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ABSTRACT 

 

 

Complex and advanced software systems are more prone to faults and result in greater 

maintenance cost in later stages of software development cycle. With the help of this study we 

suggest the importance of machine learning algorithms in detection of fault proneness in 

software systems results in early stages of software development life cycle. 

We concentrated on the use of machine learning methods and used them for empirically 

validating object-oriented design metrics, Chidamber et al. [1], for the purpose of predicting fault 

proneness. We have used open source project developed in Java language, “MX4J” and 

“Synapse 1.2”, as the base of our empirical study. The defect prediction models developed using 

machine learning methods are used to compute and evaluate performance of these models. 

We evaluated the performance using Receiver Operating Characteristic (ROC) analysis. We used 

tools such as Weka and SPSS for the purpose of generating data distribution and ROC curve. As 

per the ROC analysis for both the projects, machine learning methods LogitBoost and Bagging 

show better performance as compared to other machine learning methods. 

 

 

 



Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 1 

Chapter 1 

INTRODUCTION 

 

 

Given the complex nature of software products being developed these days, accompanied by 

tight deadlines, it is not so unobvious for defects to ship in the final product. Owing to stiff 

competition between competitors and pressure to quickly launch and hit the market, the defects 

presence is increasing. It is quiet common to see fault prediction models being applied to predict 

software faults before the product is delivered to market. These models help managers to align 

resources to critical areas of the project and also help developers to concentrate on problem areas 

more prone to critical faults. This in turn will result in high quality and timely delivery of 

software products. 

It requires experts with best in class domain knowledge to predict and assist in fault proneness. 

Through this study we focus on evaluating the relation of OO metrics, CK metric, with fault 

proneness using machine learning methods. We also focus on figuring out which of the machine 

learning methods assist in defect classification. With application on open source Java based 

projects, we share important insight on usage of machine learning methods and logistic 

regression for determining fault proneness in object oriented software. 

 

1.1 Goal of the thesis 
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The goal of the work in this thesis is summarized below: 

• We used six machine learning methods for empirical validation of object oriented metrics 

with the purpose of predicting fault proneness using regression and machine learning 

methods.  

• We applied the study on two projects with different code size and complexities to 

generalize the behavior. 

 

1.2 Organization of the Thesis 

 

The thesis is organized as follows: 

 

Chapter 2 provides the survey of existing literature in the field of fault proneness. 

 

Chapter 3 discusses the machine learning paradigms, the concepts of machine classification 

techniques. We also explain the process of data collection and highlight the important aspects 

of the datasets used in our study. We will also touch upon the concept of metrics and describe 

the various metrics selected for this study. And finally, we point down the dependent and 

independent variables. 

 

Chapter 4 explains the research methodology being followed upon in this study. It describes the 

phases involved in the research methodology. It also introduces the Log Parser tool and finally 

mentions the machine learning algorithms used to evaluate the results. 
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Chapter 5 presents a detailed analysis of the results obtained. In this chapter we compare and 

assess the results after applying the machine learning algorithms on the two datasets. The 

machine learning methods applied are Bagging, LogitBoost, RandomForest, NaiveBayes, 

AdaBoost and Logistic. 

 

Chapter 6 presents the conclusions of the thesis and future work.  
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Chapter 2 

RELATED WORK 

 

 

Several researches have been done targeting relation of OO metrics with fault proneness. This 

research is directed to assist senior managers in planning resources and helping to focus on fault-

prone areas. 

Singh et al. [2], in their work, focused developing prediction models using regression and 

machine learning methods. Through ROC analysis they showed that medium and low severity 

faults are easier to predict than high severity faults. Through this work they also showed that 

machine learning methods have better performance as compared to logistic regression methods. 

Aggarwal et al. [3], provided empirical evidence to draw the strong conclusion that many 

metrics capture and provide redundant information and that a subset of metrics can help to 

identify faulty classes with more than 90% accuracy. The study also confirms results from 

previous studies and shows that import coupling along with size metrics are related to fault 

proneness. 

Shatnawi & Li [4], empirically investigated class error probability in the post-release 

evolution process to answer aspects such as if software metrics can predict error post-release 

system and if it can be related to severity of errors and to identify the classes based on severity of 

errors. It was concluded that it is desirable to seek alternative methods to locate error-prone 

classes for higher accuracy. 
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Zhou & Leung [5],  in their study concluded that design metrics and fault proneness are 

related while considering the severity of faults and low severity faults are easily predicted as 

compared to high severity faults in fault-prone classes. 

The sooner the defects can be predicted, the better. Emam et al. [6]
 
in their study showed 

that prediction models using design metrics are able to identify faulty classes if used in early 

stages of development and that export coupling metric has the strongest association with fault 

proneness. 

Fault-Proneness can be predicted using highly iterative development process. It can also 

be linked to agile software development processes. Olague et al.[8], in their research, empirically 

validated three OO metrics suites namely CK metrics, MOOD metrics and QMOOD metrics 

suite. CK and QMOOD suites were able to produce similar statistical models that could 

efficiently help in identifying error prone classes whereas MOOD metrics suite is not so good in 

predicting fault proneness in classes. 

In modern era, the use of machine learning to predict software fault-proneness is 

increasing. Iker Gondra [9], in his study, proposed the use of machine learning by training 

Artificial Neural Network (ANN). Software metrics are identified based on their criticality using 

ANN. In this study, he used Support Vector Machines (SVM) as the tool to determine the 

classification whether a module is contains fault or is fault free. The use of sensitivity analysis 

for selecting software metrics indicates the existence of errors. The experimental results showed 

that SVMs are a better defect classifier when compared to ANNs. 

Khoshgoftaar et. al [10], worked on a software fault prediction model with relation to 

case-based reasoning (CBR). CBR is a part of the computational intelligence field focusing on 
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automated reasoning processes. CBR models are seen to have better prediction capability as 

compared to multiple linear regressions. 

Zhou et. al [12], in his study, focused on complexity metrics in order to determine fault-

proneness. Complexity metrics were shown as moderate predictors in differentiating whether a 

class contains error or is error-free. It was shown through experimental results that LOC and 

WMC exceeded SDMC and AMC in predicting fault proneness. 
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Chapter 3 

RESEARCH BACKGROUND 

 

 

In this chapter, first we will discuss about the machine learning paradigms. Second, we will 

discuss the concepts of machine classification techniques. Third, we explain the process of 

data collection and highlight the important aspects of the two datasets used in this study. 

Fourth, we will touch upon the concept of metrics and describe the various metrics selected 

for this study in detail. Fifth and finally, we point down the dependent and independent 

variables. 

 

3.1 Machine Learning Paradigms 

 

3.1.1 Probabilistic Models 

In Probabilistic Models the probability of each class and features are recorded with the help of 

the training data set. The outcome of the new data or its classification is based on these 

probabilistic models. One of the examples of Probabilistic Modelling is the Bayesian Model. 

 

3.1.2 Symbolic Learning and Rule Induction 

In Symbolic Learning and Rule Induction the algorithms learn by being told and looking at 

examples. ID3 algorithm developed by Quinlan is one of them. 
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3.1.3 Neural Networks 

In Neural Networks, the data and its output (nodes) are inter-connected in a web like structure 

through programming constructs which mimic the function of the neurons in the human brain. 

Based on these, when new data is place in one of the nodes, its output can be predicted or it can 

be classified accordingly. 

 

3.1.4 Analytic Learning and Fuzzy Logic 

Analytic Learning and Fuzzy Logic normally have logical rules which are used to create even 

more complex rules. Based on these logical rules it looks for truths ranged between 0 and 1. 

 

3.1.5 Evolution Based Models 

Evolution based models are based on Darwin’s theory of Natural Selection and are divided 

further into a) Genetic algorithms, b) Evolution strategies and c) Evolutionary programming. 

 

3.2 Classification techniques 

 

3.2.1 Supervised Learners 

Algorithms that learn from looking at input/output matches of training data to find results for 

new data (like the ID3 algorithm). 
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3.2.2 Unsupervised Learners 

There are no training data sets, the algorithms learn by looking at the input patterns and predict 

the result. 

 

3.2.3 Reinforcement Learners 

These algorithms observe the state and make predictions. Each prediction are rewarded or 

punished according to the accuracy. The algorithm then learns how to make the right decision. 

 

3.3 Empirical Data Collection 

 

We focused on data sets from different projects MX4J [13] and Synapse 1.2 [14]. The data was 

taken from the public domain projects available on sourceforge.net. In this section we will 

explain the data source MX4J and the process for data collection which is common to both the 

projects. MX4J is an implementation of the following Java specification requests (JSR), 

• JSR 3 - Java Management Extensions technology (JMX), and  

• JSR 160 - Java Management Extensions technology Remote API  

JMX is not a mandatory package. Detailed information about this project can be checked at the 

following URL: http://sourceforge.net/projects/mx4j/  
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The MX4J project adheres to the specification and provides its reference implementation. The 

JMX specification aims to support developers by providing APIs and interfaces that assist in 

designing loosely coupled modules and robust codebase. It finds it usage for monitoring 

applications and management of network services. 

 

3.3.1 Login Command: 

cvs -d:pserver:anonymous@mx4j.cvs.sourceforge.net:/cvsroot/mx4j login 

This generates the login for our repository on the mentioned site. Press enter when the command 

prompt asks for password. 

 

3.3.2 Local Repo Command: 

Following command downloads and creates local repository of the project.  

cvs -z3 –d : pserver:anonymous@mx4j.cvs.sourceforge.net: /cvsroot/mx4j co -P modulename  

Here modulename refers to the module you want to create the local repository. 

 

3.3.3 Generate Log files Command: 

cvs log  –d : pserver:anonymous@mx4j.cvs.sourceforge.net: /cvsroot/mx4j co -P modulename  >  

commitlog.txt 

This command generates the log file commitlog.txt 
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3.3.4 Project Statistics 

The Understand tool generated detailed statistics for the open source project MX4J. Some of the 

statistics of interest are as follows: 

Table 3.1: Open source project (MX4J) statistics 

Project Statistics 

Total records: 8808 

Files Count: 770 

Public Class: 595 

Class: 193 

Public Abstract Class: 49 

 

The table below contains instance count for each of the class types considered for this study. 

Table 3.2 Table for instance count of class types for MX4J project 

No. Label Count 

1 Class 32 

2 Public_Class 587 

3 Public_Abstract_Class 49 

 

 

3.4 Metrics Used 
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For the purpose of this study we have chosen CK metrics which are defined at the class level. 

These metrics are known to incorporate the object oriented behavior and can be easily measured 

using some common and well known tools, such as Understand. We have also used SLOC, 

number of lines of code as a metric in this study. Table 3.3 below provides definitions of these 

metrics. 

Table 3.3 Metrics Used 

Metrics Definition 

Coupling between objects 

(CBO)  

CBO defines the coupling between the object 

and denotes the count of couple classes. 

Response for a class (RFC) 

 This metric denotes the count of functions in 

a class and also the count of functions 

available for access to sub classes in class 

inheritance. 

Lack of cohesion (LCOM)  

This metric denotes the usage of member data 

in a class by the member functions in the 

class. 

Number of children (NOC)  

This denotes the concept of inheritance and 

stands for the total number of child classes of 

a given class. 

Depth of inheritance (DIT)  

This metric denotes the level count from the 

root to the given node level. The root is 

generally considered at level 0. 
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Weighted methods per class 

(WMC)  

This denotes the aggregation of complexities 

of all functions in the given class. 

Source lines of code (SLOC)  

This denotes the count of lines of code in the 

source code. 

 

 

3.5 Dependent and independent variables 

 

Independent variable is defined as the variable that is manipulated and dependent variable is 

defined as the response that is measured. Independent variable can also be defined as the 

presumed cause and dependent variable can also be defined as the presumed effect. 

In broader terms, independent variable is the antecedent whereas dependant variable is the 

consequent. 

With respect to experimental research, independent variables is the variable that is to be 

manipulated in the research, and dependent variable is observed or measured for variation as a 

presumed result of the variation in the independent variable. 

In non-experimental research, where there is no experimental manipulation, the independent 

variable is the variable that 'logically' has some effect on a dependent variable. 

For the purpose of our study, defect presence is the dependent variable whereas all other metrics 

form the independent variables. We would check the effect of object oriented metrics and fault 

proneness after applying machine learning methods.  
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Chapter 4 

RESEARCH METHODOLOGY 

 

 

In this chapter we explain the research methodology followed in this study. We describe the 

phases involved in the research methodology. We will introduce the Log Parser tool we 

developed to assist this study. Finally we brief on the machine learning algorithms we used to 

evaluate the results. 

 

4.1 Methodology 

 

Figure 4.1 provides an outline of the methodology used in this study. 
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Figure 4.1: Outline of Research Methodology 

 

As shown in the figure above, the entire process can be divided into three parts, 

4.1.1 Data acquisition and pre-processing. 

In this step the empirical data is collected. Data is fetched from online CVS repositories of open 

source projects. From these local repositories, we generate log files. Some filtering is also 

performed on the generated data set. 
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4.1.2 Applying C&K Metrics and classifying data set. 

We apply C&K metrics using the Understand tool on the local repositories. Also we apply Log 

Parser tool on log files generated in first step. As a last step of the phase, we combine output 

from filtered data set and Log Parser Tool. 

 

4.1.3 Analysis using Machine learning algorithms. 

We apply the Machine learning algorithms to the filtered data set and perform analysis. As a last 

step of this phase, we perform comparison of results of different machine learning algorithms. 

 

4.1.4 Filtering Data set 

Filtering data set is common to phase I and II of our research methodology. We used the 

Understand tool to apply C&K Metrics to the open source code. It produces a detailed output 

metrics which is further filtered to match our requirements. For the scope of our study we have 

concentrated on following classes only: 

• Class 

• Public Class 

• Public Abstract Class 

Other class types were excluded as they didn’t find their presence in the log files generated using 

CVS Log command.  

Following attributes are included in the CSV file generated by the Understand tool. The CK [1] 

metrics are selected from the Understand tool. 
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Table 4.1 Mapping between Metrics used and Understand tool 

Undertand Fields Metrics Used 

Kind Not applicable 

Name Not applicable 

CountLineCode Source lines of code (SLOC) 

MaxInheritanceTree Depth of Inheritance Tree (DIT) 

CountDeclMethod Weighted Methods Per Class (WMC) 

CountClassCoupled 

Coupling between Object Classes 

(CBO) 

CountClassDerived Number of Children (NOC) 

PercentLackOfCohesion Lack of Cohesion in Methods (LCOM) 

CountDeclMethodAll Response for a Class (RFC) 

 

The DefectPresent info is captured using the Log Parser tool. This helps to specify whether a 

given class contains an issue or not. 

 

4.2 Log Parser Tool 

 

We have developed “Log Parser” tool using Visual studio 2008, and is composed of two 

projects. 

• a C# based project – responsible for the UI part of the Tool, and 

• a C++ DLL project – responsible for the business logic of the tool 

The tool takes log file, generated using CVS Log command, as input. The tool then parses the 

log file and stores the parsed information in separate files. The information stored is Class Name, 

Defect present info, Defect count and Bugs Information.  
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The files created are namely, 

• LogFile_BugInfo.txt 

• LogFile_DefectCount.txt 

• LogFile_DefectInfo.txt 

The tool is capable of parsing CVS log files, and generate information for the defect count and 

bugs ID. It can arrange classes as per ascending/descending order of number of defects. 

For the scope of this study, we have used the defect classifying property of this tool to classify 

whether a given class contains issues or not. 

A snapshot of the tool used is given below. 
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Figure 4.2 Log File Parser 
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4.3 Machine Learning Algorithms for Analysis 

 

4.3.1 Naive Bayes Classifier 

The Naïve Bayes Classification is named after Thomas Bayes, who proposed the Bayes 

Theorem. The Bayesian Classification is known as a supervised learning method and as a 

statistical method that can be used for classification.  

This classification technique is based on the principle of probability and helps in determining the 

uncertainty involved. Bayesian Classification provides a base for several machine learning 

algorithms and helps in evaluation of a number of algorithms. 

Some of the most common uses of Naive Bayes classification are as under: 

• Text classification 

As mentioned above, this classification is a probability base model and supports learning. 

Naive Bayes classification is fundamental in classifying and well known successful 

algorithms for text classification.  

• Spam filtering 

Spam filtering can be considered as a sub task of the test classification method discussed 

above. This again uses the well known classification technique for identifying spam e-

mail. Due to its increasing usage and advantages, this is used as a component in several 

email systems, both corporate and personal email systems. This also comes as a side 

utility to support filtering of email. The utility can be embedded both in client side as 

well as server side in an email system. 

 

• Recommender Systems  
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This application of Naive Bayes Classifier is very common these days, especially on e-

commerce websites. It is used in combination with data mining methods to form 

Recommender Systems. Both machine learning methods and data mining techniques are 

applied to remember and focus on user’s preference and help in predicting the probable 

choice of selection for an end user. Despite its simplicity, it is a well performing model in 

real world applications. 

 

Naïve Bayes classification is easy to apply and provides quick first results. It considers every 

attribute in each class as a separate entity and helps in evaluating the probabilities with normal 

distributions. Naïve Bayes has many successful applications, e.g., email filtering etc.      

 

4.3.2 LogitBoost  

LogitBoost is a boosting scheme which was proposed by Jerome Friedman, Trevor Hastie and 

Robert Tibshirani. Boosting is a process of applying a classification algorithm to the training 

instances, reweighting them again and again, and then taking a majority vote of the number of 

classifiers thus produced. LogitBoost algorithm takes AdaBoost algorithm as a additive model 

and applies the cost functional of logistic regression. LogitBoost is suitable for problems 

involving two class situations. 

As mentioned above, LogitBoost is a boosting algorithm generally used for predictive 

classification and is considered to be sensitive to outliers. It is also considered to be agood 

ensemble learning methods. Ensemble learning denotes the concept where several models 

combine to produce better results as compared to individual results. When compared with 
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AdaBoost, LogitBoost proves to be more robust against noisy data. Reason being LogistBoost 

uses the binomial log which has the tendency to grow in linear manner whereas AdaBoost uses 

an exponential function. 

 

4.3.3 Bagging  

Bagging, an acronym for Bootstrap Aggregating, was introduced by Breiman. Idea was to 

combine classification techniques and to improve the overall classification results. Another 

example for machine learning ensemble method, it aims at combining multiple predictors and 

improving classification. Being a meta-algorithm, it uses aggregation to average out the results 

of several bootstrap samples. Thus, Bagging can be viewed as a combination of Bootstrapping 

and aggregation. 

Bagging = Bootstrapping + Aggregation 

Discussing the Predictors, Predictors can be classifiers such as Decision Trees or estimators such 

as Regression trees or some other parsers.  

The bagging algorithm can then be briefed as follows: 

Let the training data be defined as T,  

Repeat following process N times: 

• Fetch a bootstrap sample �� from T. 

• Now train the predictor using ��. 

As a second step, we need to combine/aggregate N predictors by  

• Voting, generally used in case of classification problems, and/or 

• Averaging, which is generally used in case of estimation problems 
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4.3.4 Random Forest  

The term Random forest, “randomized decision forests”, was introduced by Tin in 1995 and the 

algorithm was induced by Breiman in 1999. The idea is to combine randomness and the concept 

of bagging to produce a forest of trees but with a controlled variant. RandomForest is considered 

as modification of bagging with trees designed to reduce correlation as during the course of 

training, it optimizes split over dimensions by choosing different subset of dimensions. It then 

chooses the best split amongst the possible splits. Here the important point is the selection of 

subset which is chosen randomly from the given dimensions. Lets discuss the algorithm in brief 

below: 

• Decide on the number of input variables that would be used to determine the selection 

criteria at the node. Let this count be n. 

• Create bootstrap samples from the data set.  

• Now comes the training part. Let N denote the total number of features or total number of 

input variables. Idea is to train the bootstrap sample by randomly selecting n<<N input 

features at each node and then decide on the best spilt among the selected n input 

features.  

• For the purpose of prediction, the best bootstrap needs to be appended at the bottom of 

the tree as a leaf node and the response would be leaf value. Follow the same process 

with other bootstrap samples with the response with higher number of votes resulting as 

our prediction value. 

 

4.3.5 AdaBoostM1 

AdaBoost, an acronymt for "Adaptive Boosting", is a meta-algorithm that combines several other 



Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 24 

machine learning algorithms with the aim of producing better performance. AdaBoost is 

considered to be sensitive to outliers. Adaboost helps in reducing variance of classifiers and 

focus on feature selection that assists in decision making. 

 

4.3.6 Logistic 

Logistic regression is a methods commonly used for depicting and analyzing relationship 

between independent and dependent variables. Logistic regression helps to predict the 

occurrence of an event and its division amongst the groups that are depicted by the dependent 

variable.  

The value predicted by logistic regression is within the range of 0.0 and 1.0. Depending upon the 

value of the cut-off point the subject is classified for any of the relevant groups. Logistic 

regression is used as a base for several machine learning algorithms as it provides quick and easy 

statistics for easy reference.  
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Chapter 5 

 

RESULTS 

 

 

In order to evaluate the results of the thesis following measures have been used in this work. 

Sensitivity: Sensitivity is defined as the ratio of the number of correctly predicted defective 

classes to the total number of actual defective classes. 

Specificity:  Specificity is defined as the ratio of the number of correctly predicted non-defective 

classes to the total number of actual non-defective classes. 

Receiver Operating Characteristic Curves (ROC): ROC is constructed between 1-Specificity 

as X-axis and sensitivity as Y-axis. Area Under the Curve (AUC) is used to analyze the 

performance of a given model. More the AUC value better is the performance of the model. 

Following section discusses the results obtained after applying machine learning methods. The 

models predicted were applied to a total of 668 classes. We have used Weka[11] to apply 

different machine learning algorithms on the data set obtained by applying the data cleaning 

methods above. 

A total of 4 attributes were used for processing of data sets. The attributes included were:                      

• CountDeclMethod                  

• CountClassCoupled                
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• CountDeclMethodAll            

• DefectPresent 

When checked through Weka[11] tool, the value of standard deviation and mean for DIT and 

NOC metrics are low for the chosen dataset, which shows that inheritance is not much used in 

the given dataset. Also the metrics LCOM and SLOC had very high values for standard deviation 

and mean. As a result DIT, NOC, LCOM and SLOC were not considered while processing the 

data sets. 

 

5.1 Bagging: 

 

The above data set was tried in Weka using the Bagging algorithm. Following graph shows the 

results using Bagging algorithm. 
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Figure 5.1 Sensitivity, Specificity and ROC graph for 
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(b) Synapse 1.2 

Figure 5.1 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2 

Bagging Algorithm 

 

(a) MX4J 
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and (b) Synapse 1.2 using 

 

0.7674429

ROC Area
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Figure 5.2 ROC curve 

 

5.2 LogitBoost: 

 

The above data set was tried in Weka

shows the results using LogitBoost algorithm.
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(b) Synapse 1.2 

 for (a) MX4J and (b) Synapse 1.2 using Bagging Algorithm

The above data set was tried in Weka[11] using the LogitBoost algorithm. Following graph 

shows the results using LogitBoost algorithm. 
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using Bagging Algorithm 

using the LogitBoost algorithm. Following graph 
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(a) MX4J 

 

(b) Synapse 1.2 

Figure 5.3 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2 using 

LogitBoost Algorithm 
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Figure 5.4 ROC curve for (a) MX4J and (b) Synapse 1.2
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(a) MX4J 

 

(a) Synapse 1.2 

for (a) MX4J and (b) Synapse 1.2 using LogitBoost Algorithm
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using LogitBoost Algorithm 



Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 31 

 

 

5.3 RandomForest: 

 

The above data set was tried in Weka using the RandomForest algorithm. Following graph 

shows the results using RandomForest algorithm. 
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Figure 5.5 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2 
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(b) Synapse 1.2 

Figure 5.5 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2 

RandomForest Algorithm 

 

 

(a) MX4J 
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Figure 5.5 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2 using 
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Figure 5.6 ROC curve for (a) MX4J and (b) Synapse 1.2

5.4 NaiveBayes: 

 

The above data set was tried in Weka using the NaiveBayes algorithm. Following graph shows 

the results using NaiveBayes algorithm.
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(b) Synapse 1.2 

for (a) MX4J and (b) Synapse 1.2 using RandomForest

 

was tried in Weka using the NaiveBayes algorithm. Following graph shows 

the results using NaiveBayes algorithm. 
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using RandomForest Algorithm 

was tried in Weka using the NaiveBayes algorithm. Following graph shows 
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(a) MX4J 

 

(b) Synapse 1.2 

 Figure 5.7 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2 using 

NaiveBayes Algorithm 
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 Figure 5.8 ROC curve
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(a) MX4J 

 

(b) Synapse 1.2 

Figure 5.8 ROC curve for (a) MX4J and (b) Synapse 1.2 using NaiveBayes Algorithm
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using NaiveBayes Algorithm 
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5.5 AdaBoostM1: 

 

The above data set was tried in Weka using the AdaBoostM1 algorithm. Following graph shows 

the results using AdaBoostM1 algorithm. 
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Figure 5.9 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2
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(b) Synapse 1.2 

Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2

AdaBoostM1 Algorithm 

 

(a) MX4J 
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Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2 using 
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Figure 5.10 ROC curve for (a) MX4J and (b) Synapse 1.2

 

5.6 Logistic: 

 

The above data set was tried in Weka using the Logistic algorithm. Following graph shows the 

results using Logistic algorithm.
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(b) Synapse 1.2 

for (a) MX4J and (b) Synapse 1.2 using AdaBoostM1 Algorithm

data set was tried in Weka using the Logistic algorithm. Following graph shows the 

results using Logistic algorithm. 
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using AdaBoostM1 Algorithm 

data set was tried in Weka using the Logistic algorithm. Following graph shows the 



Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods" Page 39 

 

(a) MX4J 

 

(b) Synapse 1.2 

Figure 5.11 Sensitivity, Specificity and ROC graph for (a) MX4J and (b) Synapse 1.2 using 

Logistic Algorithm 
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Figure 5.12 ROC curve

Kapil Sharma, "Empirical validation of object-oriented metrics using different Machine Learning Methods"

 

(a) MX4J 

 

(b) Synapse 1.2 

Figure 5.12 ROC curve for (a) MX4J and (b) Synapse 1.2 using Logistic Algorithm
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using Logistic Algorithm 
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For the purpose of our work we have compared the ROC values for different methods applied. 

The comparison results showed that Bagging and Logistic methods provided greater ROC area 

as compared to RandomForest and NaiveBayes.  

The comparison results are consolidated in the table below: 

Table 5.1 Comparison of Sensitivity, Specificity and ROC Area for (a) MX4J and (b) Synapse 

1.2 for machine learning methods 

Classifier Sensitivity Specificity ROC Area 

Bagging-Probabilities 0.7755102 0.75789475 0.8291283 

LogitBoost-Probabilities 0.75510204 0.71754384 0.8045391 

RandomForest-

Probabilities 0.75510204 0.73157895 0.8003225 

Logistic-Probabilities 0.74489796 0.7122807 0.7852675 

AdaBoostM1-

Probabilities 0.74489796 0.7245614 0.7829934 

NaiveBayes-Probabilities 0.7346939 0.74035084 0.77393556 

(a) MX4J 

Classifier Sensitivity Specificity  ROC Area 

LogitBoost-Probabilities 0.75581396 0.7764706 0.8066692 

Bagging-Probabilities 0.73255813 0.7352941 0.7674429 

Logistic-Probabilities 0.6976744 0.6823529 0.7651167 

AdaBoostM1-

Probabilities 0.68604654 0.7117647 0.74145 

RandomForest-

Probabilities 0.7209302 0.69411767 0.7350547 

NaiveBayes-Probabilities 0.68604654 0.7 0.730575 

(b) Synapse 1.2 
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(a) MX4J 

 

(b) Synapse 1.2 

Figure 5.13: Graphs for comparison of Sensitivity, Specificity and ROC Area of machine 

learning methods for (a) MX4J and (b) Synapse 1.2  
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Chapter 6 

 

CONCLUSION & FUTURE WORK 

 

 

In this chapter we empirically analyzed the performance of machine learning methods. We 

applied machine learning methods on two open source Java based varying datasets, MX4J[13] 

and Synapse 1.2[14]. We first measured the sensitivity and specificity using the Weka[11] tool 

and then used the SPSS[12] tool to generate the ROC curve and perform analysis. We evaluated 

the relation between OO metrics, CK metrics, and fault proneness after applying machine-

learning methods. We used Receiver Operating Characteristic (ROC) as a measure to check the 

effectiveness of each of the prediction models. The results show that the area under the curve 

(measured from the ROC analysis) of models predicted using Bagging and Logistic methods are 

than area under the curve of other machine learning methods hence providing better performance 

in predicting fault proneness. Also the classification capability of Bagging process was better 

than other Methods followed by AdaBoost1 and Logistic Methods, whereas NaiveBayes being 

the last in the comparison results. 

This study provides a cost-effective way by assisting managers to align resources on fault prone 

modules. The developers can be asked to focus upon modules that are predicted to have higher 

fault proneness. The process of applying fault prediction models based on object oriented (OO) 

design metrics for the purpose of detecting fault prone classes would help in reducing in software 

defects in final products launched in the market or shared with the end user. 
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Since we conducted our analysis on two datasets, we would replicate the study on larger number 

of datasets in order to generalize our findings. We plan to perform extended studies with 

different data sets to confirm our findings over a larger range of domain. Also we plan to use the 

number of defects to be used as a major area of focus along with the severity of faults. We plan 

to extend our study by confirming the prediction performance by applying genetic algorithms. 
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