

ECONOMIC LOAD DISPATCH USING

IMPROVED PARTICLE SWARM OPTIMIZATION

DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN

POWER SYSTEM

Submitted by:

NIMISH KUMAR

2K12/PSY/12

Under the supervision of

Prof. Uma Nangia & Prof. N.K. Jain

DEPARTMENT OF ELECTRICAL ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

 Bawana Road, Delhi-110042

2014

ii

DEPARTMENT OF ELECTRICAL ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

 I, NIMISH KUMAR, Roll No. 2K12/PSY/12 student of M. Tech. (Power System),

hereby declare that the dissertation titled ―ECONOMIC LOAD DISPATCH USING

IMPROVED PARTICLE SWARM OPTIMIZATION‖ under the supervision of Prof.

Uma Nangia & Prof. N.K. Jain of Electrical Engineering Department, Delhi

Technological University in partial fulfillment of the requirement for the award of the

degree of Master of Technology has not been submitted elsewhere for the award of any

Degree.

Place: Delhi NIMISH KUMAR

Date: 30.07.2014 2K12/PSY/12

 M.Tech (PSY)

Prof. Uma Nangia
Professor

EE Dept., DTU

Prof. N.K. Jain

Professor

EE Dept., DTU

iii

ACKNOWLEDGEMENT

The writing of this dissertation has been one of the most significant academic

challenges I have ever had to face; without GOD‘s blessing and support, patience and

guidance of the following people, this study would not have been completed. It is to

them I owe my deepest gratitude.

 Prof. N.K. Jain & Prof. Uma Nangia, Electrical Engineering Department,

DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of

Engineering) for their initiative and valuable guidance in this field of research,

for their affection and encouragement for the successful completion of this work.

Their kind attitude and sincere sympathies always encouraged me to carry out

the present work firmly.

 Prof. Madhusudan Singh, HOD, Electrical Engineering Department and Prof.

Narendra Kumar, Ex-HOD, Electrical Engineering Department, DELHI

TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering),

New Delhi, for providing me with the best facilities in the department.

 My parent, Niranjan Kumar, my elder brother and Sanjeev Prabhakar, my

younger brother who have always supported, encouraged and believed in me and

patiently waited for my dreams to come true.

NIMISH KUMAR

 2K12/PSY/12

 M.TECH. (PSY)

iv

ABSTRACT

 Optimization is a mathematical tool to find the maximum or minimum of a function in

some feasible region. There is no any industry which not involved the solution of

optimization problems. In the operational planning of power system, Economic load

dispatch (ELD) is a common task which concern with the optimization problems. The

objective of ELD problem is to schedule the output of the connected units of the plant

so as to fulfil the load demand at minimum operating cost while satisfying all

operational constraints. Recently particle swarm optimization algorithm inspired by

collective behaviour of swarm has been applied successfully to solve ELD problem.

 In this work three improved PSO algorithms- IPSO-A, IPSO-B and IPSO-C

have been developed and implemented to solve ELD for IEEE 5, 14 and 30 bus

systems. Conventional PSO (CPSO) using inertia weight and constriction factor

individually as well as simultaneously have been also implemented to solve ELD

problem. PSO algorithms have been compared for twenty trial runs. The best, worst,

average and standard deviation cost for all the algorithms have been determined. The

results show that proposed improved PSO techniques gives the optimum operational

cost with consistent result.

v

CONTENTS

Certificate ii

Acknowledgement iii

Abstract iv

Contents v

List of Figures vii

List of Tables viii

List of Symbols, abbreviations ix

CHAPTER 1 INTRODUCTION 1

1.1 Overview 1

1.2 Objective and methodology 1

1.3 Literature Review 2

1.3.1 Economic Load Dispatch 2

1.3.2 Particle Swarm Optimization 4

1.4 Organisation of the thesis 5

CHAPTER 2 ECONOMIC LOAD DISPATCH 7

2.1 Introduction 7

2.2 Cost Function 7

2.3 System Constraints 8

2.3.1 Equality Constraints 8

2.3.2 Inequality Constraints 9

2.4 Objective Function 11

CHAPTER 3 CONVENTIONAL PARTICLE SWARM

OPTIMIZATION

12

3.1 Introduction 12

3.2 PSO Parameters 15

3.3 Geometrical Illustration of PSO 17

3.4 Implementation of PSO Algorithm 18

3.5 Improvements in Convergence Rate of CPSO 20

3.5.1 Velocity Clamping 20

3.5.2 Constriction Factor 21

vi

3.5.3 Inertia Weight 21

3.6 Advantages of PSO 22

3.7 Disadvantages of PSO 22

3.8 Applications of PSO 23

CHAPTER 4 IMPROVED PARTICLE SWARM

OPTIMIZATION

24

4.1 Introduction 24

4.2 IPSO-A 24

4.3 IPSO-B 25

4.4 IPSO-C 26

CHAPTER 5 SOLUTION OF BENCHMARK FUNCTIONS 28

5.1 Steps to solve Benchmark functions using PSO in MATLAB 28

5.2 Parameters Setting for different PSO algorithms 29

5.3 Solution of Beale‘s function using PSO Algorithms 29

5.4 Solution of Booth‘s function using PSO Algorithms 32

5.5 Solution of Rosenbrock‘s function using PSO Algorithms 33

5.6 Solution of Sphere function using PSO Algorithms 34

5.7 Discussion 35

CHAPTER 6 ECONOMIC LOAD DISPATCH USING PSO

ALGORITHMS

36

6.1 Introduction 36

6.2 Computational Procedure 36

6.3 IEEE 5, 14 & 30 Bus System Data 38

6.4 Results of IEEE 5,14 & 30-Bus System 39

6.5 Discussion 45

CHAPTER 7 CONCLUSIONS & FUTURE DIRECTIONS 48

APPENDIX I 49

APPENDIX II 58

REFERENCES 74

vii

List of Figures

Fig. 3.1: Collective behaviour of Swarm 12

Fig. 3.2: Reynolds proposed behaviour model 13

Fig. 3.3: Kennedy and Eberhart proposed behaviour model 13

Fig. 3.4: Velocity and position update for the particles 17

Fig. 3.5: Flow chart of conventional PSO 19

Fig. 3.6: Effects of Velocity Clamping in 2-D search space 20

Fig. 4.1: Section of flow chart of IPSO-A 25

Fig. 4.2: Section of flow chart of IPSO-B 26

Fig. 4.3: Section of flow chart of IPSO-C 27

Fig 5.1: 3-D Surface Plot of Beale‘s function 30

Fig. 5.2: Position of the particles after different iteration for

Beale‘s function

31

Fig 5.3: 3-D Surface Plot of Booth‘s function 32

Fig 5.4: 3-D Surface Plot of Rosenbrock‘s function 33

Fig 5.5: 3-D Surface Plot of Sphere function 34

Fig. 6.1: Bar chart for Average Computational time 46

Fig. 6.2: Bar Chart for Standard Deviation costs 47

Fig. I-A: Bus-Code Diagram of 5 Bus System 49

Fig. I-B: Bus-Code Diagram of 14 Bus System 51

Fig. I-C: Bus-Code Diagram of 30 Bus System 54

viii

List of Tables

Table 5.1 Parameters setting for PSO algorithms 29

Table 5.2: Results for Beale‘s function 30

Table 5.3: Results for Booth‘s function 32

Table 5.4: Results for Rosenbrock‘s function 33

Table 5.5: Results for Sphere function 34

Table 6.1: Data for cost coefficients 38

Table 6.2: Data for Loss coefficients 38

Table 6.3: Results of IEEE 5-BUS System 39

Table 6.4: Results of IEEE 14-BUS System 41

Table 6.5: Results of IEEE 30-BUS System 43

Table 6.6: Compact Results of IEEE 5-bus system of 20 trials 45

Table 6.7: Compact Results of IEEE 14-bus system of 20 trials 45

Table 6.8: Compact Results of IEEE 30-bus system of 20 trials 45

Table I-A: Line data or Impedance data (5 bus system) 49

Table I-B: Bus data or Operating conditions (5 bus system) 49

Table I-C: Regulated bus data (5 bus system) 50

Table I-D: Impedance & Line-charging data (14 bus system) 51

Table I-E: Bus data or Operating conditions (14 bus system) 52

Table I-F: Regulated bus data (14 bus system) 52

Table I-G: Impedance & Line-charging data (30 bus system) 54

Table I-H: Bus data or Operating conditions (30 bus system) 55

Table I-I: Regulated bus data (30 bus system) 56

Table I-J: Transformer data (30 bus system) 56

Table I-K: Static capacitor data (30 bus system) 56

ix

List of Symbols & abbreviations

C1 Acceleration constant for Cognitive component

C2 Acceleration constant for Social component

ᵡ Constriction Factor

w Inertia Weight

Itmax Maximum no. of iteration

p Number of particles

K Penalty coefficient

ɛ Tolerance Limit

r1 & r2 Uniformly distributed Random Numbers (0,1)

CF Constriction Factor

CPSO Conventional Particle Swarm Optimization

ELD Economic Load Dispatch

IPSO Improved Particle Swarm Optimization

IW Inertia Weight

PSO Particle Swarm Optimization

1

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

 In Economic Load Dispatch (ELD) Problem we determine the optimal

combination of power output of all the connected generating units of the plant to

minimize the total production (fuel or operational) cost while fulfilling the load

demands and system operational constraints. Proper planning of connected unit

outputs can contribute to considerable saving in the plant operating cost. Recently

particle swarm optimization algorithms inspired by collective behaviour of swarm

has been applied successfully to solve ELD problem. The popularity of PSO is due to

its simple concept and easy implementation to both linear as well as non-linear

problems.

 In this work an attempt has been made to solve ELD problem by using

constriction factor and inertia weight individually and simultaneously in the

Conventional PSO (CPSO). Various improved PSO (IPSO) algorithm- IPSO-A,

IPSO-B and IPSO-C have been developed based on the movement of particles. In

IPSO-A, the position and velocity of the particles is not updated when a particle hits

the global during the search. In IPSO-B, the velocity of all the particles is updated,

but the position of particles achieved global is kept fixed. In IPSO-C, the position of

the particles whose current position is better than its personal best is not updated. All

the above algorithms have been implemented on IEEE 5, 14, 30 bus systems.

Detailed comparisons of all the above algorithms have been carried out for 20 trials.

The best, worst and average fuel costs have been determined for each algorithm.

1.2 OBJECTIVE AND METHODOLOGY

 The objective of this work is to solve economic load dispatch (ELD)

problem considering equality and inequality constraints to satisfy the consumers

demand. The standard IEEE 5, 14, 30 bus system have been consider for planning of

connected unit outputs to contribute considerable saving in the plant operating cost.

2

Three improved PSO algorithms namely IPSO-A, IPSO-B and IPSO-C have been

developed and implemented to solve ELD problem. Conventional PSO (CPSO) using

inertia weight and constriction factor individually as well as simultaneously have

been also implemented to solve ELD problem. The best, worst, average fitness and

their standard deviation for all the algorithms have been determined.

The work has been carried out in the following order:

a. Exploring Particle Swarm Optimization in detail.

b. Solving some mathematical function using basic PSO by hand calculation.

c. Coding the PSO algorithms in MATLAB 2012a.

d. Solution of various mathematical benchmark functions using PSO algorithms

by MATLAB 2012a.

e. Formulation of objective function for ELD problem considering cost of

generation and penalized demand constraint for IEEE 5,14 & 30 bus system.

f. Solution of ELD problem using PSO algorithms by MATLAB 2012a.

g. Detailed analysis of different PSO algorithms has been done.

h. Conclusions and future directions have been carried out.

1.3 LITERATURE REVIEW

1.3.1 ECONOMIC LOAD DISPATCH

 Scheduling of connected generating units of the plant plays an

important role in the power system operation, planning and control. Proper planning

of connected unit outputs can contribute to considerable saving in the plant operating

cost. A number of techniques have been successfully applied to solve ELD problem

during past years [1]-[19]. Some of these use the conventional optimization

techniques, whereas others are based on intelligent techniques.

 The examples of conventional techniques to solve ELD problems are

Lambda iteration method, Fast lambda method, Base point and Participation factors

method and Gradient method [1]-[3]. Chem-Lin Chen and Shun-Chung Wang has

solved the ELD problem by implementing new branch-and-bound algorithm in

conventional technique [1]. The gradient projection method has been used by K.Y.

3

Lee et. al to solve ELD problem for active and reactive power [2]. The Fast lambda

method has been developed by J. P. Zhan et. al to solve ELD problem With

Prohibited Operating Zones [3].

 All these conventional techniques have limitation on the nature of cost

curves. In addition, these techniques have oscillatory problems due to existence of

several local minima in the ELD problems with large number of connected units in

the systems. Due to complex algorithm of conventional techniques, it takes high

computational time.

 Modern stochastic techniques such as Linear programming, Quadratic

programming, Genetic algorithm, Biogeography based optimization, Chemical

reaction optimization, Enhanced Bee swarm optimization, Modified Teacher

learning algorithm have been employed successfully to solve the ELD problems [4]-

[10]. Rabih A. Jabr et. al presented homogeneous linear programming algorithm for

the solution of security constrained ELD problem[4]. Leandro dos Santos Coelho and

Viviana Cocco Mariani used combination of chaotic differential evolution and

Quadratic Programming for the solution of ELD problem considering the valve point

effect [5]. ELD problem with network constraints have been solved Ioannis G.

Damousis et. al using real coded genetic algorithm [6]. Biogeography-Based

Optimization algorithm has been used by Aniruddha Bhattacharya and Pranab

Kumar Chattopadhyay to solve both convex and non-convex ELD Problems [7].

Chemical reaction optimization algorithm has been used by Kuntal Bhattacharjee et.

al to solve ELD problems considering different constraints [8]. Enhanced Bee Swarm

Optimization Algorithm has been proposed by Taher Niknam and Faranak

Golestaneh for the solution of dynamic ELD problems [9]. Taher Niknam et. al

introduces a new optimization algorithms named as Modified Teacher learning

algorithm for dynamic ELD problem considering reserved constraints [10]. The

hybrid of different modern techniques has also been used in ELD problems. Irina

Ciornei and Elias Kyriakides proposed the Hybrid genetic algorithm with ant colony

optimization to solve the non-convex ELD problem [11]. Aniruddha Bhattacharya

and Pranab Kumar Chattopadhyay have presented hybrid differential evolution with

biography based optimization to solve ELD problems [12].

 These intelligent optimization techniques do not suffer from any limitation

on the nature of cost curve, due to their ability to find the optimal solution. But, these

4

methods have large number of parameters involved in the algorithm, and takes large

number of iterations to settle to the global optimum.

 The ELD problems have been solved recently by Particle Swarm

Optimization (PSO) approaches [13]-[17]. The solution of ELD problem with non-

smooth cost function using PSO technique has been described by Jong-Bae Park et.

al [13]. The chaotic and Gaussian PSO approach has been described by Leandro dos

Santos Coelho and Chu-Sheng Lee to solve ELD problem for better performance of

PSO [14]. A new concept ‗θ-PSO‘ for solving ELD problem is developed by Vahid

Hosseinnezhad and Ebrahim Babaei [15]. The ELD with environmental emission

have been solved by M.A. Abido using PSO [16]. The quantum inspired PSO has

been proposed to solve ELD problem for faster convergence by Ke Meng et. al [17].

The hybrids PSO are also used to solve the ELD problems [18]-[19]. The hybrid of

binary PSO (for unit commitment) and real coded PSO (for ELD) has been described

by T. O. Ting et. al [18]. The hybrid quantum inspired PSO has been proposed by S.

Chakraborty et. al to explore search space for solving ELD problem [19].

1.3.2: PARTICLE SWARM OPTIMIZATION

 The Particle Swarm Optimization (PSO) is a population based stochastic

algorithm, developed by Kennedy and Eberhart in 1995, inspired by the collective

behaviour of nature such as bird flocking, fish schooling etc. [20]-[29]. A new

concept based upon particle swarm methodology for optimization of non-linear

function is introduced by James Kennedy and Russell Eberhart and relationships

between PSO with artificial life and genetic algorithms have also been described

[20]. Ioan Cristian Trelea has described the detailed analysis of PSO algorithms, its

parameter selection and convergence characteristics [21]. Constriction function is

introduced by Maurice Clerc and James Kennedy in traditional PSO to eliminate the

use of particle‘s velocities to limit in order to control the particle‘s trajectories and

detailed analysis of constriction factor in the PSO update equation has been carried

out [22]. A new parameter namely inertia weight has been introduced in PSO by

Yuhui Shi and Russell Eberhart to find global optimum within a reasonable number

of iteration and time decreasing Inertia weight has been also introduced to improve

the performance of PSO [23]. The Comparison of inertia weight and constriction

factor and suitable conditions for the use of these two parameters has been also

5

explained by R. C. Eberhart and Y. Shi. and it has been shown that the application of

both parameters simultaneously results in faster convergence overall [24]. The multi-

swarm is used by Frans van den Bergh and Andries P. Engelbrecht to improve the

performance of traditional PSO based upon the cooperative behaviour [25]. The

efficient optimization for multi-model function namely multi-grouped PSO have

been proposed by Jang-Ho Seo et. al and its application to various areas including

particle electromagnetic optimization have been discussed [26]. J. J. Liang et. al

have presented Comprehensive learning PSO base on learning strategy of particles to

update particle‘s velocity, which reduces premature convergence [27]. Multi-

objective Optimization problem using modern PSO for optimal operation of plant

have been carried out by Jin S. Heo et. al and PSO technique variation, evolutionary

PSO, hybrid PSO, constriction approach PSO and comparison of PSO and genetic

algorithms have also been discussed [28]. Basic concept of PSO, its variants and its

application to power system and another area of electrical engineering have

discussed by Yamille del Valle et. alin detailed [29].

1.4 ORGANISATION OF THE THESIS

 This thesis has been arranged in seven chapters. The contents of the

chapters are briefly outlined here.

Chapter 1: This chapter describes the overview, objective and methodology,

literature review and the organisation of the thesis.

Chapter 2: This chapter discuss about economic load dispatch in detail. The cost

function, constraints and formation of objective function for ELD problem have been

explained.

Chapter 3: This chapter gives detailed idea about conventional PSO. It involves

development, advantages, disadvantages and the application of PSO.

Chapter 4: In this chapter Improved PSO algorithms have been introduced for the

improvements in the performance of the Conventional PSO.

6

Chapter 5: In this chapter some mathematical benchmark functions have been solved

by convention as well as improved PSO algorithms. The steps for MATLAB

programming have been also discussed.

 Chapter 6: In this chapter IEEE 5, 14 and 30 bus systems have been solved by

different PSO algorithms and detailed discussions on the results have been also

entertained.

Chapter 7: This chapter deals the outcome of the results and the future scope of this

research work.

Appendixes and References are given at the end of the thesis.

7

CHAPTER 2

ECONOMIC LOAD DISPATCH

2.1 INTRODUCTION

 In the field of power system analysis, Economic load dispatch is one of the

most fundamental optimization problems. In ELD mainly two different problems,

one is unit commitment or pre dispatch problem and other is online economic

dispatch problem have been solved. The unit commitment is the way to suggest just

sufficient number of generating units with sufficient generating capacity to meet a

given load economically with sufficient reserve capacity to meet any abnormal

condition. The on line economic dispatch problem distribute the load demand among

the connected generating units of the plant in such a manner to minimize the total

cost of production supplying the minute to minute requirements of the system [30].

 Particularly, in thermal power plants the cost of generation is too excessive,

hence significant saving in operating cost can be achieved by proper planning of

units output of the plant. The ELD describes the optimal scheduling of power

generations to match total power demand at minimal possible cost while satisfying

the operational constraints i.e. generators and system constraints.

2.2 COST FUNCTION

 The main purpose of ELD is to determine the power generation of each unit

of the plant so that total production costs of the plant should be minimum by

fulfilling the required power demand under the given equality and inequality

constraints.

 The production costs of each unit are generally expressed by a quadratic function

of the power output from those generating units. The total production costs of the

plant are the sum of production cost of each individual units of the plant.

Mathematically,

 Fi(Pi) = aiPi
2
 + biPi + ci (2.1)

8

Where Fi(Pi), Pi, (ai,bi,ci) are the production cost, power generation ,cost coefficient

of ith unit of the plant respectively.

Therefore total production cost of the plant having n units,

 FT = ∑

 Fi(Pi))

 ∑

 aiPi

2
 + biPi + ci) (2.2)

The cost is minimized subjected to the system constraints (generator capacities and

active power balance constraints).

2.3 SYSTEM CONSTRAINTS

 There are two types of system constraints-

i) Equality constraints

ii) Inequality constraints

The inequality constraints are of two types-

i) Hard type

ii) Soft type

The hard type are those which are definite and specific like the tapping range of an

on-load tap changing transformer whereas soft type are those which have some

flexibility associated with them like the nodal voltages and phase angles between the

nodal voltages, etc. Soft inequality constraints have been very efficiently handled by

penalty function methods.

2.3.1 EQUALITY CONSTRAINTS

 From observation we can conclude that cost function is not affected by

the reactive power demand. So the full attention is given to the real power balance in

the system. For power mismatch, an equality constraint has been introduced i.e. the

generated power by the plant should be equal to the total load demand plus the total

losses. Thus the power balance equation of ELD problems is given by,

 PG – PD – PL = 0

 ∑
 Pi – PD – PL = 0 (2.3)

9

Where PG is the total power generation of the plant, PD is the total power (load)

demand by the consumer and PL is the total losses during process.

 The transmission losses can be determined from unit outputs of the plant and loss

coefficients as,

 PL=∑

∑

 i BijPj)) +∑

Bi0Pi) + B00 (2.4)

Where Bij is the ij-th element of the loss coefficient square matrix, Bi0 is the i-th

element of the loss coefficient vector, and B00 is the loss coefficient constant.

2.3.2 INEQUALITY CONSTRAINTS

i) Generator Constraints-

 The KVA loading in a generator is given by √ (P
2
 + Q

2
) and this should

not exceed a pre-specified value of power because of the temperature rise conditions

 When the active power generation is greater than pre-specified value Pmax then

the source become overheated i.e. thermal consideration limits the maximum

active power generation of the source. And if the power generation is less than

pre-specified value Pmin then from the optimal point of view it is not possible to

generate that low power. In other words minimum power generation of the

source is limited by the flame instability of the boiler and it is not put on the bus

bar. Therefore the active power generation P must be within the maximum and

minimum limit, stated by the inequality,

 Pmin ≤ P ≤ Pmax

 Similarly the maximum and minimum reactive power generation of a source is

limited. The maximum reactive power is limited because of overheating of rotor

and minimum is limited because of the stability limit of machine. Hence the

generators reactive powers Q cannot be outside the range stated by inequality,

 Qmin ≤ Q ≤ Qmax

10

ii) Voltage Constraints:

 It is essential that the voltage magnitudes and phase angles at various nodes

should vary with in certain limits. The normal operating angle of transmission lies

between 30 to 45 degrees for transient stability reasons. A lower limit of delta

assures proper utilization of transmission capacity.

iii) Running Spare Capacity Constraints:

 These constraints are required to meet

a) The forced outages of one or more alternators on the system and

b) The unexpected load on the system

The total generation should be such that in addition to meeting load demand and

losses a minimum spare capacity should be available i.e.

 G ≥ PG + PSO

Where G is the total generation and PSO is some pre-specified power. A well planned

system is one in which this spare capacity PSO is minimum.

iv) Transmission Line Constraints:

 The flow of active and reactive power through the transmission line circuit

is limited by the thermal capability of the circuit and is expressed as,

 Cp ≤ Cpmax

Where Cpmax is the maximum loading capacity of the line.

v) Transformer Taps Settings:

 If an auto-transformer is used, the minimum tap setting could be zero and

the maximum one,

 i.e. 0 ≤ t ≤ 1.0

Similarly for a two winding transformer if tapping are provided on the secondary

side,

 0 ≤ t ≤ n

Where n is the ratio of transformation.

11

vi) Network security constraints:

 If initially a system is operating satisfactorily and there is an outage, may

be scheduled or forced one, it is natural that some of the constraints of the system

will be violated. The complexity of these constraints (in terms of number of

constraints) is increased when a large system is under study. In this a study is to be

made with outage of one branch at a time and then more than one branch at a time.

The natures of constraints are same as voltage and transmission line constraints.

 2.4 OBJECTIVE FUNCTION

 The Objective (fitness) function of ELD problem is defined to minimize the

sum of the cost of generation function given by equation (2.2) and the penalized

demand (equality) constraint given by equation (2.3) as follows:

 Minimize the fuel cost,

 F = ∑

 aiPi

2
 + biPi + ci) + K*(∑

 Pi – PD – PL) (2.5)

 Subjected to generators constraints.

Where K is the penalty coefficient for the plant due to not fulfilling the load demands

to the consumers and chosen carefully for the feasible solution. Somewhere K is also

termed as Lagrangian multiplier.

12

CHAPTER 3

CONVENTIONAL PARTICLE SWARM

OPTIMIZATION

3.1 INTRODUCTION

 The Particle Swarm Optimization (PSO) is a population based stochastic

algorithm, developed by of Kennedy (a social psychologist) and Eberhart (an

electrical engineer) in 1995, inspired by the collective behaviour of nature such as

bird flocking, fish schooling etc., to successfully optimize a wide range of linear as

well as non-linear functions. The first simulations was done by Kennedy and

Eberhart (in 1995), which were influenced by Heppner and Grenander‘s work (in

1990) and involved analogues of bird flocks searching for corn.

 The PSO belongs to the class of swarm intelligence techniques that

are used to find approximate solutions to extremely difficult optimization problems.

Swarm intelligence is an artificial intelligence technique based around the study of

collective behaviour in decentralized, self-organized systems. Examples of systems

like this can be found in nature, including bird flocking, fish schooling, ant colonies,

animal herding etc.

(a) Bird Flocking (b) Fish Schooling

Fig. 3.1: Collective behaviour of Swarm

http://www.scholarpedia.org/article/Swarm_intelligence

13

 Craig Reynolds (a biologist) studied the evolutionary algorithms and

swarm intelligence for optimization inspired by the social behaviour of birds in late

80s and early 90s and derived a formula for representation of the birds flocking

behaviour. This was later used in computer simulations of virtual birds, known as

Boids.

Reynolds proposed a behavioural model in which each agent follows three rules:

 Separation- Each agent tries to move away if they are too close.

 Alignment- Each agent steers towards the average heading of its neighbours.

 Cohesion- Each agent tries to go towards the average position of its neighbours.

Fig. 3.2: Reynolds proposed behaviour model

Kennedy and Eberhart included a ‗roost‘ in a simplified Reynolds-like simulation so

that:

 Each agent was attracted towards the location of the roost.

 Each agent ‗remembered‘ where it was closer to the roost.

 Each agent shared information with its neighbours about its closest location to the

roost.

Fig. 3.3: Kennedy and Eberhart proposed behaviour model

Eventually, all agents land on the roost.

14

 The particle swarm optimization (PSO) is a parallel evolutionary

computation technique inspired by the social behaviour of natural process to

successfully optimize a wide range of continuous linear as well as non-linear

functions [20]-[24]. The PSO algorithm involves a population of candidate solutions

(called particles), collectively called swarm. Each particle of the swarm is initialized

with a random position and random velocity and is moved iteratively throughout the

search space. It is attracted towards the location of both its personal best fitness

achieved by the particle itself and best fitness achieved by the entire swarm so far

[21]. Positions and velocities of whole swarm are adjusted and the function evaluated

with the updated coordinates at each time step. The velocity and position of each

particle is updated by two given rule in Conventional PSO (CPSO) as,

Velocity modification rule,

 Vij
t+1

 = Vij
t
 + c1r1(Pij

best
 – Xij

t
) + c2r2(Gi

best
 - Xij

t
) (3.1)

Position modification rule,

 Xij
t+1

 = Xij
t
 + Vij

t+1
 (3.2)

 Where t indicates the number of iteration, i indicates the number of variables,

j indicates the number of particles in the swarm, Vij
t
 is the velocity of j-th particle of

i-th variable in t-th iteration, Xij
t
 is the position of j-th particle of i-th variable in t-th

iteration, Pij
best

 is the previous personal best position of the j-th particle of i-th

variable, Gi
best

 is the previous global best position of i-th variable, Vij
t+1

 is the

updated velocity of j-th particle of i-th variable, Xij
t+1

 is the updated position of j-th

particle of i-th variable, c1 is the cognitive component of acceleration constants

which is responsible for the attraction of the particles towards its personal best

position, c2 is the social component of acceleration constants which is responsible for

the attraction of the particles towards the global best position of the swarm, r1 & r2

are two uniformly distribution random numbers in the range (0,1).

15

3.2 PSO PARAMETERS

 There are some parameters in PSO algorithm that may affect its

performance [21]. The parameter‘s value and its selection have large impact on the

performance of the PSO algorithm. The basic PSO parameters are swarm size,

number of iterations, velocity components, and acceleration coefficients which are

described below. The PSO algorithm is also influenced by velocity clamping,

constriction factor and inertia weight which are described in the next section.

i. Swarm size

 Swarm (population) size is the number of particles ‗n’ in the swarm. A big

swarm i.e. large number of particles cover larger part of the search space and may

reduce the number of iterations required for optimum result. It also increases

computational efforts per iteration and consuming more time. Whereas a small

swarm i.e. less number of particles loss their search ability and may not give

optimum result. Therefore proper selection of swarm improves the performance of

PSO. In most cases the swarm size is taken between 20 to 100 for better results and

computational efforts.

ii. Iteration numbers

 The number of iterations is an important factor in the PSO algorithms. It is

problem dependent to obtain a good result. A too low number of iterations may not

give optimum results and too large number of iterations may add unnecessary

computational effort and more time.

iii. Velocity Components

 The velocity components are the main part of the PSO algorithms and

important for updating the particle‘s velocity. The particle‘s velocity modification

equation consists of three terms-

1. The first term ‗Vij
t
‘ is called the inertia or momentum component of the velocity

that provides a track of the previous direction i.e. movement in the immediate

16

past. It prevents to a drastically change in the direction of the particles and forced

towards the movement of current direction.

2. The second term ‗c1r1(Pij
best

 – Xij
t
)‘ is called cognitive or personal component that

tracks or compares the current performance of the particles with its past

performances. It is basically the individual memory of the particles and indicates

the tendency to return to past best position.

3. The last term ‗c2r2(Gi
best

 - Xij
t
)‘ is called social or collective component that

compares the current performance of the particles with the past best performance

of any particles in the group. It forces the particles towards the best position

tracked by the entire swarm.

iv. Acceleration coefficients

 The acceleration coefficients c1 and c2, together with the random values r1

and r2, maintain the stochastic influence of the cognitive and social components of

the particle‘s velocity respectively. The constant c1 expresses how much confidence

a particle has in itself, while c2 expresses how much confidence a particle has in its

neighbours. There are some properties of c1 and c2 –

 When c1 = c2 =0, then all particles continue flying at their current speed until

they hit the search space‘s boundary. Therefore, the velocity update equation

is calculated as-

 Vij
t+1

 = Vij
t

 When c1 ˃ 0 and c2 =0 , all particles are independent. The velocity update

equation will be-

 Vij
t+1

 = Vij
t
 + c1r1(Pij

best
 – Xij

t
)

 When c1 =0 and c2 ˃ 0 , all particles are attracted to a single point in the

entire swarm and the update velocity will become-

 Vij
t+1

 = Vij
t
 + c2r2(Gi

best
 - Xij

t
)

17

 When c1 = c2, all particles are attracted towards the average of Pij
best

 and Gi
best

.

 When c1 ˃ c2 , each particle is more strongly influenced by its personal best

position, resulting in excessive wandering.

 When c1 ˂ c2, all particles are much more influenced by the global best

position, which causes all particles to run prematurely to the optima.

It has been proposed that the two acceleration constants should be c1 = c2 = 2 for

better results [29].

3.3 GEOMETRICAL ILLUSTRATION OF PSO

 Personal best position (Pij

best
) Global best position (Gij

best
)

 New position (Xij

t+1
)

 Social velocity, c2r2(Gi
best

 - Xij
t
)

 New velocity(Vij
t+1)

 Cognitive velocity, c1r1(Pij
best

 – Xij
t
)

 Initial position (Xij
t
)

 Initial velocity (Vij
t
)

Fig. 3.4: Velocity and position update for the particles

 The updated velocity consists of three components discussed earlier. Figure

3.4 shows how the three components contribute to the movement of the particle

towards the global best position. The initial velocity, cognitive component of

velocity and social component of velocity contributes to the new velocity for the

particles. This new velocity is responsible for the movement of the particles.

18

3.4 IMPLEMENTATION OF PSO ALGORITHM

 The PSO algorithm are summarized by the following steps-

step 1) Initialization of the parameters- In the first step, the parameters of the PSO,

like c1, c2, r1, r2, population size P, maximum iteration Itmax must be chosen.

step 2) Initialization of the population- Initialize a population of particles with a

random positions and random velocities.

step 3) Evaluation of Fitness- Calculate the fitness value of the particles in the

population.

step 4) Selection of initial personal and global best position- Each initial value of

particle is set to be its personal best and optimum of the personal bests is set

to be global best.

step 5) Updation of velocity and position- Change the velocities and positions of the

particles according to velocity modification rule (3.1) and position

modification rule (3.2) respectively.

step 6) Updation of personal and global best position- If positions of the particles

give the better fitness value during current iteration then set this as P
best

 and

the optimum of P
best

 is set to be G
best

.

step 7) Stopping Criteria- Check the difference in fitness value in the consecutive

iteration is less than tolerance limit. If yes stop, otherwise go to step 5.

19

The PSO algorithm is best understand by the following flow chart-

 _ _ _ _ _ _ _ _ _ _

 _ _ _ _ _ _ _ _ _ _

 No

 Yes

Fig. 3.5: Flow chart of conventional PSO

Evaluate the fitness value (Objective function)

Iteration t=1

Update Velocities and positions of particles

Calculate the fitness value

Update P
best

 and G
best

t = t+1

Satisfy the

stopping criteria?

STOP

START

Select the parameters of PSO: N,c1,c2,r1,r2,w

Initialize the positions and velocities of particles

Optimum solution of PSO = G
best

Set P
best

 and G
best

20

3.5 IMPROVEMENTS IN THE CONVERGENCE

RATE OF CPSO

 The particle velocity is basically the step size of the particle for its

movement in the search space. Therefore particle‘s velocity plays an important role

in the performance of PSO. At each step, all the particles adjust its velocity and

moves in the search space. Exploration and Exploitation are two characteristics of

PSO for searching the best position in the search space. Exploration is the ability to

explore different area of the search space for locating a good optimum, while

exploitation is the ability to concentrate the search around a searching area for

refining a hopeful solution [21]. The particle‘s position updates quickly, if the

velocity increases to large values and the particles may cross the boundaries of the

search space. Therefore the velocity and position of the particle are reduced in order

to stay within boundary of the search space to control its divergence. To balance the

exploration-exploitation trade-off, following techniques for the improvement of

speed of convergence have been developed.

3.5.1 VELOCITY CLAMPING

 The velocity clamping has been first introduced by Eberhart and Kennedy to

stay the particles within the boundary of the search space. The Maximum velocity

‗vmax‘ controls the granularity of the search space by clamping velocities and creates

a better balance between global exploration and local exploitation [20].

 New position Xij

t+1
, without velocity clamping

 New position Xij

t+1
, using velocity clamping

 Initial position, Xij

t

Fig. 3.6: Effects of Velocity Clamping in two-dimensional search space

 Figure 3.6, shows how velocity clamping resists the particle to stay within the

boundary. Now if a particle‘s velocity goes beyond ‗vmax‘ then it is set to the value

21

vmax. If the vmax is too large, then the particles may jump over the optimal solution

and if is too small, the particle‘s movement is limited and the swarm may not explore

sufficiently or the swarm may become trapped in a local optimum.

 By proper selection of acceleration coefficients and clamping the velocity,

the performance of CPSO can be improved. Sometimes, the particles may still

diverge in conventional PSO even when the maximum velocity and acceleration

constants are correctly selected, this phenomenon is known as ‗explosion‘ of the

swarm. Two methods have been proposed to control the ‗explosion‘, one is

constriction factor and other is inertia weight [28].

3.5.2 CONSTRICTION FACTOR

 The first method introduces a constriction factor to control the ‗explosion‘ of the

swarm, which was developed by Clerc and Kennedy [22]. The constriction factor

introduced in the velocity rule (3.1) as,

 Vij
t+1

= ᵡ(Vij
t
 + c1r1(Pij

best
 – Xij

t
) + c2r2(Gi

best
 - Xij

t
)) (3.3)

 Where ᵡ is the constriction factor and given by,

 ᵡ =

 , Φ= c1+c2 >4 (3.4)

 Typically, Φ is set to 4.1 and c1=c2=2.05, thus the value of constriction

factor has been set to 0.729 (used in this paper). In general, the convergence of the

particle improved by the constriction factor once the particle is focused on the best

point in the global region.

 The constriction factor PSO method (CF-PSO) suffers from the disadvantage

that when the individual best performance is far from the neighbourhood‘s best

performance then the particles may follow wider cycles and may not converge.

3.5.3 INERTIA WEIGHT

 The second method introduces a new parameter called inertia weight (proposed

by Shi and Eberhart [23]) which is only multiply in the momentum component of

the velocity at the previous time step in the velocity rule (3.1) as,

 Vij
t+1

= wVij
t
 + c1r1(Pij

best
 – Xij

t
) + c2r2(Gi

best
 - Xij

t
) (3.5)

22

 Where ‗w‘ indicate the inertia weight, which can be a fixed value or

changing in each time step. The initial higher value (typically 0.9) allows the

particles to move freely in the search space to find the global optimum faster. If once

the optimal region is found, the value of inertia weight decreased usually to 0.4 in

order to narrow the search space. This shifts search from an exploratory mode to an

exploitative mode. Generally, a linearly decreasing inertia weight (introduced by Shi

and Eberhart [23]) is used broadly given as,

 w = wmax – t(wmax-wmin)/Itmax (3.6)

 Where wmax= 0.9, wmin= 0.4, t indicates the current iteration and Itmax is the

maximum number of iteration to be performed.

 The disadvantage of inertia weight PSO (IW-PSO) method is that once the

inertia weight is decreased, the swarm loses its ability to search new areas because it

is not able to recover its exploration mode.

3.6 ADVANTAGES OF PSO

 There are many advantages of PSO which makes it attractive. Some of them

are following-

a. The PSO algorithm is free from the use of derivatives.

b. Its‘ concept is very simple.

c. The implementation of this algorithm is easy.

d. It involves less number of parameters compared to other techniques.

e. Its‘ calculation is very simple and easy to understand.

f. It is less dependent upon the set of initial points.

g. Any mistakes in the intermediate stage not much more influence the results,

but may increases the computational efforts.

3.7 DISADVANTAGES OF PSO

 PSO is the one of the most powerful methods for solving the non-smooth

optimization problems while there are some disadvantages of the PSO algorithm.

23

a. PSO algorithm suffers from the partial optimism, which degrades the

regulation of its speed and direction.

b. Problems with non-coordinate system (for instance, in the energy field) exit.

3.8 APPLICATION OF PSO

 The PSO algorithms have been successfully applied to solve unconstrained as

well as constrained problems, problems with dynamically changing landscapes,

multi-objective optimization problems. It is also used to find multiple solutions. The

PSO is used to solve a variety of optimization problem effectively in the area of

electrical engineering [29]. Some examples are described below-

 Voltage and Reactive Power Control

 Economic Load Dispatch

 Power System Security and Reliability

 Generation Expansion Problem

 State Estimation

 Optimal Power Flow and Load Flow analysis

 Power System Identification and Control

 Electric Machinery

 Capacitor and FACTS Placement

 Unit-Commitment Scheduling and Generator Maintenance

 Short-Term Load Forecasting

The PSO is also used in the following areas-

 Antennas Design

 Signal Processing

 Networking

 Biomedical

 Electronics and electro-magnetic

 Robotics

 Design and Modelling

 Image and Graphics

 Fuzzy systems, Clustering, data mining

 Prediction and forecasting

24

CHAPTER 4

IMPROVED PARTICLE SWARM

OPTIMIZATION

4.1 INTRODUCTION

 In Conventional PSO, all particles of the population fly in the Search space

during the entire run, but it is the behaviour of nature to achieve the optimum point

as soon as possible. If anyone gets this position then it doesn‘t want to move any

more. Such type of behaviour has been seen in the swarm intelligence. This

behaviour of swarm is implemented in PSO algorithm in three ways in this work.

Three improved PSO algorithms have been developed namely IPSO-A, IPSO-B and

IPSO and implemented to solve mathematical functions and ELD problems.

4.2 IPSO-A

 In CPSO, the particles continue to move as per equation (3.5) & (3.2), even

after attaining the global best position. In this process the particles might move away

from the global position, which may results in poor convergence. Therefore an

improved PSO (IPSO-A) has been developed. In this algorithms, a particle which has

attained global position is not allowed to move, till some other particles of the swarm

achieves new global best position and all other particles will move as per the CPSO

algorithm.

 Mathematically,

 Velocity modification in IPSO-A is,

 Vij
t+1

 = 0 , if j-th particle is at global position

 =wVij
t
 + c1r1(Pij

best
 – Xij

t
) + c2r2(Gi

best
 - Xij

t
), for other

 And Position modification in IPSO-A is,

 Xij
t+1

 = Xij
t
, if j-th particle is at global position

 = Xij
t
 + Vij

t+1
, for other particles

25

 This algorithm can be understood by the flow chart. For this the dotted section

of flow chart of CPSO is replaced by the section shown below in Fig. 4.1

 _ _ _ _ _ _ _ _ _ _

 Yes

 No

 _

Fig. 4.1: Section of flow chart of IPSO-A

 This improvement in the CPSO will results in the reduction of the search

area of the swarm and oscillation of the particles which has attained global position.

This algorithm gives consistent results and faster convergence.

4.3 IPSO-B

 In IPSO-A, the particles at global position are not allowed to move

for some time step/iteration i.e. they will not update their position. But this global

position may not be the actual optimum. Therefore the particles which have achieved

global position should be kept ready to move. In other words, the particles at global

position will update their velocity but not the position. Whenever, such particles

move, they will have all the three components of velocity.

Mathematically,

 Velocity modification in IPSO-B is,

 Vij
t+1

 = wVij
t
 , if j-th particle is at global position

 = wVij
t
 + c1r1(Pij

best
 – Xij

t
) + c2r2(Gi

best
 - Xij

t
), for other

Are the particles

hit the global
position?

Update Velocities of the particles

Keep Velocities = 0

Update positions of the particles

26

 And Position modification in IPSO-B is,

 Xij
t+1

 = Xij
t
, if j-th particle is at global position

 = Xij
t
 + Vij

t+1
, for other particles

 This algorithm can be understood by the flow chart. For this the dotted section of

flow chart of CPSO is replaced by the section shown below in Fig. 4.2

 _

 Yes

 Yes

 No

 _

Fig. 4.2: Section of flow chart of IPSO-B

 This has resulted in lower computational time and faster convergence than

that of IPSO-A.

4.4 IPSO-C

 The improvement in CPSO can also be done based on the function

evaluation. If function evaluation at current position is found to be better than that of

personal best position, the particle not allowed moving for some time step. However,

the velocity of such particles will be updated as in CPSO so as to keep them ready

for movement in future iterations.

Mathematically,

Velocity modification in IPSO-A is,

Update Velocities of the particles

Are the particles hit

the global position?

Update positions of the particles

27

 Vij
t+1

 = wVij
t
 + c1r1(Pij

best
 – Xij

t
) + c2r2(Gi

best
 - Xij

t
)

And position modification in IPSO-C based on condition as,

 Xij
t+1

 = Xij
t
, If F(current position) ˂ F(personal best)

 = Xij
t
 + Vij

t+1
, for otherwise

This algorithm can be understood by the flow chart. For this the dotted section of

flow chart of CPSO is replaced by the section shown below in Fig. 4.3

 _

 Yes Yes

 No

 No

 _

Fig. 4.3: Section of flow chart of IPSO-C

This algorithm has resulted in the best fitness evaluation.

Update positions of the particles

Update Velocities of the particles

Are the particle‘s

current positions better

than its personal best

position?

28

CHAPTER 5

SOLUTION OF BENCHMARK FUNCTIONS

5.1 STEPS TO SOLVE BENCHMARK

FUNCTIONS USING PSO IN MATLAB

 The basic concepts for solving the optimization problems using PSO are

explained in the previous chapter. Here generalized steps for solving different

benchmark functions using PSO in MATLAB are discussed.

The steps are-

a. Set the number of particles ‗p‘, maximum number of iteration ‗itmax‘ and

tolerance limit ‗T‘.

b. Initialize all the variables matrices using the ‗zeros‘ command of MATLAB.

c. Set the random numbers value ‗r1‘ and ‗r2‘ between 0 to 1.

d. Set the value of acceleration constants ‗c1‘ and ‗c2‘. (generally both equal to 2)

e. Generate the random value of particles for each variable (x1, x2, ………).

f. Generate random value of velocities of particles for each variable (v1,v2,…..).

g. Calculate the fitness value for each particle.

h. The position corresponding to best fitness is set to be P
best

 for each particle.

i. The best of P
best

 is set to be G
best

.

j. Update the velocities and positions for each particle using velocity and position

modification equation of PSO.

k. Calculate the fitness using new position for each particle.

l. Update P
best

 for each particle and best of P
best

 is set to be G
best

.

m. The difference between the previous and current fitness is calculated and

compared with tolerance limit for each particle. If it is within tolerance limit,

then stop the iteration process otherwise go to step j.

n. G
best

 is the optimal solution.

29

5.2 PARAMETERS SETTING FOR PSO

ALGORITHMS

 In this work Constriction Factor PSO (CPSO), Inertia Weight PSO

(IW-PSO), combination of Constriction factor and Inertia weight PSO (CI-PSO),

Improved PSO namely IPSO-A, IPSO-B and IPSO-C have been applied to solve four

different mathematical functions namely BEALE‘S, BOOTH‘S, ROSENBROCK‘S

and SPHERE function. The parameters setting for various methods are described

below in Table 5.1-

Table 5.1: Parameters setting for PSO algorithms

 c1 c2 r1 r2 CF Inertial Weight (W) p Itmax ɛ

CF-PSO 2.05 2.05 2 2 0.729 30 1000 10
-6

IW-PSO 2 2 2 2 Linearly Decreasing 30 1000 10
-6

CI-PSO 2.05 2.05 2 2 0.729 Linearly Decreasing 30 1000 10
-6

IPSO-A 2 2 2 2 Linearly Decreasing 30 1000 10
-6

IPSO-B 2 2 2 2 Linearly Decreasing 30 1000 10
-6

IPSO-C 2 2 2 2 Linearly Decreasing 30 1000 10
-6

 Where ‗p‘ is the number of particles, ‗ɛ‘ is the tolerance value and all other

notation has their usual meaning as described earlier. The difference of fitness value

between two consecutive iterations compared with tolerance value is considered to

determine the stopping criteria for the convergence.

5.3 SOLUTION OF BEALE’S FUNCTION USING

PSO ALGORITHMS

 The Beale‘s function in two-dimension is defined as,

 f (x1,x2) = (1.5 - x1 + x1 x2)
2
 + (2.25 - x1 + x1 x2

2
)
2
 + (2.625 - x1 + x1 x2

3
)
2

 The minimum value of Beale‘s function is as follows-

 Minimum f (3, 0.5) = 0 for -4.5˂ x1 , x2 ˂ 4.5

The 3-D surface plot of Beale‘s function is shown in the figure 5.1

30

Fig 5.1: 3-D Surface Plot of Beale’s function

The results of Beale‘s function using different PSO algorithms are shown in the

Table 5.2

Table 5.2: Results for Beale‘s function

 x1 x2 f (x1,x2) No. of Iteration Time (in sec.)

CF-PSO 3 0.5000003 2.505847*10
-12

 50 0.1039

IW-PSO 3.000004 0.5000024 4.991952*10
-11

 134 0.3139

CI-PSO 3.000007 0.5000002 1.830699*10
-12

 36 0.0763

IPSO-A 2.999991 0.4999985 2.727247*10
-11

 105 0.2632

IPSO-B 3.000001 0.5 3.077159*10
-12

 108 0.2532

IPSO-C 3.000006 0.5000012 3.619538*10
-11

 112 0.2753

 How the particles of the swarm find the global position is explained

pictorially in the fig. 5.2 below. The figure shows the initial position, position after

1
st
 iteration, position after 10

th
 iteration, position after 25

th
 iteration, position after

50
th

 iteration and final (global) position of the swarm of 30 particles solving Beale‘s

function of two variables. The first part of the figure 5.2 shows the initial random

position of the particles. After first iteration all the particles come closer to each

other as seen in the second part of the figure 5.2. The third part shows that the

particles are attracted towards the global position i.e. 3 and 0.5 after 10
th

 iteration. In

fourth part, the particles come closer at its global position after 25
th

 iteration. In fifth

31

part most of particle reached to global position after 50
th

 iteration. In sixth part all the

particles reached to the global position.

Fig. 5.2: Position of the particles after different iteration for Beale’s function

-6

-4

-2

0

2

4

6

0 10 20 30 40

V
a

lu
e

o
f

v
a

ri
a

b
le

s

No. of particles

Random initial position x1

x2

-0.5

0

0.5

1

1.5

2

0 10 20 30 40

V
a

lu
e

o
f

v
a

ri
a

b
le

s

No. of particles

Position after 1st iteration

-3

-2

-1

0

1

2

3

4

5

6

7

0 10 20 30 40

V
a

lu
e

o
f

v
a

ri
a

b
le

s

No. of particles

Position after 10th iteration x1

x2

-1

0

1

2

3

4

5

0 10 20 30 40

V
a

lu
e

o
f

v
a

ri
a

b
ie

s

No. of particles

Position after 25th iteration
x1

x2

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40

V
a

lu
e

o
f

v
a

ri
a

b
le

s

No. of particles

Position after 50th iteration x1
x2

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40

V
a

lu
e

o
f

v
a

ri
a

b
le

s

No. of particles

Global position after

convergence

x1

x2

32

5.4 SOLUTION OF BOOTH’S FUNCTION USING

PSO ALGORITHMS

 The Booth‘s function in two-dimension is defined as,

 f (x1,x2) = (x1 + 2x2 - 7)
2
 + (2x1 + x2 - 5)

2

 The minimum value of Booth‘s function is as follows-

 Minimum f (1, 3) = 0 for -10 ˂ x1, x2 ˂ 10

The 3-D surface plot of Booth‘s function is shown in the figure 5.3

Fig 5.3: 3-D Surface Plot of Booth’s function

The results of Beale‘s function using different PSO algorithms are shown in the

Table 5.3

Table 5.3: Results for Booth‘s function

 x1 x2 f (x1,x2) No. of Iteration Time (in sec.)

CF-PSO 0.9999991 3 2.927818*10
-12

 46 0.0949

IW-PSO 1.000004 2.999992 1.200323*10
-10

 127 0.2506

CI-PSO 0.9999996 3.000002 1.210196*10
-11

 34 0.0709

IPSO-A 0.9999989 3.000003 2.280425*10
-11

 89 0.1734

IPSO-B 1.000001 2.999999 1.64735*10
-12

 93 0.1601

IPSO-C 1.00001 2.999986 3.757722*10
-10

 99 0.1983

33

5.5 SOLUTION OF ROSENBROCK’S FUNCTION

USING PSO ALGORITHMS

 The Rosenbrock‘s function in two-dimension is defined as,

 f (x1,x2) = 100(x2 - x1
2
)

2
 + (1 - x1)

2

 The minimum value of Rosenbrock‘s function is as follows-

 Minimum f (1,1) = 0

The 3-D surface plot of Booth‘s function is shown in the figure 5.4

Fig 5.4: 3-D Surface Plot of Rosenbrock’s function

The results of Rosenbrock‘s function using different PSO algorithms are shown in

the Table 5.4

Table 5.4: Results for Rosenbrock‘s function

 x1 x2 f (x1,x2) No. of Iteration Time (in sec.)

CF-PSO 1.000016 1.000032 2.470943*10
-08

 44 0.0634

IW-PSO 1.000005 1.000005 2.840467*10
-09

 132 0.3844

CI-PSO 0.9999997 0.9999992 1.261402*10
-09

 35 0.0489

IPSO-A 0.9999936 0.9999877 4.199148*10
-09

 102 0.2023

IPSO-B 1.000005 1.000006 1.890896*10
-09

 106 0.1832

IPSO-C 1.000009 1.000016 7.612831*10
-09

 118 0.2236

34

5.6 SOLUTION OF SPHERE FUNCTION USING

PSO ALGORITHMS

 The Sphere function in two-dimension is defined as,

 f (x1,x2) = x1
2
 + x2

2

 The minimum value of Sphere function is as follows-

 Minimum f (0, 0) = 0

The 3-D surface plot of Sphere function is shown in the figure 5.5

Fig 5.5: 3-D Surface Plot of Sphere function

The results of Sphere function using different PSO algorithms are shown in the Table

5.5

Table 5.5: Results for Sphere function

 x1 x2 f (x1,x2) No. of

Iteration

Time

(in sec.)

CF-PSO 2.190126*10
-06

 1.980476*10
-06

 8.718937*10
-12

 39 0.0853

IW-PSO 1.567241*10
-06

 2.709307*10
-06

 2.529648*10
-10

 102 0.2139

CI-PSO -3.192096*10
-07

 -7.638486*10
-06

 5.844836*10
-11

 31 0.0694

IPSO-A 1.442569*10
-05

 1.480446*10
-05

 4.272725*10
-10

 81 0.1189

IPSO-B -4.627715*10
-06

 6.682951*10
-06

 6.607759*10
-11

 83 0.1101

IPSO-C -5.062913*10
-06

 -5.062913*10
-06

 1.017701*10
-09

 88 0.1246

35

5.7 DISCUSSION

 The above results show that, the PSO algorithms (CF-PSO, IW-PSO, CI-

PSO, IPSO-A, IPSO-B and IPSO-C) are able to solve the mathematical benchmark

functions successfully. The use of constriction factor in the velocity modification

equation reduces the number of iteration required for the convergence. Therefore

constriction factor reduces the computational time. The linearly decreasing inertia

weight shifts search from an exploratory mode to an exploitative mode. It has been

seen that the use of both constriction factor and inertia weight simultaneously give

most effective and reliable results. The CI-PSO gives result in the minimum number

of iteration and hence takes less computational time among all the PSO algorithms

considered in this work for mathematical benchmark functions (Beale‘s, Booth‘s,

Rosenbrock‘s and Sphere function).

36

CHAPTER 6

ECONOMIC LOAD DISPATCH USING PSO

ALGORITHMS

6.1 INTRODUCTION

 ELD is the most important optimization problem of power system. The

ELD involve a number of non-linear equations. Hence implementation of

conventional method to solve such problem becomes complex. PSO is the

optimization technique which has successfully applied to solve linear as well as non-

linear problems. In this work Constriction Factor PSO (CPSO), Inertia Weight PSO

(IW-PSO), combination of Constriction factor and Inertia weight PSO (CI-PSO),

Improved PSO namely IPSO-A, IPSO-B and IPSO-C have been applied to solve

ELD problem for IEEE 5, 14, 30-bus system. The population size (P) 30, Maximum

iteration (Itmax) 1000 and Tolerance 10
-6

 is taken in all cases. For Constriction Factor

PSO, the value of c1=c2=2.05 and in all other cases c1=c2=2 is taken. The value of

r1=r2=0.5 is used in all cases. The value of constriction factor is taken as 0.729. The

linearly decreasing inertia weight from 0.9 to 0.4 is used. The parameter setting for

different PSO algorithms are described in table 5.1. The penalty coefficient (K) for

not satisfying load demand constraint is taken as 50 for all the bus system.

6.2 COMPUTATIONAL PROCEDURE

 The procedure for the implementation of PSO for ELD problem are

summarized by the following steps-

step 1) Initialization of the parameters- In the first step, the parameters of the PSO,

like c1, c2, r1, r2, population size P, maximum iteration Itmax must be chosen.

step 2) Initialization of the population- Each particle are initialized with random

positions ‗p‘ (Power generated by the generating units) under the boundary

37

constraints of the generating units and velocities ‗v‘ considering velocity

clamping for proper convergence.

i.e. p = {pmin , pmax}

 v = {-0.5pmin , 0.5pmax}

step 3) Evaluation of Objective function- The fuel cost of each particle in the

population for each generating units and total production cost of the plant

satisfying the equality constraints (power generation = power demand +

power loss) is to be calculated.

step 4) Selection of initial personal and global best- Each initial value of particle is

set to be its personal best and optimum of the personal bests is set to be

global best.

step 5) Updation- Change the velocities and positions of the particles by velocity

and position modification rule of PSO.

step 6) Boundary condition- Check that the new velocities and position are under

the limit. If not, then force its value to the boundary as-

If v < -0.5pmin , then v= -0.5pmin

If v > 0.5pmax , then v= 0.5pmax

Similarly for power generation to be in limit

If p < pmin , then p=pmin

If p > pmax , then p=pmax

step 7) Updation of personal and global best value- If positions of the particles give

the better fitness value during current iteration then set this as P
best

 and the

optimum of P
best

 is set to be G
best

.

step 8) Stopping Criteria- Check the difference in fitness value in the consecutive

iteration is less than tolerance limit. If yes stop, otherwise go to step 5.

38

6.3 IEEE 5, 14 & 30 BUS SYSTEM DATA

 The cost and loss coefficients of various generators are taken as given in

Table 6.1 and Table 6.2 respectively.

Table 6.1: Data for cost coefficients
BUS G1 G2 G3 PD

(in MW)

5 a ($/MW
2
) 0.005 0.005 160

b ($/MW) 3.51 3.89

c ($) 44.4 40.6

Pmin (MW) 30 30

Pmax (MW) 120 120

14 a ($/MW
2
) 0.005 0.005 0.005 259

b ($/MW) 2.45 3.51 3.89

c ($) 105 44.4 40.6

Pmin (MW) 50 20 20

Pmax (MW) 200 100 100

30 a ($/MW
2
) 0.005 0.005 0.005 283.4

b ($/MW) 2.45 3.51 3.89

c ($) 105 44.4 40.6

Pmin (MW) 50 30 30

Pmax (MW) 250 100 100

Table 6.2: Data for Loss coefficients
5-BUS

 B = 10
-4[

]

14-BUS

 B = 10
-4[

]

 Bi0 = 10
-4

[0.44 0.24 0]

 B00 = 10
-4

[2.5408]

30-BUS

 B = 10
-4[

]

39

6.4 RESULTS OF IEEE 5, 14 & 30-BUS SYSTEM

 The ELD problem of IEEE 5, 14 and 30 bus systems have been solved using

six different PSO algorithms described earlier. The results for the twenty trials have

been shown below. Table 6.3 shows the results of 20 trials of IEEE 5 bus system.

Similarly Table 6.4 and Table 6.5 show the results of 20 trials of IEEE 14 and 30 bus

system respectively.

Table 6.3: Results of IEEE 5-BUS System

CF-PSO IW-PSO

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

1. 762.823 85 0.1688 1. 762.6597 216 0.3442

2. 763.1705 88 0.1734 2. 762.0023 221 0.3674

3. 764.8201 82 0.1621 3. 761.1963 211 0.5948

4. 761.4755 81 0.1612 4. 761.1653 222 0.4949

5. 761.1372 79 0.1607 5. 761.3246 230 0.3757

6. 766.0175 82 0.1627 6. 764.975 222 0.3682

7. 761.2032 82 0.1597 7. 762.5686 273 0.44

8. 762.2008 78 0.1506 8. 761.317 218 0.3554

9. 761.138 82 0.1559 9. 761.3084 216 0.3513

10. 765.3894 82 0.1692 10. 761.4428 217 0.35

11. 761.1782 87 0.1695 11. 762.1345 221 0.3844

12. 761.1662 82 0.156 12. 761.7634 240 0.3928

13. 761.148 82 0.1582 13. 762.4156 275 0.4494

14. 761.25 82 0.1635 14. 761.136 210 0.34

15. 763.0206 79 0.16 15. 762.6994 219 0.3544

16. 762.006 82 0.166 16. 761.5892 216 0.3453

17. 763.7499 82 0.1617 17. 761.882 216 0.3444

18. 761.289 83 0.1637 18. 761.1665 224 0.3529

19. 761.1538 82 0.1619 19. 761.5757 223 0.3678

20. 762.0355 82 0.1561 20. 761.5092 215 0.3607

Avg. 762.3686 82 0.1620 Avg. 761.8916 225 0.3867

CI-PSO IPSO-A

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

1. 761.1465 103 0.1829 1. 762.1053 216 0.5378

2. 761.366 99 0.1917 2. 761.4158 215 0.5374

40

3. 761.2888 81 0.1553 3. 762.1738 201 0.4993

4. 763.4789 96 0.178 4. 762.1022 223 0.5765

5. 761.1357 96 0.1835 5. 761.6559 183 0.3898

6. 763.3765 97 0.1769 6. 761.2539 185 0.3876

7. 766.2869 96 0.1761 7. 761.7013 217 0.4919

8. 766.279 101 0.1972 8. 761.17 215 0.5056

9. 762.2343 108 0.1874 9. 761.8811 217 0.4931

10. 764.6625 91 0.1693 10. 761.3344 212 0.4334

11. 762.1127 102 0.1909 11. 761.7206 223 0.5469

12. 761.3658 93 0.169 12. 761.6182 189 0.4511

13. 766.6079 94 0.1733 13. 761.2224 216 0.5191

14. 762.1437 105 0.1889 14. 761.9998 214 0.4908

15. 763.0847 106 0.1952 15. 761.177 210 0.6074

16. 761.2003 101 0.1904 16. 761.5042 216 0.5033

17. 763.6541 100 0.1867 17. 761.4719 218 0.5628

18. 766.1019 95 0.1729 18. 761.2443 223 0.6677

19. 763.2724 107 0.1968 19. 762.404 201 0.4976

20. 761.1464 99 0.1754 20. 761.574 216 0.5583

Avg. 763.0972 99 0.1819 Avg. 761.6365 211 0.5129

IPSO-B IPSO-C

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

1. 762.3534 218 0.3625 1. 761.1357 210 0.3434

2. 761.1953 216 0.368 2. 761.1352 183 0.2908

3. 761.1749 202 0.339 3. 761.1352 317 0.4992

4. 761.2884 216 0.372 4. 761.1352 199 0.3549

5. 761.1352 219 0.5882 5. 762.5331 155 0.2648

6. 761.4505 216 0.3652 6. 761.1352 161 0.2653

7. 761.2288 216 0.377 7. 761.1354 363 0.5607

8. 761.4053 216 0.4032 8. 761.1352 182 0.3039

9. 761.8961 221 0.513 9. 761.1352 176 0.3403

10. 762.7156 216 0.364 10. 761.1352 171 0.2785

11. 761.6002 223 0.3702 11. 761.1352 298 0.4808

12. 761.2266 216 0.3634 12. 761.1352 270 0.4395

13. 761.4394 217 0.3694 13. 761.1352 151 0.2585

14. 762.5657 221 0.3736 14. 761.6407 197 0.3313

15. 761.1357 216 0.367 15. 761.1754 293 0.4623

16. 761.2111 301 0.4999 16. 761.1353 216 0.3557

17. 762.7848 216 0.3896 17. 761.1353 275 0.4607

18. 761.218 223 0.3676 18. 761.1352 154 0.2652

41

19. 761.9148 216 0.3607 19. 761.1352 174 0.3013

20. 762.3978 223 0.3757 20. 761.1417 316 0.5164

Avg. 761.6669 221 0.3945 Avg. 761.2327 223 0.3687

Table 6.4: Results of IEEE 14-BUS System

CF-PSO IW-PSO

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

1. 1150.438 86 0.2141 1. 1164.589 216 0.6626

2. 1163.459 92 0.2257 2. 1146.295 270 0.9164

3. 1151.778 91 0.2235 3. 1147.372 206 0.6412

4. 1164.253 88 0.2118 4. 1143.884 206 0.6371

5. 1147.883 88 0.2109 5. 1161.208 203 0.6312

6. 1147.105 90 0.2171 6. 1144.145 278 0.9934

7. 1151.818 88 0.2181 7. 1149.61 208 0.6373

8. 1151.365 88 0.2239 8. 1160.572 262 0.9568

9. 1159.595 90 0.2207 9. 1145.327 270 0.9741

10. 1143.908 86 0.2116 10. 1156.66 210 0.6476

11. 1155.479 91 0.2192 11. 1186.491 260 0.9124

12. 1150.767 91 0.2223 12. 1143.885 212 0.6706

13. 1158.797 88 0.2094 13. 1172.65 217 0.6791

14. 1149.814 92 0.2158 14. 1147.763 208 0.6684

15. 1157.591 95 0.2338 15. 1157.131 258 0.8996

16. 1159.537 90 0.2158 16. 1147.736 251 0.8461

17. 1150.343 88 0.2127 17. 1147.269 258 0.856

18. 1148.798 88 0.2099 18. 1147.161 207 0.6323

19. 1171.506 86 0.2115 19. 1147.777 204 0.6331

20. 1157.282 90 0.2167 20. 1147.39 255 0.878

Avg. 1154.576 89 0.2172 Avg. 1153.246 233 0.7687

CI-PSO IPSO-A

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

1. 1158.469 110 0.2551 1. 1150.913 214 0.7656

2. 1144.111 111 0.3595 2. 1156.915 238 0.8858

3. 1146.389 108 0.2533 3. 1149.377 216 0.776

4. 1161.444 112 0.2571 4. 1154.128 232 0.9445

5. 1151.028 108 0.2519 5. 1145.613 229 0.9499

6. 1154.499 93 0.2285 6. 1148.896 210 0.7265

42

7. 1151.266 95 0.2235 7. 1145.139 208 0.7248

8. 1150.729 117 0.2731 8. 1147.484 205 0.7246

9. 1153.375 107 0.2444 9. 1163.342 227 0.9193

10. 1167.771 113 0.2596 10. 1147.764 233 0.9334

11. 1150.66 113 0.2629 11. 1157.427 231 0.9999

12. 1163.097 100 0.2333 12. 1154.072 229 0.8359

13. 1149.195 109 0.2569 13. 1158.279 227 0.8572

14. 1145.301 109 0.2505 14. 1150.968 230 0.9004

15. 1160.012 104 0.2479 15. 1144.201 226 0.9161

16. 1164.61 107 0.2479 16. 1160.347 236 1.007

17. 1145.717 114 0.2657 17. 1149.933 233 1.005

18. 1150.318 113 0.2584 18. 1154.18 229 0.8933

19. 1153.219 104 0.246 19. 1148.369 226 0.8922

20. 1146.404 115 0.2619 20. 1153.952 224 0.9552

Avg. 1153.381 108 0.2569 Avg. 1153.515 225 1.0019

IPSO-B IPSO-C

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

1. 1157.753 249 0.7634 1. 1146.265 291 0.9707

2. 1153.237 247 0.7068 2. 1143.859 297 0.7148

3. 1153.494 215 0.6883 3. 1146.419 301 0.7137

4. 1145.833 224 0.7298 4. 1143.853 301 0.7305

5. 1149.282 208 0.6816 5. 1144.155 307 1.353

6. 1148.743 214 0.7009 6. 1143.853 294 0.9041

7. 1153.823 236 0.7245 7. 1144.177 298 0.8931

8. 1149.545 206 0.7009 8. 1148.058 299 0.6884

9. 1157.223 264 0.791 9. 1153.009 302 0.8275

10. 1147.41 215 0.916 10. 1143.853 291 0.6653

11. 1147.75 205 0.6804 11. 1144.056 301 0.7355

12. 1145.859 296 0.6817 12. 1143.924 292 0.9573

13. 1152.194 225 0.7255 13. 1143.872 297 0.7486

14. 1153.052 211 0.7048 14. 1146.643 306 0.8567

15. 1159.719 201 0.6711 15. 1143.854 298 0.8557

16. 1152.559 255 0.7772 16. 1150.204 297 0.6609

17. 1162.29 207 0.682 17. 1143.89 295 0.7556

18. 1151.45 205 0.6884 18. 1143.902 294 0.7525

19. 1150.062 219 0.7178 19. 1143.864 309 0.6603

20. 1147.135 221 0.6669 20. 1144.448 296 0.6977

Avg. 1151.921 226 0.7349 Avg. 1145.308 298 1.0058

43

Table 6.5: Results of IEEE 30-BUS System

CF-PSO IW-PSO

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

1. 1271.72 89 0.1956 1. 1257.35 241 0.4618

2. 1256.401 95 0.2228 2. 1257.312 237 0.4716

3. 1257.761 91 0.2075 3. 1256.823 232 0.4436

4. 1278.789 89 0.1974 4. 1279.779 237 0.4604

5. 1256.876 89 0.1979 5. 1266.617 237 0.4666

6. 1259.723 96 0.2081 6. 1279.141 232 0.4492

7. 1269.204 89 0.2506 7. 1256.279 237 0.4602

8. 1257.477 91 0.2113 8. 1257.057 267 0.7334

9. 1275.185 93 0.2304 9. 1264.149 234 0.4352

10. 1278.166 88 0.2215 10. 1259.052 230 0.4346

11. 1260.94 91 0.2069 11. 1256.264 237 0.4552

12. 1280.52 91 0.2442 12. 1257.662 239 0.5449

13. 1260.779 91 0.2347 13. 1265.116 242 0.4574

14. 1284.09 98 0.2962 14. 1273.777 233 0.4904

15. 1257.756 93 0.2047 15. 1256.293 233 0.4406

16. 1264.617 92 0.2205 16. 1257.8 236 0.5885

17. 1259.847 93 0.2141 17. 1283.973 230 0.4464

18. 1261.267 91 0.2605 18. 1262.642 237 0.4405

19. 1276.012 92 0.2077 19. 1284.362 235 0.4645

20. 1273.753 84 0.2022 20. 1256.657 233 0.4508

Avg. 1267.044 91 0.2217 Avg. 1264.405 237 0.4798

CI-PSO IPSO-A

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

1. 1256.527 95 0.3126 1. 1261.02 230 0.6839

2. 1256.29 105 0.3039 2. 1265.735 236 0.7809

3. 1269.379 110 0.2647 3. 1257.599 232 0.6824

4. 1274.647 108 0.3179 4. 1259.944 232 0.6602

5. 1257.508 113 0.2882 5. 1256.264 231 0.8659

6. 1259.848 106 0.2812 6. 1257.679 227 0.7342

7. 1262.224 118 0.3448 7. 1261.402 234 0.6876

8. 1257.031 117 0.2663 8. 1256.708 233 0.8216

9. 1256.642 105 0.2316 9. 1256.664 228 0.7329

10. 1259.092 116 0.2553 10. 1258.757 236 0.7089

11. 1279.952 106 0.2528 11. 1261.222 235 0.8425

44

12. 1271.287 110 0.2538 12. 1256.726 238 0.7196

13. 1263.164 113 0.2422 13. 1357.143 232 0.6872

14. 1259.459 118 0.2627 14. 1257.154 232 0.7121

15. 1280.542 123 0.2652 15. 1258.03 223 0.5732

16. 1268.984 109 0.2507 16. 1257.826 242 0.7765

17. 1256.306 112 0.2586 17. 1277.472 232 0.7144

18. 1258.716 112 0.2491 18. 1257.421 229 0.6283

19. 1258.489 110 0.2553 19. 1260.135 235 0.7108

20. 1256.925 118 0.4929 20. 1256.627 234 0.6722

Avg. 1263.150 111 0.2825 Avg. 1259.576 233 0.7198

IPSO-B IPSO-C

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

Trial

No.

Fuel Cost

(in $/hr.)

No. of

Iteration

Time

(in sec.)

1. 1260.127 233 0.4774 1. 1256.193 255 0.6141

2. 1258.97 234 0.5079 2. 1256.669 179 0.4731

3. 1258.756 238 0.7357 3. 1256.465 170 0.3347

4. 1256.645 234 0.4693 4. 1256.192 222 0.4968

5. 1256.587 239 0.4827 5. 1257.129 497 1.1552

6. 1256.637 238 0.5081 6. 1256.192 268 0.5054

7. 1256.303 236 0.4781 7. 1256.368 309 0.6067

8. 1256.603 235 0.6612 8. 1256.193 417 0.8118

9. 1265.598 244 0.5068 9. 1256.193 412 0.7755

10. 1257.632 231 0.4972 10. 1256.192 215 0.6425

11. 1256.365 233 0.5099 11. 1256.192 411 0.7638

12. 1258.436 233 0.4929 12. 1257.719 469 1.1079

13. 1262.795 234 0.5001 13. 1256.192 319 0.6454

14. 1257.044 235 0.5024 14. 1272.138 190 0.3645

15. 1267.616 232 0.4822 15. 1258.073 387 0.8488

16. 1256.217 231 0.4938 16. 1258.781 227 0.5138

17. 1261.508 233 0.4862 17. 1258.06 558 1.1207

18. 1256.492 231 0.4837 18. 1256.635 157 0.3922

19. 1258.448 237 0.4844 19. 1256.196 244 0.4796

20. 1265.353 235 0.4909 20. 1256.192 223 0.5084

Avg. 1259.207 235 0.5125 Avg. 1257.498 306 0.6580

45

6.5 DISCUSSION

 The best cost, average cost, worst cost, average number of iteration, average

computational time and standard deviation cost of 20 trials are summarized for

different PSO algorithms. Table 6.6 shows the compact results of IEEE 5 bus system.

Similarly table 6.7 and table 6.8 show the compact results of IEE 14 and 30 bus

systems respectively.

Table 6.6: Compact Results of IEEE 5-bus system of 20 trials

 Best

Fuel Cost

(in $/hr.)

Average

Fuel Cost

(in $/hr.)

Worst

Fuel Cost

(in $/hr.)

Average

no. of

Iteration

Average

Computational

Time (in Sec.)

Standard

Deviation

(in $/hr.)

CF-PSO 761.1372 762.3686 766.0175 82 0.1620 1.544677

IW-PSO 761.1360 761.8916 764.9750 225 0.3867 0.894688

CI-PSO 761.1357 763.0972 766.6079 99 0.1819 1.941389

IPSO-A 761.1700 761.6365 762.4040 211 0.5129 0.370428

IPSO-B 761.1352 761.6669 762.7848 221 0.3945 0.581103

IPSO-C 761.1352 761.2327 762.5331 223 0.3687 0.326141

Table 6.7: Compact Results of IEEE 14-bus system of 20 trials

 Best

Fuel Cost

(in $/hr.)

Average

Fuel Cost

(in $/hr.)

Worst

Fuel Cost

(in $/hr.)

Average

no. of

Iteration

Average

Computational

Time (in Sec.)

Standard

Deviation

(in $/hr.)

CF-PSO 1143.908 1154.576 1171.506 89 0.2172 6.843359

IW-PSO 1143.884 1153.246 1186.491 233 0.7687 11.16492

CI-PSO 1144.111 1153.381 1167.771 108 0.2569 6.968287

IPSO-A 1144.201 1153.515 1163.342 225 1.0019 5.290987

IPSO-B 1145.833 1151.921 1162.29 226 0.7349 4.593381

IPSO-C 1143.853 1145.308 1153.009 298 1.0058 2.516282

Table 6.8: Compact Results of IEEE 30-bus system of 20 trials

 Best

Fuel Cost

(in $/hr.)

Average

Fuel Cost

(in $/hr.)

Worst

Fuel Cost

(in $/hr.)

Average

no. of

Iteration

Average

Computational

Time (in Sec.)

Standard

Deviation

(in $/hr.)

CF-PSO 1256.401 1267.044 1284.090 91 0.2217 9.329782

46

IW-PSO 1256.264 1264.405 1284.362 237 0.4798 10.04872

CI-PSO 1256.285 1263.150 1280.542 111 0.2825 8.037626

IPSO-A 1256.264 1259.576 1277.472 233 0.7198 4.819535

IPSO-B 1256.217 1259.207 1267.616 235 0.5125 3.528597

IPSO-C 1256.192 1257.498 1272.138 306 0.6580 3.536436

 The Bar chart of average computational time and standard deviation cost for

different PSO algorithms are shown below. The bar chart is used for comparisons of

data of the groups. The computational time is the measure of the computational

efforts. The consistency of the results is indicated by standard deviation cost.

 Fig. 6.1 and Fig 6.2 shows the bar chart for average computational time

and standard deviation cost of different PSO algorithms for 5, 14 and 30 bus system

respectively.

Fig. 6.1: Bar chart for Average Computational time

0

0.2

0.4

0.6

0.8

1

1.2

CF-PSO IW-PSO CI-PSO IPSO-A IPSO-B IPSO-C

T
im

e
(i

n
 s

ec
.)

Different PSO Algorithms

5-BUS

14-BUS

30-BUS

47

Fig. 6.2: Bar Chart for Standard Deviation costs

 The results show that the CF-PSO give results in less

number of iteration and hence takes less computational time for all the bus system

but the standard deviation cost is in considerable amount. The IW-PSO gives

maximum standard deviation cost for 14 and 30 bus system. The CI-PSO also takes

less number of iteration except CF-PSO, but standard deviation cost in case of 5 bus

system is highest. The IPSO-A gives better results than CF-PSO, IW-PSO & CI-PSO

in terms of standard deviation cost. The IPSO-B gives optimum cost for 5 bus

systems and lowest standard deviation cost for 30 bus systems. The IPSO-C gives

optimum (best) cost for all bus system and lowest standard deviation cost for 5 and

14 bus systems.

0

2

4

6

8

10

12

CF-PSO IW-PSO CI-PSO IPSO-A IPSO-B IPSO-C

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

 C
o

st
 (

in
 $

/h
r.

)

Different PSO Algorithms

5-BUS
14-BUS
30-BUS

48

CHAPTER 7

CONCLUSIONS & FUTURE DIRECTIONS

 The results show that constriction factor reduces the computational time and

the number of iteration. The linearly decreasing inertia weight shifts search from an

exploratory mode to an exploitative mode. It has been seen that the use of

constriction factor simultaneously with inertia weight gives better results for

mathematical benchmark functions. But the main objective of ELD problem is to

minimize the fuel cost of the plant. The improved PSO (IPSO-A, IPSO-B and IPSO-

C) described in this work gives better results than conventional PSO (CF-PSO, IW-

PSO and CI-PSO) in terms of optimum fuel costs. The improved PSO gives the

consistent results than conventional PSO. The comparison between the improved

PSO shows that, the IPSO-C gives minimum fuel cost among them with consistency

in all cases.

 The other objective of ELD can also be considered like- transmission

losses, environmental pollution etc. and solved by improved PSO (IPSO-A, IPSO-B

and IPSO-C) in future works.

49

APPENDIX- I

1) IEEE 5 BUS SYSTEM

Fig. I-A: BUS-CODE DIAGRAM OF 5 BUS SYSTEM

TABLE I-A: LINE DATA or IMPEDANCE DATA (5 BUS SYSTEM)

LINE DESIGNATION *R(p.u.) *X(p.u.) LINE CHARGING
1-2 0.10 0.4 0.0
1-4 0.15 0.6 0.0
1-5 0.05 0.2 0.0
2-3 0.05 0.2 0.0
2-4 0.10 0.4 0.0
3-5 0.05 0.2 0.0

 *The impedance are based on MVA as 100

TABLE I-B: BUS DATA or OPERATING CONDITIONS (5 BUS SYSTEM)

 GENERATION LOAD

BUS NO. MW VOLTAGE MAGNITUDE MW MVAR

1* - - - 1.02 - - - - - -

2 - - - - - - 60 30

3 100 1.04 - - - - - -

4 - - - - - - 40 10

5 - - - - - - 60 20

*Slack Bus

50

TABLE I-C: REGULATED BUS DATA (5 BUS SYSTEM)

BUS

NO.

VOLTAGE

MAGNITUDE

MVAR CAPACITY MW CAPACITY

MINIMUM MAXIMUM MINIMUM MAXIMUM

1 1.02 0.0 60 30 120

3 1.04 0.0 60 30 120

The nodal load voltage inequality constraints are 0.9≤Vi≤1.05

Cost characteristics of IEEE 5 bus system

The cost characteristics of the IEEE 5 Bus System are as follows:

C1=50p1
2
+351p1+44.4 $/hr.

C3=50p3
2
+389p3+40.6 $/hr.

Here, the total load demand of the system is 160 MW. Maximum and minimum

active power constraint on the generator bus for the given system is 120 MW and 30

MW respectively. Voltage magnitude constraint for generator at bus 3 is 1.04 pu.

M-file For Calculating B- Coefficients:

Clear

basemva=100

accuracy=0.0001

maxiter=10

busdata=[1 1 1.02 0 0 0 0 0 0 60 0;2 0 1 0 60 30 0 0 0 0 0;3 2 1.04 0 0 0 82 0 0 60

0;4 0 1 0 40 10 0 0 0 0 0;5 0 1 0 60 20 0 0 0 0 0];

Linedata=[1 2 0.10 0.4 0 1;1 4 0.15 0.6 0 1; 1 5 0.05 0.2 0 1;2 3 0.05 0.2 0 1;2 4 0.10

0.4 0 1;3 5 0.05 0.2 0 1];

disp(busdata)

disp(linedata)

mwlimit=[30 120;30 120];

Ifybus

Ifnewton

busout

bloss

B-Coefficient Calculated is as:

B11 = 0.00035336 B12 = 0.0000103196

B21 = 0.0000103196 B22 = 0.000368992

51

2) IEEE 14 BUS SYSTEM

Fig. I-B: BUS-CODE DIAGRAM OF 14 BUS SYSTEM

TABLE I-D: IMPEDANCE & LINE-CHARGING DATA (14 BUS SYSTEM)

Line

Designation
Resistance

p.u. *

Reactance

p.u. *

Line

Charging

Tap Setting

1-2 0.019379 0.059170 0.0264 1

1-5 0.054029 0.223040 0.0264 1

2-3 0.046980 0.197970 0.0219 1

2-4 0.058110 0.176320 0.0187 1

2-5 0.056950 0.173880 0.0170 1

3-4 0.067010 0.171030 0.0173 1

4-5 0.013350 0.042110 0.0064 1

4-7 0 0.20912 0 1

4-9 0 0.55618 0 1

5-6 0 0.25202 0 1

6-11 0.09498 0.19890 0 1

6-12 0.12291 0.25581 0 1

6-13 0.06615 0.13027 0 1

7-8 0 0.17615 0 1

7-9 0 0.11001 0 1

9-10 0.03181 0.08450 0 1

9-14 0.12711 0.27038 0 1

10-11 0.08205 0.19207 0 1

12-13 0.22092 0.19988 0 1

13-14 0.17093 0.34802 0 1

* Impedance and line-charging susceptance in p.u. on a 100 MVA base.

52

TABLE I-E: BUS DATA or OPERATING CONDITIONS (14 BUSSYSTEM)

Bus

No.
Voltage Generation Load

Magnitude

(in pu)

Phase angle

(deg.)

MW MVAR MW MVAR

1* 1.06 0 0 0 0 0

2 1 0 40 0 21.7 12.7

3 1 0 0 0 94.2 19.0

4 1 0 0 0 47.8 -3.9

5 1 0 0 0 7.6 1.6

6 1 0 0 0 11.2 7.5

7 1 0 0 0 0 0

8 1 0 0 0 0 0

9 1 0 0 0 29.5 16.6

10 1 0 0 0 9.0 5.8

11 1 0 0 0 3.5 1.8

12 1 0 0 0 6.1 1.6

13 1 0 0 0 13.5 5.8

14 1 0 0 0 14.9 5.0

*Slack Bus

TABLE I-F: REGULATED BUS DATA (14 BUS SYSTEM)

Bus no. Voltage magnitude

(in pu)

Minimum MVAR

capability

Maximum MVAR

capability

2 1.05 -40 50

3 1.010 0 40

6 1.070 -6 24

8 1.090 -6 24

Cost characteristics of IEEE 14 bus system

 The cost characteristics of the IEEE 14 Bus System are as follows:

C1 = 50p1
2
+245p1+105 $/hr.

C2 = 50p2
2
+351p2+44.4 $/hr.

C6 = 50p6
2
+389p6+40.6 $/hr.

 Here, the total load demand of the system is 259 MW. The maximum active

power constraint is 200 MW, 100MW and 100 MW for the generators of bus no. 1, 2

and 6 respectively. The minimum active power constraint is 50 MW, 20MW and 20

MW for the generators of bus no. 1, 2 and 6 respectively. Voltage magnitude

53

constraint for generator at bus 2 is 1.045, for bus no. 6 is 1.070, for bus no. 3 is 1.010

& for bus no. 8 is 1.090.

M-file For Calculating B- Coefficients:

Clear

basemva=100

accuracy=0.0001

maxiter=10

busdata=[1 1 1.06 0 0 150 0 0 0 0 0;2 2 1.045 0 21.7 12.7 63.11 0 -40 50 0;3 0 1.01 0

94.2 19 0 0 0 40 0;4 0 1 0 47.8 -3.9 0 0 0 0 0;5 0 1 0 7.6 1.6 0 0 0 0 0;6 2 1.07 0 11.2

7.5 77.12 0 -6 24 0;7 0 1 0 0 0 0 0 0 0 0;8 0 1.09 0 0 0 0 0 -6 24 0 ;9 0 1 0 29.5 16.6 0

0 0 0 0; 10 0 1 0 9 5.8 0 0 0 0 0;11 0 1 0 3.5 1.8 0 0 0 0 0;12 0 1 0 6.1 1.6 0 0 0 0

0;13 0 1 0 13.5 5.8 0 0 0 0 0;14 0 1 0 14.9 5 0 0 0 0 0];

linedata=[1 2 0.01938 0.05917 0.0264 1;1 5 0.05403 0.22304 0.0246 1; 2 3 0.04699

0.19797 0.0219 1; 2 4 0.05811 0.17632 0.0170 1; 2 5 0.05695 0.17388 0.0173 1; 3 4

0.06701 0.17103 0.0064 1; 4 5 0.01335 0.04211 0.0 1; 4 7 0.0 0.20912 0.0 0.978; 4 9

0.0 0.55618 0.0 0.969;5 6 0.0 0.25202 0.0 0.932; 6 11 0.09498 0.19890 0.0 1;6 12

0.12291 0.25581 0.0 1;6 13 0.06615 0.13027 0.0 1;7 8 0.0 0.17615 0.0 1; 7 9 0.0

0.11001 0.0 1; 9 10 0.03181 0.08450 0.0 1;9 14 0.12711 0.27038 0.0 1; 10 11

0.08205 0.19207 0.0 1;12 13 0.22092 0.19988 0.0 1;13 14 0.17093 0.34802 0.0 1];

disp(busdata)

disp(linedata)

mwlimit=[50 200;20 100;20 100]

Ifybus

Ifnewton

busout

bloss

B-Coefficient Calculated is as:

B11 = 0.0231 B12 = 0.0078 B13 = -0.0007

B21 = 0.0078 B22=0.0182 B23= 0.0022

B31=-0.0007 B32= 0.0022 B33= 0.0329

54

C) IEEE 30 BUS SYSTEM

Fig. I-C: BUS-CODE DIAGRAM OF 30 BUS SYSTEM

TABLE I-G: IMPEDANCE & LINE-CHARGING DATA (30 BUS SYSTEM)

Line

Designation
Resistance

p.u.*

Reactance

p.u.*

Line

Charging

Tap Setting

1-2 0.0192 0.0575 0.0264 1

1-3 0.0452 0.1852 0.0204 1

2-4 0.0570 0.1737 0.0184 1

3-4 0.0132 0.0379 0.0042 1

2-5 0.0472 0.1983 0.0209 1

2-6 0.0581 0.1763 0.0187 1

4-6 0.0119 0.0414 0.0045 1

5-7 0.0460 0.1160 0.0102 1

6-7 0.0267 0.0820 0.0085 1

6-8 0.0120 0.0420 0.0045 1

6-9 0 0.2080 0 0.978

6-10 0 0.5560 0 0.969

9-11 0 0.2080 0 1

9-10 0 0.1100 0 1

4-12 0 0.2560 0 0.932

12-13 0 0.1400 0 1

12-14 0.1231 0.2559 0 1

12-15 0.0662 0.1304 0 1

55

12-16 0.0945 0.1987 0 1

14-15 0.2210 0.1997 0 1

16-17 0.0824 0.1923 0 1

15-18 0.1070 0.2185 0 1

18-19 0.0639 0.1292 0 1

19-20 0.0340 0.0680 0 1

10-20 0.0936 0.2090 0 1

10-17 0.0324 0.0845 0 1

10-21 0.0348 0.0749 0 1

10-22 0.0727 0.1499 0 1

21-22 0.0116 0.0236 0 1

15-23 0.1000 0.2020 0 1

22-24 0.1150 0.1790 0 1

23-24 0.1320 0.2700 0 1

24-25 0.1885 0.3292 0 1

25-26 0.2544 0.3800 0 1

25-27 0.1093 0.2087 0 1

27-28 0 0.3960 0 0.968

27-29 0.2198 0.4153 0 1

27-30 0.3202 0.6027 0 1

29-30 0.2399 0.4533 0 1

8-28 0.0636 0.2000 0.0214 1

6-28 0.0169 0.0599 0.0065 1

*Impedance and line-charging susceptance in p.u. on a 100 MVA base.

TABLE I-H: BUS DATA or OPERATING CONDITIONS (30 BUS SYSTEM)

Bus

No.
Voltage Generation Load

Magnitude

(in pu)

Phase angle

(deg.)

MW MVAR MW MVAR

1* 1.06 0 0 0 0 0

2 1 0 40 0 21.7 12.7

3 1 0 0 0 2.4

4 1 0 0 0 7.6

5 1 0 0 0 94.2

6 1 0 0 0 0 0

7 1 0 0 0 22.8 10.9

8 1 0 0 0 30.0 30.0

9 1 0 0 0 0 0

10 1 0 0 0 5.8 2.0

11 1 0 0 0 0 0

12 1 0 0 0 11.2 7.5

13 1 0 0 0 0 0

14 1 0 0 0 6.2 1.6

15 1 0 0 0 8.2 2.5

16 1 0 0 0 3.5 1.8

17 1 0 0 0 9.0 5.8

18 1 0 0 0 3.2 0.9

56

19 1 0 0 0 9.5 3.4

20 1 0 0 0 2.2 0.7

21 1 0 0 0 17.5 11.2

22 1 0 0 0 0 0

23 1 0 0 0 3.2 1.6

24 1 0 0 0 8.7 6.7

25 1 0 0 0 0 0

26 1 0 0 0 3.5 2.3

27 1 0 0 0 0 0

28 1 0 0 0 0 0

29 1 0 0 0 2.4 0.9

30 1 0 0 0 10.6 1.9

*Slack Bus

TABLE I-I: REGULATED BUS DATA (30 BUS SYSTEM)

Bus no. Voltage magnitude

(in pu)

Minimum MVAR

capability

Maximum MVAR

capability

2 1.045 -40 50

5 1.01 -40 40

8 1.01 -10 40

11 1.082 -6 24

13 1.071 -6 24

TABLE I-J: TRANSFORMER DATA (30 BUS SYSTEM)

Transformer designation Tap setting*

4-12 0.932

6-9 0.978

6-10 0.969

28-27 0.968

*Off nominal turns ratio, as determined by the actual transformer-tap position and the

voltage bases. In the case of nominal turns ratio, this would equal to 1.

TABLE I-K: STATIC CAPACITOR DATA (30 BUS SYSTEM)

Bus no Susceptance*p.u.

10 0.19

24 0.043

*Susceptance in p.u. on 100 MVA base.

Cost characteristics of IEEE 30 bus system:
The cost characteristics of the IEEE 30 Bus System are as follows:

C1 = 50p1
2
+245p1+105 $/hr

C2 = 50p2
2
+351p2+44.4 $/hr

C8 = 50p8
2
+389p8+40.6 $/hr

57

 The total load demand of the IEEE 30 bus system is 283.4 MW. The maximum

active power constraint is 250 MW, 100MW and 100 MW for the generators of bus no.

1, 2 and 8 respectively. The minimum active power constraint is 50 MW, 30MW and 30

MW for the generators of bus no. 1, 2 and 8 respectively. Voltage magnitude constraint

for generator at bus 2 is 1.045, for bus no. 5 is 1.01, for bus no. 8 is 1.010, for bus no. 11

is 1.082 &for bus no. 13 is 1.071.

M-file For Calculating B- Coefficients:

Clear

basemva=100

accuracy=0.0001

maxiter=10

busdata=[1 1 1.06 0 0 0 0 0 0 0 0;2 2 1.045 0 21.7 12.7 90 0 -40 50 0; 3 0 1 0 2.4 1.2 0 0

0 0 0;4 0 1 0 7.6 1.6 0 0 0 0 0;5 0 1.01 0 94.2 19 0 0 -40 40 0; 6 0 1 0 0 0 0 0 0 0 0; 7 0 1

0 22.8 10.9 0 0 0 0 0;8 2 1.010 30 30150 0 -10 40 0; 9 0 1 0 0 0 0 0 0 0 0; 10 0 1 0 5.8 2

0 0 0 0 0.19; 11 0 1.082 0 0 0 0 0 -6 24 0; 12 0 1 0 11.2 7.5 0 0 0 0 0; 13 0 1.071 0 0 0 0

0 -6 24 0; 14 0 1 0 6.2 1.6 0 0 0 0 0;15 0 1 0 8.2 2.5 0 0 0 0 0;16 0 1 0 3.5 1.8 0 0 0 0 0;

17 0 1 0 9 5.8 0 0 0 0 0; 18 0 1 0 3.2 0.9 0 0 0 0 0; 19 0 1 0 9.5 3.4 0 0 0 0 0; 20 0 1 0 2.2

0.7 0 0 0 0 0;21 0 1 0 17.5 11.2 0 0 0 0 0;22 0 1 0 0 0 0 0 0 0 0;23 1 0 3.2 1.6 0 0 0 0 0;

24 0 1 0 8.7 6.7 0 0 0 0 0.043; 25 0 1 0 0 0 0 0 0 0 0;26 0 1 0 3.5 2.3 0 0 0 0 0; 27 0 1 0 0

0 0 0 0 0 0; 28 0 1 0 0 0 0 0 0 0 0;29 0 1 0 2.4 0.9 0 0 0 0 0; 30 0 1 0 10.6 1.9 0 0 0 0 0];

linedata=[1 2 0.0192 0.0575 0.0264 1;1 3 0.0452 0.1852 0.0204 1; 2 4 0.0570 0.19797

0.0219 1; 2 4 0.05811 0.17632 0.0170 1; 2 5 0.05695 0.17388 0.0173 1; 3 4 0.06701

0.17103 0.0064 1; 4 5 0.01335 0.04211 0.0 1; 4 7 0.0 0.20912 0.0 0.978; 4 9 0.0 0.55618

0.0 0.969;5 6 0.0 0.25202 0.0 0.932; 6 11 0.09498 0.19890 0.0 1;6 12 0.12291 0.25581

0.0 1;6 13 0.06615 0.13027 0.0 1;7 8 0.0 0.17615 0.0 1; 7 9 0.0 0.11001 0.0 1; 9 10

0.03181 0.08450 0.0 1;9 14 0.12711 0.27038 0.0 1; 10 11 0.08205 0.19207 0.0 1;12 13

0.22092 0.19988 0.0 1;13 14 0.17093 0.34802 0.0 1];

disp(busdata)

disp(linedata)

mwlimit=[50 150;50 150;50 150]

Ifybus

Ifnewton

busout

bloss

B-Coefficient Calculated is as:

B11 = 0.0307 B12 = 0.0129 B13 = 0.0002

B21 = 0.0129 B22=0.0152 B23= - 0.0011

B31=0.0002 B32=- 0.0011 B33= 0.0190

58

APPENDIX- II

1. MATLAB Program for the optimization of benchmark functions using PSO

clc

disp('Function to be minimize f = (1.5-x1+x1*x2)^2 +(2.25-x1+x1*x2^2)^2

+ (2.625-x1+x1*x2^3)^2 i.e. beale’s function');

%disp('Function to be minimize f = (x1+2*x2-7)^2 +(2*x1+x2-5)^2 i.e.

booth's function');

%disp('Function to be minimize f = 100(x1^2-x2)^2+(1-x1)^2 i.e.

rosenbrock function');

%disp('Function to be minimize f = x1^2 + x2^2 i.e. Sphere function');

p=input('Enter the no. of particles in a swarm= ');

it=input('Enter the maximum no. of iterations to be performed= ');

T=input('Enter the tolerance value= ');

tic;

% Initialization of variables

x1=zeros(p,it);

x2=zeros(p,it);

v1=zeros(p,it);

v2=zeros(p,it);

f=zeros(p,it);

fp=zeros(1,p);

df=zeros(1,(it-1));

r1=0.5;

r2=0.5;

c1=2;

c2=2;

%c1=2.05 %when constriction factor is used

%c2=2.05 %when constriction factor is used

%Initial random position and velocity selection

x1(:,1)=unifrnd(-4.5,4.5,1,p);

x2(:,1)=unifrnd(-4.5,4.5,1,p);

v1(:,1)=rand(1,p);

v2(:,1)=rand(1,p);

print = [x1(:,1) x2(:,1) v1(:,1) v2(:,1) f(:,1)];

disp(' x1 x2 v1 v2 f')

disp(print)

% fitness evaluation

for j=1:p

f(j,1)=(1.5-x1(j,1)+x1(j,1)*x2(j,1))^2 + (2.25-

x1(j,1)+x1(j,1)*x2(j,1)^2)^2 + (2.625-x1(j,1)+x1(j,1)*x2(j,1)^3)^2;

%f(j,1) = (x1(j,1)+2*x2(j,1)-7)^2 +(2*x1(j,1)+x2(j,1)-5)^2 ;

%f(j,1)= 100*((x1(j,1))^2 - x2(j,1))^2 + (1- x1(j,1))^2 ;

%f(j,1)= x1(j,1)^2 + x2(j,1)^2 ;

end

%Initial personal best values

x1p=x1(:,1);

x2p=x2(:,1);

%for Initial Global best values

fmin=min(f(:,1));

for j=1:p

 if f(j,1)==fmin

 x1g = x1(j,1);

 x2g = x2(j,1);

 else

 end

end

59

%Updation by PSO algorithm

for i=1:it

disp(sprintf('This is %d no. of iteration',i))

%for inertia weight W

 wmax=0.9;

 wmin=0.4;

%Linearly Decreasing inertia weight W

 w = wmax-i*((wmax-wmin)/it);

%constriction factor

 cf = 0.729;

for j=1:p

%For velocity updation

%Only active inertia weight(IW-PSO), IPSO-B, IPSO-C

v1(j,(i+1)) = w*v1(j,i) + r1*c1*(x1p(j)-x1(j,i)) + r2*c2*(x1g-x1(j,i));

v2(j,(i+1)) = w*v2(j,i) + r1*c1*(x2p(j)-x2(j,i)) + r2*c2*(x2g-x2(j,i));

%Only constriction factor(CF-PSO)

%v1(j,(i+1))= cf *(v1(j,i)+r1*c1*(x1p(j)-x1(j,i))+r2*c2*(x1g-x1(j,i)));

%v2(j,(i+1))= cf *(v2(j,i)+r1*c1*(x2p(j)-x2(j,i))+r2*c2*(x2g-x2(j,i)));

%Both inertia weight and constriction factor (CI-PSO)

%v1(j,(i+1))=cf*(w*v1(j,i)+r1*c1*(x1p(j)-x1(j,i))+r2*c2*(x1g-x1(j,i)));

%v2(j,(i+1))=cf*(w*v2(j,i)+r1*c1*(x2p(j)-x2(j,i))+r2*c2*(x2g-x2(j,i)));

%For IPSO-A

 %kk=1;

 %if f(j,i)==fmin

 % kk= 0;

 %end

%v1(j,(i+1))= w*v1(j,i) + r1*c1*(x1p(j)-x1(j,i)) + r2*c2*(x1g-x1(j,i));

%v2(j,(i+1))= w*v2(j,i) + r1*c1*(x2p(j)-x2(j,i)) + r2*c2*(x2g-x2(j,i));

%For Position updation

%IW-PSO, CF-PSO, CI-PSO, IPSO-A

x1(j,(i+1)) = x1(j,i) + v1(j,(i+1));

x2(j,(i+1)) = x2(j,i) + v2(j,(i+1));

%IPSO-B

 %kk=1;

 %if f(j,i)==fmin

 % kk= 0;

 %end

%x1(j,(i+1)) = x1(j,i) + kk*v1(j,(i+1));

%x2(j,(i+1)) = x2(j,i) + kk*v2(j,(i+1));

%IPSO-C

 %kk=1;

 %if f(j,i)<fp(j)

 % kk= 0;

 %end

%x1(j,(i+1)) = x1(j,i) + kk*v1(j,(i+1));

%x2(j,(i+1)) = x2(j,i) + kk*v2(j,(i+1));

%Fitness evaluation

f(j,(i+1))=(1.5-x1(j,(i+1))+x1(j,(i+1))*x2(j,(i+1)))^2+(2.25-

x1(j,(i+1))+ x1(j,(i+1))*x2(j,(i+1))^2)^2 +(2.625-

x1(j,(i+1))+x1(j,(i+1))*x2(j,(i+1))^3)^2;

%f(j,(i+1)) = (x1(j,(i+1))+2*x2(j,(i+1))-7)^2

+(2*x1(j,(i+1))+x2(j,(i+1))-5)^2;

%f(j,(i+1))= 100*((x1(j,(i+1)))^2 - x2(j,(i+1)))^2 + (1-

x1(j,(i+1)))^2 ;

%f(j,(i+1))= x1(j,(i+1))^2 + x2(j,(i+1))^2 ;

end

%To find change in the values of f

60

 for j=1:p

 df(j,i)= abs(f(j,(i+1))-f(j,i)) ;

 end

%personal best values updation

 for j=1:p

 fp(j)= (1.5-x1p(j)+x1p(j)*x2p(j))^2+(2.25-

x1p(j)+x1p(j)*x2p(j)^2)^2+(2.625-x1p(j)+x1p(j)*x2p(j)^3)^2;

 %fp(j)=(x1p(j)+2*x2p(j)-7)^2 +(2*x1p(j)+x2p(j)-5)^2;

 %fp(j)= 100*((x1p(j))^2 - x2p(j))^2 + (1- x1p(j))^2;

 %fp(j)= x1p(j)^2 + x2p(j)^2;

 end

 for j=1:p

 if f(j,i+1)< fp(j)

 x1p(j)=x1(j,i+1); %personal best values

 x2p(j)=x2(j,i+1);

 else

 end

 end

%for Global best values updation

 if min(f(:,(i+1)))<fmin

 fmin=min(f(:,(i+1)));

 else

 end

 for j=1:p

 if f(j,i+1)==fmin

 x1g = x1(j,i+1); %global best values

 x2g = x2(j,i+1);

 else

 end

 end

print = [x1(:,i) x2(:,i) v1(:,i) v2(:,i) f(:,i)];

disp(' x1 x2 v1 v2 f')

disp(print)

%Stoping criterion

ki=0;

for j=1:p

 if (df(j,i)<=10^(-T))

 ki=ki+1;

 end

end

 if ki >= p

 break

 end

end

t=toc;

[r,c]=find(f==fmin);

minf = (1.5-x1g+x1g*x2g)^2 +(2.25-x1g+x1g*x2g^2)^2 +(2.625-

x1g+x1g*x2g^3)^2;

%minf = (x1g+2*x2g-7)^2 +(2*x1g+x2g-5)^2;

%minf = 100*((x1g^2 - x2g)^2 + (1- x1g)^2);

%minf = (x1g^2 + x2g^2);

disp(sprintf('min value of function is %d and at values of x1=%d and

x2=%d ',minf,x1g,x2g));

disp(sprintf('time = %d ',t));

61

2. MATLAB Program for the solution of IEEE 5-bus system using PSO

clear all
clc
disp(' we have to minimize the cost function of a IEEE 5-BUS system')
p=input('Enter the no. of particles in a swarm= '); %no. of particles
it=input('Enter the no. of iterations= ');
tic; %time calculation
%Input Data
a=10^(-4)*[50 50];
b=10^(-2)*[351 389];
c=[44.4 40.6];
B=10^(-2)*[0.0349 0.0086; -0.0055 0.0371];
%Initialization of variables
p1=zeros(p,it);

p2=zeros(p,it);
v1=zeros(p,it);
v2=zeros(p,it);
f=zeros(p,it);
df=zeros(p,it);
sp=zeros(p,it);
csp=zeros(p,it);
pl=zeros(p,it);
C1=zeros(p,it);
C2=zeros(p,it);
C=zeros(p,it);
r1=0.5;
r2=0.5;
c1=2;
c2=2;
pd=160;
p1g=zeros(p);
p2g=zeros(p);
fp=zeros(1,p);
plp=zeros(1,p);
k=50;
w1=1;
n=1;
while n==1
 for j=1:p
 p1(j,1)=unifrnd(30,120,1);
 p2(j,1)=pd-p1(j,1);
 if p2(j,1)<30&&p2(j,1)>120
 n=1;
 break;
 else
 n=0;
 end
 end
end
v1(:,1)=rand(1,p);
v2(:,1)=rand(1,p);
%Total cost calculation
for j=1:p
 C1(j,1) = a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1);
 C2(j,1) = a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2);
 C(j,1) = C1(j,1) + C2(j,1);
end
%To calculate initial value of cost function we need PL
for j=1:p

62

 pl(j,1)= [p1(j,1) p2(j,1)]*B*[p1(j,1) p2(j,1)]';
end
%To calculate initial value of cost function
for j=1:p
 f(j,1)= w1*((a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1))+(a(2)*(p2(j,1))^2

+ b(2)*p2(j,1) + c(2)))+ k*abs(pd+pl(j,1)-p1(j,1)-p2(j,1));
end

%0th iteration data display
disp('this is the 0th iteration')
print0 = [p1(:,1) p2(:,1) v1(:,1) v2(:,1) f(:,1) C1(:,1) C2(:,1)

C(:,1)];
disp(' P1 P2 V1 v2 f C1

C2 C ')
disp(print0)
%Initial personal besst values
p1p=p1(:,1);
p2p=p2(:,1);
%for Initial Global best values updation
fmin=min(f(:,1));
for m=1:p
 if f(m,1)==fmin
 gb=m;
 else
 end
end
%Initial global best value
for m=1:p
p1g(m) = p1(gb,1);
p2g(m) = p2(gb,1);
end
fgm = min(f(:,1));
%Main iterations starts from here
for i=1:it
 disp(sprintf('This is iteration no.= %d',i))
%for inertia weight W
wmax=0.9;
wmin=0.4;
%Linearly Decreasing inertia weight W
w = wmax-i*((wmax-wmin)/it);
% for constraction Factor
 cf = 0.729;
%For calculatiing velocities for updation
 for j=1:p
 kk=1;
 %if f(j,i)==fgm
 % kk= 0;
 %end
v1(j,(i+1)) = kk*(w*v1(j,i) + r1*c1*(p1p(j)-p1(j,i)) + r2*c2*(p1g(j)-

p1(j,i)));
v2(j,(i+1)) = kk*(w*v2(j,i) + r1*c1*(p2p(j)-p2(j,i)) + r2*c2*(p2g(j)-

p2(j,i)));
 %V(min) and V(max) constraint
 for j=1:p
 if v1(j,(i+1))< -15
 v1(j,(i+1))= -15;
 end
 if v2(j,(i+1))< -15
 v2(j,(i+1))= -15;
 end
 if v1(j,(i+1))> 60

63

 v1(j,(i+1))= 60;
 end
 if v2(j,(i+1))> 60
 v2(j,(i+1))= 60;
 end
 end
%Updation of p values
for j=1:p
 kk=1;
 % if f(j,i)==fgm
 % kk= 0;
 %end
 %if f(j,i)<fp(j)
 % kk= 0;
 %end
 p1(j,(i+1)) = p1(j,i) + kk*v1(j,(i+1));
 p2(j,(i+1)) = p2(j,i) + kk*v2(j,(i+1));
 end
 %Pmin and Pmax constraint
 for j=1:p
 if p1(j,(i+1))< 30
 p1(j,(i+1))= 30;
 end
 if p2(j,(i+1))< 30
 p2(j,(i+1))= 30;
 end
 if p1(j,(i+1))> 120
 p1(j,(i+1))= 120;
 end
 if p2(j,(i+1))> 120
 p2(j,(i+1))= 120;
 end
 end
 %For losses formulation (PL)
 for j=1:p
 pl(j,(i+1))= [p1(j,(i+1)) p2(j,(i+1))]*B*[p1(j,(i+1)) p2(j,(i+1))]';
 end
%Main objective function
for j=1:p
 f(j,(i+1))= w1*((a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) +c(1))+

(a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2)))+

k*abs(pd+pl(j,(i+1))-p1(j,(i+1))-p2(j,(i+1)));
end
%personal best values updation
%For losses formulation (PL)
 for j=1:p
 plp(j)= [p1p(j) p2p(j)]*B*[p1p(j) p2p(j)]';
 end
 for j=1:p
 fp(j)= w1*((a(1)*(p1p(j))^2 + b(1)*p1p(j) +

c(1))+(a(2)*(p2p(j))^2 + b(2)*p2p(j) + c(2))) + k*abs(pd+plp(j)-

p1p(j)-p2p(j));
 end
 for m=1:p
 if f(m,i)< fp(m)
 p1p(m)=p1(m,(i+1));
 p2p(m)=p2(m,(i+1));
 else
 end
 end

64

%for Global best values updation
 if min(f(:,(i+1)))<fgm
 fgm=min(f(:,(i+1)));
 else
 end
 for j=1:(i+1)
 for m=1:p
 if f(m,j)==fgm
 for l=1:p
 p1g(l) = p1(m,j); %global best values
 p2g(l) = p2(m,j);
 end
 else
 end
 end
 end
 %For Cost Calculation
 for j=1:p
 C1(j,(i+1)) = a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) + c(1);
 C2(j,(i+1)) = a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2);
 C(j,(i+1)) = C1(j,(i+1)) + C2(j,(i+1));
 end
 %To find change in the values of f
 for j=1:p
 df(j,i)= abs(f(j,(i+1))-f(j,i));
 sp(j,i)= abs(pd+pl(j,(i+1))-p1(j,(i+1))-p2(j,(i+1)));
 csp(j,i)= abs(C(j,(i+1))-C(j,i));
 end

print=[p1(:,(i+1)) p2(:,(i+1)) v1(:,(i+1)) v2(:,(i+1)) f(:,(i+1))

C1(:,(i+1)) C2(:,(i+1)) C(:,(i+1))];
disp('P1 P2 V1 v2 f c1 c2 C ')
disp(print)
%Stoping criterion (df(j,i)<=10^(-6))&& &&(csp(j,i)<=10^(-6))
 ki=0;
 for j=1:p
 if ((df(j,i)<=10^(-6))&&(sp(j,i)<=10^(-6)))
 ki=ki+1;
 end
 end
 if ki == p
 break
 end
end
t=toc;
disp('Initial values of generations of 2 generators')
initial=[p1(:,1) p2(:,1)];
disp(' P1 P2 ')
disp(initial)
disp(sprintf('\nPD+Pl = %d',pd+pl(1,i)))
disp(sprintf('\nP1+P2=%d\n',p1(1,i)+p2(1,i)))
disp(sprintf('No. of total Iterations took place = %d \n',i))
disp(sprintf('Total loses in the lines Pl = %d \n',pl(1,i)))
disp(sprintf('Minimum cost incured = %d \n',C(1,i)))
disp('\nFinal values of generations of the three generators')
disp(sprintf('P1=%d',p1(1,i)))
disp(sprintf('P2=%d',p2(1,i)))
disp(sprintf('Computational Time = %d ',t));

65

3. MATLAB Program for the solution of IEEE 14-bus system using PSO

clear all
clc
disp('we have to minimize the cost function of IEEE 14-BUS system')
p=input('Enter the no. of particles in a swarm= ');%no. of particles
it=input('Enter the maximum no. of iterations to be performed= ');
tic; %time calculation
%Input Data
a=10^(-4)*[50 50 50];
b=10^(-2)*[245 351 389];
c=[105 44.4 40.6];
B=10^(-2)*[0.0349 0.0068 -0.0039; 0.0068 0.0157 0.0015; -0.0039 0.0015

0.0275];
B0=10^(-2)*[0.0044 0.0024 0.0000];
B00=2.5408*10^(-4);
%Initialization of variables
p1=zeros(p,it);
p2=zeros(p,it);
p3=zeros(p,it);
v1=zeros(p,it);
v2=zeros(p,it);
v3=zeros(p,it);
f=zeros(p,it);
df=zeros(p,it);
sp=zeros(p,it);
csp=zeros(p,it;
pl=zeros(p,it);
C1=zeros(p,it);
C2=zeros(p,it);
C3=zeros(p,it);
C=zeros(p,it);
r1=0.5;
r2=0.5;
c1=2;
c2=2;
pd=259;
p1g=zeros(p);
p2g=zeros(p);
p3g=zeros(p);
fp=zeros(1,p;
plp=zeros(1,p;
k=50;
w1=1;
n=1;
while n==1
 for j=1:p
 p1(j,1)=unifrnd(50,200,1);
 p2(j,1)=unifrnd(20,100,1);
 p3(j,1)=pd-p1(j,1)-p2(j,1);
 if p3(j,1)<20&&p3(j,1)>100
 n=1;
 break;
 else
 n=0;
 end
 end
end
v1(:,1)=rand(1,p);

66

v2(:,1)=rand(1,p);
v3(:,1)=rand(1,p);
%Total cost calculation
 for j=1:p
 C1(j,1) = a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1);
 C2(j,1) = a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2);
 C3(j,1) = a(3)*(p3(j,1))^2 + b(3)*p3(j,1) + c(3);
 C(j,1) = C1(j,1) + C2(j,1) + C3(j,1);
 end
%To calculate initial value of cost function we need PL
for j=1:p
 pl(j,1)= [p1(j,1) p2(j,1) p3(j,1)]*B*[p1(j,1) p2(j,1) p3(j,1)]'

+[p1(j,1) p2(j,1) p3(j,1)]*B0'+B00;
end
%To calculate initial value of cost function
for j=1:p
 f(j,1)= w1*((a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1)) +

(a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2))+(a(3)*(p3(j,1))^2 +

b(3)*p3(j,1) + c(3))) + k*abs(pd+pl(j,1)-p1(j,1)-p2(j,1)-p3(j,1));
end
%Initial personal besst values
p1p=p1(:,1);
p2p=p2(:,1);
p3p=p3(:,1);
%for Initial Global best values updation
fmin=min(f(:,1));
for m=1:p
 if f(m,1)==fmin
 gb=m;
 else
 end
end
%Initial global best value
for m=1:p
p1g(m) = p1(gb,1);
p2g(m) = p2(gb,1);
p3g(m) = p3(gb,1);
end
fgm = min(f(:,1));
%Main iterations starts from here
for i=1:it
 disp(sprintf('This is iteration no.= %d',i))
%for inertia weight W
wmax=0.9;
wmin=0.4;
%Linearly Decreasing inertia weight W
w = wmax-i*((wmax-wmin)/it);
% for constraction Factor
 cf = 0.729;
%For calculatiing velocities for updation
 for j=1:p
 kk=1;
 %if f(j,i)==fgm
 % kk= 0;
 %end
 v1(j,(i+1)) = kk*(w*v1(j,i) + r1*c1*(p1p(j)-p1(j,i)) + r2*c2*(p1g(j)-

p1(j,i)));
 v2(j,(i+1)) = kk*(w*v2(j,i) + r1*c1*(p2p(j)-p2(j,i)) + r2*c2*(p2g(j)-

p2(j,i)));

67

 v3(j,(i+1)) = kk*(w*v3(j,i) + r1*c1*(p3p(j)-p3(j,i)) + r2*c2*(p3g(j)-

p3(j,i)));
 end
 %V(min) and V(max) constraint
 for j=1:p
 if v1(j,(i+1))< -25
 v1(j,(i+1))= -25;
 end
 if v2(j,(i+1))< -10
 v2(j,(i+1))= -10;
 end
 if v3(j,(i+1))< -10
 v3(j,(i+1))= -10;
 end
 if v1(j,(i+1))> 100
 v1(j,(i+1))= 100;
 end
 if v2(j,(i+1))> 50
 v2(j,(i+1))= 50;
 end
 if v3(j,(i+1))> 50
 v3(j,(i+1))= 50;
 end
 end
%Updation of p values
 for j=1:p
 kk=1;
 if f(j,i)==fgm
 kk= 0;
 end
 %if f(j,i)<fp(j)
 % kk= 0;
 %end
 p1(j,(i+1)) = p1(j,i) + kk*v1(j,(i+1));
 p2(j,(i+1)) = p2(j,i) + kk*v2(j,(i+1));
 p3(j,(i+1)) = p3(j,i) + kk*v3(j,(i+1));
 end
 %Pmin and Pmax constraint
 for j=1:p
 if p1(j,(i+1))< 50
 p1(j,(i+1))= 50;
 end
 if p2(j,(i+1))< 20
 p2(j,(i+1))= 20;
 end
 if p3(j,(i+1))< 20
 p3(j,(i+1))= 20;
 end
 if p1(j,(i+1))> 200
 p1(j,(i+1))= 200;
 end
 if p2(j,(i+1))> 100
 p2(j,(i+1))= 100;
 end
 if p3(j,(i+1))> 100
 p3(j,(i+1))= 100;
 end
 end
 %For losses formulation (PL)
 for j=1:p

68

 pl(j,(i+1))= [p1(j,(i+1)) p2(j,(i+1)) p3(j,(i+1))]*B*[p1(j,(i+1))

p2(j,(i+1)) p3(j,(i+1))]'+[p1(j,(i+1)) p2(j,(i+1))

p3(j,(i+1))]*B0'+B00;
 end
%Main objective function
 for j=1:p
 f(j,(i+1))= w1*((a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) + c(1))+

(a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2))+(a(3)*(p3(j,(i+1)))^2

+ b(3)*p3(j,(i+1)) + c(3))) + k*abs(pd+pl(j,(i+1))-p1(j,(i+1))-

p2(j,(i+1))-p3(j,(i+1)));
 end
%personal best values updation
%For losses formulation (PL)
for j=1:p
 plp(j)= [p1p(j) p2p(j) p3p(j)]*B*[p1p(j) p2p(j) p3p(j)]'+[p1p(j)

p2p(j) p3p(j)]*B0'+B00;
end
for j=1:p
 fp(j)= w1*((a(1)*(p1p(j))^2 + b(1)*p1p(j) + c(1))+(a(2)*(p2p(j))^2 +

b(2)*p2p(j) + c(2))+(a(3)*(p3p(j))^2 + b(3)*p3p(j) + c(3))) +

k*abs(pd+plp(j)-p1p(j)-p2p(j)-p3p(j));
end
 for m=1:p
 if f(m,i)< fp(m)
 p1p(m)=p1(m,(i+1));
 p2p(m)=p2(m,(i+1));
 p3p(m)=p3(m,(i+1));
 else
 end
 end
%for Global best values updation
 if min(f(:,(i+1)))<fgm
 fgm=min(f(:,(i+1)));
 else
 end
 for j=1:(i+1)
 for m=1:p
 if f(m,j)==fgm
 for l=1:p
 p1g(l) = p1(m,j); %global best values
 p2g(l) = p2(m,j);
 p3g(l) = p3(m,j);
 end
 else
 end
 end
 end
 %For Cost calculation
 for j=1:p
 C1(j,(i+1)) = a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) + c(1);
 C2(j,(i+1)) = a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2);
 C3(j,(i+1)) = a(3)*(p3(j,(i+1)))^2 + b(3)*p3(j,(i+1)) + c(3);
 C(j,(i+1)) = C1(j,(i+1)) + C2(j,(i+1)) + C3(j,(i+1));
 end
 %To find change in the values of f
 for j=1:p
 df(j,i)= abs(f(j,(i+1))-f(j,i)) ;
 sp(j,i)= abs(pd+pl(j,(i+1))-p1(j,(i+1))-p2(j,(i+1))-p3(j,(i+1)));
 csp(j,i)= abs(C(j,(i+1))-C(j,i));
 end

69

%Stoping criterion &&(csp(j,i)<=10^(-6)) (df(j,i)<=10^(-6))&&
 ki=0;
 for j=1:p
 if ((df(j,i)<=10^(-6))&&(sp(j,i)<=10^(-6)))
 ki=ki+1;
 end
 end
 if ki >= p
 break
 end
end
t=toc;
disp('Initial values of generations of 3 generators')
initial=[p1(:,1) p2(:,1) p3(:,1)];
disp(' P1 P2 P3 ')
disp(initial)
disp(sprintf('\nPD+Pl = %d',pd+pl(1,i)))
disp(sprintf('\nP1+P2+P3=%d\n',p1(1,i)+p2(1,i)+p3(1,i)))
disp(sprintf('No. of total Iterations took place = %d \n',i))
disp(sprintf('Total loses in the lines Pl = %d \n',pl(1,i)))
disp(sprintf('Minimum cost incured = %d \n',C(1,i)))
disp('\nFinal values of generations of the three generators')
disp(sprintf('P1=%d',p1(1,i)))
disp(sprintf('P2=%d',p2(1,i)))
disp(sprintf('P3=%d',p3(1,i)))
disp(sprintf('Computational Time = %d ',t));

4. MATLAB Program for the solution of IEEE 30-bus system using PSO

clear all
clc
disp(' we have to minimize the cost function of IEEE 30-BUS system')
p=input('Enter the no. of particles in a swarm= '); %no. of particles
it=input('Enter the maximum no. of iterations to be performed= ');
tic; %time calculation
%Input Data
a=10^(-4)*[50 50 50];
b=10^(-2)*[245 351 389];
c=[105 44.4 40.6];
B=10^(-2)*[0.0307 0.0129 -0.0002; 0.0129 0.0152 -0.0011; -0.0002 -

0.0011 0.0190];
%Initialization of variables
p1=zeros(p,it);
p2=zeros(p,it);
p3=zeros(p,it);
v1=zeros(p,it);
v2=zeros(p,it);
v3=zeros(p,it);
f=zeros(p,it);
df=zeros(p,it);
sp=zeros(p,it);
csp=zeros(p,it);
pl=zeros(p,it);
C1=zeros(p,it);
C2=zeros(p,it);
C3=zeros(p,it);
C=zeros(p,it);

70

r1=0.5;
r2=0.5;
c1=2;
c2=2;
pd=283.4;
p1g=zeros(p);
p2g=zeros(p);
p3g=zeros(p);
fp=zeros(1,p);
plp=zeros(1,p);
k=50;
w1=1;
n=1;
while n==1
 for j=1:p
 p1(j,1)=unifrnd(50,250,1);
 p2(j,1)=unifrnd(30,100,1);
 p3(j,1)=283.4-p1(j,1)-p2(j,1);
 if p3(j,1)<30&&p3(j,1)>100
 n=1;
 break;
 else
 n=0;
 end
 end
end
v1(:,1)=rand(1,p);
v2(:,1)=rand(1,p);
v3(:,1)=rand(1,p);
%Total cost calculation
 for j=1:p
 C1(j,1) = a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1);
 C2(j,1) = a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2);
 C3(j,1) = a(3)*(p3(j,1))^2 + b(3)*p3(j,1) + c(3);
 C(j,1) = C1(j,1) + C2(j,1) + C3(j,1);
 end
%To calculate initial value of cost function we need PL
for j=1:p
 pl(j,1)= [p1(j,1) p2(j,1) p3(j,1)]*B*[p1(j,1) p2(j,1) p3(j,1)]';
end
%To calculate initial value of cost function
for j=1:p
 f(j,1)= w1*((a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1)) +

(a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2))+(a(3)*(p3(j,1))^2 +

b(3)*p3(j,1) + c(3))) + k*abs(pd+pl(j,1)-p1(j,1)-p2(j,1)-p3(j,1));
end
%Initial personal besst values
p1p=p1(:,1);
p2p=p2(:,1);
p3p=p3(:,1);
%for Initial Global best values updation
fmin=min(f(:,1));
for m=1:p
 if f(m,1)==fmin
 gb=m;
 else
 end
end
%Initial global best value
for m=1:p

71

p1g(m) = p1(gb,1);
p2g(m) = p2(gb,1);
p3g(m) = p3(gb,1);
end
fgm = min(f(:,1));
%Main iterations starts from here
for i=1:it
 disp(sprintf('This is iteration no.= %d',i))
%for inertia weight W
wmax=0.9;
wmin=0.4;
%Linearly Decreasing inertia weight W
w = wmax-i*((wmax-wmin)/it);
% for constraction Factor
 cf = 0.729;
%For calculatiing velocities for updation
 for j=1:p
 kk=1;
 %if f(j,i)==fgm
 % kk= 0;
 %end
 v1(j,(i+1)) = kk*(w*v1(j,i) + r1*c1*(p1p(j)-p1(j,i)) + r2*c2*(p1g(j)-

p1(j,i)));
 v2(j,(i+1)) = kk*(w*v2(j,i) + r1*c1*(p2p(j)-p2(j,i)) + r2*c2*(p2g(j)-

p2(j,i)));
 v3(j,(i+1)) = kk*(w*v3(j,i) + r1*c1*(p3p(j)-p3(j,i)) + r2*c2*(p3g(j)-

p3(j,i)));
 end
 %V(min) and V(max) constraint
 for j=1:p
 if v1(j,(i+1))< -25
 v1(j,(i+1))= -25;
 end
 if v2(j,(i+1))< -15
 v2(j,(i+1))= -15;
 end
 if v3(j,(i+1))< -15
 v3(j,(i+1))= -15;
 end
 if v1(j,(i+1))> 125
 v1(j,(i+1))= 125;
 end
 if v2(j,(i+1))> 50
 v2(j,(i+1))= 50;
 end
 if v3(j,(i+1))> 50
 v3(j,(i+1))= 50;
 end
 end
%Updation of p values
 for j=1:p
 kk=1;
 if f(j,i)==fgm
 kk= 0;
 end
 %if f(j,i)<fp(j)
 % kk= 0;
 %end
 p1(j,(i+1)) = p1(j,i) + kk*v1(j,(i+1));
 p2(j,(i+1)) = p2(j,i) + kk*v2(j,(i+1));

72

 p3(j,(i+1)) = p3(j,i) + kk*v3(j,(i+1));
 end
 %Pmin and Pmax constraint
 for j=1:p
 if p1(j,(i+1))< 50
 p1(j,(i+1))= 50;
 end
 if p2(j,(i+1))< 30
 p2(j,(i+1))= 30;
 end
 if p3(j,(i+1))< 30
 p3(j,(i+1))= 30;
 end
 if p1(j,(i+1))> 250
 p1(j,(i+1))= 250;
 end
 if p2(j,(i+1))> 100
 p2(j,(i+1))= 100;
 end
 if p3(j,(i+1))> 100
 p3(j,(i+1))= 100;
 end
 end
 %For losses formulation (PL)
 for j=1:p
 pl(j,(i+1))= [p1(j,(i+1)) p2(j,(i+1)) p3(j,(i+1))]*B*[p1(j,(i+1))

p2(j,(i+1)) p3(j,(i+1))]';
 end
%Main objective function
 for j=1:p
 f(j,(i+1))= w1*((a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) +

c(1))+(a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) +

c(2))+(a(3)*(p3(j,(i+1)))^2 + b(3)*p3(j,(i+1)) + c(3))) +

k*abs(pd+pl(j,(i+1))-p1(j,(i+1))-p2(j,(i+1))-p3(j,(i+1)));
 end
%personal best values updation
%For losses formulation (PL)
for j=1:p
 plp(j)= [p1p(j) p2p(j) p3p(j)]*B*[p1p(j) p2p(j) p3p(j)]';
end
for j=1:p
 fp(j)= w1*((a(1)*(p1p(j))^2 + b(1)*p1p(j) + c(1))+(a(2)*(p2p(j))^2 +

b(2)*p2p(j) + c(2))+(a(3)*(p3p(j))^2 + b(3)*p3p(j) + c(3))) +

k*abs(pd+plp(j)-p1p(j)-p2p(j)-p3p(j));
end
 for m=1:p
 if f(m,i)< fp(m)
 p1p(m)=p1(m,(i+1));
 p2p(m)=p2(m,(i+1));
 p3p(m)=p3(m,(i+1));
 else
 end
 end
%for Global best values updation
 if min(f(:,(i+1)))<fgm
 fgm=min(f(:,(i+1)));
 else
 end
 for j=1:(i+1)
 for m=1:p

73

 if f(m,j)==fgm
 for l=1:p
 p1g(l) = p1(m,j); %global best values
 p2g(l) = p2(m,j);
 p3g(l) = p3(m,j);
 end
 else
 end
 end
 end
 %For Cost calculation
 for j=1:p
 C1(j,(i+1)) = a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) + c(1);
 C2(j,(i+1)) = a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2);
 C3(j,(i+1)) = a(3)*(p3(j,(i+1)))^2 + b(3)*p3(j,(i+1)) + c(3);
 C(j,(i+1)) = C1(j,(i+1)) + C2(j,(i+1)) + C3(j,(i+1));
 end
 %To find change in the values of f
 for j=1:p
 df(j,i)= abs(f(j,(i+1))-f(j,i)) ;
 sp(j,i)= abs(pd+pl(j,(i+1))-p1(j,(i+1))-p2(j,(i+1))-

p3(j,(i+1)));
 csp(j,i)= abs(C(j,(i+1))-C(j,i));
 end
 %Stoping criterion &&(csp(j,i)<=10^(-6)) (df(j,i)<=10^(-6))&&
 ki=0;
 for j=1:p
 if ((df(j,i)<=10^(-6))&&(sp(j,i)<=10^(-6)))
 ki=ki+1;
 end
 end
 if ki >= p
 break
 end
end
t=toc;
disp('Initial values of generations of 3 generators')
initial=[p1(:,1) p2(:,1) p3(:,1)];
disp(' P1 P2 P3 ')
disp(initial)
disp(sprintf('\nPD+Pl = %d',pd+pl(1,i)))
disp(sprintf('\nP1+P2+P3=%d\n',p1(1,i)+p2(1,i)+p3(1,i)))
disp(sprintf('No. of total Iterations took place = %d \n',i))
disp(sprintf('Total loses in the lines Pl = %d \n',pl(1,i)))
disp(sprintf('Minimum cost incured = %d \n',C(1,i)))
disp('\nFinal values of generations of the three generators')
disp(sprintf('P1=%d',p1(1,i)))
disp(sprintf('P2=%d',p2(1,i)))
disp(sprintf('P3=%d',p3(1,i)))
disp(sprintf('Computational Time = %d ',t));

74

REFERENCES

[1] Chem-Lin Chen and Shun-Chung Wang, ―BRANCH-AND-BOUND

SCHEDULING FOR THERMAL GENERATING UNITS‖, IEEE Trans. on

Energy Conversion, Vol. 8, No. 2, June 1993

[2] K.Y. Lee., Y.M. Park. and J.L. Ortiz., ―Fuel-cost minimisation for both real- and

reactive-power dispatches‖, IEE Proceeding, Vol. 131, Pt. C, No. 3, May 1984

[3] J.P.Zhan, Q.H. Wu, C.X.Guo, and X.X. Zhou, ―Fast -Iteration Method for

Economic Dispatch With Prohibited Operating Zones‖, IEEE Trans. on power

system, Vol. 29, No. 2, March 2014

[4] Rabih A. Jabr, Alun H. Coonick and Brian J. Cory, ―A Homogeneous Linear

Programming Algorithm for the Security Constrained Economic Dispatch

Problem‖, IEEE Trans. on power system, Vol. 15, No. 3, August 2000

[5] Leandro dos Santos Coelho and Viviana Cocco Mariani, ―Combining of Chaotic

Differential Evolution and Quadratic Programming for Economic Dispatch

Optimization With Valve-Point Effect‖, IEEE Trans. on power system, Vol.21,

No.2, May 2006

[6] Ioannis G. Damousis, Anastasios G. Bakirtzis, and Petros S. Dokopoulos,

―Network-Constrained Economic Dispatch Using Real-Coded Genetic

Algorithm‖, IEEE Trans. on power system, Vol. 18, No. 1, Feb. 2003

[7] Aniruddha Bhattacharya and Pranab Kumar Chattopadhyay, ―Biogeography-

Based Optimization for Different Economic Load Dispatch Problems‖, IEEE

Trans. on power system, Vol. 25, No. 2, May 2010

[8] Kuntal Bhattacharjee, Aniruddha Bhattacharya and Sunita Halder nee Dey,

―Chemical reaction optimisation for different economic dispatch problems‖, IET

Gener. Transm. Distrib.,2014, Vol.8, Iss.3, pp. 530–541

[9] Taher Niknam and Faranak Golestaneh, ―Enhanced Bee Swarm Optimization

Algorithm for Dynamic Economic Dispatch‖, IEEE Systems Journal, Vol. 7, No.

4, December 2013

[10] Taher Niknam, Rasoul Azizipanah, Abarghooee, and Jamshid Aghaei, ―A

New Modified Teaching-Learning Algorithm for Reserve Constrained Dynamic

Economic Dispatch‖, IEEE Trans. on power system, Vol. 28, No. 2, May 2013

75

[11] Irina Ciornei, and Elias Kyriakides, ―A GA-API Solution for the Economic

Dispatch of Generation in Power System Operation‖, IEEE Trans. on power

system, Vol. 27, No. 1, February 2012

[12] Aniruddha Bhattacharya and Pranab Kumar Chattopadhyay, ―Hybrid

Differential Evolution With Biogeography-Based Optimization for Solution of

Economic Load Dispatch‖, IEEE Trans. on power system, Vol. 25, No. 4, Nov.

2010

[13] Jong-Bae Park, Ki-Song Lee, Joong-Rin Shin, and Kwang Y. Lee, ―A

Particle Swarm Optimization for Economic Dispatch With Nonsmooth Cost

Functions‖, IEEE Transaction on power system, Vol. 20, No. 1, Feb. 2005

[14] Leandro dos Santos Coelho and Chu-Sheng Lee, ―Solving economic load

dispatch problems in power systems using chaotic and Gaussian particle swarm

optimization approaches‖, Electrical Power and Energy Systems 30 (2008) 297–

307

[15] Vahid Hosseinnezhad and Ebrahim Babaei, ―Economic load dispatch using θ-

PSO‖, Electrical Power and Energy Systems 49 (2013) 160–169

[16] M.A. Abido, ―Multiobjective particle swarm optimization for

environmental/economic dispatch problem‖, Electric Power Systems Research 79

(2009) 1105–1113

[17] Ke Meng, Hong Gang Wang, ZhaoYang Dong, and Kit Po Wong,

―Quantum-Inspired Particle Swarm Optimization for Valve-Point Economic

Load Dispatch‖, IEEE Trans. on power system, Vol. 25, No. 1, Feb. 2010

[18] T.O. Ting, M.V.C. Rao and C.K.Loo, ―A Novel Approach for Unit

Commitment Problem via an Effective Hybrid Particle Swarm Optimization‖,

IEEE Transaction on power system, Vol. 21, No. 1, February 2006

[19] S. Chakraborty, T. Senjyu, A. Yona, A.Y. Saber and T. Funabashi, ―Solving

economic load dispatch problem with valve-point effects using a hybrid quantum

mechanics inspired particle swarm optimization‖, IET Gener. Transm. Distrib.,

2011, Vol. 5, Iss. 10, pp. 1042–1052

[20] James Kennedy and Russell Eberhart, ―Particle Swarm Optimization‖, 0-

7803-2768-3/95/$4.00 1995 IEEE

76

[21] Ioan Cristian Trelea, ―The particle swarm optimization algorithm:

convergence analysis and parameter selection‖, Information Processing Letters

85 (2003) 317–325

[22] Maurice Clerc and James Kennedy, ―The Particle Swarm—Explosion,

Stability, and Convergence in a Multidimensional Complex Space‖, IEEE Trans.

on evolutionary computation, Vol. 6, No.1, February 2002

[23] Yuhui Shi and Russell Eberhart, ―A Modified Particle Swarm Optimizer‖, 0-

7803-4869-9198 $10.0001998 IEEE

[24] R. C. Eberhart and Y. Shi, ―Comparing Inertia Weights and Constriction

Factors in Particle Swarm Optimization‖, 0-7803-6375-2/00/$10.00 02000 IEEE.

[25] Frans van den Bergh and Andries P. Engelbrecht, “A Cooperative Approach

to Particle Swarm Optimization‖, IEEE Trans. on evolutionary computation,Vol.

8, No. 3, June 2004

[26] Jang-Ho Seo, Chang-Hwan Im, Chang-Geun Heo, Jae-Kwang Kim, Hyun-

Kyo Jung and Cheol-Gyun Lee4, ―Multimodal Function Optimization Based on

Particle Swarm Optimization‖, IEEE Trans. on magnetics, Vol. 42, No. 4, April

2006

[27] J. J. Liang, A. K. Qin, Ponnuthurai Nagaratnam Suganthan and S. Baskar,

―Comprehensive Learning Particle Swarm Optimizer for Global Optimization of

Multimodal Functions‖, IEEE Trans. on evolutionary computation, Vol. 10, No.

3, June 2006

[28] Jin S. Heo, Kwang Y. Lee and Raul Garduno-Ramirez, ―Multiobjective

Control of Power Plants Using Particle Swarm Optimization Techniques‖, IEEE

Trans. on energy conversion, Vol. 21, No. 2, June 2006

[29] Yamille del Valle, Ganesh Kumar Venayagamoorthy, Salman Mohagheghi,

Jean-Carlos Hernandez, and Ronald G. Harley, Particle Swarm Optimization:

Basic Concepts, Variants and Applications in Power Systems, IEEE Trans. on

evolutionary computation, Vol. 12, No. 2, April 2008

[30] C.L. WADHWA, ―Electrical Power Systems‖, New Age International(P)

Limited, Publishers, 6
th

 Edition, Page 628-661

