
Empirical validation of Object Oriented metrics using

Machine Learning Methods

A dissertation submitted in the partial fulfillment for the award of Degree of

Master of Technology

In

Software Engineering

Submitted by

Kapil Sharma (2K11/ST/09)

COMPUTER ENGINEERING DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY

BAWANA ROAD, DELHI

July 2014

[ii]

CERTIFICATE

Date: __________

This is to certify that the Major Project entitled “Empirical validation of Object Oriented

metrics using Machine Learning Methods” submitted by KAPIL SHARMA, Roll Number:

2K11/ST/09; in partial fulfillment of the requirement for the award of degree Master of

Technology in Software Technology to Delhi Technological University, Bawana Road Delhi; is

a record of the candidate’s own work carried out by him under my supervision. The matter

embodied in this thesis is original and has not been submitted for the award of any other Degree.

Dr. Ruchika Malhotra

Asst. Professor, Computer Engineering Dept.

Delhi Technological University

Bawana road, Delhi - 110042

[iii]

ACKNOWLEDGEMENT

July 2014

I would like to take this opportunity to thank my project guide Dr. RUCHIKA MALHOTRA for

her invaluable and consistent guidance throughout this work. I would like to thank her for giving

me the opportunity to undertake this topic. I am very appreciative of her generosity with her

time, advice, data, and references, to name a few of his contributions. It is her wonderful

association that enabled me to achieve the objectives of this work. I humbly extend my grateful

appreciation to my friends whose moral support made this study possible.

Lastly, I would like to thank all the people directly and indirectly involved in successfully

completion of this project

Kapil Sharma

2K11/ST/09

Master of Technology (Software Technology)

Delhi Technological University

[iv]

Bawana road, Delhi - 110042

Table of contents

CERTIFICATE .. ii

ACKNOWLEDGEMENT ... iii

Table of contents .. iv

List of Figures ... vii

List of Tables ... viii

List of Tables ... viii

INTRODUCTION ... 1

1.1 Goal of the thesis ... 1

1.2 Organization of the Thesis .. 2

RELATED WORK .. 4

RESEARCH BACKGROUND ... 7

3.1 Machine Learning Paradigms ... 7

3.1.1 Probabilistic Models ... 7

3.1.2 Symbolic Learning and Rule Induction .. 7

3.1.3 Neural Networks ... 8

3.1.4 Analytic Learning and Fuzzy Logic ... 8

3.1.5 Evolution Based Models .. 8

3.2 Classification techniques .. 8

3.2.1 Supervised Learners .. 8

3.2.2 Unsupervised Learners .. 9

[v]

3.2.3 Reinforcement Learners .. 9

3.3 Empirical Data Collection .. 9

3.3.1 Login Command: .. 10

3.3.2 Local Repo Command: ... 10

3.3.3 Generate Log files Command: .. 10

3.3.4 Project Statistics ... 11

3.4 Metrics Used ... 11

3.5 Dependent and independent variables ... 13

RESEARCH METHODOLOGY ... 14

4.1 Methodology ... 14

4.1.1 Data acquisition and pre-processing. .. 15

4.1.2 Applying C&K Metrics and classifying data set. .. 16

4.1.3 Analysis using Machine learning algorithms. .. 16

4.1.4 Filtering Data set .. 16

4.2 Log Parser Tool ... 17

4.3 Machine Learning Algorithms for Analysis .. 20

4.3.1 Naive Bayes Classifier .. 20

4.3.2 LogitBoost... 21

4.3.3 Bagging .. 22

4.3.4 Random Forest .. 23

4.3.5 AdaBoostM1 ... 23

4.3.6 Logistic ... 24

RESULTS .. 25

5.1 Bagging: .. 26

5.2 LogitBoost: .. 28

5.3 RandomForest: .. 31

5.4 NaiveBayes: .. 33

5.5 AdaBoostM1: .. 36

[vi]

5.6 Logistic: .. 38

CONCLUSION & FUTURE WORK .. 43

References.. 45

[vii]

List of Figures

1 Figure 4.1 Outline of Research Methodology…………………………………………...15

2 Figure 4.2 Log File Parser……………………………………………………………….19

3 Figure 5.1 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2

using Bagging Algorithm….…………………………………………………………….27

4 Figure 5.2 ROC curve for (a) MX4J and (b) Synapse 1.2 using Bagging Algorithm..…28

5 Figure 5.3 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2

using LogitBoost Algorithm ……………………………………………………………29

6 Figure 5.4 ROC curve for (a) MX4J and (b) Synapse 1.2 using LogitBoost Algorithm .30

7 Figure 5.5 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2

using RandomForest Algorithm………………………………………………………...31

8 Figure 5.6 ROC curve for (a) MX4J and (b) Synapse 1.2 using RandomForest Algorithm

………………………………………………………………….……………………….33

9 Figure 5.7 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2

using NaiveBayes Algorithm ……………..34

10 Figure 5.8 ROC curve for (a) MX4J and (b) Synapse 1.2 using NaiveBayes Algorithm

 …………………………………………………………………………………………. 35

11 Figure 5.9 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2

using AdaBoostM1 Algorithm…………………………………………………………37

12 Figure 5.10 ROC curve for (a) MX4J and (b) Synapse 1.2 using AdaBoostM1 Algorithm

………………………………………………………………………………………….38

13 Figure 5.11 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2

using Logistic Algorithm………………………………………………………………39

14 Figure 5.12 ROC curve for (a) MX4J and (b) Synapse 1.2 using Logistic Algorithm

………………………………………………………………………………………….40

15 Figure 5.13: Graphs for comparison of Sensitivity, Specificity and ROC Area of machine

learning methods for (a) MX4J and (b) Synapse 1.2…………………………………..42

[viii]

List of Tables

Table 3.1 Open source project statistics…………………………………………………………11

Table 3.2 Table for instance count of class types………………………………………………..11

Table 3.3 Metrics Used…………………………………………………………………………..12

Table 4.1 Mapping between Metrics used and Understand tool…………………………………17

Table 5.1 Comparison of Sensitivity, Specificity and ROC Area for (a) MX4J and (b) Synapse

1.2 for machine learning methods ………………………………………………………………41

[ix]

ABSTRACT

Complex and advanced software systems are more prone to faults and result in greater

maintenance cost in later stages of software development cycle. With the help of this study we

suggest the importance of machine learning algorithms in detection of fault proneness in

software systems results in early stages of software development life cycle.

We concentrated on the use of machine learning methods and used them for empirically

validating object-oriented design metrics, Chidamber et al. [1], for the purpose of predicting fault

proneness. We have used open source project developed in Java language, “MX4J” and

“Synapse 1.2”, as the base of our empirical study. The defect prediction models developed using

machine learning methods are used to compute and evaluate performance of these models.

We evaluated the performance using Receiver Operating Characteristic (ROC) analysis. We used

tools such as Weka and SPSS for the purpose of generating data distribution and ROC curve. As

per the ROC analysis for both the projects, machine learning methods LogitBoost and Bagging

show better performance as compared to other machine learning methods.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 1

Chapter 1

INTRODUCTION

Given the complex nature of software products being developed these days, accompanied by

tight deadlines, it is not so unobvious for defects to ship in the final product. Owing to stiff

competition between competitors and pressure to quickly launch and hit the market, the defects

presence is increasing. It is quiet common to see fault prediction models being applied to predict

software faults before the product is delivered to market. These models help managers to align

resources to critical areas of the project and also help developers to concentrate on problem areas

more prone to critical faults. This in turn will result in high quality and timely delivery of

software products.

It requires experts with best in class domain knowledge to predict and assist in fault proneness.

Through this study we focus on evaluating the relation of OO metrics, CK metric, with fault

proneness using machine learning methods. We also focus on figuring out which of the machine

learning methods assist in defect classification. With application on open source Java based

projects, we share important insight on usage of machine learning methods and logistic

regression for determining fault proneness in object oriented software.

1.1 Goal of the thesis

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 2

The goal of the work in this thesis is summarized below:

• We used six machine learning methods for empirical validation of object oriented metrics

with the purpose of predicting fault proneness using regression and machine learning

methods.

• We applied the study on two projects with different code size and complexities to

generalize the behavior.

1.2 Organization of the Thesis

The thesis is organized as follows:

Chapter 2 provides the survey of existing literature in the field of fault proneness.

Chapter 3 discusses the machine learning paradigms, the concepts of machine classification

techniques. We also explain the process of data collection and highlight the important aspects

of the datasets used in our study. We will also touch upon the concept of metrics and describe

the various metrics selected for this study. And finally, we point down the dependent and

independent variables.

Chapter 4 explains the research methodology being followed upon in this study. It describes the

phases involved in the research methodology. It also introduces the Log Parser tool and finally

mentions the machine learning algorithms used to evaluate the results.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 3

Chapter 5 presents a detailed analysis of the results obtained. In this chapter we compare and

assess the results after applying the machine learning algorithms on the two datasets. The

machine learning methods applied are Bagging, LogitBoost, RandomForest, NaiveBayes,

AdaBoost and Logistic.

Chapter 6 presents the conclusions of the thesis and future work.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 4

Chapter 2

RELATED WORK

Several researches have been done targeting relation of OO metrics with fault proneness. This

research is directed to assist senior managers in planning resources and helping to focus on fault-

prone areas.

Singh et al. [2], in their work, focused developing prediction models using regression and

machine learning methods. Through ROC analysis they showed that medium and low severity

faults are easier to predict than high severity faults. Through this work they also showed that

machine learning methods have better performance as compared to logistic regression methods.

Aggarwal et al. [3], provided empirical evidence to draw the strong conclusion that many

metrics capture and provide redundant information and that a subset of metrics can help to

identify faulty classes with more than 90% accuracy. The study also confirms results from

previous studies and shows that import coupling along with size metrics are related to fault

proneness.

Shatnawi & Li [4], empirically investigated class error probability in the post-release

evolution process to answer aspects such as if software metrics can predict error post-release

system and if it can be related to severity of errors and to identify the classes based on severity of

errors. It was concluded that it is desirable to seek alternative methods to locate error-prone

classes for higher accuracy.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 5

Zhou & Leung [5], in their study concluded that design metrics and fault proneness are

related while considering the severity of faults and low severity faults are easily predicted as

compared to high severity faults in fault-prone classes.

The sooner the defects can be predicted, the better. Emam et al. [6]

in their study showed

that prediction models using design metrics are able to identify faulty classes if used in early

stages of development and that export coupling metric has the strongest association with fault

proneness.

Fault-Proneness can be predicted using highly iterative development process. It can also

be linked to agile software development processes. Olague et al.[8], in their research, empirically

validated three OO metrics suites namely CK metrics, MOOD metrics and QMOOD metrics

suite. CK and QMOOD suites were able to produce similar statistical models that could

efficiently help in identifying error prone classes whereas MOOD metrics suite is not so good in

predicting fault proneness in classes.

In modern era, the use of machine learning to predict software fault-proneness is

increasing. Iker Gondra [9], in his study, proposed the use of machine learning by training

Artificial Neural Network (ANN). Software metrics are identified based on their criticality using

ANN. In this study, he used Support Vector Machines (SVM) as the tool to determine the

classification whether a module is contains fault or is fault free. The use of sensitivity analysis

for selecting software metrics indicates the existence of errors. The experimental results showed

that SVMs are a better defect classifier when compared to ANNs.

Khoshgoftaar et. al [10], worked on a software fault prediction model with relation to

case-based reasoning (CBR). CBR is a part of the computational intelligence field focusing on

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 6

automated reasoning processes. CBR models are seen to have better prediction capability as

compared to multiple linear regressions.

Zhou et. al [12], in his study, focused on complexity metrics in order to determine fault-

proneness. Complexity metrics were shown as moderate predictors in differentiating whether a

class contains error or is error-free. It was shown through experimental results that LOC and

WMC exceeded SDMC and AMC in predicting fault proneness.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 7

Chapter 3

RESEARCH BACKGROUND

In this chapter, first we will discuss about the machine learning paradigms. Second, we will

discuss the concepts of machine classification techniques. Third, we explain the process of

data collection and highlight the important aspects of the two datasets used in this study.

Fourth, we will touch upon the concept of metrics and describe the various metrics selected

for this study in detail. Fifth and finally, we point down the dependent and independent

variables.

3.1 Machine Learning Paradigms

3.1.1 Probabilistic Models

In Probabilistic Models the probability of each class and features are recorded with the help of

the training data set. The outcome of the new data or its classification is based on these

probabilistic models. One of the examples of Probabilistic Modelling is the Bayesian Model.

3.1.2 Symbolic Learning and Rule Induction

In Symbolic Learning and Rule Induction the algorithms learn by being told and looking at

examples. ID3 algorithm developed by Quinlan is one of them.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 8

3.1.3 Neural Networks

In Neural Networks, the data and its output (nodes) are inter-connected in a web like structure

through programming constructs which mimic the function of the neurons in the human brain.

Based on these, when new data is place in one of the nodes, its output can be predicted or it can

be classified accordingly.

3.1.4 Analytic Learning and Fuzzy Logic

Analytic Learning and Fuzzy Logic normally have logical rules which are used to create even

more complex rules. Based on these logical rules it looks for truths ranged between 0 and 1.

3.1.5 Evolution Based Models

Evolution based models are based on Darwin’s theory of Natural Selection and are divided

further into a) Genetic algorithms, b) Evolution strategies and c) Evolutionary programming.

3.2 Classification techniques

3.2.1 Supervised Learners

Algorithms that learn from looking at input/output matches of training data to find results for

new data (like the ID3 algorithm).

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 9

3.2.2 Unsupervised Learners

There are no training data sets, the algorithms learn by looking at the input patterns and predict

the result.

3.2.3 Reinforcement Learners

These algorithms observe the state and make predictions. Each prediction are rewarded or

punished according to the accuracy. The algorithm then learns how to make the right decision.

3.3 Empirical Data Collection

We focused on data sets from different projects MX4J [13] and Synapse 1.2 [14]. The data was

taken from the public domain projects available on sourceforge.net. In this section we will

explain the data source MX4J and the process for data collection which is common to both the

projects. MX4J is an implementation of the following Java specification requests (JSR),

• JSR 3 - Java Management Extensions technology (JMX), and

• JSR 160 - Java Management Extensions technology Remote API

JMX is not a mandatory package. Detailed information about this project can be checked at the

following URL: http://sourceforge.net/projects/mx4j/

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 10

The MX4J project adheres to the specification and provides its reference implementation. The

JMX specification aims to support developers by providing APIs and interfaces that assist in

designing loosely coupled modules and robust codebase. It finds it usage for monitoring

applications and management of network services.

3.3.1 Login Command:

cvs -d:pserver:anonymous@mx4j.cvs.sourceforge.net:/cvsroot/mx4j login

This generates the login for our repository on the mentioned site. Press enter when the command

prompt asks for password.

3.3.2 Local Repo Command:

Following command downloads and creates local repository of the project.

cvs -z3 –d : pserver:anonymous@mx4j.cvs.sourceforge.net: /cvsroot/mx4j co -P modulename

Here modulename refers to the module you want to create the local repository.

3.3.3 Generate Log files Command:

cvs log –d : pserver:anonymous@mx4j.cvs.sourceforge.net: /cvsroot/mx4j co -P modulename >

commitlog.txt

This command generates the log file commitlog.txt

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 11

3.3.4 Project Statistics

The Understand tool generated detailed statistics for the open source project MX4J. Some of the

statistics of interest are as follows:

Table 3.1: Open source project (MX4J) statistics

Project Statistics

Total records: 8808

Files Count: 770

Public Class: 595

Class: 193

Public Abstract Class: 49

The table below contains instance count for each of the class types considered for this study.

Table 3.2 Table for instance count of class types for MX4J project

No. Label Count

1 Class 32

2 Public_Class 587

3 Public_Abstract_Class 49

3.4 Metrics Used

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 12

For the purpose of this study we have chosen CK metrics which are defined at the class level.

These metrics are known to incorporate the object oriented behavior and can be easily measured

using some common and well known tools, such as Understand. We have also used SLOC,

number of lines of code as a metric in this study. Table 3.3 below provides definitions of these

metrics.

Table 3.3 Metrics Used

Metrics Definition

Coupling between objects

(CBO)

CBO defines the coupling between the object

and denotes the count of couple classes.

Response for a class (RFC)

 This metric denotes the count of functions in

a class and also the count of functions

available for access to sub classes in class

inheritance.

Lack of cohesion (LCOM)

This metric denotes the usage of member data

in a class by the member functions in the

class.

Number of children (NOC)

This denotes the concept of inheritance and

stands for the total number of child classes of

a given class.

Depth of inheritance (DIT)

This metric denotes the level count from the

root to the given node level. The root is

generally considered at level 0.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 13

Weighted methods per class

(WMC)

This denotes the aggregation of complexities

of all functions in the given class.

Source lines of code (SLOC)

This denotes the count of lines of code in the

source code.

3.5 Dependent and independent variables

Independent variable is defined as the variable that is manipulated and dependent variable is

defined as the response that is measured. Independent variable can also be defined as the

presumed cause and dependent variable can also be defined as the presumed effect.

In broader terms, independent variable is the antecedent whereas dependant variable is the

consequent.

With respect to experimental research, independent variables is the variable that is to be

manipulated in the research, and dependent variable is observed or measured for variation as a

presumed result of the variation in the independent variable.

In non-experimental research, where there is no experimental manipulation, the independent

variable is the variable that 'logically' has some effect on a dependent variable.

For the purpose of our study, defect presence is the dependent variable whereas all other metrics

form the independent variables. We would check the effect of object oriented metrics and fault

proneness after applying machine learning methods.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 14

Chapter 4

RESEARCH METHODOLOGY

In this chapter we explain the research methodology followed in this study. We describe the

phases involved in the research methodology. We will introduce the Log Parser tool we

developed to assist this study. Finally we brief on the machine learning algorithms we used to

evaluate the results.

4.1 Methodology

Figure 4.1 provides an outline of the methodology used in this study.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 15

Figure 4.1: Outline of Research Methodology

As shown in the figure above, the entire process can be divided into three parts,

4.1.1 Data acquisition and pre-processing.

In this step the empirical data is collected. Data is fetched from online CVS repositories of open

source projects. From these local repositories, we generate log files. Some filtering is also

performed on the generated data set.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 16

4.1.2 Applying C&K Metrics and classifying data set.

We apply C&K metrics using the Understand tool on the local repositories. Also we apply Log

Parser tool on log files generated in first step. As a last step of the phase, we combine output

from filtered data set and Log Parser Tool.

4.1.3 Analysis using Machine learning algorithms.

We apply the Machine learning algorithms to the filtered data set and perform analysis. As a last

step of this phase, we perform comparison of results of different machine learning algorithms.

4.1.4 Filtering Data set

Filtering data set is common to phase I and II of our research methodology. We used the

Understand tool to apply C&K Metrics to the open source code. It produces a detailed output

metrics which is further filtered to match our requirements. For the scope of our study we have

concentrated on following classes only:

• Class

• Public Class

• Public Abstract Class

Other class types were excluded as they didn’t find their presence in the log files generated using

CVS Log command.

Following attributes are included in the CSV file generated by the Understand tool. The CK [1]

metrics are selected from the Understand tool.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 17

Table 4.1 Mapping between Metrics used and Understand tool

Undertand Fields Metrics Used

Kind Not applicable

Name Not applicable

CountLineCode Source lines of code (SLOC)

MaxInheritanceTree Depth of Inheritance Tree (DIT)

CountDeclMethod Weighted Methods Per Class (WMC)

CountClassCoupled

Coupling between Object Classes

(CBO)

CountClassDerived Number of Children (NOC)

PercentLackOfCohesion Lack of Cohesion in Methods (LCOM)

CountDeclMethodAll Response for a Class (RFC)

The DefectPresent info is captured using the Log Parser tool. This helps to specify whether a

given class contains an issue or not.

4.2 Log Parser Tool

We have developed “Log Parser” tool using Visual studio 2008, and is composed of two

projects.

• a C# based project – responsible for the UI part of the Tool, and

• a C++ DLL project – responsible for the business logic of the tool

The tool takes log file, generated using CVS Log command, as input. The tool then parses the

log file and stores the parsed information in separate files. The information stored is Class Name,

Defect present info, Defect count and Bugs Information.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 18

The files created are namely,

• LogFile_BugInfo.txt

• LogFile_DefectCount.txt

• LogFile_DefectInfo.txt

The tool is capable of parsing CVS log files, and generate information for the defect count and

bugs ID. It can arrange classes as per ascending/descending order of number of defects.

For the scope of this study, we have used the defect classifying property of this tool to classify

whether a given class contains issues or not.

A snapshot of the tool used is given below.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 19

Figure 4.2 Log File Parser

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 20

4.3 Machine Learning Algorithms for Analysis

4.3.1 Naive Bayes Classifier

The Naïve Bayes Classification is named after Thomas Bayes, who proposed the Bayes

Theorem. The Bayesian Classification is known as a supervised learning method and as a

statistical method that can be used for classification.

This classification technique is based on the principle of probability and helps in determining the

uncertainty involved. Bayesian Classification provides a base for several machine learning

algorithms and helps in evaluation of a number of algorithms.

Some of the most common uses of Naive Bayes classification are as under:

• Text classification

As mentioned above, this classification is a probability base model and supports learning.

Naive Bayes classification is fundamental in classifying and well known successful

algorithms for text classification.

• Spam filtering

Spam filtering can be considered as a sub task of the test classification method discussed

above. This again uses the well known classification technique for identifying spam e-

mail. Due to its increasing usage and advantages, this is used as a component in several

email systems, both corporate and personal email systems. This also comes as a side

utility to support filtering of email. The utility can be embedded both in client side as

well as server side in an email system.

• Recommender Systems

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 21

This application of Naive Bayes Classifier is very common these days, especially on e-

commerce websites. It is used in combination with data mining methods to form

Recommender Systems. Both machine learning methods and data mining techniques are

applied to remember and focus on user’s preference and help in predicting the probable

choice of selection for an end user. Despite its simplicity, it is a well performing model in

real world applications.

Naïve Bayes classification is easy to apply and provides quick first results. It considers every

attribute in each class as a separate entity and helps in evaluating the probabilities with normal

distributions. Naïve Bayes has many successful applications, e.g., email filtering etc.

4.3.2 LogitBoost

LogitBoost is a boosting scheme which was proposed by Jerome Friedman, Trevor Hastie and

Robert Tibshirani. Boosting is a process of applying a classification algorithm to the training

instances, reweighting them again and again, and then taking a majority vote of the number of

classifiers thus produced. LogitBoost algorithm takes AdaBoost algorithm as a additive model

and applies the cost functional of logistic regression. LogitBoost is suitable for problems

involving two class situations.

As mentioned above, LogitBoost is a boosting algorithm generally used for predictive

classification and is considered to be sensitive to outliers. It is also considered to be agood

ensemble learning methods. Ensemble learning denotes the concept where several models

combine to produce better results as compared to individual results. When compared with

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 22

AdaBoost, LogitBoost proves to be more robust against noisy data. Reason being LogistBoost

uses the binomial log which has the tendency to grow in linear manner whereas AdaBoost uses

an exponential function.

4.3.3 Bagging

Bagging, an acronym for Bootstrap Aggregating, was introduced by Breiman. Idea was to

combine classification techniques and to improve the overall classification results. Another

example for machine learning ensemble method, it aims at combining multiple predictors and

improving classification. Being a meta-algorithm, it uses aggregation to average out the results

of several bootstrap samples. Thus, Bagging can be viewed as a combination of Bootstrapping

and aggregation.

Bagging = Bootstrapping + Aggregation

Discussing the Predictors, Predictors can be classifiers such as Decision Trees or estimators such

as Regression trees or some other parsers.

The bagging algorithm can then be briefed as follows:

Let the training data be defined as T,

Repeat following process N times:

• Fetch a bootstrap sample �� from T.

• Now train the predictor using ��.

As a second step, we need to combine/aggregate N predictors by

• Voting, generally used in case of classification problems, and/or

• Averaging, which is generally used in case of estimation problems

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 23

4.3.4 Random Forest

The term Random forest, “randomized decision forests”, was introduced by Tin in 1995 and the

algorithm was induced by Breiman in 1999. The idea is to combine randomness and the concept

of bagging to produce a forest of trees but with a controlled variant. RandomForest is considered

as modification of bagging with trees designed to reduce correlation as during the course of

training, it optimizes split over dimensions by choosing different subset of dimensions. It then

chooses the best split amongst the possible splits. Here the important point is the selection of

subset which is chosen randomly from the given dimensions. Lets discuss the algorithm in brief

below:

• Decide on the number of input variables that would be used to determine the selection

criteria at the node. Let this count be n.

• Create bootstrap samples from the data set.

• Now comes the training part. Let N denote the total number of features or total number of

input variables. Idea is to train the bootstrap sample by randomly selecting n<<N input

features at each node and then decide on the best spilt among the selected n input

features.

• For the purpose of prediction, the best bootstrap needs to be appended at the bottom of

the tree as a leaf node and the response would be leaf value. Follow the same process

with other bootstrap samples with the response with higher number of votes resulting as

our prediction value.

4.3.5 AdaBoostM1

AdaBoost, an acronymt for "Adaptive Boosting", is a meta-algorithm that combines several other

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 24

machine learning algorithms with the aim of producing better performance. AdaBoost is

considered to be sensitive to outliers. Adaboost helps in reducing variance of classifiers and

focus on feature selection that assists in decision making.

4.3.6 Logistic

Logistic regression is a methods commonly used for depicting and analyzing relationship

between independent and dependent variables. Logistic regression helps to predict the

occurrence of an event and its division amongst the groups that are depicted by the dependent

variable.

The value predicted by logistic regression is within the range of 0.0 and 1.0. Depending upon the

value of the cut-off point the subject is classified for any of the relevant groups. Logistic

regression is used as a base for several machine learning algorithms as it provides quick and easy

statistics for easy reference.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 25

Chapter 5

RESULTS

In order to evaluate the results of the thesis following measures have been used in this work.

Sensitivity: Sensitivity is defined as the ratio of the number of correctly predicted defective

classes to the total number of actual defective classes.

Specificity: Specificity is defined as the ratio of the number of correctly predicted non-defective

classes to the total number of actual non-defective classes.

Receiver Operating Characteristic Curves (ROC): ROC is constructed between 1-Specificity

as X-axis and sensitivity as Y-axis. Area Under the Curve (AUC) is used to analyze the

performance of a given model. More the AUC value better is the performance of the model.

Following section discusses the results obtained after applying machine learning methods. The

models predicted were applied to a total of 668 classes. We have used Weka[11] to apply

different machine learning algorithms on the data set obtained by applying the data cleaning

methods above.

A total of 4 attributes were used for processing of data sets. The attributes included were:

• CountDeclMethod

• CountClassCoupled

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 26

• CountDeclMethodAll

• DefectPresent

When checked through Weka[11] tool, the value of standard deviation and mean for DIT and

NOC metrics are low for the chosen dataset, which shows that inheritance is not much used in

the given dataset. Also the metrics LCOM and SLOC had very high values for standard deviation

and mean. As a result DIT, NOC, LCOM and SLOC were not considered while processing the

data sets.

5.1 Bagging:

The above data set was tried in Weka using the Bagging algorithm. Following graph shows the

results using Bagging algorithm.

(a) MX4J

0.7755102

0.75789475

0.8291283

0.72

0.74

0.76

0.78

0.8

0.82

0.84

Sensitivity Specificity ROC

Kapil Sharma, "Empirical validation of object

Figure 5.1 Sensitivity, Specificity and ROC graph for

0.73255813

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

Sensitivity

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods"

(b) Synapse 1.2

Figure 5.1 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2

Bagging Algorithm

(a) MX4J

0.73255813 0.7352941

0.7674429

Sensitivity Specificity ROC Area

oriented metrics using different Machine Learning Methods" Page 27

and (b) Synapse 1.2 using

0.7674429

ROC Area

Kapil Sharma, "Empirical validation of object

Figure 5.2 ROC curve

5.2 LogitBoost:

The above data set was tried in Weka

shows the results using LogitBoost algorithm.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods"

(b) Synapse 1.2

 for (a) MX4J and (b) Synapse 1.2 using Bagging Algorithm

The above data set was tried in Weka[11] using the LogitBoost algorithm. Following graph

shows the results using LogitBoost algorithm.

oriented metrics using different Machine Learning Methods" Page 28

using Bagging Algorithm

using the LogitBoost algorithm. Following graph

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 29

(a) MX4J

(b) Synapse 1.2

Figure 5.3 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2 using

LogitBoost Algorithm

0.75510204

0.71754384

0.8045391

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

Sensitivity Specificity ROC

0.75581396

0.7764706

0.8066692

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

Sensitivity Specificity ROC Area

Kapil Sharma, "Empirical validation of object

Figure 5.4 ROC curve for (a) MX4J and (b) Synapse 1.2

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods"

(a) MX4J

(a) Synapse 1.2

for (a) MX4J and (b) Synapse 1.2 using LogitBoost Algorithm

oriented metrics using different Machine Learning Methods" Page 30

using LogitBoost Algorithm

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 31

5.3 RandomForest:

The above data set was tried in Weka using the RandomForest algorithm. Following graph

shows the results using RandomForest algorithm.

(a) MX4J

0.75510204

0.73157895

0.8003225

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

Sensitivity Specificity ROC

Kapil Sharma, "Empirical validation of object

Figure 5.5 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2

0.7209302

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

Sensitivity

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods"

(b) Synapse 1.2

Figure 5.5 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2

RandomForest Algorithm

(a) MX4J

0.7209302

0.69411767

0.7350547

Sensitivity Specificity ROC Area

oriented metrics using different Machine Learning Methods" Page 32

Figure 5.5 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2 using

0.7350547

ROC Area

Kapil Sharma, "Empirical validation of object

Figure 5.6 ROC curve for (a) MX4J and (b) Synapse 1.2

5.4 NaiveBayes:

The above data set was tried in Weka using the NaiveBayes algorithm. Following graph shows

the results using NaiveBayes algorithm.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods"

(b) Synapse 1.2

for (a) MX4J and (b) Synapse 1.2 using RandomForest

was tried in Weka using the NaiveBayes algorithm. Following graph shows

the results using NaiveBayes algorithm.

oriented metrics using different Machine Learning Methods" Page 33

using RandomForest Algorithm

was tried in Weka using the NaiveBayes algorithm. Following graph shows

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 34

(a) MX4J

(b) Synapse 1.2

 Figure 5.7 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2 using

NaiveBayes Algorithm

0.7346939
0.74035084

0.77393556

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

Sensitivity Specificity ROC

0.68604654

0.7

0.730575

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

Sensitivity Specificity ROC Area

Kapil Sharma, "Empirical validation of object

 Figure 5.8 ROC curve

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods"

(a) MX4J

(b) Synapse 1.2

Figure 5.8 ROC curve for (a) MX4J and (b) Synapse 1.2 using NaiveBayes Algorithm

oriented metrics using different Machine Learning Methods" Page 35

using NaiveBayes Algorithm

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 36

5.5 AdaBoostM1:

The above data set was tried in Weka using the AdaBoostM1 algorithm. Following graph shows

the results using AdaBoostM1 algorithm.

(a) MX4J

0.74489796

0.7245614

0.7829934

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

Sensitivity Specificity ROC

Kapil Sharma, "Empirical validation of object

Figure 5.9 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2

0.68604654

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

Sensitivity

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods"

(b) Synapse 1.2

Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2

AdaBoostM1 Algorithm

(a) MX4J

0.68604654

0.7117647

0.74145

Sensitivity Specificity ROC Area

oriented metrics using different Machine Learning Methods" Page 37

Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2 using

0.74145

ROC Area

Kapil Sharma, "Empirical validation of object

Figure 5.10 ROC curve for (a) MX4J and (b) Synapse 1.2

5.6 Logistic:

The above data set was tried in Weka using the Logistic algorithm. Following graph shows the

results using Logistic algorithm.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods"

(b) Synapse 1.2

for (a) MX4J and (b) Synapse 1.2 using AdaBoostM1 Algorithm

data set was tried in Weka using the Logistic algorithm. Following graph shows the

results using Logistic algorithm.

oriented metrics using different Machine Learning Methods" Page 38

using AdaBoostM1 Algorithm

data set was tried in Weka using the Logistic algorithm. Following graph shows the

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 39

(a) MX4J

(b) Synapse 1.2

Figure 5.11 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2 using

Logistic Algorithm

0.74489796

0.7122807

0.7852675

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Sensitivity Specificity ROC

0.6976744
0.6823529

0.7651167

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

Sensitivity Specificity ROC Area

Kapil Sharma, "Empirical validation of object

Figure 5.12 ROC curve

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods"

(a) MX4J

(b) Synapse 1.2

Figure 5.12 ROC curve for (a) MX4J and (b) Synapse 1.2 using Logistic Algorithm

oriented metrics using different Machine Learning Methods" Page 40

using Logistic Algorithm

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 41

For the purpose of our work we have compared the ROC values for different methods applied.

The comparison results showed that Bagging and Logistic methods provided greater ROC area

as compared to RandomForest and NaiveBayes.

The comparison results are consolidated in the table below:

Table 5.1 Comparison of Sensitivity, Specificity and ROC Area for (a) MX4J and (b) Synapse

1.2 for machine learning methods

Classifier Sensitivity Specificity ROC Area

Bagging-Probabilities 0.7755102 0.75789475 0.8291283

LogitBoost-Probabilities 0.75510204 0.71754384 0.8045391

RandomForest-

Probabilities 0.75510204 0.73157895 0.8003225

Logistic-Probabilities 0.74489796 0.7122807 0.7852675

AdaBoostM1-

Probabilities 0.74489796 0.7245614 0.7829934

NaiveBayes-Probabilities 0.7346939 0.74035084 0.77393556

(a) MX4J

Classifier Sensitivity Specificity ROC Area

LogitBoost-Probabilities 0.75581396 0.7764706 0.8066692

Bagging-Probabilities 0.73255813 0.7352941 0.7674429

Logistic-Probabilities 0.6976744 0.6823529 0.7651167

AdaBoostM1-

Probabilities 0.68604654 0.7117647 0.74145

RandomForest-

Probabilities 0.7209302 0.69411767 0.7350547

NaiveBayes-Probabilities 0.68604654 0.7 0.730575

(b) Synapse 1.2

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 42

(a) MX4J

(b) Synapse 1.2

Figure 5.13: Graphs for comparison of Sensitivity, Specificity and ROC Area of machine

learning methods for (a) MX4J and (b) Synapse 1.2

0.7755102 0.75510204 0.75510204 0.74489796 0.74489796 0.7346939

0.75789475 0.71754384 0.73157895 0.7122807 0.7245614 0.74035084

0.8291283 0.8045391 0.8003225 0.7852675 0.7829934 0.77393556

0

0.5

1

1.5

2

2.5

Sensitivity Specificity ROC Area

0.75581396 0.73255813 0.6976744 0.68604654 0.7209302 0.68604654

0.7764706 0.7352941 0.6823529 0.7117647 0.69411767 0.7

0.8066692 0.7674429 0.7651167 0.74145 0.7350547 0.730575

0

0.5

1

1.5

2

2.5

Sensitivity Specificity ROC Area

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 43

Chapter 6

CONCLUSION & FUTURE WORK

In this chapter we empirically analyzed the performance of machine learning methods. We

applied machine learning methods on two open source Java based varying datasets, MX4J[13]

and Synapse 1.2[14]. We first measured the sensitivity and specificity using the Weka[11] tool

and then used the SPSS[12] tool to generate the ROC curve and perform analysis. We evaluated

the relation between OO metrics, CK metrics, and fault proneness after applying machine-

learning methods. We used Receiver Operating Characteristic (ROC) as a measure to check the

effectiveness of each of the prediction models. The results show that the area under the curve

(measured from the ROC analysis) of models predicted using Bagging and Logistic methods are

than area under the curve of other machine learning methods hence providing better performance

in predicting fault proneness. Also the classification capability of Bagging process was better

than other Methods followed by AdaBoost1 and Logistic Methods, whereas NaiveBayes being

the last in the comparison results.

This study provides a cost-effective way by assisting managers to align resources on fault prone

modules. The developers can be asked to focus upon modules that are predicted to have higher

fault proneness. The process of applying fault prediction models based on object oriented (OO)

design metrics for the purpose of detecting fault prone classes would help in reducing in software

defects in final products launched in the market or shared with the end user.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 44

Since we conducted our analysis on two datasets, we would replicate the study on larger number

of datasets in order to generalize our findings. We plan to perform extended studies with

different data sets to confirm our findings over a larger range of domain. Also we plan to use the

number of defects to be used as a major area of focus along with the severity of faults. We plan

to extend our study by confirming the prediction performance by applying genetic algorithms.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 45

References

[1] Chidamber, S., & Kamerer, C. (1994). A metrics suite for object-oriented design. IEEE

Transactions on Software Engineering, 20(6), 476–493. doi:10.1109/32.295895.

[2] Singh, Y., Kaur, A., & Malhotra, R. (2010). Empirical validation of object-oriented metrics

for predicting fault proneness models, Software Qual J (2010) 18:3–35, DOI 10.1007/s11219-

009-9079-6

[3] Aggarwal, K. K., Singh, Y., Kaur, A., & Malhotra, R. (2009). Empirical analysis for

investigating the effect of object-oriented metrics on fault proneness: A replicated case study.

Software Process: Improvement

and Practice, 16(1), 39–62. doi:10.1002/spip.389s.

[4] Shatnawi, R., Li, W., 2008. The effectiveness of software metrics in identifying errorprone

classes in post-release software evolution process. Journal of Systems and Software 81 (11),

1868–1882.

[5] Zhou, Y., Leung, H., 2006. Empirical analysis of object-oriented design metrics for

predicting high and low severity faults. IEEE Transactions on Software Engineering 32 (10),

771–789.

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 46

[6] El-Emam, K., Melo, 1999. The prediction of faulty classes using object-oriented design

metrics. published as NRC/ERB-1064. November 1999. 24 pages. NRC 43609.

[7] El-Emam, K., Melo, W., Machado, J.C., 2001b. The prediction of faulty classes using object-

oriented design metrics. Journal of Systems and Software 56 (1), 63–75.

[8] Olague, H.M., Etzkorn, L.H., Gholston, S., Quattlebaum, S., 2007. Empirical validation of

three software metrics suites to predict fault-proneness of object-oriented classes developed

using highly iterative or agile software development processes. IEEE Transactions on Software

Engineering 33 (6), 402–419.

[9] Gondra, Iker , 2007. Applying machine learning to software fault-proneness prediction. The

Journal of Systems and Software 81 (2008) 186–195.

[10] Taghi M. Khoshgoftaar, Naeem Seliya, Nandini Sundaresh (2006) .An empirical study of

predicting software faults with case-based reasoning. Software Qual J (2006) 14: 85–111 DOI

10.1007/s11219-006-7597-z

[11] Weka official site:

http://www.cs.waikato.ac.nz/ml/weka/

[12] SPSS official site:

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 47

http://www-01.ibm.com/software/in/analytics/spss/

[13] SourceForge official site. Source code for MX4J dataset

http://sourceforge.net/projects/mx4j/

[14] Synapse official site:

http://synapse.apache.org/source-repository.html

