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ABSTRACT 

 

 Optimization is a mathematical tool to find the maximum or minimum of a function in 

some feasible region. There is no any industry which not involved the solution of 

optimization problems. In the operational planning of power system, Economic load 

dispatch (ELD) is a common task which concern with the optimization problems. The 

objective of ELD problem is to schedule the output of the connected units of the plant 

so as to fulfil the load demand at minimum operating cost while satisfying all 

operational constraints. Recently particle swarm optimization algorithm inspired by 

collective behaviour of swarm has been applied successfully to solve ELD problem. 

                In this work three improved PSO algorithms- IPSO-A, IPSO-B and IPSO-C 

have been developed and implemented to solve ELD for IEEE 5, 14 and 30 bus 

systems. Conventional PSO (CPSO) using inertia weight and constriction factor 

individually as well as simultaneously have been also implemented to solve ELD 

problem. PSO algorithms have been compared for twenty trial runs. The best, worst, 

average and standard deviation cost for all the algorithms have been determined. The 

results show that proposed improved PSO techniques gives the optimum operational 

cost with consistent result. 
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CHAPTER 1 

INTRODUCTION 

1.1 OVERVIEW 

               In Economic Load Dispatch (ELD) Problem we determine the optimal 

combination of power output of all the connected generating units of the plant to 

minimize the total production (fuel or operational) cost while fulfilling the load 

demands and system operational constraints. Proper planning of connected unit 

outputs can contribute to considerable saving in the plant operating cost. Recently 

particle swarm optimization algorithms inspired by collective behaviour of swarm 

has been applied successfully to solve ELD problem. The popularity of PSO is due to 

its simple concept and easy implementation to both linear as well as non-linear 

problems. 

               In this work an attempt has been made to solve ELD problem by using 

constriction factor and inertia weight individually and simultaneously in the 

Conventional PSO (CPSO). Various improved PSO (IPSO) algorithm- IPSO-A, 

IPSO-B and IPSO-C have been developed based on the movement of particles. In 

IPSO-A, the position and velocity of the particles is not updated when a particle hits 

the global during the search. In IPSO-B, the velocity of all the particles is updated, 

but the position of particles achieved global is kept fixed. In IPSO-C, the position of 

the particles whose current position is better than its personal best is not updated. All 

the above algorithms have been implemented on IEEE 5, 14, 30 bus systems. 

Detailed comparisons of all the above algorithms have been carried out for 20 trials. 

The best, worst and average fuel costs have been determined for each algorithm. 

1.2 OBJECTIVE AND METHODOLOGY 

              The objective of this work is to solve economic load dispatch (ELD) 

problem considering equality and inequality constraints to satisfy the consumers 

demand. The standard IEEE 5, 14, 30 bus system have been consider for planning of 

connected unit outputs to contribute considerable saving in the plant operating cost. 
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Three improved PSO algorithms namely IPSO-A, IPSO-B and IPSO-C have been 

developed and implemented to solve ELD problem. Conventional PSO (CPSO) using 

inertia weight and constriction factor individually as well as simultaneously have 

been also implemented to solve ELD problem. The best, worst, average fitness and 

their standard deviation for all the algorithms have been determined. 

 

The work has been carried out in the following order: 

a. Exploring Particle Swarm Optimization in detail. 

b. Solving some mathematical function using basic PSO by hand calculation. 

c. Coding the PSO algorithms in MATLAB 2012a. 

d. Solution of various mathematical benchmark functions using PSO algorithms 

by MATLAB 2012a. 

e. Formulation of  objective function  for ELD problem considering cost of 

generation and penalized demand constraint for IEEE 5,14 & 30 bus system. 

f. Solution of ELD problem using PSO algorithms by MATLAB 2012a. 

g. Detailed analysis of different PSO algorithms has been done. 

h. Conclusions and future directions have been carried out. 

1.3 LITERATURE REVIEW 

1.3.1 ECONOMIC LOAD DISPATCH 

              Scheduling of connected generating units of the plant plays an 

important role in the power system operation, planning and control. Proper planning 

of connected unit outputs can contribute to considerable saving in the plant operating 

cost. A number of techniques have been successfully applied to solve ELD problem 

during past years [1]-[19]. Some of these use the conventional optimization 

techniques, whereas others are based on intelligent techniques. 

               The examples of conventional techniques to solve ELD problems are 

Lambda iteration method, Fast lambda method, Base point and Participation factors 

method and Gradient method [1]-[3]. Chem-Lin Chen and Shun-Chung Wang has 

solved the ELD problem by implementing new branch-and-bound algorithm in 

conventional technique [1]. The gradient projection method has been used by K.Y. 
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Lee et. al to solve ELD problem for active and reactive power [2]. The Fast lambda 

method has been developed by J. P. Zhan et. al to solve ELD problem With 

Prohibited Operating Zones [3].  

               All these conventional techniques have limitation on the nature of cost 

curves. In addition, these techniques have oscillatory problems due to existence of 

several local minima in the ELD problems with large number of connected units in 

the systems. Due to complex algorithm of conventional techniques, it takes high 

computational time. 

              Modern stochastic techniques such as Linear programming, Quadratic 

programming, Genetic algorithm, Biogeography based optimization, Chemical 

reaction optimization,  Enhanced Bee swarm optimization,   Modified Teacher 

learning algorithm have been employed successfully  to solve the ELD problems [4]-

[10]. Rabih A. Jabr et. al presented homogeneous linear programming algorithm for 

the solution of security constrained ELD problem[4]. Leandro dos Santos Coelho and 

Viviana Cocco Mariani used combination of chaotic differential evolution and 

Quadratic Programming for the solution of ELD problem considering the valve point 

effect [5]. ELD problem with network constraints have been solved Ioannis G. 

Damousis et. al using real coded genetic algorithm [6]. Biogeography-Based 

Optimization algorithm has been used by Aniruddha Bhattacharya and Pranab 

Kumar Chattopadhyay to solve both convex and non-convex ELD Problems [7]. 

Chemical reaction optimization algorithm has been used by Kuntal Bhattacharjee et. 

al to solve ELD problems considering different constraints [8]. Enhanced Bee Swarm 

Optimization Algorithm has been proposed by Taher Niknam and Faranak 

Golestaneh for the solution of dynamic ELD problems [9]. Taher Niknam et. al 

introduces a new optimization algorithms named as Modified Teacher learning 

algorithm for dynamic ELD problem considering reserved constraints [10]. The 

hybrid of different modern techniques has also been used in ELD problems. Irina 

Ciornei and Elias Kyriakides proposed the Hybrid genetic algorithm with ant colony 

optimization to solve the non-convex ELD problem [11]. Aniruddha Bhattacharya 

and Pranab Kumar Chattopadhyay have presented hybrid differential evolution with 

biography based optimization to solve ELD problems [12]. 

               These intelligent optimization techniques do not suffer from any limitation 

on the nature of cost curve, due to their ability to find the optimal solution. But, these 
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methods have large number of parameters involved in the algorithm, and takes large 

number of iterations to settle to the global optimum.  

                  The ELD problems have been solved recently by Particle Swarm 

Optimization (PSO) approaches [13]-[17]. The solution of ELD problem with non-

smooth cost function using PSO technique has been described by Jong-Bae Park et. 

al [13]. The chaotic and Gaussian PSO approach has been described by Leandro dos 

Santos Coelho and Chu-Sheng Lee to solve ELD problem for better performance of 

PSO [14]. A new concept ‗θ-PSO‘ for solving ELD problem is developed by Vahid 

Hosseinnezhad and Ebrahim Babaei [15]. The ELD with environmental emission 

have been solved by M.A. Abido using PSO [16]. The quantum inspired PSO has 

been proposed to solve ELD problem for faster convergence by Ke Meng et. al [17]. 

The hybrids PSO are also used to solve the ELD problems [18]-[19]. The hybrid of 

binary PSO (for unit commitment) and real coded PSO (for ELD) has been described 

by T. O. Ting et. al [18]. The hybrid quantum inspired PSO has been proposed by S. 

Chakraborty et. al to explore search space for solving ELD problem [19]. 

1.3.2: PARTICLE SWARM OPTIMIZATION 

             The Particle Swarm Optimization (PSO) is a population based stochastic 

algorithm,  developed by Kennedy and Eberhart in 1995, inspired by the collective 

behaviour of nature such as bird flocking, fish schooling etc. [20]-[29]. A new 

concept based upon particle swarm methodology for optimization of non-linear 

function is introduced by James Kennedy and Russell Eberhart and relationships 

between PSO with artificial life and genetic algorithms have also been described 

[20]. Ioan Cristian Trelea has described the detailed analysis of PSO algorithms, its 

parameter selection and convergence characteristics [21]. Constriction function is 

introduced by Maurice Clerc and James Kennedy in traditional PSO to eliminate the 

use of particle‘s velocities to limit in order to control the particle‘s trajectories and 

detailed analysis of constriction factor in the PSO update equation has been carried 

out [22]. A new parameter namely inertia weight has been introduced in PSO by 

Yuhui Shi and Russell Eberhart to find global optimum within a reasonable number 

of iteration and time decreasing Inertia weight has been also introduced to improve 

the performance of PSO [23]. The Comparison of inertia weight and constriction 

factor and suitable conditions for the use of these two parameters has been also 
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explained by R. C. Eberhart and Y. Shi. and it has been shown that the application of 

both parameters simultaneously results in faster convergence overall [24]. The multi-

swarm is used by Frans van den Bergh and Andries P. Engelbrecht to improve the 

performance of traditional PSO based upon the cooperative behaviour [25]. The 

efficient optimization for multi-model function namely multi-grouped PSO have 

been proposed by Jang-Ho Seo et. al and its application to various areas including 

particle electromagnetic optimization have been discussed [26]. J. J. Liang  et. al 

have presented Comprehensive learning PSO base on learning strategy of particles to 

update particle‘s velocity, which reduces premature convergence [27].  Multi-

objective Optimization problem using modern PSO for optimal operation of plant 

have been carried out by Jin S. Heo et. al and PSO technique variation, evolutionary 

PSO, hybrid PSO, constriction approach PSO and comparison of PSO and genetic 

algorithms have also been discussed [28]. Basic concept of PSO, its variants and its 

application to power system and another area of electrical engineering have 

discussed by Yamille del Valle et. alin detailed [29]. 

1.4     ORGANISATION OF THE THESIS 

               This thesis has been arranged in seven chapters. The contents of the 

chapters are briefly outlined here. 

Chapter 1: This chapter describes the overview, objective and methodology, 

literature review and the organisation of the thesis. 

Chapter 2: This chapter discuss about economic load dispatch in detail. The cost 

function, constraints and formation of objective function for ELD problem have been 

explained. 

Chapter 3: This chapter gives detailed idea about conventional PSO. It involves 

development, advantages, disadvantages and the application of PSO. 

Chapter 4: In this chapter Improved PSO algorithms have been introduced for the 

improvements in the performance of the Conventional PSO. 
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Chapter 5: In this chapter some mathematical benchmark functions have been solved 

by convention as well as improved PSO algorithms. The steps for MATLAB 

programming have been also discussed. 

 Chapter 6: In this chapter IEEE 5, 14 and 30 bus systems have been solved by 

different PSO algorithms and detailed discussions on the results have been also 

entertained. 

Chapter 7: This chapter deals the outcome of the results and the future scope of this 

research work. 

Appendixes and References are given at the end of the thesis.  
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CHAPTER 2 

ECONOMIC LOAD DISPATCH 

2.1 INTRODUCTION 

              In the field of power system analysis, Economic load dispatch is one of the 

most fundamental optimization problems. In ELD mainly two different problems, 

one is unit commitment or pre dispatch problem and other is online economic 

dispatch problem have been solved. The unit commitment is the way to suggest just 

sufficient number of generating units with sufficient generating capacity to meet a 

given load economically with sufficient reserve capacity to meet any abnormal 

condition. The on line economic dispatch problem distribute the load demand among 

the connected generating units of the plant in such a manner to minimize the total 

cost of production supplying the minute to minute requirements of the system [30].  

            Particularly, in thermal power plants the cost of generation is too excessive, 

hence significant saving in operating cost can be achieved by proper planning of 

units output of the plant. The ELD describes the optimal scheduling of power 

generations to match total power demand at minimal possible cost while satisfying 

the operational constraints i.e. generators and system constraints.          

2.2 COST FUNCTION 

               The main purpose of ELD is to determine the power generation of each unit 

of the plant so that total production costs of the plant should be minimum by 

fulfilling the required power demand under the given equality and inequality 

constraints. 

     The production costs of each unit are generally expressed by a quadratic function 

of the power output from those generating units. The total production costs of the 

plant are the sum of production cost of each individual units of the plant. 

Mathematically, 

     Fi(Pi) = aiPi
2
 + biPi + ci                                                       (2.1) 



8 
 

 

Where Fi(Pi), Pi, (ai,bi,ci) are the production cost, power generation ,cost coefficient 

of ith unit of the plant respectively.  

Therefore total production cost of the plant having n units, 

      FT = ∑  
 

   
 Fi(Pi) ) 

           ∑  
 

   
 aiPi

2
 + biPi + ci )                                             (2.2) 

The cost is minimized subjected to the system constraints (generator capacities and 

active power balance constraints). 

2.3 SYSTEM CONSTRAINTS 

     There are two types of system constraints- 

i) Equality constraints 

ii) Inequality constraints 

 

The inequality constraints are of two types- 

i) Hard type 

ii) Soft type 

 

The hard type are those which are definite and specific like the tapping range of an 

on-load tap changing transformer whereas soft type are those which have some 

flexibility associated with them like the nodal voltages and phase angles between the 

nodal voltages, etc. Soft inequality constraints have been very efficiently handled by 

penalty function methods. 

2.3.1 EQUALITY CONSTRAINTS 

                       From observation we can conclude that cost function is not affected by 

the reactive power demand. So the full attention is given to the real power balance in 

the system. For power mismatch, an equality constraint has been introduced i.e. the 

generated power by the plant should be equal to the total load demand plus the total 

losses. Thus the power balance equation of ELD problems is given by, 

        

       PG – PD – PL = 0 

       ∑   
   Pi – PD – PL = 0                                                   (2.3) 
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Where PG is the total power generation of the plant, PD  is the total power (load) 

demand by the consumer and PL is the total losses during process.  

 

   The transmission losses can be determined from unit outputs of the plant and loss 

coefficients as, 

 

     PL=∑  
 

   
∑  

 

   
 i BijPj)) +∑  

 

   
Bi0Pi) + B00              (2.4) 

 

Where Bij is the ij-th element of the loss coefficient square matrix, Bi0 is the i-th 

element of the loss coefficient vector, and B00 is the loss coefficient constant. 

2.3.2 INEQUALITY CONSTRAINTS 

i) Generator Constraints- 

            The KVA loading in a generator is given by √ ( P
2
 + Q 

2 
) and this should 

not exceed a pre-specified value of power because of the temperature rise conditions 

 

 When the active power generation is greater than pre-specified value Pmax then 

the source become overheated i.e. thermal consideration limits the maximum 

active power generation of the source. And if the power generation is less than 

pre-specified value Pmin then from the optimal point of view it is not possible to 

generate that low power. In other words minimum power generation of the 

source is limited by the flame instability of the boiler and it is not put on the bus 

bar. Therefore the active power generation P must be within the maximum and 

minimum limit, stated by the inequality, 

               Pmin  ≤ P ≤ Pmax  

                                                             

 Similarly the maximum and minimum reactive power generation of a source is 

limited. The maximum reactive power is limited because of overheating of rotor 

and minimum is limited because of the stability limit of machine. Hence the 

generators reactive powers Q cannot be outside the range stated by inequality, 

                      Qmin ≤ Q  ≤ Qmax                                                                                          
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ii) Voltage Constraints: 

              It is essential that the voltage magnitudes and phase angles at various nodes 

should vary with in certain limits. The normal operating angle of transmission lies 

between 30 to 45 degrees for transient stability reasons. A lower limit of delta 

assures proper utilization of transmission capacity. 

 

iii) Running Spare Capacity Constraints: 

               These constraints are required to meet 

a) The forced outages of one or more alternators on the system and 

b) The unexpected load on the system 

The total generation should be such that in addition to meeting load demand and 

losses a minimum spare capacity should be available i.e. 

               G ≥ PG + PSO                                                           

Where G is the total generation and PSO is some pre-specified power. A well planned 

system is one in which this spare capacity PSO is minimum. 

 

iv) Transmission Line Constraints: 

                The flow of active and reactive power through the transmission line circuit 

is limited by the thermal capability of the circuit and is expressed as, 

             Cp ≤ Cpmax                                                               

Where Cpmax  is the maximum loading capacity of the line. 

 

v) Transformer Taps Settings: 

                If an auto-transformer is used, the minimum tap setting could be zero and 

the maximum one,  

                  i.e. 0 ≤ t ≤ 1.0 

Similarly for a two winding transformer if tapping are provided on the secondary 

side, 

                0 ≤ t ≤ n 

Where n is the ratio of transformation. 
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vi) Network security constraints: 

                 If initially a system is operating satisfactorily and there is an outage, may 

be scheduled or forced one, it is natural that some of the constraints of the system 

will be violated. The complexity of these constraints (in terms of number of 

constraints) is increased when a large system is under study. In this a study is to be 

made with outage of one branch at a time and then more than one branch at a time. 

The natures of constraints are same as voltage and transmission line constraints. 

 2.4 OBJECTIVE FUNCTION 

              The Objective (fitness) function of ELD problem is defined to minimize the 

sum of the cost of generation function given by equation (2.2) and the penalized 

demand (equality) constraint given by equation (2.3) as follows:  

    Minimize the fuel cost, 

 

     F = ∑  
 

   
 aiPi

2
 + biPi + ci ) + K*( ∑   

   Pi – PD – PL )                (2.5)     

    

    Subjected to generators constraints. 

 

Where K is the penalty coefficient for the plant due to not fulfilling the load demands 

to the consumers and chosen carefully for the feasible solution. Somewhere K is also 

termed as Lagrangian multiplier.  
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CHAPTER 3 

CONVENTIONAL PARTICLE SWARM 

OPTIMIZATION 

3.1 INTRODUCTION 

               The Particle Swarm Optimization (PSO) is a population based stochastic 

algorithm,  developed by of Kennedy (a social psychologist) and Eberhart (an 

electrical engineer) in 1995, inspired by the collective behaviour of nature such as 

bird flocking, fish schooling etc., to successfully optimize a wide range of  linear as 

well as non-linear functions. The first simulations was done by Kennedy and 

Eberhart (in 1995), which were influenced by Heppner and Grenander‘s work (in 

1990) and involved analogues of bird flocks searching for corn. 

                             The PSO belongs to the class of swarm intelligence techniques that 

are used to find approximate solutions to extremely difficult optimization problems. 

Swarm intelligence is an artificial intelligence technique based around the study of 

collective behaviour in decentralized, self-organized systems. Examples of systems 

like this can be found in nature, including bird flocking, fish schooling, ant colonies, 

animal herding etc. 

 

   
(a) Bird Flocking                                          (b) Fish Schooling 

Fig. 3.1: Collective behaviour of Swarm 

 

http://www.scholarpedia.org/article/Swarm_intelligence
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                  Craig Reynolds (a biologist) studied the evolutionary algorithms and 

swarm intelligence for optimization inspired by the social behaviour of birds in late 

80s and early 90s and derived a formula for representation of the birds flocking 

behaviour. This was later used in computer simulations of virtual birds, known as 

Boids. 

Reynolds proposed a behavioural model in which each agent follows three rules: 

 Separation- Each agent tries to move away if they are too close. 

 Alignment- Each agent steers towards the average heading of its neighbours. 

 Cohesion- Each agent tries to go towards the average position of its neighbours. 

 

   

Fig. 3.2: Reynolds proposed behaviour model 

 

 

Kennedy and Eberhart included a ‗roost‘ in a simplified Reynolds-like simulation so 

that: 

 Each agent was attracted towards the location of the roost. 

 Each agent ‗remembered‘ where it was closer to the roost. 

 Each agent shared information with its neighbours about its closest location to the 

roost. 

 

   

Fig. 3.3: Kennedy and Eberhart proposed behaviour model 

   

Eventually, all agents land on the roost. 
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               The particle swarm optimization (PSO) is a parallel evolutionary 

computation technique inspired by the social behaviour of natural process to 

successfully optimize a wide range of continuous linear as well as non-linear 

functions [20]-[24]. The PSO algorithm involves a population of candidate solutions 

(called particles), collectively called swarm. Each particle of the swarm is initialized 

with a random position and random velocity and is moved iteratively throughout the 

search space. It is attracted towards the location of both its personal best fitness 

achieved by the particle itself and best fitness achieved by the entire swarm so far 

[21]. Positions and velocities of whole swarm are adjusted and the function evaluated 

with the updated coordinates at each time step. The velocity and position of each 

particle is updated by two given rule in Conventional PSO (CPSO) as, 

  

Velocity modification rule, 

  

     Vij
t+1

 = Vij
t
 + c1r1(Pij

best
 – Xij

t
) + c2r2(Gi

best
 - Xij

t
)               (3.1) 

 

Position modification rule, 

 

     Xij
t+1

 =  Xij
t 
 + Vij

t+1
                                                       (3.2) 

 

 

            Where t indicates the number of iteration, i indicates the number of variables,  

j indicates the number of particles in the swarm, Vij
t
 is the velocity of j-th particle of 

i-th variable in t-th iteration, Xij
t
 is the position of j-th particle of i-th variable in t-th 

iteration, Pij
best

  is the previous personal best position  of the j-th particle of i-th 

variable, Gi
best

 is the previous global best position of i-th variable, Vij
t+1

 is the 

updated velocity of j-th particle of i-th variable, Xij
t+1

 is the updated position of j-th 

particle of i-th variable, c1 is the cognitive component of acceleration constants 

which is responsible for the attraction of the particles towards its personal best 

position, c2 is the social component of acceleration constants which is responsible for 

the attraction of the particles towards the global best position of the swarm, r1 & r2  

are  two uniformly distribution random numbers in the range (0,1). 
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3.2 PSO PARAMETERS 

               There are some parameters in PSO algorithm that may affect its 

performance [21]. The parameter‘s value and its selection have large impact on the 

performance of the PSO algorithm. The basic PSO parameters are swarm size, 

number of iterations, velocity components, and acceleration coefficients which are 

described below. The PSO algorithm is also influenced by velocity clamping, 

constriction factor and inertia weight which are described in the next section. 

 

i. Swarm size  

          Swarm (population) size is the number of particles ‗n’ in the swarm. A big 

swarm i.e. large number of particles cover larger part of the search space and may 

reduce the number of iterations required for optimum result. It also increases 

computational efforts per iteration and consuming more time. Whereas a small 

swarm i.e. less number of particles loss their search ability and may not give 

optimum result. Therefore proper selection of swarm improves the performance of 

PSO. In most cases the swarm size is taken between 20 to 100 for better results and 

computational efforts. 

 

ii. Iteration numbers  

              The number of iterations is an important factor in the PSO algorithms. It is 

problem dependent to obtain a good result. A too low number of iterations may not 

give optimum results and too large number of iterations may add unnecessary 

computational effort and more time. 

 

iii. Velocity Components  

               The velocity components are the main part of the PSO algorithms and 

important for updating the particle‘s velocity. The particle‘s velocity modification 

equation consists of three terms- 

 

1. The first term ‗Vij
t
‘ is called the inertia or momentum component of the velocity 

that provides a track of the previous direction i.e. movement in the immediate 
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past. It prevents to a drastically change in the direction of the particles and forced 

towards the movement of current direction. 

 

2. The second term ‗c1r1(Pij
best

 – Xij
t
)‘ is called cognitive or personal component that 

tracks or compares the current performance of the particles with its past 

performances. It is basically the individual memory of the particles and indicates 

the tendency to return to past best position. 

 

3. The last term ‗c2r2(Gi
best

 - Xij
t
)‘ is called social or collective component that 

compares the current performance of the particles with the past best performance 

of any particles in the group. It forces the particles towards the best position 

tracked by the entire swarm. 

 

iv. Acceleration coefficients  

             The acceleration coefficients c1 and c2, together with the random values r1 

and r2, maintain the stochastic influence of the cognitive and social components of 

the particle‘s velocity respectively. The constant c1 expresses how much confidence 

a particle has in itself, while c2 expresses how much confidence a particle has in its 

neighbours. There are some properties of c1 and c2 – 

 

 When  c1 = c2 =0, then all particles continue flying at their current speed until 

they hit the search space‘s boundary. Therefore, the velocity update equation 

is calculated as- 

                  Vij
t+1

 = Vij
t
 

 

 When c1 ˃ 0 and c2 =0 , all particles are independent. The velocity update 

equation will be- 

                   Vij
t+1

 = Vij
t
 + c1r1(Pij

best
 – Xij

t
) 

 

 When c1 =0 and c2 ˃ 0  , all particles are attracted to a single point in the 

entire swarm and the update velocity will become- 

                  Vij
t+1

 = Vij
t
 + c2r2(Gi

best
 - Xij

t
) 
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 When c1 = c2, all particles are attracted towards the average of Pij
best

 and Gi
best

. 

 

 When c1 ˃ c2 , each particle is more strongly influenced by its personal best 

position, resulting in excessive wandering. 

 

 When c1 ˂ c2, all particles are much more influenced by the global best 

position, which causes all particles to run prematurely to the optima. 

  

It has been proposed that the two acceleration constants should be c1 = c2 = 2 for 

better results [29]. 

3.3 GEOMETRICAL ILLUSTRATION OF PSO 

 

 
      Personal best position (Pij

best
)                                       Global best position (Gij

best
) 

 
                                                                                    New position (Xij

t+1
)   

                                                                                                                  

                                                                                   
                                                                                                                           

                                                                     Social velocity, c2r2(Gi
best

 - Xij
t
) 

                                          New velocity(Vij
t+1)                  

        

                                                                                 Cognitive velocity, c1r1(Pij
best

 – Xij
t
) 

   Initial position (Xij
t
)                                    

                  Initial velocity (Vij
t
) 

                       

Fig. 3.4: Velocity and position update for the particles 

 

               The updated velocity consists of three components discussed earlier. Figure 

3.4 shows how the three components contribute to the movement of the particle 

towards the global best position. The initial velocity, cognitive component of 

velocity and social component of velocity contributes to the new velocity for the 

particles. This new velocity is responsible for the movement of the particles. 
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3.4 IMPLEMENTATION OF PSO ALGORITHM 

   

  The PSO algorithm are summarized by the following steps- 

 

step 1)  Initialization of the parameters- In the first step, the parameters of the PSO, 

like c1, c2, r1, r2, population size P, maximum iteration Itmax must be chosen. 

 

step 2) Initialization of the population- Initialize a population of particles with a 

random positions and random velocities. 

  

step 3) Evaluation of Fitness- Calculate the fitness value of the particles in the 

population. 

 

step 4) Selection of initial personal and global best position- Each initial value of 

particle is set to be its personal best and optimum of the personal bests is set 

to be global best. 

 

step 5) Updation of velocity and position- Change the velocities and positions of the 

particles according to velocity modification rule (3.1) and position 

modification rule (3.2) respectively. 

 

step 6) Updation of personal and global best position- If positions of the particles 

give the better fitness value during current iteration then set this as P
best

 and 

the optimum of P
best

 is set to be G
best

. 

 

step 7) Stopping Criteria- Check the difference in fitness value in the consecutive 

iteration is less than tolerance limit. If yes stop, otherwise go to step 5. 
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The PSO algorithm is best understand by the following flow chart- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
 

 

                           _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

 

 

 

 

 

 

 

 

 

                                                                             

 

                                          

                                                                                                                            No 

                                 

 

 

                                                                         Yes 
 

   

 

 

 

Fig. 3.5: Flow chart of conventional PSO 

 

Evaluate the fitness value (Objective function)  
 

Iteration t=1 

Update Velocities and positions of particles 

Calculate the fitness value 

Update P
best

 and G
best 

t = t+1 

Satisfy the 

stopping criteria? 

STOP 

START 

Select the parameters of PSO: N,c1,c2,r1,r2,w 

Initialize the positions and velocities of particles 

Optimum solution of PSO = G
best 

Set P
best

 and G
best
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3.5 IMPROVEMENTS IN THE CONVERGENCE 

RATE OF CPSO 

              The particle velocity is basically the step size of the particle for its 

movement in the search space. Therefore particle‘s velocity plays an important role 

in the performance of PSO. At each step, all the particles adjust its velocity and 

moves in the search space. Exploration and Exploitation are two characteristics of 

PSO for searching the best position in the search space. Exploration is the ability to 

explore different area of the search space for locating a good optimum, while 

exploitation is the ability to concentrate the search around a searching area for 

refining a hopeful solution [21]. The particle‘s position updates quickly, if the 

velocity increases to large values and the particles may cross the boundaries of the 

search space. Therefore the velocity and position of the particle are reduced in order 

to stay within boundary of the search space to control its divergence. To balance the 

exploration-exploitation trade-off, following techniques for the improvement of 

speed of convergence have been developed.  

3.5.1 VELOCITY CLAMPING  

              The velocity clamping has been first introduced by Eberhart and Kennedy to 

stay the particles within the boundary of the search space. The Maximum velocity 

‗vmax‘ controls the granularity of the search space by clamping velocities and creates 

a better balance between global exploration and local exploitation [20]. 

 
                                                                              New position Xij

t+1
, without velocity clamping 

 

 

 

 
                                                                               New position Xij

t+1
, using velocity clamping 

                                                     
                                                 Initial position, Xij

t
 

 

Fig. 3.6: Effects of Velocity Clamping in two-dimensional search space 
 

 

           Figure 3.6, shows how velocity clamping resists the particle to stay within the 

boundary. Now if a particle‘s velocity goes beyond ‗vmax‘ then it is set to the value 
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vmax. If the vmax is too large, then the particles may jump over the optimal solution 

and if is too small, the particle‘s movement is limited and the swarm may not explore 

sufficiently or the swarm may become trapped in a local optimum. 

               By proper selection of acceleration coefficients and clamping the velocity, 

the performance of CPSO can be improved. Sometimes, the particles may still 

diverge in conventional PSO even when the maximum velocity and acceleration 

constants are correctly selected, this phenomenon is known as ‗explosion‘ of the 

swarm. Two methods have been proposed to control the ‗explosion‘, one is 

constriction factor and other is inertia weight [28]. 

3.5.2 CONSTRICTION FACTOR 

     The first method introduces a constriction factor to control the ‗explosion‘ of the 

swarm, which was developed by Clerc and Kennedy [22]. The constriction factor 

introduced in the velocity rule (3.1) as, 

     Vij
t+1 

= ᵡ(Vij
t
 + c1r1(Pij

best
 – Xij

t
) + c2r2(Gi

best
 - Xij

t
))                  (3.3) 

     Where  ᵡ is the constriction factor and given by, 

    ᵡ =  

               
   , Φ= c1+c2 >4                                       (3.4) 

              Typically, Φ is set to 4.1 and c1=c2=2.05, thus the value of constriction 

factor has been set to 0.729 (used in this paper). In general, the convergence of the 

particle improved by the constriction factor once the particle is focused on the best 

point in the global region. 

        The constriction factor PSO method (CF-PSO) suffers from the disadvantage 

that when the individual best performance is far from the neighbourhood‘s best 

performance then the particles may follow wider cycles and may not converge. 

3.5.3 INERTIA WEIGHT 

      The second method introduces a new parameter called inertia weight (proposed 

by Shi and Eberhart [23]) which is only multiply  in the momentum component of 

the velocity at the previous time step in the velocity rule (3.1) as, 

 

     Vij
t+1 

= wVij
t
 + c1r1(Pij

best
 – Xij

t
) + c2r2(Gi

best
 - Xij

t
)                 (3.5) 
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               Where ‗w‘ indicate the inertia weight, which can be a fixed value or 

changing in each time step. The initial higher value (typically 0.9) allows the 

particles to move freely in the search space to find the global optimum faster. If once 

the optimal region is found, the value of inertia weight decreased usually to 0.4 in 

order to narrow the search space. This shifts search from an exploratory mode to an 

exploitative mode. Generally, a linearly decreasing inertia weight (introduced by Shi 

and Eberhart [23]) is used broadly given as, 

      

     w = wmax – t(wmax-wmin)/Itmax                                                (3.6) 

 

    Where wmax= 0.9, wmin= 0.4, t indicates the current iteration and Itmax is the 

maximum number of iteration to be performed.  

               The disadvantage of inertia weight PSO (IW-PSO) method is that once the 

inertia weight is decreased, the swarm loses its ability to search new areas because it 

is not able to recover its exploration mode. 

3.6 ADVANTAGES OF PSO 

          There are many advantages of PSO which makes it attractive. Some of them 

are following- 

a. The PSO algorithm is free from the use of derivatives. 

b. Its‘ concept is very simple.  

c. The implementation of this algorithm is easy. 

d. It involves less number of parameters compared to other techniques. 

e. Its‘ calculation is very simple and easy to understand. 

f. It is less dependent upon the set of initial points. 

g. Any mistakes in the intermediate stage not much more influence the results, 

but may increases the computational efforts. 

3.7 DISADVANTAGES OF PSO 

              PSO is the one of the most powerful methods for solving the non-smooth 

optimization problems while there are some disadvantages of the PSO algorithm. 



23 
 

 

a. PSO algorithm suffers from the partial optimism, which degrades the 

regulation of its speed and direction. 

b. Problems with non-coordinate system (for instance, in the energy field) exit.  

3.8 APPLICATION OF PSO 

           The PSO algorithms have been successfully applied to solve unconstrained as 

well as constrained problems, problems with dynamically changing landscapes, 

multi-objective optimization problems. It is also used to find multiple solutions. The 

PSO is used to solve a variety of optimization problem effectively in the area of 

electrical engineering [29]. Some examples are described below- 

 Voltage and Reactive Power Control 

 Economic Load Dispatch 

 Power System Security and Reliability  

 Generation Expansion Problem 

 State Estimation 

 Optimal Power Flow and Load Flow analysis 

 Power System Identification and Control 

 Electric Machinery 

 Capacitor and FACTS Placement 

 Unit-Commitment Scheduling and Generator Maintenance 

 Short-Term Load Forecasting 
 

The PSO is also used in the following areas- 

 Antennas Design 

 Signal Processing 

 Networking 

 Biomedical 

 Electronics and electro-magnetic 

 Robotics 

 Design and Modelling 

 Image and Graphics 

 Fuzzy systems, Clustering, data mining 

 Prediction and forecasting  
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CHAPTER 4 

IMPROVED PARTICLE SWARM 

OPTIMIZATION 

4.1 INTRODUCTION 

              In Conventional PSO, all particles of the population fly in the Search space 

during the entire run, but it is the behaviour of nature to achieve the optimum point 

as soon as possible. If anyone gets this position then it doesn‘t want to move any 

more. Such type of behaviour has been seen in the swarm intelligence. This 

behaviour of swarm is implemented in PSO algorithm in three ways in this work. 

Three improved PSO algorithms have been developed namely IPSO-A, IPSO-B and 

IPSO and implemented to solve mathematical functions and ELD problems. 

4.2 IPSO-A 

               In CPSO, the particles continue to move as per equation (3.5) & (3.2), even 

after attaining the global best position. In this process the particles might move away 

from the global position, which may results in poor convergence. Therefore an 

improved PSO (IPSO-A) has been developed. In this algorithms, a particle which has 

attained global position is not allowed to move, till some other particles of the swarm 

achieves new global best position and all other particles will move as per the CPSO 

algorithm. 

 Mathematically, 

    Velocity modification in IPSO-A is, 

     

     Vij
t+1

 = 0 , if j-th particle is at global position 

              =wVij
t
 + c1r1(Pij

best
 – Xij

t
) + c2r2(Gi

best
 - Xij

t
), for other 

    

  And Position modification in IPSO-A is, 

         Xij
t+1

 =  Xij
t 
, if j-th particle is at global position 

               =  Xij
t 
 + Vij

t+1
, for other particles 



25 
 

 

        This algorithm can be understood by the flow chart. For this the dotted section 

of flow chart of CPSO is replaced by the section shown below in Fig. 4.1 

 
                           _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

 

 

                                                                     

 

                                                                                                                            Yes                            

                                                                                                                             

 

                                         

 

                                                                                          

                                                                                            No 

  

 

 

 

 

 

                              _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

 

Fig. 4.1: Section of flow chart of IPSO-A 
 

  

                This improvement in the CPSO will results in the reduction of the search 

area of the swarm and oscillation of the particles which has attained global position. 

This algorithm gives consistent results and faster convergence. 

4.3 IPSO-B 

                           In IPSO-A, the particles at global position are not allowed to move 

for some time step/iteration i.e. they will not update their position. But this global 

position may not be the actual optimum. Therefore the particles which have achieved 

global position should be kept ready to move. In other words, the particles at global 

position will update their velocity but not the position. Whenever, such particles 

move, they will have all the three components of velocity. 

 

Mathematically, 

    Velocity modification in IPSO-B is, 

     

     Vij
t+1

 = wVij
t
 , if j-th particle is at global position 

              = wVij
t
 + c1r1(Pij

best
 – Xij

t
) + c2r2(Gi

best
 - Xij

t
), for other 

Are the particles 

hit the global 
position? 

Update Velocities of the particles 

Keep Velocities = 0 

Update positions of the particles 
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  And Position modification in IPSO-B is, 

    

      Xij
t+1

 =  Xij
t 
, if j-th particle is at global position 

               =  Xij
t 
 + Vij

t+1
, for other particles 

 

     This algorithm can be understood by the flow chart. For this the dotted section of 

flow chart of CPSO is replaced by the section shown below in Fig. 4.2   

 
                 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
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Fig. 4.2: Section of flow chart of IPSO-B 
 

 

           This has resulted in lower computational time and faster convergence than 

that of IPSO-A. 

4.4 IPSO-C 

                The improvement in CPSO can also be done based on the function 

evaluation. If function evaluation at current position is found to be better than that of 

personal best position, the particle not allowed moving for some time step. However, 

the velocity of such particles will be updated as in CPSO so as to keep them ready 

for movement in future iterations. 

 

Mathematically, 

Velocity modification in IPSO-A is, 

     

Update Velocities of  the particles 

Are the particles hit 

the global position? 

Update positions of the particles 
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     Vij
t+1

 = wVij
t
 + c1r1(Pij

best
 – Xij

t
) + c2r2(Gi

best
 - Xij

t
) 

 

And position modification in IPSO-C based on condition as, 

 

     Xij
t+1

 =  Xij
t 
, If F(current position) ˂ F(personal best) 

              =  Xij
t 
 + Vij

t+1
, for otherwise 

 

This algorithm can be understood by the flow chart. For this the dotted section of 

flow chart of CPSO is replaced by the section shown below in Fig. 4.3  
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Fig. 4.3: Section of flow chart of IPSO-C 
 

This algorithm has resulted in the best fitness evaluation.  

Update positions of the particles 
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CHAPTER 5 

SOLUTION OF BENCHMARK FUNCTIONS 

5.1 STEPS TO SOLVE BENCHMARK 

FUNCTIONS USING PSO IN MATLAB 

              The basic concepts for solving the optimization problems using PSO are 

explained in the previous chapter. Here generalized steps for solving different 

benchmark functions using PSO in MATLAB are discussed. 

The steps are- 

a. Set the number of particles ‗p‘, maximum number of iteration ‗itmax‘ and 

tolerance limit ‗T‘. 

b. Initialize all the variables matrices using the ‗zeros‘ command of MATLAB. 

c. Set the random numbers value ‗r1‘ and ‗r2‘ between 0 to 1. 

d. Set the value of acceleration constants ‗c1‘ and ‗c2‘. (generally both equal to 2) 

e. Generate the random value of particles for each variable (x1, x2, ………). 

f. Generate random value of velocities of particles for each variable (v1,v2,….. ). 

g. Calculate the fitness value for each particle. 

h. The position corresponding to best fitness is set to be P
best

 for each particle. 

i. The best of P
best

 is set to be G
best

. 

j. Update the velocities and positions for each particle using velocity and position 

modification equation of PSO. 

k. Calculate the fitness using new position for each particle. 

l. Update P
best

 for each particle and best of P
best

 is set to be G
best

. 

m. The difference between the previous and current fitness is calculated and 

compared with tolerance limit for each particle. If it is within tolerance limit, 

then stop the iteration process otherwise go to step j. 

n. G
best

 is the optimal solution. 
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5.2 PARAMETERS SETTING FOR PSO 

ALGORITHMS 

                          In this work Constriction Factor PSO (CPSO), Inertia Weight PSO 

(IW-PSO), combination of Constriction factor and Inertia weight PSO (CI-PSO), 

Improved PSO namely IPSO-A, IPSO-B and IPSO-C have been applied to solve four 

different mathematical functions namely BEALE‘S, BOOTH‘S, ROSENBROCK‘S 

and SPHERE function. The parameters setting for various methods are described 

below in Table 5.1- 

 

Table 5.1: Parameters setting for PSO algorithms 

 c1 c2 r1 r2 CF Inertial Weight (W) p Itmax ɛ 

CF-PSO 2.05 2.05 2 2 0.729  30 1000 10
-6 

IW-PSO 2 2 2 2  Linearly Decreasing 30 1000 10
-6

 

CI-PSO 2.05 2.05 2 2 0.729 Linearly Decreasing 30 1000 10
-6

 

IPSO-A 2 2 2 2  Linearly Decreasing 30 1000 10
-6

 

IPSO-B 2 2 2 2  Linearly Decreasing 30 1000 10
-6

 

IPSO-C 2 2 2 2  Linearly Decreasing 30 1000 10
-6

 

                

          Where ‗p‘ is the number of particles, ‗ɛ‘ is the tolerance value and all other 

notation has their usual meaning as described earlier. The difference of fitness value 

between two consecutive iterations compared with tolerance value is considered to 

determine the stopping criteria for the convergence.  

5.3 SOLUTION OF BEALE’S FUNCTION USING 

PSO ALGORITHMS  

 The Beale‘s function in two-dimension is defined as, 

                    f (x1,x2) = (1.5 - x1 + x1 x2)
2
 + (2.25 - x1 + x1 x2

2
)
2
 + (2.625 - x1 + x1 x2

3
)
2 

   

 The minimum value of Beale‘s function is as follows- 

                    Minimum f (3, 0.5) = 0     for   -4.5˂ x1 , x2 ˂ 4.5 

 

The 3-D surface plot of Beale‘s function is shown in the figure 5.1 
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Fig 5.1: 3-D Surface Plot of Beale’s function 

 

The results of Beale‘s function using different PSO algorithms are shown in the 

Table 5.2 

Table 5.2: Results for Beale‘s function 

 x1 x2 f (x1,x2) No. of Iteration Time (in sec.) 

CF-PSO 3 0.5000003 2.505847*10
-12

 50 0.1039 

IW-PSO 3.000004 0.5000024 4.991952*10
-11

 134 0.3139 

CI-PSO 3.000007 0.5000002 1.830699*10
-12

 36 0.0763 

IPSO-A 2.999991 0.4999985 2.727247*10
-11

 105 0.2632 

IPSO-B 3.000001 0.5 3.077159*10
-12

 108 0.2532 

IPSO-C 3.000006 0.5000012 3.619538*10
-11

 112 0.2753 

 

               How the particles of the swarm find the global position is explained 

pictorially in the fig. 5.2 below. The figure shows the initial position, position after 

1
st
 iteration, position after 10

th
 iteration, position after 25

th
 iteration, position after 

50
th

 iteration and final (global) position of the swarm of 30 particles solving Beale‘s 

function of two variables. The first part of the figure 5.2 shows the initial random 

position of the particles. After first iteration all the particles come closer to each 

other as seen in the second part of the figure 5.2. The third part shows that the 

particles are attracted towards the global position i.e. 3 and 0.5 after 10
th

 iteration. In 

fourth part, the particles come closer at its global position after 25
th

 iteration. In fifth 
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part most of particle reached to global position after 50
th

 iteration. In sixth part all the 

particles reached to the global position. 

 

                                  

        

        

Fig. 5.2: Position of the particles after different iteration for Beale’s function 
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5.4 SOLUTION OF BOOTH’S FUNCTION USING 

PSO ALGORITHMS 

 The Booth‘s function in two-dimension is defined as, 

                    f (x1,x2) = (x1 + 2x2 - 7)
2
 + (2x1 + x2 - 5)

2
 

     

 The minimum value of Booth‘s function is as follows- 

               Minimum f (1, 3) = 0     for    -10 ˂ x1, x2 ˂ 10 

 

The 3-D surface plot of Booth‘s function is shown in the figure 5.3 

 

 

Fig 5.3: 3-D Surface Plot of Booth’s function 

 

The results of Beale‘s function using different PSO algorithms are shown in the 

Table 5.3 

Table 5.3: Results for Booth‘s function 

 x1 x2 f (x1,x2) No. of Iteration Time (in sec.) 

CF-PSO 0.9999991 3 2.927818*10
-12

 46 0.0949 

IW-PSO 1.000004 2.999992 1.200323*10
-10

 127 0.2506 

CI-PSO 0.9999996 3.000002 1.210196*10
-11

 34 0.0709 

IPSO-A 0.9999989 3.000003 2.280425*10
-11

 89 0.1734 

IPSO-B 1.000001 2.999999 1.64735*10
-12

 93 0.1601 

IPSO-C 1.00001 2.999986 3.757722*10
-10

 99 0.1983 
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5.5 SOLUTION OF ROSENBROCK’S FUNCTION 

USING PSO ALGORITHMS 

 The Rosenbrock‘s function in two-dimension is defined as, 

                    f (x1,x2) = 100(x2 - x1
2
 )

2
 + (1 - x1)

2
 

   

 The minimum value of Rosenbrock‘s function is as follows- 

               Minimum f (1,1) = 0      

 

The 3-D surface plot of Booth‘s function is shown in the figure 5.4 

 

 

Fig 5.4: 3-D Surface Plot of Rosenbrock’s function 

 

The results of Rosenbrock‘s function using different PSO algorithms are shown in 

the Table 5.4 

Table 5.4: Results for Rosenbrock‘s function 

 x1 x2 f (x1,x2) No. of Iteration Time (in sec.) 

CF-PSO 1.000016 1.000032 2.470943*10
-08

 44 0.0634 

IW-PSO 1.000005 1.000005 2.840467*10
-09

 132 0.3844 

CI-PSO 0.9999997 0.9999992 1.261402*10
-09

 35 0.0489 

IPSO-A 0.9999936 0.9999877 4.199148*10
-09

 102 0.2023 

IPSO-B 1.000005 1.000006 1.890896*10
-09

 106 0.1832 

IPSO-C 1.000009 1.000016 7.612831*10
-09

 118 0.2236 

 



34 
 

 

5.6 SOLUTION OF SPHERE FUNCTION USING 

PSO ALGORITHMS 

 The Sphere function in two-dimension is defined as, 

                    f (x1,x2) = x1
2
 + x2

2
 

 

 The minimum value of Sphere function is as follows- 

               Minimum f (0, 0) = 0      

 

The 3-D surface plot of Sphere function is shown in the figure 5.5 

 

 

Fig 5.5: 3-D Surface Plot of Sphere function 

 

The results of Sphere function using different PSO algorithms are shown in the Table 

5.5 

Table 5.5: Results for Sphere function 

 x1 x2 f (x1,x2) No. of 

Iteration 

Time 

(in sec.) 

CF-PSO 2.190126*10
-06

 1.980476*10
-06

 8.718937*10
-12

 39 0.0853 

IW-PSO 1.567241*10
-06

 2.709307*10
-06

 2.529648*10
-10

 102 0.2139 

CI-PSO -3.192096*10
-07

 -7.638486*10
-06

 5.844836*10
-11

 31 0.0694 

IPSO-A 1.442569*10
-05

 1.480446*10
-05

 4.272725*10
-10

 81 0.1189 

IPSO-B -4.627715*10
-06

 6.682951*10
-06

 6.607759*10
-11

 83 0.1101 

IPSO-C -5.062913*10
-06

 -5.062913*10
-06

 1.017701*10
-09

 88 0.1246 
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5.7 DISCUSSION 

               The above results show that, the PSO algorithms (CF-PSO, IW-PSO, CI-

PSO, IPSO-A, IPSO-B and IPSO-C) are able to solve the mathematical benchmark 

functions successfully. The use of constriction factor in the velocity modification 

equation reduces the number of iteration required for the convergence. Therefore 

constriction factor reduces the computational time. The linearly decreasing inertia 

weight shifts search from an exploratory mode to an exploitative mode. It has been 

seen that the use of both constriction factor and inertia weight simultaneously give 

most effective and reliable results. The CI-PSO gives result in the minimum number 

of iteration and hence takes less computational time among all the PSO algorithms 

considered in this work for mathematical benchmark functions (Beale‘s, Booth‘s, 

Rosenbrock‘s and Sphere function).  
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CHAPTER 6 

ECONOMIC LOAD DISPATCH USING PSO 

ALGORITHMS 

6.1 INTRODUCTION 

                  ELD is the most important optimization problem of power system. The 

ELD involve a number of non-linear equations. Hence implementation of 

conventional method to solve such problem becomes complex. PSO is the 

optimization technique which has successfully applied to solve linear as well as non-

linear problems. In this work Constriction Factor PSO (CPSO), Inertia Weight PSO 

(IW-PSO), combination of Constriction factor and Inertia weight PSO (CI-PSO), 

Improved PSO namely IPSO-A, IPSO-B and IPSO-C have been applied to solve 

ELD problem for IEEE 5, 14, 30-bus system. The population size (P) 30, Maximum 

iteration (Itmax) 1000 and Tolerance 10
-6

 is taken in all cases. For Constriction Factor 

PSO, the value of c1=c2=2.05 and in all other cases c1=c2=2 is taken. The value of 

r1=r2=0.5 is used in all cases. The value of constriction factor is taken as 0.729. The 

linearly decreasing inertia weight from 0.9 to 0.4 is used. The parameter setting for 

different PSO algorithms are described in table 5.1. The penalty coefficient (K) for 

not satisfying load demand constraint is taken as 50 for all the bus system.  

6.2 COMPUTATIONAL PROCEDURE 

          The procedure for the implementation of PSO for ELD problem are 

summarized by the following steps- 

 

step 1) Initialization of the parameters- In the first step, the parameters of the PSO, 

like c1, c2, r1, r2, population size P, maximum iteration Itmax must be chosen. 

 

step 2) Initialization of the population- Each particle are initialized with random 

positions ‗p‘ (Power generated by the generating units) under the boundary 
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constraints of the generating units and velocities ‗v‘ considering velocity 

clamping for proper convergence. 

i.e.   p = {pmin , pmax} 

       v = {-0.5pmin , 0.5pmax} 

 

step 3) Evaluation of Objective function- The fuel cost of each particle in the 

population for each generating units and total production cost of the plant 

satisfying the equality constraints (power generation = power demand + 

power loss) is to be calculated. 

 

step 4) Selection of initial personal and global best- Each initial value of particle is 

set to be its personal best and optimum of the personal bests is set to be 

global best. 

 

step 5) Updation- Change the velocities and positions of the particles by velocity 

and position modification rule of PSO. 

 

step 6) Boundary condition- Check that the new velocities and position are under 

the limit. If not, then force its value to the boundary as- 

If v < -0.5pmin , then v= -0.5pmin 

If v > 0.5pmax , then v= 0.5pmax 

Similarly for power generation to be in limit 

If p < pmin , then p=pmin 

If p > pmax , then p=pmax 

 

step 7) Updation of personal and global best value- If positions of the particles give 

the better fitness value during current iteration then set this as P
best

 and the 

optimum of P
best

 is set to be G
best

. 

 

step 8) Stopping Criteria- Check the difference in fitness value in the consecutive 

iteration is less than tolerance limit. If yes stop, otherwise go to step 5. 
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6.3 IEEE 5, 14 & 30 BUS SYSTEM DATA 

            The cost and loss coefficients of various generators are taken as given in 

Table 6.1 and Table 6.2 respectively. 

 

Table 6.1: Data for cost coefficients 
BUS  G1 G2 G3 PD 

(in MW) 

5 a ($/MW
2
) 0.005 0.005  160 

b ($/MW) 3.51 3.89 

c ($) 44.4 40.6 

Pmin (MW) 30 30 

Pmax (MW) 120 120 

14 a ($/MW
2
) 0.005 0.005 0.005 259 

b ($/MW) 2.45 3.51 3.89 

c ($) 105 44.4 40.6 

Pmin (MW) 50 20 20 

Pmax (MW) 200 100 100 

30 a ($/MW
2
) 0.005 0.005 0.005 283.4 

b ($/MW) 2.45 3.51 3.89 

c ($) 105 44.4 40.6 

Pmin (MW) 50 30 30 

Pmax (MW) 250 100 100 

 

 

Table 6.2: Data for Loss coefficients 
5-BUS       

   B = 10
-4[

        
         

] 

14-BUS        

   B = 10
-4[

             
            
             

] 

   Bi0 = 10
-4

[ 0.44  0.24  0 ] 

   B00 = 10
-4

[2.5408] 

30-BUS        

    B = 10
-4[

            
             
             

] 
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6.4 RESULTS OF IEEE 5, 14 & 30-BUS SYSTEM 

              The ELD problem of IEEE 5, 14 and 30 bus systems have been solved using 

six different PSO algorithms described earlier. The results for the twenty trials have 

been shown below. Table 6.3 shows the results of 20 trials of IEEE 5 bus system. 

Similarly Table 6.4 and Table 6.5 show the results of 20 trials of IEEE 14 and 30 bus 

system respectively. 

 

Table 6.3: Results of IEEE 5-BUS System 

CF-PSO  IW-PSO 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

1. 762.823 85 0.1688 1. 762.6597 216 0.3442 

2. 763.1705 88 0.1734 2. 762.0023 221 0.3674 

3. 764.8201 82 0.1621 3. 761.1963 211 0.5948 

4. 761.4755 81 0.1612 4. 761.1653 222 0.4949 

5. 761.1372 79 0.1607 5. 761.3246 230 0.3757 

6. 766.0175 82 0.1627 6. 764.975 222 0.3682 

7. 761.2032 82 0.1597 7. 762.5686 273 0.44 

8. 762.2008 78 0.1506 8. 761.317 218 0.3554 

9. 761.138 82 0.1559 9. 761.3084 216 0.3513 

10. 765.3894 82 0.1692 10. 761.4428 217 0.35 

11. 761.1782 87 0.1695 11. 762.1345 221 0.3844 

12. 761.1662 82 0.156 12. 761.7634 240 0.3928 

13. 761.148 82 0.1582 13. 762.4156 275 0.4494 

14. 761.25 82 0.1635 14. 761.136 210 0.34 

15. 763.0206 79 0.16 15. 762.6994 219 0.3544 

16. 762.006 82 0.166 16. 761.5892 216 0.3453 

17. 763.7499 82 0.1617 17. 761.882 216 0.3444 

18. 761.289 83 0.1637 18. 761.1665 224 0.3529 

19. 761.1538 82 0.1619 19. 761.5757 223 0.3678 

20. 762.0355 82 0.1561 20. 761.5092 215 0.3607 

Avg. 762.3686 82 0.1620 Avg. 761.8916 225 0.3867 

CI-PSO  IPSO-A 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

1. 761.1465 103 0.1829 1. 762.1053 216 0.5378 

2. 761.366 99 0.1917 2. 761.4158 215 0.5374 
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3. 761.2888 81 0.1553 3. 762.1738 201 0.4993 

4. 763.4789 96 0.178 4. 762.1022 223 0.5765 

5. 761.1357 96 0.1835 5. 761.6559 183 0.3898 

6. 763.3765 97 0.1769 6. 761.2539 185 0.3876 

7. 766.2869 96 0.1761 7. 761.7013 217 0.4919 

8. 766.279 101 0.1972 8. 761.17 215 0.5056 

9. 762.2343 108 0.1874 9. 761.8811 217 0.4931 

10. 764.6625 91 0.1693 10. 761.3344 212 0.4334 

11. 762.1127 102 0.1909 11. 761.7206 223 0.5469 

12. 761.3658 93 0.169 12. 761.6182 189 0.4511 

13. 766.6079 94 0.1733 13. 761.2224 216 0.5191 

14. 762.1437 105 0.1889 14. 761.9998 214 0.4908 

15. 763.0847 106 0.1952 15. 761.177 210 0.6074 

16. 761.2003 101 0.1904 16. 761.5042 216 0.5033 

17. 763.6541 100 0.1867 17. 761.4719 218 0.5628 

18. 766.1019 95 0.1729 18. 761.2443 223 0.6677 

19. 763.2724 107 0.1968 19. 762.404 201 0.4976 

20. 761.1464 99 0.1754 20. 761.574 216 0.5583 

Avg. 763.0972 99 0.1819 Avg. 761.6365 211 0.5129 

IPSO-B  IPSO-C 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

1. 762.3534 218 0.3625 1. 761.1357 210 0.3434 

2. 761.1953 216 0.368 2. 761.1352 183 0.2908 

3. 761.1749 202 0.339 3. 761.1352 317 0.4992 

4. 761.2884 216 0.372 4. 761.1352 199 0.3549 

5. 761.1352 219 0.5882 5. 762.5331 155 0.2648 

6. 761.4505 216 0.3652 6. 761.1352 161 0.2653 

7. 761.2288 216 0.377 7. 761.1354 363 0.5607 

8. 761.4053 216 0.4032 8. 761.1352 182 0.3039 

9. 761.8961 221 0.513 9. 761.1352 176 0.3403 

10. 762.7156 216 0.364 10. 761.1352 171 0.2785 

11. 761.6002 223 0.3702 11. 761.1352 298 0.4808 

12. 761.2266 216 0.3634 12. 761.1352 270 0.4395 

13. 761.4394 217 0.3694 13. 761.1352 151 0.2585 

14. 762.5657 221 0.3736 14. 761.6407 197 0.3313 

15. 761.1357 216 0.367 15. 761.1754 293 0.4623 

16. 761.2111 301 0.4999 16. 761.1353 216 0.3557 

17. 762.7848 216 0.3896 17. 761.1353 275 0.4607 

18. 761.218 223 0.3676 18. 761.1352 154 0.2652 
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19. 761.9148 216 0.3607 19. 761.1352 174 0.3013 

20. 762.3978 223 0.3757 20. 761.1417 316 0.5164 

Avg. 761.6669 221 0.3945 Avg. 761.2327 223 0.3687 

 

 

Table 6.4: Results of IEEE 14-BUS System 

CF-PSO  IW-PSO 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

1. 1150.438 86 0.2141 1. 1164.589 216 0.6626 

2. 1163.459 92 0.2257 2. 1146.295 270 0.9164 

3. 1151.778 91 0.2235 3. 1147.372 206 0.6412 

4. 1164.253 88 0.2118 4. 1143.884 206 0.6371 

5. 1147.883 88 0.2109 5. 1161.208 203 0.6312 

6. 1147.105 90 0.2171 6. 1144.145 278 0.9934 

7. 1151.818 88 0.2181 7. 1149.61 208 0.6373 

8. 1151.365 88 0.2239 8. 1160.572 262 0.9568 

9. 1159.595 90 0.2207 9. 1145.327 270 0.9741 

10. 1143.908 86 0.2116 10. 1156.66 210 0.6476 

11. 1155.479 91 0.2192 11. 1186.491 260 0.9124 

12. 1150.767 91 0.2223 12. 1143.885 212 0.6706 

13. 1158.797 88 0.2094 13. 1172.65 217 0.6791 

14. 1149.814 92 0.2158 14. 1147.763 208 0.6684 

15. 1157.591 95 0.2338 15. 1157.131 258 0.8996 

16. 1159.537 90 0.2158 16. 1147.736 251 0.8461 

17. 1150.343 88 0.2127 17. 1147.269 258 0.856 

18. 1148.798 88 0.2099 18. 1147.161 207 0.6323 

19. 1171.506 86 0.2115 19. 1147.777 204 0.6331 

20. 1157.282 90 0.2167 20. 1147.39 255 0.878 

Avg. 1154.576 89 0.2172 Avg. 1153.246 233 0.7687 

CI-PSO  IPSO-A 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

1. 1158.469 110 0.2551 1. 1150.913 214 0.7656 

2. 1144.111 111 0.3595 2. 1156.915 238 0.8858 

3. 1146.389 108 0.2533 3. 1149.377 216 0.776 

4. 1161.444 112 0.2571 4. 1154.128 232 0.9445 

5. 1151.028 108 0.2519 5. 1145.613 229 0.9499 

6. 1154.499 93 0.2285 6. 1148.896 210 0.7265 
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7. 1151.266 95 0.2235 7. 1145.139 208 0.7248 

8. 1150.729 117 0.2731 8. 1147.484 205 0.7246 

9. 1153.375 107 0.2444 9. 1163.342 227 0.9193 

10. 1167.771 113 0.2596 10. 1147.764 233 0.9334 

11. 1150.66 113 0.2629 11. 1157.427 231 0.9999 

12. 1163.097 100 0.2333 12. 1154.072 229 0.8359 

13. 1149.195 109 0.2569  13. 1158.279 227 0.8572 

14. 1145.301 109 0.2505 14. 1150.968 230 0.9004 

15. 1160.012 104 0.2479 15. 1144.201 226 0.9161 

16. 1164.61 107 0.2479 16. 1160.347 236 1.007 

17. 1145.717 114 0.2657 17. 1149.933 233 1.005 

18. 1150.318 113 0.2584 18. 1154.18 229 0.8933 

19. 1153.219 104 0.246 19. 1148.369 226 0.8922 

20. 1146.404 115 0.2619 20. 1153.952 224 0.9552 

Avg. 1153.381 108 0.2569 Avg. 1153.515 225 1.0019 

IPSO-B  IPSO-C 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

1. 1157.753 249 0.7634 1. 1146.265 291 0.9707 

2. 1153.237 247 0.7068 2. 1143.859 297 0.7148 

3. 1153.494 215 0.6883 3. 1146.419 301 0.7137 

4. 1145.833 224 0.7298 4. 1143.853 301 0.7305 

5. 1149.282 208 0.6816 5. 1144.155 307 1.353 

6. 1148.743 214 0.7009 6. 1143.853 294 0.9041 

7. 1153.823 236 0.7245 7. 1144.177 298 0.8931 

8. 1149.545 206 0.7009 8. 1148.058 299 0.6884 

9. 1157.223 264 0.791 9. 1153.009 302 0.8275 

10. 1147.41 215 0.916 10. 1143.853 291 0.6653 

11. 1147.75 205 0.6804 11. 1144.056 301 0.7355 

12. 1145.859 296 0.6817 12. 1143.924 292 0.9573 

13. 1152.194 225 0.7255 13. 1143.872 297 0.7486 

14. 1153.052 211 0.7048 14. 1146.643 306 0.8567 

15. 1159.719 201 0.6711 15. 1143.854 298 0.8557 

16. 1152.559 255 0.7772 16. 1150.204 297 0.6609 

17. 1162.29 207 0.682 17. 1143.89 295 0.7556 

18. 1151.45 205 0.6884 18. 1143.902 294 0.7525 

19. 1150.062 219 0.7178 19. 1143.864 309 0.6603 

20. 1147.135 221 0.6669 20. 1144.448 296 0.6977 

Avg. 1151.921 226 0.7349 Avg. 1145.308 298 1.0058 
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Table 6.5: Results of IEEE 30-BUS System 

CF-PSO  IW-PSO 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

1. 1271.72 89 0.1956 1. 1257.35 241 0.4618 

2. 1256.401 95 0.2228 2. 1257.312 237 0.4716 

3. 1257.761 91 0.2075 3. 1256.823 232 0.4436 

4. 1278.789 89 0.1974 4. 1279.779 237 0.4604 

5. 1256.876 89 0.1979 5. 1266.617 237 0.4666 

6. 1259.723 96 0.2081 6. 1279.141 232 0.4492 

7. 1269.204 89 0.2506 7. 1256.279 237 0.4602 

8. 1257.477 91 0.2113 8. 1257.057 267 0.7334 

9. 1275.185 93 0.2304 9. 1264.149 234 0.4352 

10. 1278.166 88 0.2215 10. 1259.052 230 0.4346 

11. 1260.94 91 0.2069 11. 1256.264 237 0.4552 

12. 1280.52 91 0.2442 12. 1257.662 239 0.5449 

13. 1260.779 91 0.2347  13. 1265.116 242 0.4574 

14. 1284.09 98 0.2962 14. 1273.777 233 0.4904 

15. 1257.756 93 0.2047 15. 1256.293 233 0.4406 

16. 1264.617 92 0.2205 16. 1257.8 236 0.5885 

17. 1259.847 93 0.2141 17. 1283.973 230 0.4464 

18. 1261.267 91 0.2605 18. 1262.642 237 0.4405 

19. 1276.012 92 0.2077 19. 1284.362 235 0.4645 

20. 1273.753 84 0.2022 20. 1256.657 233 0.4508 

Avg. 1267.044 91 0.2217 Avg. 1264.405 237 0.4798 

CI-PSO  IPSO-A 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

1. 1256.527 95 0.3126 1. 1261.02 230 0.6839 

2. 1256.29 105 0.3039 2. 1265.735 236 0.7809 

3. 1269.379 110 0.2647 3. 1257.599 232 0.6824 

4. 1274.647 108 0.3179 4. 1259.944 232 0.6602 

5. 1257.508 113 0.2882 5. 1256.264 231 0.8659 

6. 1259.848 106 0.2812 6. 1257.679 227 0.7342 

7. 1262.224 118 0.3448 7. 1261.402 234 0.6876 

8. 1257.031 117 0.2663 8. 1256.708 233 0.8216 

9. 1256.642 105 0.2316 9. 1256.664 228 0.7329 

10. 1259.092 116 0.2553 10. 1258.757 236 0.7089 

11. 1279.952 106 0.2528 11. 1261.222 235 0.8425 
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12. 1271.287 110 0.2538 12. 1256.726 238 0.7196 

13. 1263.164 113 0.2422 13. 1357.143 232 0.6872 

14. 1259.459 118 0.2627 14. 1257.154 232 0.7121 

15. 1280.542 123 0.2652 15. 1258.03 223 0.5732 

16. 1268.984 109 0.2507 16. 1257.826 242 0.7765 

17. 1256.306 112 0.2586 17. 1277.472 232 0.7144 

18. 1258.716 112 0.2491 18. 1257.421 229 0.6283 

19. 1258.489 110 0.2553 19. 1260.135 235 0.7108 

20. 1256.925 118 0.4929 20. 1256.627 234 0.6722 

Avg. 1263.150 111 0.2825 Avg. 1259.576 233 0.7198 

IPSO-B  IPSO-C 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

Trial 

No. 

Fuel Cost 

(in $/hr.) 

No. of 

Iteration 

Time 

(in sec.) 

1. 1260.127 233 0.4774 1. 1256.193 255 0.6141 

2. 1258.97 234 0.5079 2. 1256.669 179 0.4731 

3. 1258.756 238 0.7357 3. 1256.465 170 0.3347 

4. 1256.645 234 0.4693 4. 1256.192 222 0.4968 

5. 1256.587 239 0.4827 5. 1257.129 497 1.1552 

6. 1256.637 238 0.5081 6. 1256.192 268 0.5054 

7. 1256.303 236 0.4781 7. 1256.368 309 0.6067 

8. 1256.603 235 0.6612 8. 1256.193 417 0.8118 

9. 1265.598 244 0.5068 9. 1256.193 412 0.7755 

10. 1257.632 231 0.4972 10. 1256.192 215 0.6425 

11. 1256.365 233 0.5099 11. 1256.192 411 0.7638 

12. 1258.436 233 0.4929 12. 1257.719 469 1.1079 

13. 1262.795 234 0.5001  13. 1256.192 319 0.6454 

14. 1257.044 235 0.5024 14. 1272.138 190 0.3645 

15. 1267.616 232 0.4822 15. 1258.073 387 0.8488 

16. 1256.217 231 0.4938 16. 1258.781 227 0.5138 

17. 1261.508 233 0.4862 17. 1258.06 558 1.1207 

18. 1256.492 231 0.4837 18. 1256.635 157 0.3922 

19. 1258.448 237 0.4844 19. 1256.196 244 0.4796 

20. 1265.353 235 0.4909 20. 1256.192 223 0.5084 

Avg. 1259.207 235 0.5125 Avg. 1257.498 306 0.6580 
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6.5 DISCUSSION 

               The best cost, average cost, worst cost, average number of iteration, average 

computational time and standard deviation cost of 20 trials are summarized for 

different PSO algorithms. Table 6.6 shows the compact results of IEEE 5 bus system. 

Similarly table 6.7 and table 6.8 show the compact results of IEE 14 and 30 bus 

systems respectively.  

 

Table 6.6: Compact Results of IEEE 5-bus system of 20 trials 

 Best 

Fuel Cost 

(in $/hr.) 

Average 

Fuel Cost 

(in $/hr.) 

Worst 

Fuel Cost 

(in $/hr.) 

Average 

no. of 

Iteration 

Average 

Computational 

Time (in Sec.) 

Standard 

Deviation 

(in $/hr.) 

CF-PSO 761.1372 762.3686 766.0175 82 0.1620 1.544677 

IW-PSO 761.1360 761.8916 764.9750 225 0.3867 0.894688 

CI-PSO 761.1357 763.0972 766.6079 99 0.1819 1.941389 

IPSO-A 761.1700 761.6365 762.4040 211 0.5129 0.370428 

IPSO-B 761.1352 761.6669 762.7848 221 0.3945 0.581103 

IPSO-C 761.1352 761.2327 762.5331 223 0.3687 0.326141 

 

 

Table 6.7: Compact Results of IEEE 14-bus system of 20 trials 

 Best 

Fuel Cost 

(in $/hr.) 

Average 

Fuel Cost 

(in $/hr.) 

Worst 

Fuel Cost 

(in $/hr.) 

Average 

no. of 

Iteration 

Average 

Computational 

Time (in Sec.) 

Standard 

Deviation 

(in $/hr.) 

CF-PSO 1143.908 1154.576 1171.506 89 0.2172 6.843359 

IW-PSO 1143.884 1153.246 1186.491 233 0.7687 11.16492 

CI-PSO 1144.111 1153.381 1167.771 108 0.2569 6.968287 

IPSO-A 1144.201 1153.515 1163.342 225 1.0019 5.290987 

IPSO-B 1145.833 1151.921 1162.29 226 0.7349 4.593381 

IPSO-C 1143.853 1145.308 1153.009 298 1.0058 2.516282 

 

 

Table 6.8: Compact Results of IEEE 30-bus system of 20 trials 

 Best 

Fuel Cost 

(in $/hr.) 

Average 

Fuel Cost 

(in $/hr.) 

Worst 

Fuel Cost 

(in $/hr.) 

Average 

no. of 

Iteration 

Average 

Computational 

Time (in Sec.) 

Standard 

Deviation 

(in $/hr.) 

CF-PSO 1256.401 1267.044 1284.090 91 0.2217 9.329782 
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IW-PSO 1256.264 1264.405 1284.362 237 0.4798 10.04872 

CI-PSO 1256.285 1263.150 1280.542 111 0.2825 8.037626 

IPSO-A 1256.264 1259.576 1277.472 233 0.7198 4.819535 

IPSO-B 1256.217 1259.207 1267.616 235 0.5125 3.528597 

IPSO-C 1256.192 1257.498 1272.138 306 0.6580 3.536436 

 
 

             The Bar chart of average computational time and standard deviation cost for 

different PSO algorithms are shown below. The bar chart is used for comparisons of 

data of the groups. The computational time is the measure of the computational 

efforts. The consistency of the results is indicated by standard deviation cost. 

                Fig. 6.1 and Fig 6.2 shows the bar chart for average computational time 

and standard deviation cost of different PSO algorithms for 5, 14 and 30 bus system 

respectively.  

 

 

 
Fig. 6.1: Bar chart for Average Computational time 
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Fig. 6.2: Bar Chart for Standard Deviation costs 

 

                                               The results show that the CF-PSO give results in less 

number of iteration and hence takes less computational time for all the bus system 

but the standard deviation cost is in considerable amount. The IW-PSO gives 

maximum standard deviation cost for 14 and 30 bus system. The CI-PSO also takes 

less number of iteration except CF-PSO, but standard deviation cost in case of 5 bus 

system is highest. The IPSO-A gives better results than CF-PSO, IW-PSO & CI-PSO 

in terms of standard deviation cost. The IPSO-B gives optimum cost for 5 bus 

systems and lowest standard deviation cost for 30 bus systems. The IPSO-C gives 

optimum (best) cost for all bus system and lowest standard deviation cost for 5 and 

14 bus systems.  
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CHAPTER 7 

CONCLUSIONS & FUTURE DIRECTIONS 

 

           The results show that constriction factor reduces the computational time and 

the number of iteration. The linearly decreasing inertia weight shifts search from an 

exploratory mode to an exploitative mode. It has been seen that the use of 

constriction factor simultaneously with inertia weight gives better results for 

mathematical benchmark functions. But the main objective of ELD problem is to 

minimize the fuel cost of the plant. The improved PSO (IPSO-A, IPSO-B and IPSO-

C) described in this work gives better results than conventional PSO (CF-PSO, IW-

PSO and CI-PSO) in terms of optimum fuel costs. The improved PSO gives the 

consistent results than conventional PSO. The comparison between the improved 

PSO shows that, the IPSO-C gives minimum fuel cost among them with consistency 

in all cases. 

               The other objective of ELD can also be considered like- transmission 

losses, environmental pollution etc. and solved by improved PSO (IPSO-A, IPSO-B 

and IPSO-C) in future works. 
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APPENDIX- I 

1) IEEE 5 BUS SYSTEM 

     

Fig. I-A: BUS-CODE DIAGRAM OF 5 BUS SYSTEM   

 

TABLE I-A: LINE DATA or IMPEDANCE DATA (5 BUS SYSTEM) 

LINE DESIGNATION *R(p.u.) *X(p.u.) LINE CHARGING 
1-2 0.10 0.4 0.0 
1-4 0.15 0.6 0.0 
1-5 0.05 0.2 0.0 
2-3 0.05 0.2 0.0 
2-4 0.10 0.4 0.0 
3-5 0.05 0.2 0.0 

            *The impedance are based on MVA as 100 

 

 

TABLE I-B: BUS DATA or OPERATING CONDITIONS (5 BUS SYSTEM) 

 GENERATION LOAD 

BUS NO. MW VOLTAGE MAGNITUDE MW MVAR 

1* - - - 1.02 - - - - - - 

2 - - - - - - 60 30 

3 100 1.04 - - - - - - 

4 - - - - - - 40 10 

5 - - - - - - 60 20 

*Slack Bus 
 

 



50 
 

 

TABLE I-C: REGULATED BUS DATA (5 BUS SYSTEM) 

BUS 

NO. 

VOLTAGE 

MAGNITUDE 

MVAR CAPACITY MW CAPACITY 

MINIMUM MAXIMUM MINIMUM MAXIMUM 

1 1.02 0.0 60 30 120 

3 1.04 0.0 60 30 120 

 

The nodal load voltage inequality constraints are 0.9≤Vi≤1.05 

 

Cost characteristics of IEEE 5 bus system 

The cost characteristics of the IEEE 5 Bus System are as follows: 

C1=50p1
2
+351p1+44.4 $/hr. 

C3=50p3
2
+389p3+40.6 $/hr. 

Here, the total load demand of the system is 160 MW. Maximum and minimum 

active power constraint on the generator bus for the given system is 120 MW and 30 

MW respectively. Voltage magnitude constraint for generator at bus 3 is 1.04 pu. 

 

M-file For Calculating B- Coefficients: 

Clear 

basemva=100 

accuracy=0.0001 

maxiter=10 

busdata=[1 1 1.02 0 0 0 0 0 0 60 0;2 0 1 0 60 30 0 0 0 0 0;3 2 1.04 0 0 0 82 0 0 60 

0;4 0 1 0 40 10 0 0 0 0 0;5 0 1 0 60 20 0 0 0 0 0]; 

Linedata=[1 2 0.10 0.4 0 1;1 4 0.15 0.6 0 1; 1 5 0.05 0.2 0 1;2 3 0.05 0.2 0 1;2 4 0.10 

0.4 0 1;3 5 0.05 0.2 0 1]; 

disp(busdata) 

disp(linedata) 

mwlimit=[30 120;30 120]; 

Ifybus 

Ifnewton 

busout 

bloss 

 

B-Coefficient Calculated is as: 

B11 = 0.00035336         B12 = 0.0000103196 

B21 = 0.0000103196     B22 = 0.000368992 
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2) IEEE 14 BUS SYSTEM 

 

Fig. I-B: BUS-CODE DIAGRAM OF 14 BUS SYSTEM 

 

TABLE I-D: IMPEDANCE & LINE-CHARGING DATA (14 BUS SYSTEM) 

Line 

Designation 
Resistance 

p.u. * 

Reactance 

p.u. * 

Line 

Charging 

Tap Setting 

1-2 0.019379 0.059170 0.0264 1 

1-5 0.054029 0.223040 0.0264 1 

2-3 0.046980 0.197970 0.0219 1 

2-4 0.058110 0.176320 0.0187 1 

2-5 0.056950 0.173880 0.0170 1 

3-4 0.067010 0.171030 0.0173 1 

4-5 0.013350 0.042110 0.0064 1 

4-7 0 0.20912 0 1 

4-9 0 0.55618 0 1 

5-6 0 0.25202 0 1 

6-11 0.09498 0.19890 0 1 

6-12 0.12291 0.25581 0 1 

6-13 0.06615 0.13027 0 1 

7-8 0 0.17615 0 1 

7-9 0 0.11001 0 1 

9-10 0.03181 0.08450 0 1 

9-14 0.12711 0.27038 0 1 

10-11 0.08205 0.19207 0 1 

12-13 0.22092 0.19988 0 1 

13-14 0.17093 0.34802 0 1 

* Impedance and line-charging susceptance in p.u. on a 100 MVA base. 
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TABLE I-E: BUS DATA or OPERATING CONDITIONS (14 BUSSYSTEM) 

 

Bus 

No. 
Voltage Generation Load 

Magnitude 

(in pu) 

Phase angle 

(deg.) 

MW MVAR MW MVAR 

1* 1.06 0 0 0 0 0 

2 1 0 40 0 21.7 12.7 

3 1 0 0 0 94.2 19.0 

4 1 0 0 0 47.8 -3.9 

5 1 0 0 0 7.6 1.6 

6 1 0 0 0 11.2 7.5 

7 1 0 0 0 0 0 

8 1 0 0 0 0 0 

9 1 0 0 0 29.5 16.6 

10 1 0 0 0 9.0 5.8 

11 1 0 0 0 3.5 1.8 

12 1 0 0 0 6.1 1.6 

13 1 0 0 0 13.5 5.8 

14 1 0 0 0 14.9 5.0 

*Slack Bus 

 

TABLE I-F: REGULATED BUS DATA (14 BUS SYSTEM) 

 

Bus no. Voltage magnitude 

( in pu) 

Minimum MVAR 

capability 

Maximum MVAR 

capability 

2 1.05 -40 50 

3 1.010 0 40 

6 1.070 -6 24 

8 1.090 -6 24 

 
 

Cost characteristics of IEEE 14 bus system 
 

               The cost characteristics of the IEEE 14 Bus System are as follows: 

C1 = 50p1
2
+245p1+105 $/hr. 

C2 = 50p2
2
+351p2+44.4 $/hr. 

C6 = 50p6
2
+389p6+40.6 $/hr. 

               Here, the total load demand of the system is 259 MW. The maximum active 

power constraint is 200 MW, 100MW and 100 MW for the generators of bus no. 1, 2 

and 6 respectively. The minimum active power constraint is 50 MW, 20MW and 20 

MW for the generators of bus no. 1, 2 and 6 respectively. Voltage magnitude 
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constraint for generator at bus 2 is 1.045, for bus no. 6 is 1.070, for bus no. 3 is 1.010 

& for bus no. 8 is 1.090. 

 

M-file For Calculating B- Coefficients: 
 

Clear 

basemva=100 

accuracy=0.0001 

maxiter=10 

busdata=[1 1 1.06 0 0 150 0 0 0 0 0;2 2 1.045 0 21.7 12.7 63.11 0 -40 50 0;3 0 1.01 0 

94.2 19 0 0 0 40 0;4 0 1 0 47.8 -3.9 0 0 0 0 0;5 0 1 0 7.6 1.6 0 0 0 0 0;6 2 1.07 0 11.2 

7.5 77.12 0 -6 24 0;7 0 1 0 0 0 0 0 0 0 0;8 0 1.09 0 0 0 0 0 -6 24 0 ;9 0 1 0 29.5 16.6 0 

0 0 0 0; 10 0 1 0 9 5.8 0 0 0 0 0;11 0 1 0 3.5 1.8 0 0 0 0 0;12 0 1 0 6.1 1.6 0 0 0 0 

0;13 0 1 0 13.5 5.8 0 0 0 0 0;14 0 1 0 14.9 5 0 0 0 0 0]; 

linedata=[1 2 0.01938 0.05917 0.0264 1;1 5 0.05403 0.22304 0.0246 1; 2 3 0.04699 

0.19797 0.0219 1; 2 4 0.05811 0.17632 0.0170 1; 2 5 0.05695 0.17388 0.0173 1; 3 4 

0.06701 0.17103 0.0064 1; 4 5 0.01335 0.04211 0.0 1; 4 7 0.0 0.20912 0.0 0.978; 4 9 

0.0 0.55618 0.0 0.969;5 6 0.0 0.25202 0.0 0.932; 6 11 0.09498 0.19890 0.0 1;6 12 

0.12291 0.25581 0.0 1;6 13 0.06615 0.13027 0.0 1;7 8 0.0 0.17615 0.0 1; 7 9 0.0 

0.11001 0.0 1; 9 10 0.03181 0.08450 0.0 1;9 14 0.12711 0.27038 0.0 1; 10 11 

0.08205 0.19207 0.0 1;12 13 0.22092 0.19988 0.0 1;13 14 0.17093 0.34802 0.0 1]; 

disp(busdata) 

disp(linedata) 

mwlimit=[50 200;20 100;20 100] 

Ifybus 

Ifnewton 

busout 

bloss 

 

B-Coefficient Calculated is as: 

B11 = 0.0231     B12 = 0.0078     B13 = -0.0007 

B21 = 0.0078     B22=0.0182       B23= 0.0022 

B31=-0.0007      B32= 0.0022      B33= 0.0329
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C) IEEE 30 BUS SYSTEM 

 

Fig. I-C: BUS-CODE DIAGRAM OF 30 BUS SYSTEM 

TABLE I-G: IMPEDANCE & LINE-CHARGING DATA (30 BUS SYSTEM) 

Line 

Designation 
Resistance 

p.u.* 

Reactance 

p.u.* 

Line 

Charging 

Tap Setting 

1-2 0.0192 0.0575 0.0264 1 

1-3 0.0452 0.1852 0.0204 1 

2-4 0.0570 0.1737 0.0184 1 

3-4 0.0132 0.0379 0.0042 1 

2-5 0.0472 0.1983 0.0209 1 

2-6 0.0581 0.1763 0.0187 1 

4-6 0.0119 0.0414 0.0045 1 

5-7 0.0460 0.1160 0.0102 1 

6-7 0.0267 0.0820 0.0085 1 

6-8 0.0120 0.0420 0.0045 1 

6-9 0 0.2080 0 0.978 

6-10 0 0.5560 0 0.969 

9-11 0 0.2080 0 1 

9-10 0 0.1100 0 1 

4-12 0 0.2560 0 0.932 

12-13 0 0.1400 0 1 

12-14 0.1231 0.2559 0 1 

12-15 0.0662 0.1304 0 1 
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12-16 0.0945 0.1987 0 1 

14-15 0.2210 0.1997 0 1 

16-17 0.0824 0.1923 0 1 

15-18 0.1070 0.2185 0 1 

18-19 0.0639 0.1292 0 1 

19-20 0.0340 0.0680 0 1 

10-20 0.0936 0.2090 0 1 

10-17 0.0324 0.0845 0 1 

10-21 0.0348 0.0749 0 1 

10-22 0.0727 0.1499 0 1 

21-22 0.0116 0.0236 0 1 

15-23 0.1000 0.2020 0 1 

22-24 0.1150 0.1790 0 1 

23-24 0.1320 0.2700 0 1 

24-25 0.1885 0.3292 0 1 

25-26 0.2544 0.3800 0 1 

25-27 0.1093 0.2087 0 1 

27-28 0 0.3960 0 0.968 

27-29 0.2198 0.4153 0 1 

27-30 0.3202 0.6027 0 1 

29-30 0.2399 0.4533 0 1 

8-28 0.0636 0.2000 0.0214 1 

6-28 0.0169 0.0599 0.0065 1 

*Impedance and line-charging susceptance in p.u. on a 100 MVA base. 

 

TABLE I-H: BUS DATA or OPERATING CONDITIONS (30 BUS SYSTEM) 

Bus 

No. 
Voltage Generation Load 

Magnitude 

(in pu) 

Phase angle 

(deg.) 

MW MVAR MW MVAR 

1* 1.06 0 0 0 0 0 

2 1 0 40 0 21.7 12.7 

3 1 0 0 0 2.4  

4 1 0 0 0 7.6  

5 1 0 0 0 94.2  

6 1 0 0 0 0 0 

7 1 0 0 0 22.8 10.9 

8 1 0 0 0 30.0 30.0 

9 1 0 0 0 0 0 

10 1 0 0 0 5.8 2.0 

11 1 0 0 0 0 0 

12 1 0 0 0 11.2 7.5 

13 1 0 0 0 0 0 

14 1 0 0 0 6.2 1.6 

15 1 0 0 0 8.2 2.5 

16 1 0 0 0 3.5 1.8 

17 1 0 0 0 9.0 5.8 

18 1 0 0 0 3.2 0.9 
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19 1 0 0 0 9.5 3.4 

20 1 0 0 0 2.2 0.7 

21 1 0 0 0 17.5 11.2 

22 1 0 0 0 0 0 

23 1 0 0 0 3.2 1.6 

24 1 0 0 0 8.7 6.7 

25 1 0 0 0 0 0 

26 1 0 0 0 3.5 2.3 

27 1 0 0 0 0 0 

28 1 0 0 0 0 0 

29 1 0 0 0 2.4 0.9 

30 1 0 0 0 10.6 1.9 

*Slack Bus 

 

TABLE I-I: REGULATED BUS DATA (30 BUS SYSTEM) 

Bus no. Voltage magnitude 

( in pu) 

Minimum MVAR 

capability 

Maximum MVAR 

capability 

2 1.045 -40 50 

5 1.01 -40 40 

8 1.01 -10 40 

11 1.082 -6 24 

13 1.071 -6 24 

 

TABLE I-J: TRANSFORMER DATA (30 BUS SYSTEM) 

Transformer designation Tap setting* 

4-12 0.932 

6-9 0.978 

6-10 0.969 

28-27 0.968 

*Off nominal turns ratio, as determined by the actual transformer-tap position and the 

voltage bases. In the case of nominal turns ratio, this would equal to 1. 

 

TABLE I-K: STATIC CAPACITOR DATA (30 BUS SYSTEM) 

Bus no Susceptance*p.u. 

10 0.19 

24 0.043 

*Susceptance in p.u. on 100 MVA base. 

 

Cost characteristics of IEEE 30 bus system: 
The cost characteristics of the IEEE 30 Bus System are as follows: 

C1 = 50p1
2
+245p1+105 $/hr 

C2 = 50p2
2
+351p2+44.4 $/hr 

C8 = 50p8
2
+389p8+40.6 $/hr 
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          The total load demand of the IEEE 30 bus system is 283.4 MW. The maximum 

active power constraint is 250 MW, 100MW and 100 MW for the generators of bus no. 

1, 2 and 8 respectively. The minimum active power constraint is 50 MW, 30MW and 30 

MW for the generators of bus no. 1, 2 and 8 respectively. Voltage magnitude constraint 

for generator at bus 2 is 1.045, for bus no. 5 is 1.01, for bus no. 8 is 1.010, for bus no. 11 

is 1.082 &for bus no. 13 is 1.071. 

 

M-file For Calculating B- Coefficients: 
 

Clear 

basemva=100 

accuracy=0.0001 

maxiter=10 

busdata=[1 1 1.06 0 0 0 0 0 0 0 0;2 2 1.045 0 21.7 12.7 90 0 -40 50 0; 3 0 1 0 2.4 1.2 0 0 

0 0 0;4 0 1 0 7.6 1.6 0 0 0 0 0;5 0 1.01 0 94.2 19 0 0 -40 40 0; 6 0 1 0 0 0 0 0 0 0 0; 7 0 1 

0 22.8 10.9 0 0 0 0 0;8 2 1.010 30 30150 0 -10 40 0; 9 0 1 0 0 0 0 0 0 0 0; 10 0 1 0 5.8 2 

0 0 0 0 0.19; 11 0 1.082 0 0 0 0 0 -6 24 0; 12 0 1 0 11.2 7.5 0 0 0 0 0; 13 0 1.071 0 0 0 0 

0 -6 24 0; 14 0 1 0 6.2 1.6 0 0 0 0 0;15 0 1 0 8.2 2.5 0 0 0 0 0;16 0 1 0 3.5 1.8 0 0 0 0 0; 

17 0 1 0 9 5.8 0 0 0 0 0; 18 0 1 0 3.2 0.9 0 0 0 0 0; 19 0 1 0 9.5 3.4 0 0 0 0 0; 20 0 1 0 2.2 

0.7 0 0 0 0 0;21 0 1 0 17.5 11.2 0 0 0 0 0;22 0 1 0 0 0 0 0 0 0 0;23 1 0 3.2 1.6 0 0 0 0 0; 

24 0 1 0 8.7 6.7 0 0 0 0 0.043; 25 0 1 0 0 0 0 0 0 0 0;26 0 1 0 3.5 2.3 0 0 0 0 0; 27 0 1 0 0 

0 0 0 0 0 0; 28 0 1 0 0 0 0 0 0 0 0;29 0 1 0 2.4 0.9 0 0 0 0 0; 30 0 1 0 10.6 1.9 0 0 0 0 0]; 

linedata=[1 2 0.0192 0.0575 0.0264 1;1 3 0.0452 0.1852 0.0204 1; 2 4 0.0570 0.19797 

0.0219 1; 2 4 0.05811 0.17632 0.0170 1; 2 5 0.05695 0.17388 0.0173 1; 3 4 0.06701 

0.17103 0.0064 1; 4 5 0.01335 0.04211 0.0 1; 4 7 0.0 0.20912 0.0 0.978; 4 9 0.0 0.55618 

0.0 0.969;5 6 0.0 0.25202 0.0 0.932; 6 11 0.09498 0.19890 0.0 1;6 12 0.12291 0.25581 

0.0 1;6 13 0.06615 0.13027 0.0 1;7 8 0.0 0.17615 0.0 1; 7 9 0.0 0.11001 0.0 1; 9 10 

0.03181 0.08450 0.0 1;9 14 0.12711 0.27038 0.0 1; 10 11 0.08205 0.19207 0.0 1;12 13 

0.22092 0.19988 0.0 1;13 14 0.17093 0.34802 0.0 1]; 

disp(busdata) 

disp(linedata) 

mwlimit=[50 150;50 150;50 150] 

Ifybus 

Ifnewton 

busout 

bloss 

 

B-Coefficient Calculated is as: 

B11 = 0.0307     B12 = 0.0129     B13 = 0.0002 

B21 = 0.0129     B22=0.0152       B23= - 0.0011 

B31=0.0002       B32=- 0.0011    B33= 0.0190 
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APPENDIX- II 

1. MATLAB Program for the optimization of benchmark functions using PSO 

clc 

disp('Function to be minimize f = (1.5-x1+x1*x2)^2 +(2.25-x1+x1*x2^2)^2 

+ (2.625-x1+x1*x2^3)^2 i.e. beale’s function'); 

%disp('Function to be minimize f = (x1+2*x2-7)^2 +(2*x1+x2-5)^2 i.e. 

booth's function'); 

%disp('Function to be minimize f = 100(x1^2-x2)^2+(1-x1)^2 i.e. 

rosenbrock function'); 

%disp('Function to be minimize f = x1^2 + x2^2 i.e. Sphere function'); 

p=input('Enter the no. of particles in a swarm= '); 

it=input('Enter the maximum no. of iterations to be performed= '); 

T=input('Enter the tolerance value= '); 

tic; 

% Initialization of variables 

x1=zeros(p,it);  

x2=zeros(p,it); 

v1=zeros(p,it); 

v2=zeros(p,it); 

f=zeros(p,it); 

fp=zeros(1,p); 

df=zeros(1,(it-1)); 

r1=0.5; 

r2=0.5; 

c1=2; 

c2=2; 

%c1=2.05 %when constriction factor is used 

%c2=2.05 %when constriction factor is used 

%Initial random position and velocity selection 

x1(:,1)=unifrnd(-4.5,4.5,1,p); 

x2(:,1)=unifrnd(-4.5,4.5,1,p); 

v1(:,1)=rand(1,p); 

v2(:,1)=rand(1,p); 

print = [x1(:,1) x2(:,1) v1(:,1) v2(:,1) f(:,1)]; 

disp('     x1        x2        v1        v2        f') 

disp(print) 

% fitness evaluation 

for j=1:p 

f(j,1)=(1.5-x1(j,1)+x1(j,1)*x2(j,1))^2 + (2.25-

x1(j,1)+x1(j,1)*x2(j,1)^2)^2 + (2.625-x1(j,1)+x1(j,1)*x2(j,1)^3)^2; 

%f(j,1) = (x1(j,1)+2*x2(j,1)-7)^2 +(2*x1(j,1)+x2(j,1)-5)^2 ; 

%f(j,1)= 100*((x1(j,1))^2 - x2(j,1) )^2 + (1- x1(j,1))^2 ; 

%f(j,1)= x1(j,1)^2 + x2(j,1)^2 ; 

end 

%Initial personal best values 

x1p=x1(:,1); 

x2p=x2(:,1); 

%for Initial Global best values 

fmin=min(f(:,1)); 

for j=1:p 

    if f(j,1)==fmin 

        x1g = x1(j,1); 

        x2g = x2(j,1); 

    else 

    end 

end 
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%Updation by PSO algorithm 

for i=1:it 

disp(sprintf('This is %d no. of iteration',i)) 

%for inertia weight W 

  wmax=0.9; 

  wmin=0.4; 

%Linearly Decreasing inertia weight W 

  w = wmax-i*((wmax-wmin)/it);  

%constriction factor 

  cf = 0.729; 

for j=1:p 

%For velocity updation 

%Only active inertia weight(IW-PSO), IPSO-B, IPSO-C 

v1(j,(i+1)) = w*v1(j,i) + r1*c1*(x1p(j)-x1(j,i)) + r2*c2*(x1g-x1(j,i)); 

v2(j,(i+1)) = w*v2(j,i) + r1*c1*(x2p(j)-x2(j,i)) + r2*c2*(x2g-x2(j,i)); 

%Only constriction factor(CF-PSO) 

%v1(j,(i+1))= cf *(v1(j,i)+r1*c1*(x1p(j)-x1(j,i))+r2*c2*(x1g-x1(j,i))); 

%v2(j,(i+1))= cf *(v2(j,i)+r1*c1*(x2p(j)-x2(j,i))+r2*c2*(x2g-x2(j,i))); 

%Both inertia weight and constriction factor (CI-PSO) 

%v1(j,(i+1))=cf*(w*v1(j,i)+r1*c1*(x1p(j)-x1(j,i))+r2*c2*(x1g-x1(j,i))); 

%v2(j,(i+1))=cf*(w*v2(j,i)+r1*c1*(x2p(j)-x2(j,i))+r2*c2*(x2g-x2(j,i))); 

%For IPSO-A 

 %kk=1; 

  %if f(j,i)==fmin 

  %   kk= 0; 

  %end 

%v1(j,(i+1))= w*v1(j,i) + r1*c1*(x1p(j)-x1(j,i)) + r2*c2*(x1g-x1(j,i)); 

%v2(j,(i+1))= w*v2(j,i) + r1*c1*(x2p(j)-x2(j,i)) + r2*c2*(x2g-x2(j,i)); 

         

%For Position updation 

%IW-PSO, CF-PSO, CI-PSO, IPSO-A 

x1(j,(i+1)) = x1(j,i) + v1(j,(i+1)); 

x2(j,(i+1)) = x2(j,i) + v2(j,(i+1)); 

%IPSO-B 

 %kk=1; 

  %if f(j,i)==fmin 

  %   kk= 0; 

  %end 

%x1(j,(i+1)) = x1(j,i) + kk*v1(j,(i+1)); 

%x2(j,(i+1)) = x2(j,i) + kk*v2(j,(i+1)); 

%IPSO-C 

 %kk=1; 

  %if f(j,i)<fp(j) 

  %   kk= 0; 

  %end 

%x1(j,(i+1)) = x1(j,i) + kk*v1(j,(i+1)); 

%x2(j,(i+1)) = x2(j,i) + kk*v2(j,(i+1)); 

         

%Fitness evaluation 

f(j,(i+1))=(1.5-x1(j,(i+1))+x1(j,(i+1))*x2(j,(i+1)))^2+(2.25-

x1(j,(i+1))+ x1(j,(i+1))*x2(j,(i+1))^2)^2 +(2.625-

x1(j,(i+1))+x1(j,(i+1))*x2(j,(i+1))^3)^2; 

%f(j,(i+1)) = (x1(j,(i+1))+2*x2(j,(i+1))-7)^2 

+(2*x1(j,(i+1))+x2(j,(i+1))-5)^2; 

%f(j,(i+1))= 100*( (x1(j,(i+1)))^2 - x2(j,(i+1)) )^2 + (1- 

x1(j,(i+1)))^2 ; 

%f(j,(i+1))=  x1(j,(i+1))^2 + x2(j,(i+1))^2 ; 

end 

  

%To find change in the values of f 
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 for j=1:p 

   df(j,i)= abs(f(j,(i+1))-f(j,i)) ; 

 end 

    

%personal best values updation 

 for j=1:p 

 fp(j)= (1.5-x1p(j)+x1p(j)*x2p(j))^2+(2.25-

x1p(j)+x1p(j)*x2p(j)^2)^2+(2.625-x1p(j)+x1p(j)*x2p(j)^3)^2; 

 %fp(j)=(x1p(j)+2*x2p(j)-7)^2 +(2*x1p(j)+x2p(j)-5)^2; 

 %fp(j)= 100*( (x1p(j))^2 - x2p(j) )^2 + (1- x1p(j))^2; 

 %fp(j)= x1p(j)^2 + x2p(j)^2; 

 end 

 for j=1:p 

   if f(j,i+1)< fp(j) 

        x1p(j)=x1(j,i+1);     %personal best values 

        x2p(j)=x2(j,i+1); 

        else 

   end 

  end 

     

%for Global best values updation 

   if min(f(:,(i+1)))<fmin 

        fmin=min(f(:,(i+1))); 

   else 

   end 

  for j=1:p 

    if f(j,i+1)==fmin 

         x1g = x1(j,i+1);     %global best values 

         x2g = x2(j,i+1); 

      else 

    end 

   end 

print = [x1(:,i) x2(:,i) v1(:,i) v2(:,i) f(:,i)]; 

disp('     x1        x2        v1        v2        f') 

disp(print) 

     

%Stoping criterion 

ki=0; 

for j=1:p 

 if (df(j,i)<=10^(-T)) 

   ki=ki+1; 

 end 

end 

 if ki >= p 

   break 

 end 

end 

t=toc; 

[r,c]=find(f==fmin); 

minf = (1.5-x1g+x1g*x2g)^2 +(2.25-x1g+x1g*x2g^2)^2 +(2.625-

x1g+x1g*x2g^3)^2; 

%minf = (x1g+2*x2g-7)^2 +(2*x1g+x2g-5)^2; 

%minf = 100*( (x1g^2 - x2g )^2 + (1- x1g)^2); 

%minf = (x1g^2 + x2g^2); 

disp(sprintf('min value of function is %d and at values of x1=%d and 

x2=%d ',minf,x1g,x2g)); 

disp(sprintf('time = %d ',t)); 
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2. MATLAB Program for the solution of IEEE 5-bus system using PSO 

clear all 
clc 
disp(' we have to minimize the cost function of a IEEE 5-BUS system') 
p=input('Enter the no. of particles in a swarm= '); %no. of particles 
it=input('Enter the no. of iterations= '); 
tic; %time calculation 
%Input Data 
a=10^(-4)*[50 50]; 
b=10^(-2)*[351 389]; 
c=[44.4 40.6]; 
B=10^(-2)*[0.0349 0.0086; -0.0055 0.0371]; 
%Initialization of variables 
p1=zeros(p,it);  

p2=zeros(p,it); 
v1=zeros(p,it); 
v2=zeros(p,it); 
f=zeros(p,it); 
df=zeros(p,it); 
sp=zeros(p,it); 
csp=zeros(p,it); 
pl=zeros(p,it); 
C1=zeros(p,it); 
C2=zeros(p,it); 
C=zeros(p,it); 
r1=0.5; 
r2=0.5; 
c1=2; 
c2=2; 
pd=160; 
p1g=zeros(p); 
p2g=zeros(p); 
fp=zeros(1,p); 
plp=zeros(1,p); 
k=50; 
w1=1; 
n=1; 
while n==1 
    for j=1:p 
    p1(j,1)=unifrnd(30,120,1); 
    p2(j,1)=pd-p1(j,1); 
    if p2(j,1)<30&&p2(j,1)>120 
        n=1; 
        break; 
    else 
        n=0; 
    end 
    end 
end 
v1(:,1)=rand(1,p); 
v2(:,1)=rand(1,p); 
%Total cost calculation 
for j=1:p 
         C1(j,1) = a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1); 
         C2(j,1) = a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2); 
         C(j,1) = C1(j,1) + C2(j,1); 
end 
%To calculate initial value of cost function we need PL 
for j=1:p 
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    pl(j,1)= [p1(j,1) p2(j,1)]*B*[p1(j,1) p2(j,1)]'; 
end 
%To calculate initial value of cost function 
for j=1:p 
 f(j,1)= w1*((a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1))+(a(2)*(p2(j,1))^2 

+ b(2)*p2(j,1) + c(2)))+ k*abs(pd+pl(j,1)-p1(j,1)-p2(j,1)); 
end 

%0th iteration data display 
disp('this is the 0th iteration') 
print0 = [p1(:,1) p2(:,1) v1(:,1) v2(:,1) f(:,1) C1(:,1) C2(:,1) 

C(:,1)]; 
disp('      P1         P2         V1         v2       f       C1        

C2        C ') 
disp(print0) 
%Initial personal besst values 
p1p=p1(:,1); 
p2p=p2(:,1); 
%for Initial Global best values updation 
fmin=min(f(:,1)); 
for m=1:p 
    if f(m,1)==fmin 
        gb=m; 
    else 
    end 
end 
%Initial global best value 
for m=1:p 
p1g(m) = p1(gb,1); 
p2g(m) = p2(gb,1); 
end 
fgm = min(f(:,1)); 
%Main iterations starts from here 
for i=1:it 
    disp(sprintf('This is iteration no.= %d',i)) 
%for inertia weight W 
wmax=0.9; 
wmin=0.4; 
%Linearly Decreasing inertia weight W 
w = wmax-i*((wmax-wmin)/it);  
% for constraction Factor 
 cf = 0.729; 
%For calculatiing velocities for updation       
 for j=1:p 
 kk=1; 
 %if f(j,i)==fgm 
  %  kk= 0; 
 %end 
v1(j,(i+1)) = kk*(w*v1(j,i) + r1*c1*(p1p(j)-p1(j,i)) + r2*c2*(p1g(j)-

p1(j,i))); 
v2(j,(i+1)) = kk*(w*v2(j,i) + r1*c1*(p2p(j)-p2(j,i)) + r2*c2*(p2g(j)-

p2(j,i))); 
 %V(min) and V(max) constraint 
 for j=1:p 
        if v1(j,(i+1))< -15 
            v1(j,(i+1))= -15; 
        end 
        if v2(j,(i+1))< -15 
            v2(j,(i+1))= -15; 
        end 
        if v1(j,(i+1))> 60 
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            v1(j,(i+1))= 60; 
        end 
        if v2(j,(i+1))> 60 
            v2(j,(i+1))= 60; 
        end 
 end 
%Updation of p values 
for j=1:p 
         kk=1; 
        % if f(j,i)==fgm 
         %   kk= 0; 
        %end 
        %if f(j,i)<fp(j) 
         %   kk= 0; 
        %end 
        p1(j,(i+1)) = p1(j,i) + kk*v1(j,(i+1)); 
        p2(j,(i+1)) = p2(j,i) + kk*v2(j,(i+1)); 
 end 
 %Pmin and Pmax constraint 
 for j=1:p 
        if p1(j,(i+1))< 30 
            p1(j,(i+1))= 30; 
        end 
        if p2(j,(i+1))< 30 
            p2(j,(i+1))= 30; 
        end 
        if p1(j,(i+1))> 120 
            p1(j,(i+1))= 120; 
        end 
        if p2(j,(i+1))> 120 
            p2(j,(i+1))= 120; 
        end 
 end 
 %For losses formulation (PL) 
 for j=1:p 
   pl(j,(i+1))= [p1(j,(i+1)) p2(j,(i+1))]*B*[p1(j,(i+1)) p2(j,(i+1))]'; 
 end 
%Main objective function 
for j=1:p 
 f(j,(i+1))= w1*((a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) +c(1))+ 

(a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2)))+ 

k*abs(pd+pl(j,(i+1))-p1(j,(i+1))-p2(j,(i+1))); 
end 
%personal best values updation 
%For losses formulation (PL) 
 for j=1:p 
    plp(j)= [p1p(j) p2p(j)]*B*[p1p(j) p2p(j)]'; 
 end 
 for j=1:p 
        fp(j)= w1*((a(1)*(p1p(j))^2 + b(1)*p1p(j) + 

c(1))+(a(2)*(p2p(j))^2 + b(2)*p2p(j) + c(2))) +  k*abs(pd+plp(j)-

p1p(j)-p2p(j)); 
 end 
 for m=1:p 
        if f(m,i)< fp(m) 
            p1p(m)=p1(m,(i+1)); 
            p2p(m)=p2(m,(i+1));    
        else 
        end 
 end 
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%for Global best values updation 
    if min(f(:,(i+1)))<fgm 
        fgm=min(f(:,(i+1))); 
    else 
    end 
   for j=1:(i+1) 
        for m=1:p 
            if f(m,j)==fgm 
                for l=1:p 
                    p1g(l) = p1(m,j);     %global best values 
                    p2g(l) = p2(m,j); 
                end 
            else 
            end 
        end 
    end  
    %For Cost Calculation 
    for j=1:p 
         C1(j,(i+1)) = a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) + c(1); 
         C2(j,(i+1)) = a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2); 
         C(j,(i+1)) = C1(j,(i+1)) + C2(j,(i+1)); 
    end  
    %To find change in the values of f 
    for j=1:p 
        df(j,i)= abs(f(j,(i+1))-f(j,i)); 
        sp(j,i)= abs(pd+pl(j,(i+1))-p1(j,(i+1))-p2(j,(i+1))); 
        csp(j,i)= abs(C(j,(i+1))-C(j,i)); 
    end 

print=[p1(:,(i+1)) p2(:,(i+1)) v1(:,(i+1)) v2(:,(i+1)) f(:,(i+1)) 

C1(:,(i+1)) C2(:,(i+1))  C(:,(i+1))]; 
disp('P1     P2      V1      v2        f       c1       c2       C ') 
disp(print)     
%Stoping criterion (df(j,i)<=10^(-6))&& &&(csp(j,i)<=10^(-6)) 
    ki=0; 
    for j=1:p 
        if ((df(j,i)<=10^(-6))&&(sp(j,i)<=10^(-6))) 
            ki=ki+1; 
        end 
    end 
    if ki == p 
        break 
    end 
end 
t=toc; 
disp('Initial values of generations of 2 generators') 
initial=[p1(:,1) p2(:,1) ]; 
disp('    P1        P2    ') 
disp(initial) 
disp(sprintf('\nPD+Pl = %d',pd+pl(1,i))) 
disp(sprintf('\nP1+P2=%d\n',p1(1,i)+p2(1,i))) 
disp(sprintf('No. of total Iterations took place = %d \n',i)) 
disp(sprintf('Total loses in the lines Pl = %d \n',pl(1,i))) 
disp(sprintf('Minimum cost incured = %d \n',C(1,i))) 
disp('\nFinal values of generations of the three generators') 
disp(sprintf('P1=%d',p1(1,i))) 
disp(sprintf('P2=%d',p2(1,i))) 
disp(sprintf('Computational Time = %d ',t)); 
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3. MATLAB Program for the solution of IEEE 14-bus system using PSO 

 

clear all 
clc 
disp('we have to minimize the cost function of IEEE 14-BUS system') 
p=input('Enter the no. of particles in a swarm= ');%no. of particles 
it=input('Enter the maximum no. of iterations to be performed= '); 
tic; %time calculation 
%Input Data 
a=10^(-4)*[50 50 50]; 
b=10^(-2)*[245 351 389]; 
c=[105 44.4 40.6]; 
B=10^(-2)*[0.0349 0.0068 -0.0039; 0.0068 0.0157 0.0015; -0.0039 0.0015 

0.0275]; 
B0=10^(-2)*[0.0044 0.0024 0.0000]; 
B00=2.5408*10^(-4); 
%Initialization of variables 
p1=zeros(p,it);  
p2=zeros(p,it); 
p3=zeros(p,it); 
v1=zeros(p,it); 
v2=zeros(p,it); 
v3=zeros(p,it); 
f=zeros(p,it); 
df=zeros(p,it); 
sp=zeros(p,it); 
csp=zeros(p,it; 
pl=zeros(p,it); 
C1=zeros(p,it); 
C2=zeros(p,it); 
C3=zeros(p,it); 
C=zeros(p,it); 
r1=0.5; 
r2=0.5; 
c1=2; 
c2=2; 
pd=259; 
p1g=zeros(p); 
p2g=zeros(p); 
p3g=zeros(p); 
fp=zeros(1,p; 
plp=zeros(1,p; 
k=50; 
w1=1; 
n=1; 
while n==1 
    for j=1:p 
    p1(j,1)=unifrnd(50,200,1); 
    p2(j,1)=unifrnd(20,100,1); 
    p3(j,1)=pd-p1(j,1)-p2(j,1); 
    if p3(j,1)<20&&p3(j,1)>100 
        n=1; 
        break; 
    else 
        n=0; 
    end 
    end 
end 
v1(:,1)=rand(1,p); 
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v2(:,1)=rand(1,p); 
v3(:,1)=rand(1,p); 
%Total cost calculation 
    for j=1:p 
         C1(j,1) = a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1); 
         C2(j,1) = a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2); 
         C3(j,1) = a(3)*(p3(j,1))^2 + b(3)*p3(j,1) + c(3); 
         C(j,1) = C1(j,1) + C2(j,1) + C3(j,1); 
    end 
%To calculate initial value of cost function we need PL 
for j=1:p 
    pl(j,1)= [p1(j,1) p2(j,1) p3(j,1)]*B*[p1(j,1) p2(j,1) p3(j,1)]' 

+[p1(j,1) p2(j,1) p3(j,1)]*B0'+B00; 
end 
%To calculate initial value of cost function 
for j=1:p 
    f(j,1)= w1*((a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1)) + 

(a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2))+(a(3)*(p3(j,1))^2 + 

b(3)*p3(j,1) + c(3))) + k*abs(pd+pl(j,1)-p1(j,1)-p2(j,1)-p3(j,1)); 
end 
%Initial personal besst values 
p1p=p1(:,1); 
p2p=p2(:,1); 
p3p=p3(:,1); 
%for Initial Global best values updation 
fmin=min(f(:,1)); 
for m=1:p 
    if f(m,1)==fmin 
        gb=m; 
    else 
    end 
end 
%Initial global best value 
for m=1:p 
p1g(m) = p1(gb,1); 
p2g(m) = p2(gb,1); 
p3g(m) = p3(gb,1); 
end 
fgm = min(f(:,1)); 
%Main iterations starts from here 
for i=1:it 
    disp(sprintf('This is iteration no.= %d',i)) 
%for inertia weight W 
wmax=0.9; 
wmin=0.4; 
%Linearly Decreasing inertia weight W 
w = wmax-i*((wmax-wmin)/it);  
% for constraction Factor 
 cf = 0.729; 
%For calculatiing velocities for updation       
 for j=1:p 
 kk=1; 
 %if f(j,i)==fgm 
  %  kk= 0; 
 %end 
 v1(j,(i+1)) = kk*(w*v1(j,i) + r1*c1*(p1p(j)-p1(j,i)) + r2*c2*(p1g(j)-

p1(j,i))); 
 v2(j,(i+1)) = kk*(w*v2(j,i) + r1*c1*(p2p(j)-p2(j,i)) + r2*c2*(p2g(j)-

p2(j,i))); 
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 v3(j,(i+1)) = kk*(w*v3(j,i) + r1*c1*(p3p(j)-p3(j,i)) + r2*c2*(p3g(j)-

p3(j,i))); 
 end 
   %V(min) and V(max) constraint 
    for j=1:p 
        if v1(j,(i+1))< -25 
            v1(j,(i+1))= -25; 
        end 
        if v2(j,(i+1))< -10 
            v2(j,(i+1))= -10; 
        end 
        if v3(j,(i+1))< -10 
            v3(j,(i+1))= -10; 
        end 
        if v1(j,(i+1))> 100 
            v1(j,(i+1))= 100; 
        end 
        if v2(j,(i+1))> 50 
            v2(j,(i+1))= 50; 
        end 
        if v3(j,(i+1))> 50 
            v3(j,(i+1))= 50; 
        end 
    end 
%Updation of p values 
    for j=1:p 
        kk=1; 
       if f(j,i)==fgm 
            kk= 0; 
       end 
       %if f(j,i)<fp(j) 
        %    kk= 0; 
       %end 
        p1(j,(i+1)) = p1(j,i) + kk*v1(j,(i+1)); 
        p2(j,(i+1)) = p2(j,i) + kk*v2(j,(i+1)); 
        p3(j,(i+1)) = p3(j,i) + kk*v3(j,(i+1)); 
    end 
    %Pmin and Pmax constraint 
    for j=1:p 
        if p1(j,(i+1))< 50 
            p1(j,(i+1))= 50; 
        end 
        if p2(j,(i+1))< 20 
            p2(j,(i+1))= 20; 
        end 
        if p3(j,(i+1))< 20 
            p3(j,(i+1))= 20; 
        end 
        if p1(j,(i+1))> 200 
            p1(j,(i+1))= 200; 
        end 
        if p2(j,(i+1))> 100 
            p2(j,(i+1))= 100; 
        end 
        if p3(j,(i+1))> 100 
            p3(j,(i+1))= 100; 
        end 
    end 
  %For losses formulation (PL) 
 for j=1:p 
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  pl(j,(i+1))= [p1(j,(i+1)) p2(j,(i+1)) p3(j,(i+1))]*B*[p1(j,(i+1)) 

p2(j,(i+1)) p3(j,(i+1))]'+[p1(j,(i+1)) p2(j,(i+1)) 

p3(j,(i+1))]*B0'+B00; 
 end 
%Main objective function 
 for j=1:p 
   f(j,(i+1))= w1*((a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) + c(1))+ 

(a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2))+(a(3)*(p3(j,(i+1)))^2 

+ b(3)*p3(j,(i+1)) + c(3))) + k*abs(pd+pl(j,(i+1))-p1(j,(i+1))-

p2(j,(i+1))-p3(j,(i+1))); 
 end 
%personal best values updation 
%For losses formulation (PL) 
for j=1:p 
  plp(j)= [p1p(j) p2p(j) p3p(j)]*B*[p1p(j) p2p(j) p3p(j)]'+[p1p(j) 

p2p(j) p3p(j)]*B0'+B00; 
end 
for j=1:p 
  fp(j)= w1*((a(1)*(p1p(j))^2 + b(1)*p1p(j) + c(1))+(a(2)*(p2p(j))^2 + 

b(2)*p2p(j) + c(2))+(a(3)*(p3p(j))^2 + b(3)*p3p(j) + c(3))) +  

k*abs(pd+plp(j)-p1p(j)-p2p(j)-p3p(j)); 
end 
    for m=1:p 
        if f(m,i)< fp(m) 
            p1p(m)=p1(m,(i+1)); 
            p2p(m)=p2(m,(i+1)); 
            p3p(m)=p3(m,(i+1)); 
        else 
        end 
    end 
%for Global best values updation 
    if min(f(:,(i+1)))<fgm 
        fgm=min(f(:,(i+1))); 
    else 
    end                
    for j=1:(i+1) 
        for m=1:p 
        if f(m,j)==fgm 
            for l=1:p 
                p1g(l) = p1(m,j);     %global best values 
                p2g(l) = p2(m,j); 
                p3g(l) = p3(m,j); 
            end 
        else 
        end 
        end 
    end  
    %For Cost calculation 
    for j=1:p 
         C1(j,(i+1)) = a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) + c(1); 
         C2(j,(i+1)) = a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2); 
         C3(j,(i+1)) = a(3)*(p3(j,(i+1)))^2 + b(3)*p3(j,(i+1)) + c(3); 
         C(j,(i+1)) = C1(j,(i+1)) + C2(j,(i+1)) + C3(j,(i+1)); 
    end 
    %To find change in the values of f 
    for j=1:p 
      df(j,i)= abs(f(j,(i+1))-f(j,i)) ; 
      sp(j,i)= abs(pd+pl(j,(i+1))-p1(j,(i+1))-p2(j,(i+1))-p3(j,(i+1))); 
      csp(j,i)= abs(C(j,(i+1))-C(j,i)); 
    end 
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%Stoping criterion &&(csp(j,i)<=10^(-6))  (df(j,i)<=10^(-6))&& 
    ki=0; 
    for j=1:p 
        if ((df(j,i)<=10^(-6))&&(sp(j,i)<=10^(-6))) 
            ki=ki+1; 
        end 
    end 
    if ki >= p 
        break 
    end 
end 
t=toc; 
disp('Initial values of generations of 3 generators') 
initial=[p1(:,1) p2(:,1) p3(:,1)]; 
disp('    P1        P2        P3   ') 
disp(initial) 
disp(sprintf('\nPD+Pl = %d',pd+pl(1,i))) 
disp(sprintf('\nP1+P2+P3=%d\n',p1(1,i)+p2(1,i)+p3(1,i))) 
disp(sprintf('No. of total Iterations took place = %d \n',i)) 
disp(sprintf('Total loses in the lines Pl = %d \n',pl(1,i))) 
disp(sprintf('Minimum cost incured = %d \n',C(1,i))) 
disp('\nFinal values of generations of the three generators') 
disp(sprintf('P1=%d',p1(1,i))) 
disp(sprintf('P2=%d',p2(1,i))) 
disp(sprintf('P3=%d',p3(1,i))) 
disp(sprintf('Computational Time = %d ',t)); 

 

 

 

4. MATLAB Program for the solution of IEEE 30-bus system using PSO 

 
clear all 
clc 
disp(' we have to minimize the cost function of IEEE 30-BUS system') 
p=input('Enter the no. of particles in a swarm= '); %no. of particles 
it=input('Enter the maximum no. of iterations to be performed= '); 
tic; %time calculation 
%Input Data 
a=10^(-4)*[50 50 50]; 
b=10^(-2)*[245 351 389]; 
c=[105 44.4 40.6]; 
B=10^(-2)*[0.0307 0.0129 -0.0002; 0.0129 0.0152 -0.0011; -0.0002 -

0.0011 0.0190]; 
%Initialization of variables 
p1=zeros(p,it);  
p2=zeros(p,it); 
p3=zeros(p,it); 
v1=zeros(p,it); 
v2=zeros(p,it); 
v3=zeros(p,it); 
f=zeros(p,it); 
df=zeros(p,it); 
sp=zeros(p,it); 
csp=zeros(p,it); 
pl=zeros(p,it); 
C1=zeros(p,it); 
C2=zeros(p,it); 
C3=zeros(p,it); 
C=zeros(p,it); 



70 
 

 

r1=0.5; 
r2=0.5; 
c1=2; 
c2=2; 
pd=283.4; 
p1g=zeros(p); 
p2g=zeros(p); 
p3g=zeros(p); 
fp=zeros(1,p); 
plp=zeros(1,p); 
k=50; 
w1=1; 
n=1; 
while n==1 
    for j=1:p 
    p1(j,1)=unifrnd(50,250,1); 
    p2(j,1)=unifrnd(30,100,1); 
    p3(j,1)=283.4-p1(j,1)-p2(j,1); 
    if p3(j,1)<30&&p3(j,1)>100 
        n=1; 
        break; 
    else 
        n=0; 
    end 
    end 
end 
v1(:,1)=rand(1,p); 
v2(:,1)=rand(1,p); 
v3(:,1)=rand(1,p); 
%Total cost calculation 
    for j=1:p 
         C1(j,1) = a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1); 
         C2(j,1) = a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2); 
         C3(j,1) = a(3)*(p3(j,1))^2 + b(3)*p3(j,1) + c(3); 
         C(j,1) = C1(j,1) + C2(j,1) + C3(j,1); 
    end 
%To calculate initial value of cost function we need PL 
for j=1:p 
    pl(j,1)= [p1(j,1) p2(j,1) p3(j,1)]*B*[p1(j,1) p2(j,1) p3(j,1)]'; 
end 
%To calculate initial value of cost function 
for j=1:p 
    f(j,1)= w1*((a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1)) + 

(a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2))+(a(3)*(p3(j,1))^2 + 

b(3)*p3(j,1) + c(3))) + k*abs(pd+pl(j,1)-p1(j,1)-p2(j,1)-p3(j,1)); 
end 
%Initial personal besst values 
p1p=p1(:,1); 
p2p=p2(:,1); 
p3p=p3(:,1); 
%for Initial Global best values updation 
fmin=min(f(:,1)); 
for m=1:p 
    if f(m,1)==fmin 
        gb=m; 
    else 
    end 
end 
%Initial global best value 
for m=1:p 



71 
 

 

p1g(m) = p1(gb,1); 
p2g(m) = p2(gb,1); 
p3g(m) = p3(gb,1); 
end 
fgm = min(f(:,1)); 
%Main iterations starts from here 
for i=1:it 
    disp(sprintf('This is iteration no.= %d',i)) 
%for inertia weight W 
wmax=0.9; 
wmin=0.4; 
%Linearly Decreasing inertia weight W 
w = wmax-i*((wmax-wmin)/it);  
% for constraction Factor 
 cf = 0.729; 
%For calculatiing velocities for updation       
 for j=1:p 
 kk=1; 
 %if f(j,i)==fgm 
  %  kk= 0; 
 %end 
 v1(j,(i+1)) = kk*(w*v1(j,i) + r1*c1*(p1p(j)-p1(j,i)) + r2*c2*(p1g(j)-

p1(j,i))); 
 v2(j,(i+1)) = kk*(w*v2(j,i) + r1*c1*(p2p(j)-p2(j,i)) + r2*c2*(p2g(j)-

p2(j,i))); 
 v3(j,(i+1)) = kk*(w*v3(j,i) + r1*c1*(p3p(j)-p3(j,i)) + r2*c2*(p3g(j)-

p3(j,i))); 
 end 
   %V(min) and V(max) constraint 
    for j=1:p 
        if v1(j,(i+1))< -25 
            v1(j,(i+1))= -25; 
        end 
        if v2(j,(i+1))< -15 
            v2(j,(i+1))= -15; 
        end 
        if v3(j,(i+1))< -15 
            v3(j,(i+1))= -15; 
        end 
        if v1(j,(i+1))> 125 
            v1(j,(i+1))= 125; 
        end 
        if v2(j,(i+1))> 50 
            v2(j,(i+1))= 50; 
        end 
        if v3(j,(i+1))> 50 
            v3(j,(i+1))= 50; 
        end 
    end 
%Updation of p values 
    for j=1:p 
        kk=1; 
       if f(j,i)==fgm 
            kk= 0; 
       end 
       %if f(j,i)<fp(j) 
        %    kk= 0; 
       %end 
        p1(j,(i+1)) = p1(j,i) + kk*v1(j,(i+1)); 
        p2(j,(i+1)) = p2(j,i) + kk*v2(j,(i+1)); 
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        p3(j,(i+1)) = p3(j,i) + kk*v3(j,(i+1)); 
    end 
    %Pmin and Pmax constraint 
   for j=1:p 
        if p1(j,(i+1))< 50 
            p1(j,(i+1))= 50; 
        end 
        if p2(j,(i+1))< 30 
            p2(j,(i+1))= 30; 
        end 
        if p3(j,(i+1))< 30 
            p3(j,(i+1))= 30; 
        end 
        if p1(j,(i+1))> 250 
            p1(j,(i+1))= 250; 
        end 
        if p2(j,(i+1))> 100 
            p2(j,(i+1))= 100; 
        end 
        if p3(j,(i+1))> 100 
            p3(j,(i+1))= 100; 
        end 
    end 
  %For losses formulation (PL) 
 for j=1:p 
  pl(j,(i+1))= [p1(j,(i+1)) p2(j,(i+1)) p3(j,(i+1))]*B*[p1(j,(i+1)) 

p2(j,(i+1)) p3(j,(i+1))]'; 
 end 
%Main objective function 
 for j=1:p 
   f(j,(i+1))= w1*((a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) + 

c(1))+(a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + 

c(2))+(a(3)*(p3(j,(i+1)))^2 + b(3)*p3(j,(i+1)) + c(3))) + 

k*abs(pd+pl(j,(i+1))-p1(j,(i+1))-p2(j,(i+1))-p3(j,(i+1))); 
 end 
%personal best values updation 
%For losses formulation (PL) 
for j=1:p 
  plp(j)= [p1p(j) p2p(j) p3p(j)]*B*[p1p(j) p2p(j) p3p(j)]'; 
end 
for j=1:p 
  fp(j)= w1*((a(1)*(p1p(j))^2 + b(1)*p1p(j) + c(1))+(a(2)*(p2p(j))^2 + 

b(2)*p2p(j) + c(2))+(a(3)*(p3p(j))^2 + b(3)*p3p(j) + c(3))) +  

k*abs(pd+plp(j)-p1p(j)-p2p(j)-p3p(j)); 
end 
    for m=1:p 
        if f(m,i)< fp(m) 
            p1p(m)=p1(m,(i+1)); 
            p2p(m)=p2(m,(i+1)); 
            p3p(m)=p3(m,(i+1)); 
        else 
        end 
    end 
%for Global best values updation 
    if min(f(:,(i+1)))<fgm 
        fgm=min(f(:,(i+1))); 
    else 
    end                
    for j=1:(i+1) 
        for m=1:p 
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        if f(m,j)==fgm 
            for l=1:p 
                p1g(l) = p1(m,j);     %global best values 
                p2g(l) = p2(m,j); 
                p3g(l) = p3(m,j); 
            end 
        else 
        end 
        end 
    end  
    %For Cost calculation 
    for j=1:p 
         C1(j,(i+1)) = a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) + c(1); 
         C2(j,(i+1)) = a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2); 
         C3(j,(i+1)) = a(3)*(p3(j,(i+1)))^2 + b(3)*p3(j,(i+1)) + c(3); 
         C(j,(i+1)) = C1(j,(i+1)) + C2(j,(i+1)) + C3(j,(i+1)); 
    end 
    %To find change in the values of f 
    for j=1:p 
        df(j,i)= abs(f(j,(i+1))-f(j,i)) ; 
        sp(j,i)= abs(pd+pl(j,(i+1))-p1(j,(i+1))-p2(j,(i+1))-

p3(j,(i+1))); 
        csp(j,i)= abs(C(j,(i+1))-C(j,i)); 
    end 
    %Stoping criterion &&(csp(j,i)<=10^(-6))  (df(j,i)<=10^(-6))&& 
    ki=0; 
    for j=1:p 
        if ((df(j,i)<=10^(-6))&&(sp(j,i)<=10^(-6))) 
            ki=ki+1; 
        end 
    end 
    if ki >= p 
        break 
    end 
end 
t=toc; 
disp('Initial values of generations of 3 generators') 
initial=[p1(:,1) p2(:,1) p3(:,1)]; 
disp('    P1        P2        P3   ') 
disp(initial) 
disp(sprintf('\nPD+Pl = %d',pd+pl(1,i))) 
disp(sprintf('\nP1+P2+P3=%d\n',p1(1,i)+p2(1,i)+p3(1,i))) 
disp(sprintf('No. of total Iterations took place = %d \n',i)) 
disp(sprintf('Total loses in the lines Pl = %d \n',pl(1,i))) 
disp(sprintf('Minimum cost incured = %d \n',C(1,i))) 
disp('\nFinal values of generations of the three generators') 
disp(sprintf('P1=%d',p1(1,i))) 
disp(sprintf('P2=%d',p2(1,i))) 
disp(sprintf('P3=%d',p3(1,i))) 
disp(sprintf('Computational Time = %d ',t)); 
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