chapter we give our final concluding remarks. Also we mention the

limitations of this study and what are the plans for any future study.

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 7

CHAPTER 2

LITERATURE SURVEY

Any serious software developer would agree with the fact that software codes are in need of

modification all the time. Blame it on changing requirements or environment, changes need

to be done in codes to enable it to get modified easily and quickly. A software developer has

to make changes in the internal structure of the software design to make it compatible for

getting modified and suit the new set of requirements. This is done by Refactoring the code.

Refactoring is a powerful tool that can help a developer to achieve the preset goal but only if

it is done in the right way and carefully. There are all the possibilities that Refactoring can

introduce new bugs into your code or might have some un intended consequences that are not

so good. A developer who is Refactoring has to be sure that none of this happens or else he is

digging a hole for himself to fall into. So basically Refactoring needs to be done carefully and

systematically, avoiding any mishaps like introduction of a subtle bug into it.

The first emergence of the Refactoring activities can be dated in the early 90s and they say

that it was probably coined initially in Smalltalk. But soon enough it gained the interest of the

entire software community, probably because it worked. Refactoring has its own benefits

like:

 Refactoring ensures that the design will not decay with time

 The design of the software improves on the whole

Department of Software Engineering, Delhi Technological University Page 8

 The code becomes easier to understand for a new developer who knows nothing

about it.

 In the process of Refactoring, one is sure to stumble upon some dormant bugs that the

code has and can remove them.

 Refactoring ensures that you have no bad smells in the code.

 When a code is rendered cleaner and simpler by Refactoring it becomes easier to

make changes in it in future. There have been instances where huge projects have

failed only because the code was cluttered and not clean.

In this section we try to present a summary of all those empirical studies that have been

conducted so for to analyze the effect of Refactoring a code on its quality factors. Some of

the notable works are as follows:

 Bansiya and Davis have shown in their study [2] that it is possible to have an

empirical relation between software internal properties and refactoring techniques.

 Meyer in his book [3] shows that there is a general understanding that when you

improve the design properties of your software then the quality factors like

functionality , reusability, understandability and efficiency are bound to show

some improvement.

 T. Mens et all showed in their study [4], how to categorize refactoring activities

on the basis of the software quality which is finally improved on their application.

 Sahraoui et al, in their paper [5] have shown that there are a number of refactoring

techniques that should be preferred to other if a developer is looking at improving

the maintainability of his software. To come to this conclusion they used the

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 9

design properties of coupling and inheritance and made some empirical rules for

them.

 R.V.Kapoor and E. Stroulia presented a paper in a conference [6] where they

showed that the software quality of Extendibility of a code can be changed if we

did refactoring. This happens because refactoring reduces the design measures of

coupling and size.

 A paper by Y. Kataoka, T . Imai and others [7] gave validated results for showing

that Refactoring can positively boost up the maintainability of a code. They used a

C++ program to validate these findings for two refactoring techniques.

 At the Ninth Metrics symposium, R. Leitch along with E. Stoulia presented their

extensive study [8] of the advantages of design restructuring focusing on the

maintainability of the code. They also took into consideration of the cost factor of

maintaining the code and how it reduces when we refactor. They considered two

systems which had bad smells and to fix them two refactoring techniques, namely

Move Method and Extract Method were used. They finally concluded that it was

possible to improve the quality of the code by doing so and this happened because

refactoring reduced the density of dependencies and size and increased the

procedure count.

 A study done by B.D.Bois, S.Demeyer and J.Verelst [9] is about the improving

two important measures of any code, its Coupling and Cohesion. They suggested

refactoring techniques that will improve these two measures and also went on to

guide the developer about those refactoring techniques which would not be useful

at all for this task and even those techniques which might deteriorate the cohesion

and coupling of a system. Thus an optimized approach was suggested. They

Department of Software Engineering, Delhi Technological University Page 10

proved that their findings were good enough by applying the relevant results to

refactor Tomcat by Apache.

 J Ratinzer, M. Fisher and H. Gall have done a lot of work in the field of

refactoring and in one of their papers [10] they have worked on the evolvability of

the code. Their study throws light upon the fact that by refactoring a code we can

reduce the change coupling among program's source code files.

 In 2009 M.Alshayeb presented a study [11] wherein effects of refactoring on

software qualities were investigated and empirical relations were derived. These

relations depicted some negative impact of refactoring techniques too.

This is just a glimpse of the studies done regarding refactoring and its impact on different

quality factors. But we see here that most of the studies performed have been done taking into

consideration only a couple of refactoring techniques. Also, the software quality factors in

each study have not been more than two. Hence when this study was planned it was decided

to pick up a larger pool of refactoring techniques and to consider more number of design

properties. Here it has been tried to present a more comprehensive and elaborate heuristics

for guiding the process of software development and refactoring.

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 11

CHAPTER 3

REFACTORING TECHNIQUES

If one follows Fowler [1], he gives us a list of twenty two bad smells that a code might have

like, duplicate code, Large class, divergent change, Data clumps, speculative generality, lazy

class, middle man and so on. He also gives a long list of refactoring activities that can be

used to fix these smells and defects in the code. Also according to Fowler [1], these

Refactoring Techniques can further be categorized under six different categorize. We take a

few examples from each category in the following part of this chapter.

3.1 Composing Methods

1. Extract Method: A method is taken out from a lengthy method to have short methods.

Short methods increase re-usability that improves readability and understandability.

Department of Software Engineering, Delhi Technological University Page 12

Figure 1: Extract Method

2. Inline Method: This technique is the opposite for extract method. A group of badly

factored methods can be put right by this technique. This method can also be used to get rid of

useless and too much indirection or when one is getting lost in delegation.

Figure 2: Inline Method

3. Replace Method with Method Object: A lengthy method that uses many local variables

that makes extract method technique difficult to apply. What we do is that we turn all the

local variables into fields on that object and to do so we convert method into its own object.

This makes the code more comprehensive.

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 13

Figure 3: Replace Method with Method Object

3.2 Moving Features Between Objects

1. Move Method: A method is used by more features of another class than the class where it

exists. Here we change the original method into a simple delegation or we get rid of it

completely.

Figure 4: Move Method

2. Move Field: A field which is defined on a class is used by another class more than the

class where it originally is present. What it does it that it moves that field from its original

class to the fields whose methods are using it more than the existing class methods.

Department of Software Engineering, Delhi Technological University Page 14

3. Extract class: A class does performs the job of two or more classes. We create a separate

new class and shift the relevant attributes and methods to the new class.

Figure 5: Extract Class

4. Inline Class: This technique is the opposite of Extract class. Here we have a class that is

doing very less and hence we move its features to some other class and get rid of it.

Figure 6: Inline Class

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 15

3.3 Organizing Data

1. Replace Data Value with Object: A data item needs additional data or behavior.

Encapsulate the data item in its own object.

Figure 7: Replace Data Value with Data

2. Replace Array with Object: We have an array that contains certain elements that mean

dissimilar things. Change the array with an object which has a field for every element.

Figure 8: Replace Array with Object

Department of Software Engineering, Delhi Technological University Page 16

3.4 Simplifying Conditional Expressions

1. Replace Conditional with Polymorphism: We have a conditional that chooses diverse

actions depending on the type of the object. Shift each part of the conditional to an overriding

function in a subclass. Create the original method abstract.

2. Decompose Conditional: We have a complex conditional (if-then-else) statement. Derive

methods from the condition to simplify.

Figure 9: Decompose Conditional

3.5 Making Method Calls Simpler

1. Rename Method: The name of a function doesn't tell its purpose. Change the name of the

method to make it more user friendly.

Figure 10: Rename Method

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 17

2. Replace Parameter with Method: A class object calls a method and passes the result as a

parameter for a method. The recipient can also call this method. Remove this parameter and

let the receiver call the method.

Figure 11: Replace Parameter with Method

3.6 Dealing With Generalization

1. Pull Up Method: We have methods with identical results on subclasses. Move them to

the super class.

Figure 12: Pull Up Method

Department of Software Engineering, Delhi Technological University Page 18

2. Push Down Method: Activities on a superclass is relevant only for some of its subclasses.

Shift it to those subclasses.

Figure 13: Push Down Method

3. Push Down Field: A field is used only by some subclasses. Shift that field to those

subclasses.

4. Extract Sub Class: A class has features that are used only in some object instances. Make

a subclass for that subset of features.

Figure 14: Extract Sub Class

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 19

5. Extract Super Class: We have two classes with almost similar features. Make a super

class and shift all the common features to the super class.

6. Extract Interface: Several objects use the same subset of a class's interface, or two classes

have common interfaces partly. Extract that subset into an interface.

Department of Software Engineering, Delhi Technological University Page 20

CHAPTER 4

RESEARCH METHODOLOGY

4.1 Objectives

We are going to concentrate on three major points in this thesis:

1. We know that each software code has its own quality factors to define its quality.

Whenever we need to bring about any changes in the quality of a code we need to refactor it.

Here in our study we have chosen a few refactoring techniques which have been given by

Fowler [1] in his catalogue and we are studying the effects of these techniques on some

chosen quality factors. Now we need a quality model that will give us a relation between

various internal and external quality attributes of a software and its design properties. So here

we use QMOOD, a comprehensive model, suggested by Bansiya and Davis [2]. Using it we

define a relation between a codes design properties and its quality factors. Thus we deduce

relations between refactoring and software quality attributes.

2. Next we deduce a heuristics of refracting techniques that can work as a guide for

developers who are aiming for some goal oriented refactoring and are looking for improving

definite quality factors of a software code. This heuristics will give them a definitive idea as

to which refactoring technique will be suitable and which one will be not.

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 21

3. Next it is important to find out if the findings of this study are in sync with the refactorings

in real context. So finally we validate our heuristics.

The research Methodology followed here in this study can be summed up as the flow chart

shown below:

F i gur e 15 : F lowch a r t fo r R esea rch Met hodo log y

Conside a refactoring technique and
by analysing its mechanics and the
steps involved, work out its effect
on various design measure.

Using QMOOD quality
model, analyse the relation between
design measures and software qulity
factors.

Now we corelate the effect of the
refactoring technique picked, on the
software quality factors concidered.
This gives us the heuristics required
for this refactoring activity.

This process is followed for all the
refactoring technique to generate
desired heuritics between refactoring
and software quality factors under
consideration.

Department of Software Engineering, Delhi Technological University Page 22

4.2 Quality Model

A quality Model is basically a tool that helps us to define relation between the different

design features of a software code and its quality factors. There are a number of models

available that have been suggested by different gurus of software engineering. But here in

this study the model that we have chosen is the hierarchical model suggested by Bansiya and

Davis [2] for object- oriented quality assessment of software. It is a very comprehensive

model and is referred to as QMOOD. This is a very refined model and has hierarchy of four

different levels. These are mainly OO design components , OO design metrics, OO design

properties and finally quality attributes. The earlier quality models suggested before QMOOD

had a problem that they could be applied only after the product was complete. But QMOOD

can be easily used for qualitative assessment of a software even in the early stages of its

development. This is a huge advantages for any developer because every developer want to

bring forth a perfect product and if he gets an assessment of the quality of the code at each

step then he will definitely make required changes and put forward a product that completely

conforms to the prerequisite standards, has no irregularities, in not un necessarily complex

and has favorable properties. QMOOD is for sure a complete and comprehensive model that

uses object oriented approach and gives us a definitive relationship between the internal

design properties and the software quality. Bansiya and Davis [2], in their quality model have

taken up six quality factors. In our study we have picked up four of them for analyses. We are

going to develop heuristics between refactoring techniques and these software qualities. A

detailed description of these qualities is as follows:

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 23

(1) Effectiveness: A code is said to have a high degree of effectiveness if it can attain a

particular level of functionality and behavior when subjected to certain object oriented design

concepts and techniques.

(2) Extendibility: This attribute refers to the existence and usage of properties in a system

which allow it to be modified easily by incorporation of new features.

(3) Reusability: This is the property of a design allows it to be used or reapplied in a different

problem with minimum effort and changes.

(4) Flexibility: Every design is made for a specific environment. Its flexibility refers to that

characteristic of a design which allow it to be used in a different application by incorporation

of some design changes. It shows the capability of the design to offer functionality after

changes.

These above mentioned four quality factors are related to design properties of the software

and this relationship is specified by QMOOD. What we are trying to do is that we know that

we can use refactoring technique to change internal design properties of a software and these

internal design properties are in turn related to the software quality factors (by QMOOD).

Thus we can derive a heuristic between refactoring and quality attributes of a software. Each

of the four quality factors mentioned above are a function of some design properties and are

related as shown below:

Department of Software Engineering, Delhi Technological University Page 24

Table 1: Relation between quality factors and design properties

QUALITY FACTORS QUALITY INDEX CALCULATION

Reusability

–0.25 * Coupling + 0.25 * Cohesion + 0.5 * Messaging + 0.5 *

Design Size

Flexibility

0.25 * Encapsulation – 0.25 * Coupling + 0.5 * Composition + 0.5

* Polymorphism

Extendibility

0.5 * Abstraction – 0.5 * Coupling + 0.5 * Inheritance + 0.5 *

Polymorphism

Effectiveness

0.2 * Abstraction + 0.2 * Encapsulation + 0.2 * Composition + 0.2

* Inheritance + 0.2 * Polymorphism

 As we can see, each software quality is actually a function of various software properties.

Refactoring changes internal design features thus affecting the external quality factors too.

These results have been empirically validated by Bansiya and Davis [2], who proposed

QMOOD model in the year 2002. To correctly indicate the effect of design properties on the

quality attributes they initially started with weights +.5 or +1 for a positive influence and for

a negative influence -0.5 or -1 were used. For the computed value of the software quality

factor a range was fixed and it was 0 to +1. to keep the computed value within this range, the

initial weighted values of design property influence on a quality factor were accordingly

changed so that the total of the weighted values came out to be +1. This scheme was simple

and its application was straightforward.

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 25

4.3 Design Metrics

In this section we define various software measures that are used to quantify system design

properties. Refactoring changes these metrics. Am open source quality assurance tool ckjm is

used to generate and collect the following metrices:

1. Design Size (DSC): It is a count of the number of classes in a particular system.

Extract Class will raise the number of classes whereas Inline Class reduce this

measure.

2. Number of Hierarchies (NOH): It refers to a tally of the number of class hierarchies

in the design.

3. Average number of ancestors (ANA): This value signifies the averaged out value of

the depth of inheritance tree (DIT).

4. Data access Metric (DAM): It is the ratio of the number of private (protected)

attributes to the total number of attributes declared in the class.

5. Direct Class Coupling (DCC): It is a count of the different number o f classes that are

class is directly related to. The metric includes classes that are directly related by

message passing in methods and attribute declarations.

6. Cohesion among methods of Class (CAM): This computes the relatedness among

methods of a class based upon the parameter list of methods. It is computed by

summing up the intersection of parameters of a method with the maximum

autonomous set of all parameter types in the class. A measure value close to 1.0 is

preferred. (range 0 to 1)

Department of Software Engineering, Delhi Technological University Page 26

7. Measure of aggregation (MOA): It's the measure of the extent of the part - whole

relationship, realized by using attributes. It is a count of the number of data

declarations whose types are user defined classes.

8. Measure of functional Abstraction (MFA): It is the ratio of the number of methods

inherited by a class to the total number of methods that can be accessed by member

methods of a class.

9. Number of Polymorphic methods (NOP): It is a count of the methods that can show

polymorphic behavior. Such functions in C++ are marked as virtual.

10. Class Interface Size (CIS): It is a count of public functions in a class.

11. Number of Methods (NOM): It is a count of all the functions defined in a class.

4.4 Software Refactoring

In a previous section we discussed about the various refactoring techniques that Fowler [1]

has suggested. In Fowler's Catalogue [1] we can see that each refactoring technique has been

explained in a set pattern and there are following characteristics mentioned about each

technique:

 when should refactoring be done

 What will be the advantages of refactoring and what will be the costs incurred

 A detailed explanation of the refactoring process in simple small steps

 A related illustration

As mentioned earlier in the previous chapter, Fowler in his catalogue [1] has listed around 22

code smells and the refactoring techniques that are possible to amend them are seventy two.

But here in our study we have considered around forty three refactoring techniques for

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 27

analyses. In our study here we are looking at developing a refactoring heuristics that can

guide potential developers about refactoring. The intention is to create heuristics that are

simple to understand and apply and would beget clear positive results. Taking the help of

QMOOD we created a documentation of the effect of applying refactoring on design

properties. What we need is a relation between the refactoring technique being applied on the

software to the change in quality factor of the software. To achieve the same we first assess

the consequences of applying a refactoring technique on the design properties of the software.

For this we pick one refactoring technique and apply it to a code. On doing this, various

design properties of the code change and this change in design properties is then used in

QMOOD to get the change in or the effect on software quality attributes. Thus we can deduce

that how, on application of one refactoring technique, a code has gone through the process of

evolution. Performing this for all the 43 techniques we gather and document the data. And

after analyzing this data we can put forward a heuristics that can guide developer in deciding

which refactoring technique is best suited for the changes that need to be done in the quality

attributes of a software. To explain this methodology we take up an example as follows:

Refactoring technique considered: Extract Class

Where do we use Extract Class? Every developer will agree with the fact that with time every

Class grows beyond what it was originally meant for. Responsibilities, data or operations

keep getting added to it and soon it becomes too complicated, too big and understanding it is

no less than a nightmare. Here comes a need to split the class.

Department of Software Engineering, Delhi Technological University Page 28

What will Extract Class Technique do? When we have a class that is actually performing the

work of multiple classes then we segregate it. We " Create a new class and move the

relevant fields and methods from old class into the new field" ,[1]

How does Extract Class work and how will this affect the design properties of the code? For

answering this we take a look at the mechanics involved and evaluate each step. To begin

with, it is decided how the class responsibilities will be divided. Thereafter a new class is

generated which has the split off responsibilities. Then a link is created between old class and

new class. And last but not the least, use Move Field and Move Method to transfer fields and

then methods to the new class.

What is the effect of the above procedure on the design properties of the code? The Coupling

parameter increases as the two class entities are linked. Thus we can say that DCC measure

increases. The CAM parameter also sees a boost because of an increase in cohesion of both

new and old class (the process of splitting caused by Moving Field and Moving Method is

responsible for that). This refactoring technique clearly has no impact on the properties that

are linked to inheritance measures and thus show no change. These properties are namely

NOP,MFA and ANA. This analysis has been summed up in the table below. Here an up

arrow () means increase and a down arrow () denotes decrease. A () sign shows no

effect.

Table 2: The impact of Extract Class on design measures

DSC ANA DCC DAM CAM MOA MEA NOP CIS

        

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 29

From this table we see that refactoring method of Extract Class has changed four measures of

the class. When we use these results in QMOOD then we get that three out of the four

considered software quality factors are improved. These attributes are Effectiveness,

Flexibility and Reusability whereas one of the factors deteriorate. Now we are in a position to

propose a heuristics that give us the impact of applying refactoring technique, Extract class

on the software quality attributes.

As is clear from the above example that we have explained that to achieve a definitive

relationship between different refactoring techniques and the various software quality

attributes of a software we have to follow a threefold process which is as follows:

Step 1: Pick refactoring techniques from Fowler's catalogue [1], one at a time and review

each small step of it.

Step 2: Enumerate every change that every small step of refactoring brings about in different

 design properties of the software.

Step 3: Use the QMOOD relations to then define the impact of these changed design

 measures on the quality factors of the software.

This will give us the heuristics that we are looking for. These heuristics will guide any

software development process.

Department of Software Engineering, Delhi Technological University Page 30

CHAPTER 5

ANALYSIS OF REFACTORING

This chapter primarily deals with assessment of the effect that various refactoring techniques

have on different internal design properties of a software. Then we move on further to find out

that how are the quality attributes like Effectiveness, Flexibility, Reusability and Extendibility are

changed due to these refactoring activities. We are using QMOOD model to do the same. This

model was initially suggested by Bansiya and Davis [2].

5.1 Establishing Refactoring Heuristics

In this section we pick up some of the Refactoring Techniques given by Fowler [1] and we

evaluate their effect on various software metrics. Then we make two lists of Refactoring

Techniques, first list tells us about those refactoring techniques that boost the software quality

and the second list tells us about those refactoring techniques which make the software

quality deteriorate. Developers can then use these heuristics to improve their software quality

effectively in minimum time and effort.

As already discussed earlier, Fowler had organized various Refactoring Techniques under six

heads. We study here, the effect of various techniques under each category in following six

table. Each table shows us the effect of a particular technique on the various design metrics of

software. Table 3 to Table 8 show us the same (Here an up arrow () means increase and a

down arrow () denotes decrease. A () sign shows no effect). Also we applied these

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 31

refactoring techniques on a mobile user interface java code and derived the change in design

metrics for it which were observed after refactoring. these values are also mentioned in the

tables below :

Table 3: Effect of Composing methods

Refactoring D
S

C

A
N

A

D
A

M

D
C

C

C
A

M

M
O

A

M
F

A

N
O

P

C
IS

Replace Method with Method

Object

(8)   (5)  (8)
  

Replace Temp with Query
  


   

(4)

Inline Method
  

(4)
   

(8)

Extract Method 
 

(4) (.7)
  

(8)

Substitute Algorithm
        

Table 4: Effect of moving features between objects

Refactoring D
S

C

A
N

A

D
A

M

D
C

C

C
A

M

M
O

A

M
F

A

N
O

P

C
IS

Introduce Foreign Method
   (5)    

(4)

Extract Class (11)
  (7) (.8)    

http://www.refactoring.com/catalog/replaceTempWithQuery.html
http://www.refactoring.com/catalog/replaceTempWithQuery.html
http://www.refactoring.com/catalog/inlineMethod.html
http://www.refactoring.com/catalog/inlineMethod.html
http://www.refactoring.com/catalog/extractMethod.html
http://www.refactoring.com/catalog/extractMethod.html

Department of Software Engineering, Delhi Technological University Page 32

Introduce Local Extension
(8) (5)     (.7) (4) (4)

Move Method
  

(3) (.7)
 

 (2)

Remove Middle
   (8)     

Inline Class (11)
  (7) (.5)    

Hide Delegate
  

(3)
    

Move Field
  

 (.7)
   

Table 5: The effect of Organizing Data

Refactoring D
S

C

A
N

A

D
A

M

D
C

C

C
A

M

M
O

A

M
F

A

N
O

P

C
IS

Replace Type Code with Sub

classes
(11) (9)     (.5) (7) (6)

Replace array with object
(4)

 (.7)
(5) (.8) (3)  

(5)

Encapsulate Collection
  

(3)
    (7)

Duplicate Observed Data
(5) (6)

 (7) 
(5) (.4) (7) (6)

Encapsulate Field
 

(.6) 
    (6)

Replace Type Code with Class (7)
 

(5)  (5)
  (5)

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 33

Change Bidirectional

association to unidirectional
  

(4)
    

Replace Type Code with State/

Strategy
(3) (4)

 (3) 
(4) (.6) (2) (4)

Replace data value with object
(5)  

(4)  (5)
 

(6)

Table 6 : The effect of Simplifying Conditional Expressions

Refactoring D
S

C

A
N

A

D
A

M

D
C

C

C
A

M

M
O

A

M
F

A

N
O

P

C
IS

Introduce Assertion
        

Decompose Conditional
       

(7)

Introduce Null Object
(9)      (.5) (6) (7)

Replace conditional with

Polymorphism
(3) (4)     (.7) (4) (7)

Department of Software Engineering, Delhi Technological University Page 34

Table 7: The effect of Making Method Calls Simpler

Refactoring D
S

C

A
N

A

D
A

M

D
C

C

C
A

M

M
O

A

M
F

A

N
O

P

C
IS

Introduce Parameter

Object
(7)   (5)     

Remove Setting Method
  

(4)
   

(3)

Remove parameter with

Explicit Methods
        (7)

Rename Method
        

Replace Parameter with

Method
        (7)

Preserve Whole Object
       



Remove Parameter
        

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 35

Table 8: The effect of Dealing with Generalizations

Refactoring D
S

C

A
N

A

D
A

M

D
C

C

C
A

M

M
O

A

M
F

A

N
O

P

C
IS

Extract Interface
(7) (4)     (.7) (4) 

Pull Down Field
    (.8)    

Extract Sub Class
(9) (4)     (.6) (7) (5)

Extract Super Class
(7) (4)     (.7) (6)

(4)

Replace delegation with

Inheritance
 (6) 





(.7) (8)

(5)

Collapse Hierarchy (7) 
   

(.4) (7)


Pull Up Method
  

(4)
 

(.6) (4) (7)

Replace Inheritance

with Delegation


(6)
 (5)  

(.4) (5)
(4)

Pull Down Method
   (4)   (.6) (4) (4)

Form Template Method
      (.5) (6) (3)

This data presented here in form of tables gives us a clear idea that when any particular code

is subjected to different refactoring techniques then its software quality measures get affected

most of the time (not always, as a zero shows no impact). The analysis given also clearly

Department of Software Engineering, Delhi Technological University Page 36

indicates that some of the software measures are affected by almost all the techniques while

others are affected by only a few selected techniques. Also we see that there are some

software measures that do not change for any of the considered refactoring techniques

(although they can be changed by other refactoring techniques which have not been

considered here in this study).

To draw a conclusive result from the above analysis we categorize all the software measures

into two groups:

 The first group consists of those measures that are affected more by of the refactoring

techniques considered here. We take up one category of refactoring techniques out of

the six categorizes being considered here in this study. Then we deduce how many of

its included techniques affect a particular measure. If that measure is found out to be

impacted by more than half of the techniques then we consider that software measure

to be highly co related to that particular category of techniques. We carry out the

same for each category for that particular measure. Then we move on to the next

measure and analyze the effect of various groups on it.

 The second group is the group of those measures that are affected by less than half of

the techniques that are grouped under one category of refracting techniques. If this is

the case then that particular measure is said to be loosely co related to that category of

refactoring techniques.

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 37

The following table sums up all of this and gives us a heuristics that relates the effect of

refactoring techniques to different software measure.

Table 9: Categorization of measures depending upon effect of refactoring on them

Refactoring Category High Impact Low Impact

(1) Making Method Calls Simpler CIS DCC,DSC

(2) Composing Methods DCC & CIS CAM, DSC & MOA

(3) Organizing Data DCC,CIS,DSC& MOA DAM,ANA MFA&NOP

(4) Moving Features Between Objects CAM, DCC CIS,DSC & MOA

(5)Simplifying conditional expressions CIS NOP,MFA,DSC&ANA

(6) Dealing with Generalization MFA,CIS,NOP& ANA DSC,CAM, DCC&MOA

From the above table we can very easily come to certain conclusion regarding some specific

measures or some specific category of Refracting Techniques out of the six categories being

considered over here. Some examples of such derivable conclusion from the table above are

as follows:

 We can see that Class Interface Size or CIS is one measure that is impacted more than

50% of the times in a positive manner or it has a high impact for five of the

categories.

 We see that if we need to perform refactoring to a code to have a positive impact on

its Coupling (DCC) then it will be advisable to pick a technique from either

Organizing Data or moving features between object or composing methods to get a

positive result.

Department of Software Engineering, Delhi Technological University Page 38

 Also we can derive after inspecting the second and the third column of the above table

that if we need to change the Abstraction measure of the code then the most suitable

category of the refraction techniques would be Dealing with Generalization.

Thus developers can use this analysis to pick up the most suitable refactoring technique

whenever they have their focus on changing a particular software metric without any hit and

trial. Also they can refrain from using any technique that will affect their code metrics

negatively.

5.2 Correlation between Refactoring Techniques and Quality Factors

Now we move towards finding out how the various refactoring techniques change the

software quality factors. We utilize the various refactoring heuristics that we found in the

previous section. Quality factors can get either improved or can get deteriorated by various

refactoring techniques. We have already found out impact of various refactoring techniques

on software measures. Now using that we can calculate the effect of these refactoring

techniques on software quality factors. Here is an example: If we consider Encapsulate Field

we get three improvements and no deterioration therefore we can say that it is a safe

technique which improves reusability, flexibility and effectiveness. Thus we get a correlation

between the refactoring technique and its effect on the various quality factors of the software.

Using the same kind of calculation we can categorize the various refactoring techniques into

three categories:

(1) The techniques those are safe. They show more improvements than deteriorations.

(2) The techniques those are unsafe. They show fewer improvements and more deterioration.

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 39

(3) The techniques that do not have any effect on the software measures.

Now we have two tables that shows us this analysis:-

Table 10: Safe Refactoring techniques (Their effect on quality factors)

Refactoring

R
eu

sa
b

ility

F
lex

ib
ility

E
x

ten
d

ib
ility

E
ffectiv

en
ess

D
eterio

ra
tio

n

Im
p

ro
v
em

en
t

Push Down Method      4

Introduce Null Objects      4

Replace Type Code With      4

Extract Sub Class      4

Duplicate Observed Data      4

Replace conditional with      4

Extract Interface      4

Form Template Method      4

Introduce local Extension      4

Encapsulate Field      3

Change bidirectional association to

unidirectional
     3

Hide delegate      3

Extract Super Class      3

Department of Software Engineering, Delhi Technological University Page 40

Replace Array with Method  


 1 3

Replace Method with Object  


 1 3

Replace Data Value with Object  


 1 3

Extract Class  


 1 3

Replace Delegation With Inheritance 
   1 3

Replace Type Code With Class  


 1 3

Move Method      2

Remove Setting Method 
   1 2

Inline Method 
   1 2

Replace Parameter with Explicit Methods      1

Decompose Conditional      1

Move Field      1

Replace parameter with Method      1

Replace Temp with query      1

Push Down Field      1

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 41

Table 11: Unsafe Refactoring Techniques and their effect on Quality Factors

Refactoring

R
eu

sa
b

ility

F
lex

ib
ility

E
x
ten

d
ib

ility

E
ffectiv

en
ess

D
eterio

ra
tio

n

Im
p

ro
v
em

en
t

Pull Up Method     4 0

Collapse Hierarchy     4 0

Remove Middle Man   
 3 0

Replace Inheritance with Delegation 
   3 1

Inline Class  


 3 1

Extract Method 
 

 2 0

Encapsulate Collection 
 

 2 1

Introduce Foreign Method 
 

 2 1

Introduce Parameter Object 
 

 2 1

Department of Software Engineering, Delhi Technological University Page 42

The refactoring Techniques which do not affect the Software Quality factors are as follows:

 Preserve Whole Object

 Rename Method

 Introduce Assertion

 Remove Parameter

 Substitute Algorithm

These heuristic results that have been given in the above two tables can be used by

developers to achieve improvement in quality factors as desired. It can be seen that it is now

easier to decide which refactoring techniques should be used to effectively improve software

qualities and which refactoring techniques should be used with precautions as they can have

a negative impact on various quality factors of the software. For example, if the Reusability

of the system is to be improved then the developer needs to use all those techniques that have

been shown to increase reusability. We can clearly see this now that if we need a refactoring

technique that would, let us say, improve its reusability, would make it much more flexible as

far as changing classes goes and would also make extending its class a less tedious task then

it would be good idea to select the activity of Hide Delegate. It suits our requirements. There

is now no need to go for other refactoring techniques which might potentially harm our code

instead of improving it. These results will help in selecting the most optimum refracting

technique which will reduce a lot of effort of the developer. Now the essential design changes

can be brought about efficiently in minimum time, minimum risk and probably less costing.

We can also pick up a particular quality factor and categorize refactoring techniques as safe

or unsafe for it. we just have to reorganize the above tables for it.

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 43

5.3 Impact analysis of refactoring on quality factors in statistical form

In our study we considered four quality factors to study impact of refactoring techniques on

them, whether they improve or decrease or if they had no effect at all when subjected to

techniques. These four qualities were: Reusability, Flexibility, Extendibility and

Effectiveness. What we are trying to project here is that what proportion or percentage of

total refactoring techniques being used by us actually improve or harm the four quality

factors under consideration and what is the tentative percentage of the total refactoring

activities performed in this study that do not change the factors at all. So accordingly we have

three categories of the refactoring techniques as unchanged, deteriorate and Improved. This is

shown in a table below. The details of the same are as follows:

Table 12: Statistics relating the effect of refactorings to quality factors

Quality Factor Improved (in%) Unchanged(in%) Deteriorate(in%)

Reusability 65 19 16

Flexibility 53.5 25.5 21

Extendibility 42 28 30

Effectiveness 42 49 9

This shows that Reusability improves for 65 % of the refactoring techniques that have been

considered here and that only 9 % of those activities have been found to have a negative

impact on the reusability of the software. This gives a pretty fair idea to the developer that the

refactoring is more probable to make the software more usable. If we considered

Effectiveness then it improves by 42% of the refactoring techniques and only 9% of the

techniques considered make it deteriorate. We see that mostly there is a larger proportion for

Department of Software Engineering, Delhi Technological University Page 44

improvement of the quality that deterioration. This is sure to guide the developers through

refactoring for software quality improvement.

5.4 Validation

We validated our study by conducting a survey with 30 developers who are working in real

world industrial environment. They were asked to fill up a survey form which gave details

about the effect that specific refactoring techniques had on their code quality. They took

suggestions from the heuristics given by this study for choosing a particular technique to have

desired effect on a software quality. Then after refactoring they were asked to take up the

given 15 questions and consider them on a scale of 0 to 5 where 0 meant not satisfactory at

all and 5 meant perfect achievement of desired result on refactoring [Appendix A &

Appendix B].

The data collected clearly indicated that the suggested heuristics was very helpful in selecting

the best suited refactoring technique and achieving desired results.

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 45

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Every developer is faced with the need to improve the quality of his software at some point of

time. This is essential to keep the code easily maintainable and to avoid the decay of its

structure with constant changes which need to be done with changing requirements. This can

be effectively done by using refactoring techniques . Fowler has provided the developers with

a catalogue of refactoring techniques [1] which can be used by them.

The results of this study provide the developers with an insight on the relationship between

the impact of different refactoring techniques on the quality factors of the software. Not all

refactoring techniques improve the quality factors of the software. It has been shown that

some refactoring techniques improve the quality factors while other refactoring techniques

might have a negative impact on software quality. Using the heuristics presented in of this

study, a developer can follow a goal oriented refactoring process which can improve

Reusability, Flexibility, Extendibility and Effectiveness of his software. Also he can avoid

using the technique which will deteriorate a specific quality factor. For example if the

developer need to improve the reusability of a software then he must use those refactoring

techniques that have been found to improve this particular quality factor and avoid using

Department of Software Engineering, Delhi Technological University Page 46

those refactoring techniques which deteriorate the reusability of the software. Thus these

heuristics will help developers to use refactoring techniques more efficiently and objectively.

6.2 Limitations and Future work

This study presented here has its own limitations. These limitations can be summed up as

follows:

 In our study we have considered some of the refactoring techniques suggested by

Fowler [1]. But there are a lot of variations and hybrid forms of those refactorings

possible. It is possible that the results might vary when used with a different pool of

refactoring techniques.

 Initially while describing evolution of the code we started from the point where we

suggested that Refactoring is wholly responsible for evolution process of any code.

But it is not so. Codes evolve with time in the actual environments because of various

other reasons too like language or library evolution and work around techniques

applied to make code rejuvenate. Many process are done to improve the behavior of

the code in a different environment than its original one. Such factors too evolve the

code.

 The set of quality metrics used by us is limited. This needs to be extended to many

other quality factors that are linked to all the quality factors related to a code.

 The current study has been performed on a particular type of mobile software code

and this can be conducted on a number of variety of code / software. In this way we

can infer that which refactoring technique is more relevant for which type of software

code.

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 47

It will be a humble effort in all our future work to attract the attention of the entire scientific

community towards the fact that refactoring can actually have a very positive impact in a

very effective way on the code quality if it is guided by similar heuristics which have been

validated through a formalized model. In future we intend to take into consideration

following points:

 To do the same study for a larger pool of software quality factors. Here we have

considered the effect of refactoring on four factors only. We would like to make the

list exhaustive so as to cover all the factors which decide the quality of a code.

 To generate heuristics for other refactoring techniques. There are a number of

refactoring techniques which can be used for software quality improvement and it will

be our effort to draw heuristics for as many as possible.

Department of Software Engineering, Delhi Technological University Page 48

REFRENCES

[1]. M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving the

Design of Existing Code, Addison Wesley, 1999.

[2]. J. Bansiya, C. Davis, ―A Hierarchical Model for Object-Oriented Design Quality

Assessment‖, IEEE Transactions on Software Engineering, 28 (1), (2002) pp. 4–17.

[3]. B. Meyer, Object-Oriented Software Construction, Prentice Hall, second ed., 1997.

[4]. T. Mens, S. Demeyer, B.D. Bois, H. Stenten, P. Van Gorp, ―Refactoring: Current

Research And Future Trends‖, Electronic Notes in Theoretical Computer Science, 82 (3),

(2003) pp. 483–499.

[5]. H.A. Sahraoui, R. Godin, T. Miceli, ―Can Metrics Help To Bridge The Gap Between

The Improvement of OO Design Quality And its Automation?‖ In: Proc. International

Conference on Software Maintenance, pp.154–162, 2000.

[6]. E. Stroulia, R.V. Kapoor, ―Metrics of Refactoring-Based Development: an

Experience Report‖, In The seventh International Conference on Object-Oriented

Information Systems, pp. 113–122, 2001.

[7]. Y. Kataoka, T. Imai, H. Andou, T. Fukaya, ―A Quantitative Evaluation of

Maintainability Enhancement by Refactoring‖, Proceedings of the International Conference

on Software Maintenance (ICSM.02), pp. 576–585, 2002.

[8]. R. Leitch, E. Stroulia, ―Assessing the Maintainability Benefits of Design Restructuring

Using Dependency Analysis‖, Ninth International Software Metrics Symposium

(METRICS'03), pp. 309–322.

[9]. B.D. Bois, S. Demeyer, J. Verelst, ―Refactoring–Improving Coupling and Cohesion Of

Existing Code‖, In Belgian Symposium on Software Restructuring, Gent, Belgium, pp. 144–

151, 2005.

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 49

[10]. J. Ratzinger, M. Fischer, H. Gall, ―Improving Evolvability Through Refactoring‖,

Proceedings of the 2nd International Workshop on Mining Software Repositories

(MSR’05),1–5.

[11]. M. Alshayeb, ―Empirical Investigation of Refactoring Effect on Software Quality‖,

Information and Software Technology, 51 (9), (2009) pp. 1319–1326

[12] www.refactoring.com/catalog

[13] L. Tahvildari, ―Quality-Driven Object-Oriented Re-engineering Framework‖. PhD

Thesis. Department of Electrical and Computer Engineering, University of Waterloo,

Waterloo, Ontario, Canada, 2003.

[14] L. Tahvildari, K. Kontogiannis, J. Mylopoulos, ―Quality-Driven Software Re-

Engineering‖, Journal of Systems and Software, Special Issue on: Software Architecture -

Engineering Quality Attributes, 66(3), (2003) pp. 225-239.

[15] www.martinfowler.com/books/refactoring.html

[16] L. Tahvildari, and K.A. Kontogiannis, “Metric-Based Approach to Enhance Design

Quality through Meta-Pattern Transformations”, In Proc. European Conf. Software

Maintenance and Reeng., 2003, pp. 183-19

[17] Y. Yu, J. Mylopoulos, E. Yu, J.C. Leite, L. Liu, E.H. D'Hollander, “Software refactoring

guided by multiple soft-goals”, In Proceedings of the 1st workshop on Refactoring:

Achievements, Challenges, and Effects, in conjunction with the 10th WCRE conference

2003, Victoria, Canada, November 13-16, 2003, pp. 7-11

[18] T. Mens, and T.A. Tourwé, “Survey of Software Refactoring”, IEEE Transactions on

Software Engineering, 30(2): 126-139,February, 2004.

[19] S. Demeyer, S. Ducasse, O. Nierstrasz, “Finding Refactorings via Change Metrics”, In

Proceedings of the 15th Annual ACM Conference on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA’00, Minneapolis, USA, 2000.

[20] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using metrics to evaluate software

system maintainability. IEEE Computer, pages 44–49, August 1994.

Department of Software Engineering, Delhi Technological University Page 50

[21] M. Alshayeb, ―Empirical investigation of refactoring effect on software quality‖,

Information and Software Technology, vol. 51, pp.1319–1326,2009

[22] D. Dig, C. Comertoglu, D. Marinov, R. Johnson, ―Automated Detection of

Refactorings in Evolving Components‖, Proceedings of European Conference on Object-

Oriented Programming (ECOOP'06), pp. 404–428.

[23] N. Hsueh, P. Chu, W. Chu, ―A Quantitative Approach for Evaluating the Quality of

Design Patterns‖, The Journal of Systems and Software, 81(8), (2008) 1430–1439.

[24] J. Bøegh, S. Depanfilis, B. Kitchenham, A. Pasquini, A Method for Software Quality

Planning, Control, and Evaluation, IEEE Software, Researcher’s Corner, 16 (2), (1999) pp.

69–77.

[25] F. Dandashi, D.C. Rine, ―A Method for Assessing the Reusability of Object-

Oriented Code Using A Validated Set of Automated Measurements‖, Proceedings of 17th

ACM Symposium on Applied Computing, pp. 997–1003, 2002.

[26] N. Hsueh, P. Chu, W. Chu, ―A Quantitative Approach for Evaluating the Quality of

Design Patterns‖, The Journal of Systems and Software, 81(8), (2008) 1430–1439.

[27] B. Henderson-Sellers, Object-Oriented Metrics: Measures Of Complexity. Prentice-Hall,

1996.

[28] V. Basili, L. Briand, and W. Melo, "A Validation of Object-Oriented Design Metrics as

Quality Indicators," IEEE Transactions on Software Engineering, vol. 22, pp. 751-761,

Oct. 1996 1996.

[29] L. Briand, J. Wust, J. Daly, and V. Porter, "Exploring the relationships between design

measures and software quality in object-oriented systems," The Journal of Systems and

Software, vol. 51, pp. 245-273, 2000 2000.

[30] K. Stroggylos and D. Spinellis, "Refactoring - Does it improve software quality?," in 5th

International Workshop on Software Quality (WoSQ'07: ICSE Workshops), 2007, pp. 10-16.

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 51

[31] K. Elish and M. Alshayeb, "A Classification of Refactoring Methods Based on Software

Quality Attributes," The Arabian Journal for Science and Engineering, vol. 36, 2011

[32] . Tahvildari, K. Kontogiannis, and J. Mylopoulos. Quality-driven software re-

engineering.

Journal of Systems and Soft-ware, 66(3):225–239, June 2003

Department of Software Engineering, Delhi Technological University Page 52

APPENDIX A

The questionnaire used for the industrial survey which was done to validate the results:

Q1: Has the execution of the functions become clearer?

Q2: Are the results being generated by the software as per the expectations?

Q3: Has it become easier to control the software?

Q4: Whenever there is a failure in the system has it become easier to detect its source?

Q5: Has it become easy to adapt this software into different environments?

Q6: Has there been any improvement in the response time of this software?

Q7: Have the future aspects of the evolving the code become better?

Q8: Does the software show any enhanced capacities for processing by multi-users?

Q9: When a failure occurs what is the ease of recovering the data which has been lost?

Q10: Has Data entry by user become easier?

Q11: Has it become more convenient to change the software mission?

Q12: If any particular component of the software needs a change, is it convenient to do so?

Q13: Has there been an improvement is anomaly management?

Q14: Is there any improvement in the capability of the software to prevent any defects?

Q15: Is it now easier to expand the software?

Sachin Gaur, "Investigating the effects of Refactoring on Software Maintainability" Page 53

APPENDIX B

The data collected from the industrial survey that validates the result:

SNo. Question

Ratings given

Low

(<=2)

Average

(=3)

High (>3

& <=5)

1. Has the execution of the functions become clearer? 1 6 23

2.

Are the results being generated by the software as per the

expectations?

4 5 21

3. Has it become easier to control the software? 2 8 24

4.

Whenever there is a failure in the system has it become

easier to detect its source?

5 8 17

5.

Has it become easy to adapt this software into different

environments?

2 9 19

6.

Has there been any improvement in the readability of this

software?

2 2 26

7.

Have the future aspects of the evolving the code become

better?

1 4 25

Department of Software Engineering, Delhi Technological University Page 54

8.

Does the software show any enhanced capacities for

processing by multi-users?

3 9 18

9.

When a failure occurs what is the ease of recovering the

data which has been lost?

2 9 19

10. Has Data entry by user become easier? 0 10 21

11.

Has it become more convenient to change the software

mission?

4 7 19

12.

If any particular component of the software needs a change,

is it convenient to do so?

4 6 20

13. Has there been an improvement is anomaly management? 0 11 19

14.

Is there any improvement in the capability of the software

to prevent any defects?

3 5 22

15. Is it now easier to expand the software? 2 4 24

 Mean Value

2.3

(7 %)

6.8

(23%)

21.1

(70 %)

