ECONOMIC LOAD DISPATCH USING IMPROVED PARTICLE SWARM OPTIMIZATION

DISSERTATION
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE
OF
MASTER OF TECHNOLOGY
IN
POWER SYSTEM

Submitted by:

NIMISH KUMAR 2K12/PSY/12

Under the supervision of

Prof. Uma Nangia & Prof. N.K. Jain

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I, NIMISH KUMAR, Roll No. 2K12/PSY/12 student of M. Tech. (Power System),

hereby declare that the dissertation titled "ECONOMIC LOAD DISPATCH USING

IMPROVED PARTICLE SWARM OPTIMIZATION" under the supervision of Prof.

Uma Nangia & Prof. N.K. Jain of Electrical Engineering Department, Delhi

Technological University in partial fulfillment of the requirement for the award of the

degree of Master of Technology has not been submitted elsewhere for the award of any

Degree.

Place: Delhi

Date: 30.07.2014

NIMISH KUMAR

2K12/PSY/12 M.Tech (PSY)

Prof. Uma Nangia

Professor

EE Dept., DTU

Prof. N.K. Jain

Professor

EE Dept., DTU

ii

ACKNOWLEDGEMENT

The writing of this dissertation has been one of the most significant academic challenges I have ever had to face; without GOD's blessing and support, patience and guidance of the following people, this study would not have been completed. It is to them I owe my deepest gratitude.

- ❖ Prof. N.K. Jain & Prof. Uma Nangia, Electrical Engineering Department, DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) for their initiative and valuable guidance in this field of research, for their affection and encouragement for the successful completion of this work. Their kind attitude and sincere sympathies always encouraged me to carry out the present work firmly.
- ❖ Prof. Madhusudan Singh, HOD, Electrical Engineering Department and Prof. Narendra Kumar, Ex-HOD, Electrical Engineering Department, DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering), New Delhi, for providing me with the best facilities in the department.
- My parent, Niranjan Kumar, my elder brother and Sanjeev Prabhakar, my younger brother who have always supported, encouraged and believed in me and patiently waited for my dreams to come true.

NIMISH KUMAR 2K12/PSY/12 M.TECH. (PSY)

ABSTRACT

Optimization is a mathematical tool to find the maximum or minimum of a function in some feasible region. There is no any industry which not involved the solution of optimization problems. In the operational planning of power system, Economic load dispatch (ELD) is a common task which concern with the optimization problems. The objective of ELD problem is to schedule the output of the connected units of the plant so as to fulfil the load demand at minimum operating cost while satisfying all operational constraints. Recently particle swarm optimization algorithm inspired by collective behaviour of swarm has been applied successfully to solve ELD problem.

In this work three improved PSO algorithms- IPSO-A, IPSO-B and IPSO-C have been developed and implemented to solve ELD for IEEE 5, 14 and 30 bus systems. Conventional PSO (CPSO) using inertia weight and constriction factor individually as well as simultaneously have been also implemented to solve ELD problem. PSO algorithms have been compared for twenty trial runs. The best, worst, average and standard deviation cost for all the algorithms have been determined. The results show that proposed improved PSO techniques gives the optimum operational cost with consistent result.

CONTENTS

Certif	icate	ii
Acknowledgement		iii
Abstract		iv
Contents		V
	List of Figures	
List of Tables		viii
List of Symbols, abbreviations		ix
_	PTER 1 INTRODUCTION	1
1.1	Overview	1
1.2	Objective and methodology	1
1.3	Literature Review	2
1.3.1	Economic Load Dispatch	2
1.3.2	Particle Swarm Optimization	4
1.4	Organisation of the thesis	5
CHA	PTER 2 ECONOMIC LOAD DISPATCH	7
2.1	Introduction	7
2.2	Cost Function	7
2.3	System Constraints	8
2.3.1	Equality Constraints	8
2.3.2	Inequality Constraints	9
2.4	Objective Function	11
CHA	PTER 3 CONVENTIONAL PARTICLE SWARM	12
	OPTIMIZATION	
3.1	Introduction	12
3.2	PSO Parameters	15
3.3	Geometrical Illustration of PSO	17
3.4	Implementation of PSO Algorithm	18
3.5	Improvements in Convergence Rate of CPSO	20
3.5.1	Velocity Clamping	20
3.5.2	Constriction Factor	21

3.5.3	Inertia Weight	21		
3.6	Advantages of PSO	22		
3.7	Disadvantages of PSO	22		
3.8	Applications of PSO	23		
CHA	PTER 4 IMPROVED PARTICLE SWARM	24		
	OPTIMIZATION			
4.1	Introduction	24		
4.2	IPSO-A	24		
4.3	IPSO-B	25		
4.4	IPSO-C	26		
CHA	PTER 5 SOLUTION OF BENCHMARK FUNCTIONS	28		
5.1	Steps to solve Benchmark functions using PSO in MATLAB	28		
5.2	Parameters Setting for different PSO algorithms	29		
5.3	Solution of Beale's function using PSO Algorithms	29		
5.4	Solution of Booth's function using PSO Algorithms	32		
5.5	Solution of Rosenbrock's function using PSO Algorithms	33		
5.6	Solution of Sphere function using PSO Algorithms	34		
5.7	Discussion	35		
CHA	PTER 6 ECONOMIC LOAD DISPATCH USING PSO	36		
	ALGORITHMS			
6.1	Introduction	36		
6.2	Computational Procedure	36		
6.3	IEEE 5, 14 & 30 Bus System Data	38		
6.4	Results of IEEE 5,14 & 30-Bus System	39		
6.5	Discussion	45		
CHA	PTER 7 CONCLUSIONS & FUTURE DIRECTIONS	48		
APPI	APPENDIX I			
APPENDIX II				
REF	REFERENCES			

List of Figures

Fig. 3.1: Collective behaviour of Swarm	12	
Fig. 3.2: Reynolds proposed behaviour model	13	
Fig. 3.3: Kennedy and Eberhart proposed behaviour model	13	
Fig. 3.4: Velocity and position update for the particles	17	
Fig. 3.5: Flow chart of conventional PSO	19	
Fig. 3.6: Effects of Velocity Clamping in 2-D search space	20	
Fig. 4.1: Section of flow chart of IPSO-A	25	
Fig. 4.2: Section of flow chart of IPSO-B	26	
Fig. 4.3: Section of flow chart of IPSO-C	27	
Fig 5.1: 3-D Surface Plot of Beale's function		
Fig. 5.2: Position of the particles after different iteration for		
Beale's function		
Fig 5.3: 3-D Surface Plot of Booth's function	32	
Fig 5.4: 3-D Surface Plot of Rosenbrock's function	33	
Fig 5.5: 3-D Surface Plot of Sphere function	34	
Fig. 6.1: Bar chart for Average Computational time	46	
Fig. 6.2: Bar Chart for Standard Deviation costs	47	
Fig. I-A: Bus-Code Diagram of 5 Bus System	49	
Fig. I-B: Bus-Code Diagram of 14 Bus System	51	
Fig. I-C: Bus-Code Diagram of 30 Bus System	54	

List of Tables

Table 5.1 Parameters setting for PSO algorithms	29
Table 5.2: Results for Beale's function	30
Table 5.3: Results for Booth's function	32
Table 5.4: Results for Rosenbrock's function	33
Table 5.5: Results for Sphere function	34
Table 6.1: Data for cost coefficients	38
Table 6.2: Data for Loss coefficients	38
Table 6.3: Results of IEEE 5-BUS System	39
Table 6.4: Results of IEEE 14-BUS System	41
Table 6.5: Results of IEEE 30-BUS System	43
Table 6.6: Compact Results of IEEE 5-bus system of 20 trials	45
Table 6.7: Compact Results of IEEE 14-bus system of 20 trials	45
Table 6.8: Compact Results of IEEE 30-bus system of 20 trials	45
Table I-A: Line data or Impedance data (5 bus system)	49
Table I-B: Bus data or Operating conditions (5 bus system)	49
Table I-C: Regulated bus data (5 bus system)	50
Table I-D: Impedance & Line-charging data (14 bus system)	51
Table I-E: Bus data or Operating conditions (14 bus system)	52
Table I-F: Regulated bus data (14 bus system)	52
Table I-G: Impedance & Line-charging data (30 bus system)	54
Table I-H: Bus data or Operating conditions (30 bus system)	55
Table I-I: Regulated bus data (30 bus system)	56
Table I-J: Transformer data (30 bus system)	56
Table I-K: Static capacitor data (30 bus system)	56

List of Symbols & abbreviations

C₁ Acceleration constant for Cognitive component

C₂ Acceleration constant for Social component

^χ Constriction Factor

w Inertia Weight

It_{max} Maximum no. of iteration

p Number of particles

K Penalty coefficient

ε Tolerance Limit

 $r_1 \& r_2$ Uniformly distributed Random Numbers (0,1)

CF Constriction Factor

CPSO Conventional Particle Swarm Optimization

ELD Economic Load Dispatch

IPSO Improved Particle Swarm Optimization

IW Inertia Weight

PSO Particle Swarm Optimization

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

In Economic Load Dispatch (ELD) Problem we determine the optimal combination of power output of all the connected generating units of the plant to minimize the total production (fuel or operational) cost while fulfilling the load demands and system operational constraints. Proper planning of connected unit outputs can contribute to considerable saving in the plant operating cost. Recently particle swarm optimization algorithms inspired by collective behaviour of swarm has been applied successfully to solve ELD problem. The popularity of PSO is due to its simple concept and easy implementation to both linear as well as non-linear problems.

In this work an attempt has been made to solve ELD problem by using constriction factor and inertia weight individually and simultaneously in the Conventional PSO (CPSO). Various improved PSO (IPSO) algorithm- IPSO-A, IPSO-B and IPSO-C have been developed based on the movement of particles. In IPSO-A, the position and velocity of the particles is not updated when a particle hits the global during the search. In IPSO-B, the velocity of all the particles is updated, but the position of particles achieved global is kept fixed. In IPSO-C, the position of the particles whose current position is better than its personal best is not updated. All the above algorithms have been implemented on IEEE 5, 14, 30 bus systems. Detailed comparisons of all the above algorithms have been carried out for 20 trials. The best, worst and average fuel costs have been determined for each algorithm.

1.2 OBJECTIVE AND METHODOLOGY

The objective of this work is to solve economic load dispatch (ELD) problem considering equality and inequality constraints to satisfy the consumers demand. The standard IEEE 5, 14, 30 bus system have been consider for planning of connected unit outputs to contribute considerable saving in the plant operating cost.

Three improved PSO algorithms namely IPSO-A, IPSO-B and IPSO-C have been developed and implemented to solve ELD problem. Conventional PSO (CPSO) using inertia weight and constriction factor individually as well as simultaneously have been also implemented to solve ELD problem. The best, worst, average fitness and their standard deviation for all the algorithms have been determined.

The work has been carried out in the following order:

- a. Exploring Particle Swarm Optimization in detail.
- b. Solving some mathematical function using basic PSO by hand calculation.
- c. Coding the PSO algorithms in MATLAB 2012a.
- d. Solution of various mathematical benchmark functions using PSO algorithms by MATLAB 2012a.
- e. Formulation of objective function for ELD problem considering cost of generation and penalized demand constraint for IEEE 5,14 & 30 bus system.
- f. Solution of ELD problem using PSO algorithms by MATLAB 2012a.
- g. Detailed analysis of different PSO algorithms has been done.
- h. Conclusions and future directions have been carried out.

1.3 LITERATURE REVIEW

1.3.1 ECONOMIC LOAD DISPATCH

Scheduling of connected generating units of the plant plays an important role in the power system operation, planning and control. Proper planning of connected unit outputs can contribute to considerable saving in the plant operating cost. A number of techniques have been successfully applied to solve ELD problem during past years [1]-[19]. Some of these use the conventional optimization techniques, whereas others are based on intelligent techniques.

The examples of conventional techniques to solve ELD problems are Lambda iteration method, Fast lambda method, Base point and Participation factors method and Gradient method [1]-[3]. Chem-Lin Chen and Shun-Chung Wang has solved the ELD problem by implementing new branch-and-bound algorithm in conventional technique [1]. The gradient projection method has been used by K.Y.

Lee et. al to solve ELD problem for active and reactive power [2]. The Fast lambda method has been developed by J. P. Zhan et. al to solve ELD problem With Prohibited Operating Zones [3].

All these conventional techniques have limitation on the nature of cost curves. In addition, these techniques have oscillatory problems due to existence of several local minima in the ELD problems with large number of connected units in the systems. Due to complex algorithm of conventional techniques, it takes high computational time.

Modern stochastic techniques such as Linear programming, Quadratic programming, Genetic algorithm, Biogeography based optimization, Chemical reaction optimization, Enhanced Bee swarm optimization, Modified Teacher learning algorithm have been employed successfully to solve the ELD problems [4]-[10]. Rabih A. Jabr et. al presented homogeneous linear programming algorithm for the solution of security constrained ELD problem[4]. Leandro dos Santos Coelho and Viviana Cocco Mariani used combination of chaotic differential evolution and Quadratic Programming for the solution of ELD problem considering the valve point effect [5]. ELD problem with network constraints have been solved Ioannis G. Damousis et. al using real coded genetic algorithm [6]. Biogeography-Based Optimization algorithm has been used by Aniruddha Bhattacharya and Pranab Kumar Chattopadhyay to solve both convex and non-convex ELD Problems [7]. Chemical reaction optimization algorithm has been used by Kuntal Bhattacharjee et. al to solve ELD problems considering different constraints [8]. Enhanced Bee Swarm Optimization Algorithm has been proposed by Taher Niknam and Faranak Golestaneh for the solution of dynamic ELD problems [9]. Taher Niknam et. al introduces a new optimization algorithms named as Modified Teacher learning algorithm for dynamic ELD problem considering reserved constraints [10]. The hybrid of different modern techniques has also been used in ELD problems. Irina Ciornei and Elias Kyriakides proposed the Hybrid genetic algorithm with ant colony optimization to solve the non-convex ELD problem [11]. Aniruddha Bhattacharya and Pranab Kumar Chattopadhyay have presented hybrid differential evolution with biography based optimization to solve ELD problems [12].

These intelligent optimization techniques do not suffer from any limitation on the nature of cost curve, due to their ability to find the optimal solution. But, these methods have large number of parameters involved in the algorithm, and takes large number of iterations to settle to the global optimum.

The ELD problems have been solved recently by Particle Swarm Optimization (PSO) approaches [13]-[17]. The solution of ELD problem with non-smooth cost function using PSO technique has been described by Jong-Bae Park et. al [13]. The chaotic and Gaussian PSO approach has been described by Leandro dos Santos Coelho and Chu-Sheng Lee to solve ELD problem for better performance of PSO [14]. A new concept 'θ-PSO' for solving ELD problem is developed by Vahid Hosseinnezhad and Ebrahim Babaei [15]. The ELD with environmental emission have been solved by M.A. Abido using PSO [16]. The quantum inspired PSO has been proposed to solve ELD problem for faster convergence by Ke Meng et. al [17]. The hybrids PSO are also used to solve the ELD problems [18]-[19]. The hybrid of binary PSO (for unit commitment) and real coded PSO (for ELD) has been described by T. O. Ting et. al [18]. The hybrid quantum inspired PSO has been proposed by S. Chakraborty et. al to explore search space for solving ELD problem [19].

1.3.2: PARTICLE SWARM OPTIMIZATION

The Particle Swarm Optimization (PSO) is a population based stochastic algorithm, developed by Kennedy and Eberhart in 1995, inspired by the collective behaviour of nature such as bird flocking, fish schooling etc. [20]-[29]. A new concept based upon particle swarm methodology for optimization of non-linear function is introduced by James Kennedy and Russell Eberhart and relationships between PSO with artificial life and genetic algorithms have also been described [20]. Ioan Cristian Trelea has described the detailed analysis of PSO algorithms, its parameter selection and convergence characteristics [21]. Constriction function is introduced by Maurice Clerc and James Kennedy in traditional PSO to eliminate the use of particle's velocities to limit in order to control the particle's trajectories and detailed analysis of constriction factor in the PSO update equation has been carried out [22]. A new parameter namely inertia weight has been introduced in PSO by Yuhui Shi and Russell Eberhart to find global optimum within a reasonable number of iteration and time decreasing Inertia weight has been also introduced to improve the performance of PSO [23]. The Comparison of inertia weight and constriction factor and suitable conditions for the use of these two parameters has been also

explained by R. C. Eberhart and Y. Shi. and it has been shown that the application of both parameters simultaneously results in faster convergence overall [24]. The multiswarm is used by Frans van den Bergh and Andries P. Engelbrecht to improve the performance of traditional PSO based upon the cooperative behaviour [25]. The efficient optimization for multi-model function namely multi-grouped PSO have been proposed by Jang-Ho Seo et. al and its application to various areas including particle electromagnetic optimization have been discussed [26]. J. J. Liang et. al have presented Comprehensive learning PSO base on learning strategy of particles to update particle's velocity, which reduces premature convergence [27]. Multi-objective Optimization problem using modern PSO for optimal operation of plant have been carried out by Jin S. Heo et. al and PSO technique variation, evolutionary PSO, hybrid PSO, constriction approach PSO and comparison of PSO and genetic algorithms have also been discussed [28]. Basic concept of PSO, its variants and its application to power system and another area of electrical engineering have discussed by Yamille del Valle et. alin detailed [29].

1.4 ORGANISATION OF THE THESIS

This thesis has been arranged in seven chapters. The contents of the chapters are briefly outlined here.

Chapter 1: This chapter describes the overview, objective and methodology, literature review and the organisation of the thesis.

Chapter 2: This chapter discuss about economic load dispatch in detail. The cost function, constraints and formation of objective function for ELD problem have been explained.

Chapter 3: This chapter gives detailed idea about conventional PSO. It involves development, advantages, disadvantages and the application of PSO.

Chapter 4: In this chapter Improved PSO algorithms have been introduced for the improvements in the performance of the Conventional PSO.

Chapter 5: In this chapter some mathematical benchmark functions have been solved by convention as well as improved PSO algorithms. The steps for MATLAB programming have been also discussed.

Chapter 6: In this chapter IEEE 5, 14 and 30 bus systems have been solved by different PSO algorithms and detailed discussions on the results have been also entertained.

Chapter 7: This chapter deals the outcome of the results and the future scope of this research work.

Appendixes and References are given at the end of the thesis.

CHAPTER 2

ECONOMIC LOAD DISPATCH

2.1 INTRODUCTION

In the field of power system analysis, Economic load dispatch is one of the most fundamental optimization problems. In ELD mainly two different problems, one is unit commitment or pre dispatch problem and other is online economic dispatch problem have been solved. The unit commitment is the way to suggest just sufficient number of generating units with sufficient generating capacity to meet a given load economically with sufficient reserve capacity to meet any abnormal condition. The on line economic dispatch problem distribute the load demand among the connected generating units of the plant in such a manner to minimize the total cost of production supplying the minute to minute requirements of the system [30].

Particularly, in thermal power plants the cost of generation is too excessive, hence significant saving in operating cost can be achieved by proper planning of units output of the plant. The ELD describes the optimal scheduling of power generations to match total power demand at minimal possible cost while satisfying the operational constraints i.e. generators and system constraints.

2.2 COST FUNCTION

The main purpose of ELD is to determine the power generation of each unit of the plant so that total production costs of the plant should be minimum by fulfilling the required power demand under the given equality and inequality constraints.

The production costs of each unit are generally expressed by a quadratic function of the power output from those generating units. The total production costs of the plant are the sum of production cost of each individual units of the plant.

Mathematically,

$$F_{i}(P_{i}) = a_{i}P_{i}^{2} + b_{i}P_{i} + c_{i}$$
(2.1)

Where $F_i(P_i)$, P_i , (a_i,b_i,c_i) are the production cost, power generation ,cost coefficient of ith unit of the plant respectively.

Therefore total production cost of the plant having n units,

$$F_{T} = \sum_{i=1}^{n} (F_{i}(P_{i}))$$

$$= \sum_{i=1}^{n} (a_{i}P_{i}^{2} + b_{i}P_{i} + c_{i})$$
(2.2)

The cost is minimized subjected to the system constraints (generator capacities and active power balance constraints).

2.3 SYSTEM CONSTRAINTS

There are two types of system constraints-

- i) Equality constraints
- ii) Inequality constraints

The inequality constraints are of two types-

- i) Hard type
- ii) Soft type

The hard type are those which are definite and specific like the tapping range of an on-load tap changing transformer whereas soft type are those which have some flexibility associated with them like the nodal voltages and phase angles between the nodal voltages, etc. Soft inequality constraints have been very efficiently handled by penalty function methods.

2.3.1 EQUALITY CONSTRAINTS

From observation we can conclude that cost function is not affected by the reactive power demand. So the full attention is given to the real power balance in the system. For power mismatch, an equality constraint has been introduced i.e. the generated power by the plant should be equal to the total load demand plus the total losses. Thus the power balance equation of ELD problems is given by,

$$P_{G} - P_{D} - P_{L} = 0$$

$$\sum_{i=1}^{n} P_{i} - P_{D} - P_{L} = 0$$
(2.3)

Where P_G is the total power generation of the plant, P_D is the total power (load) demand by the consumer and P_L is the total losses during process.

The transmission losses can be determined from unit outputs of the plant and loss coefficients as,

$$P_{L} = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} (P_{i} B_{ij} P_{j}) \right) + \sum_{j=1}^{n} (B_{i0} P_{i}) + B_{00}$$
 (2.4)

Where B_{ij} is the ij-th element of the loss coefficient square matrix, B_{i0} is the i-th element of the loss coefficient vector, and B_{00} is the loss coefficient constant.

2.3.2 INEQUALITY CONSTRAINTS

i) Generator Constraints-

The KVA loading in a generator is given by $\sqrt{(P^2 + Q^2)}$ and this should not exceed a pre-specified value of power because of the temperature rise conditions

• When the active power generation is greater than pre-specified value P_{max} then the source become overheated i.e. thermal consideration limits the maximum active power generation of the source. And if the power generation is less than pre-specified value P_{min} then from the optimal point of view it is not possible to generate that low power. In other words minimum power generation of the source is limited by the flame instability of the boiler and it is not put on the bus bar. Therefore the active power generation P must be within the maximum and minimum limit, stated by the inequality,

$$P_{min} \leq P \leq P_{max}$$

• Similarly the maximum and minimum reactive power generation of a source is limited. The maximum reactive power is limited because of overheating of rotor and minimum is limited because of the stability limit of machine. Hence the generators reactive powers Q cannot be outside the range stated by inequality,

$$Q_{min} \le Q \le Q_{max}$$

ii) Voltage Constraints:

It is essential that the voltage magnitudes and phase angles at various nodes should vary with in certain limits. The normal operating angle of transmission lies between 30 to 45 degrees for transient stability reasons. A lower limit of delta assures proper utilization of transmission capacity.

iii) Running Spare Capacity Constraints:

These constraints are required to meet

- a) The forced outages of one or more alternators on the system and
- b) The unexpected load on the system

The total generation should be such that in addition to meeting load demand and losses a minimum spare capacity should be available i.e.

$$G \geq P_G + P_{SO}$$

Where G is the total generation and P_{SO} is some pre-specified power. A well planned system is one in which this spare capacity P_{SO} is minimum.

iv) Transmission Line Constraints:

The flow of active and reactive power through the transmission line circuit is limited by the thermal capability of the circuit and is expressed as,

$$Cp \le Cp_{max}$$

Where Cp_{max} is the maximum loading capacity of the line.

v) Transformer Taps Settings:

If an auto-transformer is used, the minimum tap setting could be zero and the maximum one,

i.e.
$$0 \le t \le 1.0$$

Similarly for a two winding transformer if tapping are provided on the secondary side,

$$0 \le t \le n$$

Where n is the ratio of transformation.

vi) Network security constraints:

If initially a system is operating satisfactorily and there is an outage, may be scheduled or forced one, it is natural that some of the constraints of the system will be violated. The complexity of these constraints (in terms of number of constraints) is increased when a large system is under study. In this a study is to be made with outage of one branch at a time and then more than one branch at a time. The natures of constraints are same as voltage and transmission line constraints.

2.4 OBJECTIVE FUNCTION

The Objective (fitness) function of ELD problem is defined to minimize the sum of the cost of generation function given by equation (2.2) and the penalized demand (equality) constraint given by equation (2.3) as follows:

Minimize the fuel cost,

$$F = \sum_{i=1}^{n} (a_i P_i^2 + b_i P_i + c_i) + K^* (\sum_{i=1}^{n} P_i - P_D - P_L)$$
 (2.5)

Subjected to generators constraints.

Where K is the penalty coefficient for the plant due to not fulfilling the load demands to the consumers and chosen carefully for the feasible solution. Somewhere K is also termed as Lagrangian multiplier.

CHAPTER 3

CONVENTIONAL PARTICLE SWARM OPTIMIZATION

3.1 INTRODUCTION

The Particle Swarm Optimization (PSO) is a population based stochastic algorithm, developed by of Kennedy (a social psychologist) and Eberhart (an electrical engineer) in 1995, inspired by the collective behaviour of nature such as bird flocking, fish schooling etc., to successfully optimize a wide range of linear as well as non-linear functions. The first simulations was done by Kennedy and Eberhart (in 1995), which were influenced by Heppner and Grenander's work (in 1990) and involved analogues of bird flocks searching for corn.

The PSO belongs to the class of swarm intelligence techniques that are used to find approximate solutions to extremely difficult optimization problems. Swarm intelligence is an artificial intelligence technique based around the study of collective behaviour in decentralized, self-organized systems. Examples of systems like this can be found in nature, including bird flocking, fish schooling, ant colonies, animal herding etc.

Fig. 3.1: Collective behaviour of Swarm

Craig Reynolds (a biologist) studied the evolutionary algorithms and swarm intelligence for optimization inspired by the social behaviour of birds in late 80s and early 90s and derived a formula for representation of the birds flocking behaviour. This was later used in computer simulations of virtual birds, known as Boids.

Reynolds proposed a behavioural model in which each agent follows three rules:

- Separation- Each agent tries to move away if they are too close.
- Alignment- Each agent steers towards the average heading of its neighbours.
- Cohesion- Each agent tries to go towards the average position of its neighbours.



Fig. 3.2: Reynolds proposed behaviour model

Kennedy and Eberhart included a 'roost' in a simplified Reynolds-like simulation so that:

- Each agent was attracted towards the location of the roost.
- Each agent 'remembered' where it was closer to the roost.
- Each agent shared information with its neighbours about its closest location to the roost.

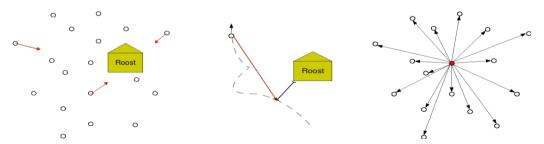


Fig. 3.3: Kennedy and Eberhart proposed behaviour model

Eventually, all agents land on the roost.

The particle swarm optimization (PSO) is a parallel evolutionary computation technique inspired by the social behaviour of natural process to successfully optimize a wide range of continuous linear as well as non-linear functions [20]-[24]. The PSO algorithm involves a population of candidate solutions (called particles), collectively called swarm. Each particle of the swarm is initialized with a random position and random velocity and is moved iteratively throughout the search space. It is attracted towards the location of both its personal best fitness achieved by the particle itself and best fitness achieved by the entire swarm so far [21]. Positions and velocities of whole swarm are adjusted and the function evaluated with the updated coordinates at each time step. The velocity and position of each particle is updated by two given rule in Conventional PSO (CPSO) as,

Velocity modification rule,

$$V_{ij}^{t+1} = V_{ij}^{t} + c_1 r_1 (P_{ij}^{best} - X_{ij}^{t}) + c_2 r_2 (G_i^{best} - X_{ij}^{t})$$
(3.1)

Position modification rule,

$$X_{ij}^{t+1} = X_{ij}^{t} + V_{ij}^{t+1}$$
 (3.2)

Where t indicates the number of iteration, i indicates the number of variables, j indicates the number of particles in the swarm, V_{ij}^{t} is the velocity of j-th particle of i-th variable in t-th iteration, X_{ij}^{t} is the position of j-th particle of i-th variable in t-th iteration, P_{ij}^{best} is the previous personal best position of the j-th particle of i-th variable, G_i^{best} is the previous global best position of i-th variable, V_{ij}^{t+1} is the updated velocity of j-th particle of i-th variable, X_{ij}^{t+1} is the updated position of j-th particle of i-th variable, c_1 is the cognitive component of acceleration constants which is responsible for the attraction of the particles towards its personal best position, c_2 is the social component of acceleration constants which is responsible for the attraction of the particles towards the global best position of the swarm, c_1 & c_2 are two uniformly distribution random numbers in the range (0,1).

3.2 PSO PARAMETERS

There are some parameters in PSO algorithm that may affect its performance [21]. The parameter's value and its selection have large impact on the performance of the PSO algorithm. The basic PSO parameters are swarm size, number of iterations, velocity components, and acceleration coefficients which are described below. The PSO algorithm is also influenced by velocity clamping, constriction factor and inertia weight which are described in the next section.

i. Swarm size

Swarm (population) size is the number of particles 'n' in the swarm. A big swarm i.e. large number of particles cover larger part of the search space and may reduce the number of iterations required for optimum result. It also increases computational efforts per iteration and consuming more time. Whereas a small swarm i.e. less number of particles loss their search ability and may not give optimum result. Therefore proper selection of swarm improves the performance of PSO. In most cases the swarm size is taken between 20 to 100 for better results and computational efforts.

ii. Iteration numbers

The number of iterations is an important factor in the PSO algorithms. It is problem dependent to obtain a good result. A too low number of iterations may not give optimum results and too large number of iterations may add unnecessary computational effort and more time.

iii. Velocity Components

The velocity components are the main part of the PSO algorithms and important for updating the particle's velocity. The particle's velocity modification equation consists of three terms-

1. The first term V_{ij}^{t} is called the inertia or momentum component of the velocity that provides a track of the previous direction i.e. movement in the immediate

past. It prevents to a drastically change in the direction of the particles and forced towards the movement of current direction.

- 2. The second term ${}^{\circ}c_1r_1(P_{ij}^{best}-X_{ij}^{t})$ is called cognitive or personal component that tracks or compares the current performance of the particles with its past performances. It is basically the individual memory of the particles and indicates the tendency to return to past best position.
- 3. The last term $c_2r_2(G_i^{best} X_{ij}^{t})$ is called social or collective component that compares the current performance of the particles with the past best performance of any particles in the group. It forces the particles towards the best position tracked by the entire swarm.

iv. Acceleration coefficients

The acceleration coefficients c_1 and c_2 , together with the random values r_1 and r_2 , maintain the stochastic influence of the cognitive and social components of the particle's velocity respectively. The constant c_1 expresses how much confidence a particle has in itself, while c_2 expresses how much confidence a particle has in its neighbours. There are some properties of c_1 and c_2 –

• When $c_1 = c_2 = 0$, then all particles continue flying at their current speed until they hit the search space's boundary. Therefore, the velocity update equation is calculated as-

$$V_{ij}^{\ t+1}=V_{ij}^{\ t}$$

• When $c_1 > 0$ and $c_2 = 0$, all particles are independent. The velocity update equation will be-

$$V_{ij}^{t+1} = V_{ij}^{t} + c_1 r_1 (P_{ij}^{best} - X_{ij}^{t})$$

• When c_1 =0 and c_2 > 0 , all particles are attracted to a single point in the entire swarm and the update velocity will become-

$$V_{ij}^{t+1} = V_{ij}^{t} + c_2 r_2 (G_i^{best} - X_{ij}^{t})$$

- When $c_1 = c_2$, all particles are attracted towards the average of $P_{ij}^{\ best}$ and $G_i^{\ best}$.
- When $c_1 > c_2$, each particle is more strongly influenced by its personal best position, resulting in excessive wandering.
- When $c_1 < c_2$, all particles are much more influenced by the global best position, which causes all particles to run prematurely to the optima.

It has been proposed that the two acceleration constants should be $c_1 = c_2 = 2$ for better results [29].

3.3 GEOMETRICAL ILLUSTRATION OF PSO

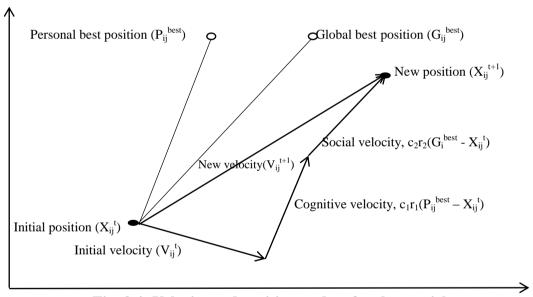


Fig. 3.4: Velocity and position update for the particles

The updated velocity consists of three components discussed earlier. Figure 3.4 shows how the three components contribute to the movement of the particle towards the global best position. The initial velocity, cognitive component of velocity and social component of velocity contributes to the new velocity for the particles. This new velocity is responsible for the movement of the particles.

3.4 IMPLEMENTATION OF PSO ALGORITHM

The PSO algorithm are summarized by the following steps-

- step 1) Initialization of the parameters- In the first step, the parameters of the PSO, like c_1 , c_2 , r_1 , r_2 , population size P, maximum iteration It_{max} must be chosen.
- step 2) Initialization of the population- Initialize a population of particles with a random positions and random velocities.
- step 3) Evaluation of Fitness- Calculate the fitness value of the particles in the population.
- step 4) Selection of initial personal and global best position- Each initial value of particle is set to be its personal best and optimum of the personal bests is set to be global best.
- step 5) Updation of velocity and position- Change the velocities and positions of the particles according to velocity modification rule (3.1) and position modification rule (3.2) respectively.
- step 6) Updation of personal and global best position- If positions of the particles give the better fitness value during current iteration then set this as P^{best} and the optimum of P^{best} is set to be G^{best} .
- step 7) Stopping Criteria- Check the difference in fitness value in the consecutive iteration is less than tolerance limit. If yes stop, otherwise go to step 5.

The PSO algorithm is best understand by the following flow chart-

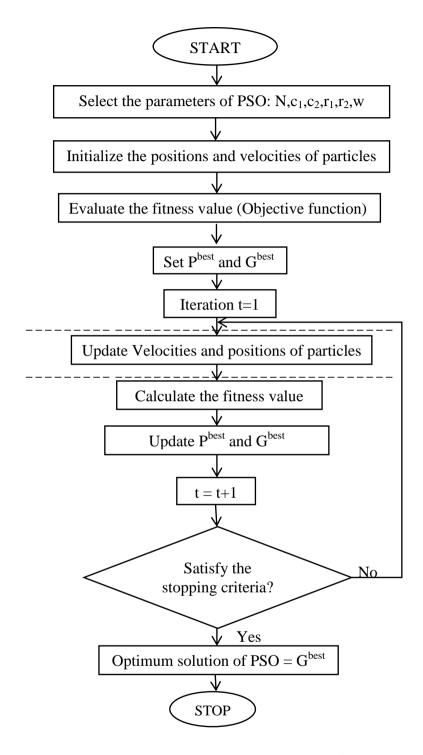


Fig. 3.5: Flow chart of conventional PSO

3.5 IMPROVEMENTS IN THE CONVERGENCE RATE OF CPSO

The particle velocity is basically the step size of the particle for its movement in the search space. Therefore particle's velocity plays an important role in the performance of PSO. At each step, all the particles adjust its velocity and moves in the search space. Exploration and Exploitation are two characteristics of PSO for searching the best position in the search space. Exploration is the ability to explore different area of the search space for locating a good optimum, while exploitation is the ability to concentrate the search around a searching area for refining a hopeful solution [21]. The particle's position updates quickly, if the velocity increases to large values and the particles may cross the boundaries of the search space. Therefore the velocity and position of the particle are reduced in order to stay within boundary of the search space to control its divergence. To balance the exploration-exploitation trade-off, following techniques for the improvement of speed of convergence have been developed.

3.5.1 VELOCITY CLAMPING

The velocity clamping has been first introduced by Eberhart and Kennedy to stay the particles within the boundary of the search space. The Maximum velocity ' v_{max} ' controls the granularity of the search space by clamping velocities and creates a better balance between global exploration and local exploitation [20].

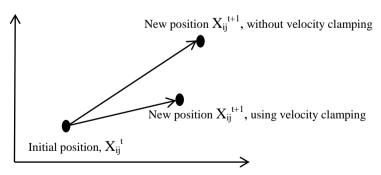


Fig. 3.6: Effects of Velocity Clamping in two-dimensional search space

Figure 3.6, shows how velocity clamping resists the particle to stay within the boundary. Now if a particle's velocity goes beyond ' v_{max} ' then it is set to the value

 v_{max} . If the v_{max} is too large, then the particles may jump over the optimal solution and if is too small, the particle's movement is limited and the swarm may not explore sufficiently or the swarm may become trapped in a local optimum.

By proper selection of acceleration coefficients and clamping the velocity, the performance of CPSO can be improved. Sometimes, the particles may still diverge in conventional PSO even when the maximum velocity and acceleration constants are correctly selected, this phenomenon is known as 'explosion' of the swarm. Two methods have been proposed to control the 'explosion', one is constriction factor and other is inertia weight [28].

3.5.2 CONSTRICTION FACTOR

The first method introduces a constriction factor to control the 'explosion' of the swarm, which was developed by Clerc and Kennedy [22]. The constriction factor introduced in the velocity rule (3.1) as,

$$V_{ij}^{t+1} = \chi(V_{ij}^{t} + c_1 r_1 (P_{ij}^{best} - X_{ij}^{t}) + c_2 r_2 (G_i^{best} - X_{ij}^{t}))$$
(3.3)

Where χ is the constriction factor and given by,

$$\chi = \frac{2}{|2 - \Phi - \sqrt{(\Phi^2 - 4\Phi)}|}, \Phi = c_1 + c_2 > 4$$
 (3.4)

Typically, Φ is set to 4.1 and c_1 = c_2 =2.05, thus the value of constriction factor has been set to 0.729 (used in this paper). In general, the convergence of the particle improved by the constriction factor once the particle is focused on the best point in the global region.

The constriction factor PSO method (CF-PSO) suffers from the disadvantage that when the individual best performance is far from the neighbourhood's best performance then the particles may follow wider cycles and may not converge.

3.5.3 INERTIA WEIGHT

The second method introduces a new parameter called inertia weight (proposed by Shi and Eberhart [23]) which is only multiply in the momentum component of the velocity at the previous time step in the velocity rule (3.1) as,

$$V_{ij}^{t+1} = wV_{ij}^{t} + c_1 r_1 (P_{ij}^{best} - X_{ij}^{t}) + c_2 r_2 (G_i^{best} - X_{ij}^{t})$$
(3.5)

Where 'w' indicate the inertia weight, which can be a fixed value or changing in each time step. The initial higher value (typically 0.9) allows the particles to move freely in the search space to find the global optimum faster. If once the optimal region is found, the value of inertia weight decreased usually to 0.4 in order to narrow the search space. This shifts search from an exploratory mode to an exploitative mode. Generally, a linearly decreasing inertia weight (introduced by Shi and Eberhart [23]) is used broadly given as,

$$w = w_{\text{max}} - t(w_{\text{max}} - w_{\text{min}}) / It_{\text{max}}$$
(3.6)

Where w_{max} = 0.9, w_{min} = 0.4, t indicates the current iteration and It_{max} is the maximum number of iteration to be performed.

The disadvantage of inertia weight PSO (IW-PSO) method is that once the inertia weight is decreased, the swarm loses its ability to search new areas because it is not able to recover its exploration mode.

3.6 ADVANTAGES OF PSO

There are many advantages of PSO which makes it attractive. Some of them are following-

- a. The PSO algorithm is free from the use of derivatives.
- b. Its' concept is very simple.
- c. The implementation of this algorithm is easy.
- d. It involves less number of parameters compared to other techniques.
- e. Its' calculation is very simple and easy to understand.
- f. It is less dependent upon the set of initial points.
- g. Any mistakes in the intermediate stage not much more influence the results, but may increases the computational efforts.

3.7 DISADVANTAGES OF PSO

PSO is the one of the most powerful methods for solving the non-smooth optimization problems while there are some disadvantages of the PSO algorithm.

- a. PSO algorithm suffers from the partial optimism, which degrades the regulation of its speed and direction.
- b. Problems with non-coordinate system (for instance, in the energy field) exit.

3.8 APPLICATION OF PSO

The PSO algorithms have been successfully applied to solve unconstrained as well as constrained problems, problems with dynamically changing landscapes, multi-objective optimization problems. It is also used to find multiple solutions. The PSO is used to solve a variety of optimization problem effectively in the area of electrical engineering [29]. Some examples are described below-

- Voltage and Reactive Power Control
- Economic Load Dispatch
- Power System Security and Reliability
- Generation Expansion Problem
- State Estimation
- Optimal Power Flow and Load Flow analysis
- Power System Identification and Control
- Electric Machinery
- Capacitor and FACTS Placement
- Unit-Commitment Scheduling and Generator Maintenance
- Short-Term Load Forecasting

The PSO is also used in the following areas-

- Antennas Design
- Signal Processing
- Networking
- Biomedical
- Electronics and electro-magnetic
- Robotics
- Design and Modelling
- Image and Graphics
- Fuzzy systems, Clustering, data mining
- Prediction and forecasting

CHAPTER 4

IMPROVED PARTICLE SWARM OPTIMIZATION

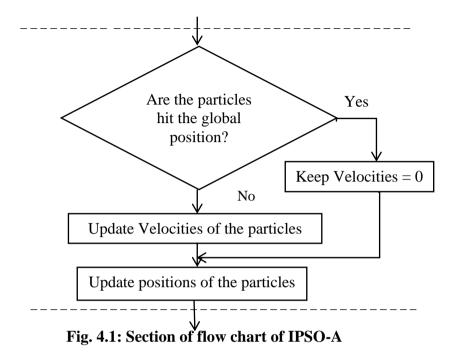
4.1 INTRODUCTION

In Conventional PSO, all particles of the population fly in the Search space during the entire run, but it is the behaviour of nature to achieve the optimum point as soon as possible. If anyone gets this position then it doesn't want to move any more. Such type of behaviour has been seen in the swarm intelligence. This behaviour of swarm is implemented in PSO algorithm in three ways in this work. Three improved PSO algorithms have been developed namely IPSO-A, IPSO-B and IPSO and implemented to solve mathematical functions and ELD problems.

4.2 IPSO-A

In CPSO, the particles continue to move as per equation (3.5) & (3.2), even after attaining the global best position. In this process the particles might move away from the global position, which may results in poor convergence. Therefore an improved PSO (IPSO-A) has been developed. In this algorithms, a particle which has attained global position is not allowed to move, till some other particles of the swarm achieves new global best position and all other particles will move as per the CPSO algorithm.

Mathematically,


Velocity modification in IPSO-A is,

$$\begin{split} V_{ij}^{\ t+1} &= 0 \text{ , if j-th particle is at global position} \\ &= & w V_{ij}^{\ t} + c_1 r_1 (P_{ij}^{\ best} - X_{ij}^{\ t}) + c_2 r_2 (G_i^{\ best} - X_{ij}^{\ t}), \text{ for other} \end{split}$$

And Position modification in IPSO-A is,

$$X_{ij}^{t+1} = X_{ij}^{t}$$
, if j-th particle is at global position $= X_{ij}^{t} + V_{ij}^{t+1}$, for other particles

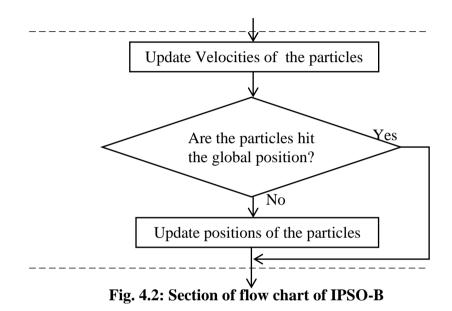
This algorithm can be understood by the flow chart. For this the dotted section of flow chart of CPSO is replaced by the section shown below in Fig. 4.1

This improvement in the CPSO will results in the reduction of the search area of the swarm and oscillation of the particles which has attained global position. This algorithm gives consistent results and faster convergence.

4.3 IPSO-B

In IPSO-A, the particles at global position are not allowed to move for some time step/iteration i.e. they will not update their position. But this global position may not be the actual optimum. Therefore the particles which have achieved global position should be kept ready to move. In other words, the particles at global position will update their velocity but not the position. Whenever, such particles move, they will have all the three components of velocity.

Mathematically,


Velocity modification in IPSO-B is,

$$\begin{split} {V_{ij}}^{t+1} &= w{V_{ij}}^t \text{ , if j-th particle is at global position} \\ &= w{V_{ij}}^t + c_1 r_1 ({P_{ij}}^{best} - {X_{ij}}^t) + c_2 r_2 ({G_i}^{best} - {X_{ij}}^t) \text{, for other} \end{split}$$

And Position modification in IPSO-B is.

$$X_{ij}^{t+1} = X_{ij}^{t}$$
, if j-th particle is at global position
$$= X_{ij}^{t} + V_{ij}^{t+1}$$
, for other particles

This algorithm can be understood by the flow chart. For this the dotted section of flow chart of CPSO is replaced by the section shown below in Fig. 4.2

This has resulted in lower computational time and faster convergence than that of IPSO-A.

4.4 IPSO-C

The improvement in CPSO can also be done based on the function evaluation. If function evaluation at current position is found to be better than that of personal best position, the particle not allowed moving for some time step. However, the velocity of such particles will be updated as in CPSO so as to keep them ready for movement in future iterations.

Mathematically,

Velocity modification in IPSO-A is,

$${V_{ij}}^{t+1} = w{V_{ij}}^t + c_1 r_1 ({P_{ij}}^{best} - {X_{ij}}^t) + c_2 r_2 ({G_i}^{best} - {X_{ij}}^t) \\$$

And position modification in IPSO-C based on condition as,

$$\begin{split} X_{ij}^{\ t+1} = \ X_{ij}^{\ t} \,, & \text{ If F(current position)} \leq F(\text{personal best}) \\ = \ X_{ij}^{\ t} \, + V_{ij}^{\ t+1}, & \text{ for otherwise} \end{split}$$

This algorithm can be understood by the flow chart. For this the dotted section of flow chart of CPSO is replaced by the section shown below in Fig. 4.3

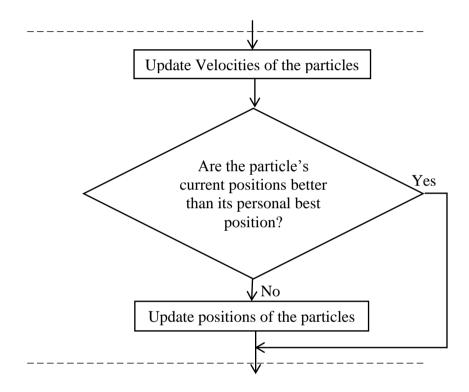


Fig. 4.3: Section of flow chart of IPSO-C

This algorithm has resulted in the best fitness evaluation.

CHAPTER 5

SOLUTION OF BENCHMARK FUNCTIONS

5.1 STEPS TO SOLVE BENCHMARK FUNCTIONS USING PSO IN MATLAB

The basic concepts for solving the optimization problems using PSO are explained in the previous chapter. Here generalized steps for solving different benchmark functions using PSO in MATLAB are discussed.

The steps are-

- a. Set the number of particles 'p', maximum number of iteration 'it_{max}' and tolerance limit 'T'.
- b. Initialize all the variables matrices using the 'zeros' command of MATLAB.
- c. Set the random numbers value r_1 and r_2 between 0 to 1.
- d. Set the value of acceleration constants 'c₁' and 'c₂'. (generally both equal to 2)
- e. Generate the random value of particles for each variable (x_1, x_2, \dots) .
- f. Generate random value of velocities of particles for each variable (v_1, v_2, \dots) .
- g. Calculate the fitness value for each particle.
- h. The position corresponding to best fitness is set to be P^{best} for each particle.
- i. The best of P^{best} is set to be G^{best}.
- j. Update the velocities and positions for each particle using velocity and position modification equation of PSO.
- k. Calculate the fitness using new position for each particle.
- 1. Update P^{best} for each particle and best of P^{best} is set to be G^{best}.
- m. The difference between the previous and current fitness is calculated and compared with tolerance limit for each particle. If it is within tolerance limit, then stop the iteration process otherwise go to step j.
- n. G^{best} is the optimal solution.

5.2 PARAMETERS SETTING FOR PSO ALGORITHMS

In this work Constriction Factor PSO (CPSO), Inertia Weight PSO (IW-PSO), combination of Constriction factor and Inertia weight PSO (CI-PSO), Improved PSO namely IPSO-A, IPSO-B and IPSO-C have been applied to solve four different mathematical functions namely BEALE'S, BOOTH'S, ROSENBROCK'S and SPHERE function. The parameters setting for various methods are described below in Table 5.1-

CF Inertial Weight (W) p $It_{max} \\$ c_1 \mathbf{r}_1 \mathbf{r}_2 10^{-6} **CF-PSO** 2.05 2.05 2 2 0.729 30 1000 10^{-6} 2 Linearly Decreasing 30 1000 **IW-PSO** 2 2 2 2 10^{-6} CI-PSO 2.05 2.05 2 0.729 30 1000 Linearly Decreasing 10^{-6} **IPSO-A** 2 Linearly Decreasing 30 1000 2 2 2 10^{-6} 2 2 2 IPSO-B 2 Linearly Decreasing 30 1000 10^{-6} 2 2 **IPSO-C** 2 2 Linearly Decreasing 30 1000

Table 5.1: Parameters setting for PSO algorithms

Where 'p' is the number of particles, ' ϵ ' is the tolerance value and all other notation has their usual meaning as described earlier. The difference of fitness value between two consecutive iterations compared with tolerance value is considered to determine the stopping criteria for the convergence.

5.3 SOLUTION OF BEALE'S FUNCTION USING PSO ALGORITHMS

The Beale's function in two-dimension is defined as,

$$f\left(x_{1}, x_{2}\right) = (1.5 - x_{1} + x_{1} \; x_{2})^{2} + (2.25 - x_{1} + x_{1} \; x_{2}^{2})^{2} + (2.625 - x_{1} + x_{1} \; x_{2}^{3})^{2}$$

The minimum value of Beale's function is as follows-

Minimum f
$$(3, 0.5) = 0$$
 for $-4.5 < x_1, x_2 < 4.5$

The 3-D surface plot of Beale's function is shown in the figure 5.1

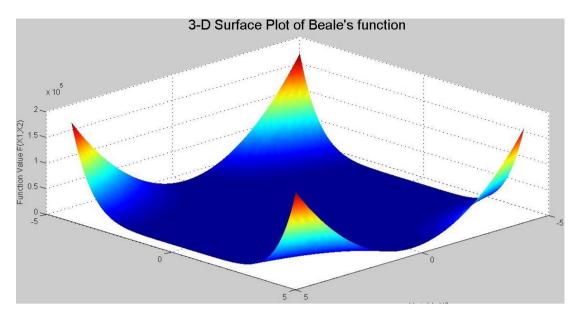


Fig 5.1: 3-D Surface Plot of Beale's function

The results of Beale's function using different PSO algorithms are shown in the Table 5.2

	X ₁	X2	$f(x_1,x_2)$	No. of Iteration	Time (in sec.)
CF-PSO	3	0.5000003	2.505847*10 ⁻¹²	50	0.1039
IW-PSO	3.000004	0.5000024	4.991952*10 ⁻¹¹	134	0.3139
CI-PSO	3.000007	0.5000002	1.830699*10 ⁻¹²	36	0.0763
IPSO-A	2.999991	0.4999985	2.727247*10 ⁻¹¹	105	0.2632
IPSO-B	3.000001	0.5	3.077159*10 ⁻¹²	108	0.2532
IPSO-C	3.000006	0.5000012	3.619538*10 ⁻¹¹	112	0.2753

Table 5.2: Results for Beale's function

How the particles of the swarm find the global position is explained pictorially in the fig. 5.2 below. The figure shows the initial position, position after 1st iteration, position after 10th iteration, position after 25th iteration, position after 50th iteration and final (global) position of the swarm of 30 particles solving Beale's function of two variables. The first part of the figure 5.2 shows the initial random position of the particles. After first iteration all the particles come closer to each other as seen in the second part of the figure 5.2. The third part shows that the particles are attracted towards the global position i.e. 3 and 0.5 after 10th iteration. In fourth part, the particles come closer at its global position after 25th iteration. In fifth

part most of particle reached to global position after 50th iteration. In sixth part all the particles reached to the global position.

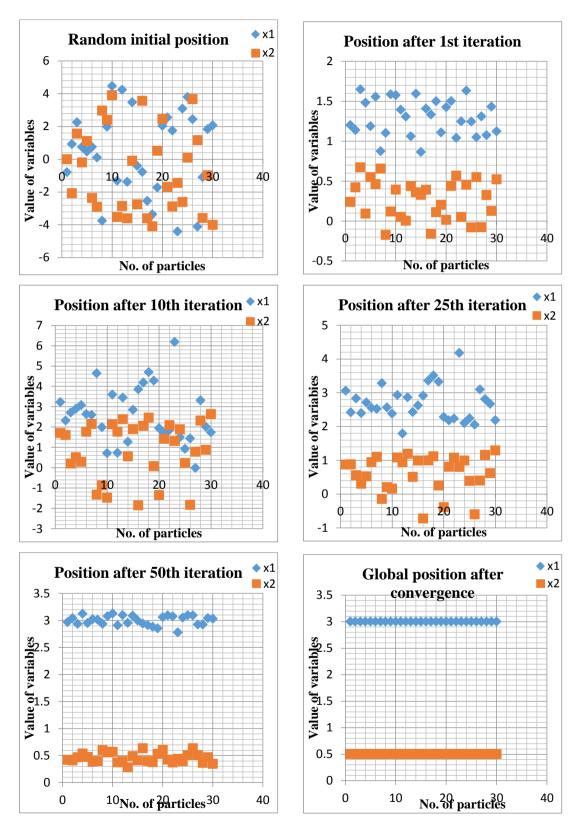


Fig. 5.2: Position of the particles after different iteration for Beale's function

5.4 SOLUTION OF BOOTH'S FUNCTION USING PSO ALGORITHMS

The Booth's function in two-dimension is defined as, $f(x_1,x_2) = (x_1 + 2x_2 - 7)^2 + (2x_1 + x_2 - 5)^2$

The minimum value of Booth's function is as follows-

Minimum f
$$(1, 3) = 0$$
 for $-10 < x_1, x_2 < 10$

The 3-D surface plot of Booth's function is shown in the figure 5.3

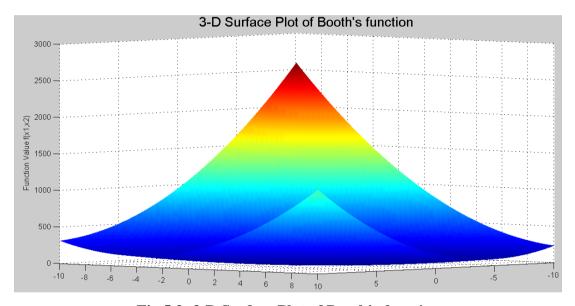


Fig 5.3: 3-D Surface Plot of Booth's function

The results of Beale's function using different PSO algorithms are shown in the Table 5.3

Table 5.3: Results for Booth's function

	X ₁	X 2	$f(x_1,x_2)$	No. of Iteration	Time (in sec.)
CF-PSO	0.9999991	3	2.927818*10 ⁻¹²	46	0.0949
IW-PSO	1.000004	2.999992	1.200323*10 ⁻¹⁰	127	0.2506
CI-PSO	0.9999996	3.000002	1.210196*10 ⁻¹¹	34	0.0709
IPSO-A	0.9999989	3.000003	2.280425*10 ⁻¹¹	89	0.1734
IPSO-B	1.000001	2.999999	1.64735*10 ⁻¹²	93	0.1601
IPSO-C	1.00001	2.999986	3.757722*10 ⁻¹⁰	99	0.1983

5.5 SOLUTION OF ROSENBROCK'S FUNCTION USING PSO ALGORITHMS

The Rosenbrock's function in two-dimension is defined as,

$$f(x_1,x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

The minimum value of Rosenbrock's function is as follows-

Minimum
$$f(1,1) = 0$$

The 3-D surface plot of Booth's function is shown in the figure 5.4

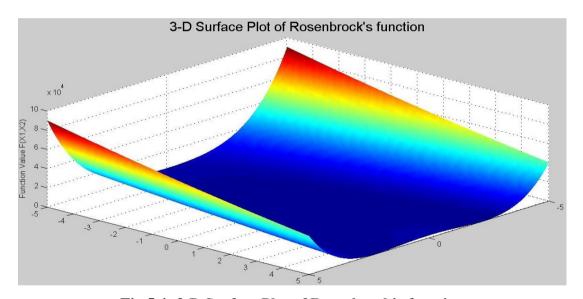


Fig 5.4: 3-D Surface Plot of Rosenbrock's function

The results of Rosenbrock's function using different PSO algorithms are shown in the Table 5.4

Table 5.4: Results for Rosenbrock's function

	X ₁	X2	$f(x_1,x_2)$	No. of Iteration	Time (in sec.)
CF-PSO	1.000016	1.000032	2.470943*10 ⁻⁰⁸	44	0.0634
IW-PSO	1.000005	1.000005	2.840467*10 ⁻⁰⁹	132	0.3844
CI-PSO	0.9999997	0.9999992	1.261402*10 ⁻⁰⁹	35	0.0489
IPSO-A	0.9999936	0.9999877	4.199148*10 ⁻⁰⁹	102	0.2023
IPSO-B	1.000005	1.000006	1.890896*10 ⁻⁰⁹	106	0.1832
IPSO-C	1.000009	1.000016	7.612831*10 ⁻⁰⁹	118	0.2236

5.6 SOLUTION OF SPHERE FUNCTION USING PSO ALGORITHMS

The Sphere function in two-dimension is defined as,

$$f(x_1,x_2) = x_1^2 + x_2^2$$

The minimum value of Sphere function is as follows-

Minimum
$$f(0, 0) = 0$$

The 3-D surface plot of Sphere function is shown in the figure 5.5

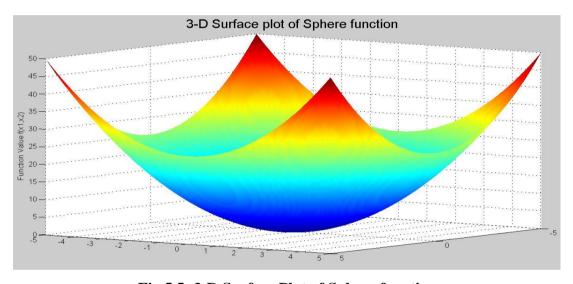


Fig 5.5: 3-D Surface Plot of Sphere function

The results of Sphere function using different PSO algorithms are shown in the Table 5.5

Table 5.5: Results for Sphere function

	\mathbf{x}_1	\mathbf{x}_2	$f(x_1,x_2)$	No. of	Time
				Iteration	(in sec.)
CF-PSO	2.190126*10 ⁻⁰⁶	1.980476*10 ⁻⁰⁶	8.718937*10 ⁻¹²	39	0.0853
IW-PSO	1.567241*10 ⁻⁰⁶	2.709307*10 ⁻⁰⁶	2.529648*10 ⁻¹⁰	102	0.2139
CI-PSO	-3.192096*10 ⁻⁰⁷	-7.638486*10 ⁻⁰⁶	5.844836*10 ⁻¹¹	31	0.0694
IPSO-A	1.442569*10 ⁻⁰⁵	1.480446*10 ⁻⁰⁵	4.272725*10 ⁻¹⁰	81	0.1189
IPSO-B	-4.627715*10 ⁻⁰⁶	6.682951*10 ⁻⁰⁶	6.607759*10 ⁻¹¹	83	0.1101
IPSO-C	-5.062913*10 ⁻⁰⁶	-5.062913*10 ⁻⁰⁶	1.017701*10 ⁻⁰⁹	88	0.1246

5.7 DISCUSSION

The above results show that, the PSO algorithms (CF-PSO, IW-PSO, CI-PSO, IPSO-A, IPSO-B and IPSO-C) are able to solve the mathematical benchmark functions successfully. The use of constriction factor in the velocity modification equation reduces the number of iteration required for the convergence. Therefore constriction factor reduces the computational time. The linearly decreasing inertia weight shifts search from an exploratory mode to an exploitative mode. It has been seen that the use of both constriction factor and inertia weight simultaneously give most effective and reliable results. The CI-PSO gives result in the minimum number of iteration and hence takes less computational time among all the PSO algorithms considered in this work for mathematical benchmark functions (Beale's, Booth's, Rosenbrock's and Sphere function).

CHAPTER 6

ECONOMIC LOAD DISPATCH USING PSO ALGORITHMS

6.1 INTRODUCTION

ELD is the most important optimization problem of power system. The ELD involve a number of non-linear equations. Hence implementation of conventional method to solve such problem becomes complex. PSO is the optimization technique which has successfully applied to solve linear as well as non-linear problems. In this work Constriction Factor PSO (CPSO), Inertia Weight PSO (IW-PSO), combination of Constriction factor and Inertia weight PSO (CI-PSO), Improved PSO namely IPSO-A, IPSO-B and IPSO-C have been applied to solve ELD problem for IEEE 5, 14, 30-bus system. The population size (P) 30, Maximum iteration (It_{max}) 1000 and Tolerance 10^{-6} is taken in all cases. For Constriction Factor PSO, the value of $c_1=c_2=2.05$ and in all other cases $c_1=c_2=2$ is taken. The value of $c_1=c_2=0.5$ is used in all cases. The value of constriction factor is taken as 0.729. The linearly decreasing inertia weight from 0.9 to 0.4 is used. The parameter setting for different PSO algorithms are described in table 5.1. The penalty coefficient (K) for not satisfying load demand constraint is taken as 50 for all the bus system.

6.2 COMPUTATIONAL PROCEDURE

The procedure for the implementation of PSO for ELD problem are summarized by the following steps-

- step 1) Initialization of the parameters- In the first step, the parameters of the PSO, like c_1 , c_2 , r_1 , r_2 , population size P, maximum iteration It_{max} must be chosen.
- step 2) Initialization of the population- Each particle are initialized with random positions 'p' (Power generated by the generating units) under the boundary

constraints of the generating units and velocities 'v' considering velocity clamping for proper convergence.

i.e.
$$p = \{p_{min}, p_{max}\}$$

$$v = \{-0.5p_{min}, 0.5p_{max}\}$$

- step 3) Evaluation of Objective function- The fuel cost of each particle in the population for each generating units and total production cost of the plant satisfying the equality constraints (power generation = power demand + power loss) is to be calculated.
- step 4) Selection of initial personal and global best- Each initial value of particle is set to be its personal best and optimum of the personal bests is set to be global best.
- step 5) Updation- Change the velocities and positions of the particles by velocity and position modification rule of PSO.
- step 6) Boundary condition- Check that the new velocities and position are under the limit. If not, then force its value to the boundary as-

If
$$v < -0.5p_{min}$$
, then $v = -0.5p_{min}$

If
$$v > 0.5p_{max}$$
, then $v = 0.5p_{max}$

Similarly for power generation to be in limit

If
$$p < p_{\text{min}}$$
 , then $p \! = \! p_{\text{min}}$

If
$$p > p_{max}$$
, then $p=p_{max}$

- step 7) Updation of personal and global best value- If positions of the particles give the better fitness value during current iteration then set this as P^{best} and the optimum of P^{best} is set to be G^{best} .
- step 8) Stopping Criteria- Check the difference in fitness value in the consecutive iteration is less than tolerance limit. If yes stop, otherwise go to step 5.

6.3 IEEE 5, 14 & 30 BUS SYSTEM DATA

The cost and loss coefficients of various generators are taken as given in Table 6.1 and Table 6.2 respectively.

Table 6.1: Data for cost coefficients

BUS		G1	G2	G3	P_D
					(in MW)
5	a (\$/MW ²)	0.005	0.005		160
	b (\$/MW)	3.51	3.89		
	c (\$)	44.4	40.6		
	P _{min} (MW)	30	30		
	P _{max} (MW)	120	120		
14	a (\$/MW ²)	0.005	0.005	0.005	259
	b (\$/MW)	2.45	3.51	3.89	
	c (\$)	105	44.4	40.6	
	P _{min} (MW)	50	20	20	
	P _{max} (MW)	200	100	100	
30	a (\$/MW ²)	0.005	0.005	0.005	283.4
	b (\$/MW)	2.45	3.51	3.89	
	c (\$)	105	44.4	40.6	
	P _{min} (MW)	50	30	30	
	P _{max} (MW)	250	100	100	

Table 6.2: Data for Loss coefficients

5-BUS	$B = 10^{-4} \begin{bmatrix} 3.49 & 0.86 \\ -0.55 & 3.71 \end{bmatrix}$
14-BUS	$B = 10^{-4} \begin{bmatrix} 3.49 & 0.68 & -0.39 \\ 0.68 & 1.57 & 0.15 \\ -0.39 & 0.15 & 2.75 \end{bmatrix}$ $B_{i0} = 10^{-4} \begin{bmatrix} 0.44 & 0.24 & 0 \end{bmatrix}$ $B_{00} = 10^{-4} [2.5408]$
30-BUS	$B = 10^{-4} \begin{bmatrix} 3.07 & 1.29 & 0.02 \\ 1.29 & 1.52 & -0.11 \\ -0.02 & -0.11 & 1.9 \end{bmatrix}$

6.4 RESULTS OF IEEE 5, 14 & 30-BUS SYSTEM

The ELD problem of IEEE 5, 14 and 30 bus systems have been solved using six different PSO algorithms described earlier. The results for the twenty trials have been shown below. Table 6.3 shows the results of 20 trials of IEEE 5 bus system. Similarly Table 6.4 and Table 6.5 show the results of 20 trials of IEEE 14 and 30 bus system respectively.

Table 6.3: Results of IEEE 5-BUS System

	CF-F	PSO			IW-P	PSO	
Trial	Fuel Cost	No. of	Time	Trial	Fuel Cost	No. of	Time
No.	(in \$/hr.)	Iteration	(in sec.)	No.	(in \$/hr.)	Iteration	(in sec.)
1.	762.823	85	0.1688	1.	762.6597	216	0.3442
2.	763.1705	88	0.1734	2.	762.0023	221	0.3674
3.	764.8201	82	0.1621	3.	761.1963	211	0.5948
4.	761.4755	81	0.1612	4.	761.1653	222	0.4949
5.	761.1372	79	0.1607	5.	761.3246	230	0.3757
6.	766.0175	82	0.1627	6.	764.975	222	0.3682
7.	761.2032	82	0.1597	7.	762.5686	273	0.44
8.	762.2008	78	0.1506	8.	761.317	218	0.3554
9.	761.138	82	0.1559	9.	761.3084	216	0.3513
10.	765.3894	82	0.1692	10.	761.4428	217	0.35
11.	761.1782	87	0.1695	11.	762.1345	221	0.3844
12.	761.1662	82	0.156	12.	761.7634	240	0.3928
13.	761.148	82	0.1582	13.	762.4156	275	0.4494
14.	761.25	82	0.1635	14.	761.136	210	0.34
15.	763.0206	79	0.16	15.	762.6994	219	0.3544
16.	762.006	82	0.166	16.	761.5892	216	0.3453
17.	763.7499	82	0.1617	17.	761.882	216	0.3444
18.	761.289	83	0.1637	18.	761.1665	224	0.3529
19.	761.1538	82	0.1619	19.	761.5757	223	0.3678
20.	762.0355	82	0.1561	20.	761.5092	215	0.3607
Avg.	762.3686	82	0.1620	Avg.	761.8916	225	0.3867
	CI-P	SO			IPSC)-A	
Trial	Fuel Cost	No. of	Time	Trial	Fuel Cost	No. of	Time
No.	(in \$/hr.)	Iteration	(in sec.)	No.	(in \$/hr.)	Iteration	(in sec.)
1.	761.1465	103	0.1829	1.	762.1053	216	0.5378
2.	761.366	99	0.1917	2.	761.4158	215	0.5374

5. 761.1357 96 0.1835 6. 763.3765 97 0.1769 7. 766.2869 96 0.1761 8. 766.279 101 0.1972 9. 762.2343 108 0.1874 10. 764.6625 91 0.1693 11. 762.1127 102 0.1909 12. 761.3658 93 0.169 13. 766.6079 94 0.1733 14. 762.1437 105 0.1889 15. 763.0847 106 0.1952 16. 761.2003 101 0.1904 17. 763.6541 100 0.1867 18. 766.1019 95 0.1729 19. 763.2724 107 0.1968 20. 761.1464 99 0.1754 Avg. 763.0972 99 0.1819 IPSO-B Trial Fuel Cost (in %hr.) No. of (in %hr.) Ti	3.	761.2888	81	0.1553	3.	762.1738	201	0.4993		
6. 763.3765 97 0.1769 7. 766.2869 96 0.1761 8. 766.279 101 0.1972 9. 762.2343 108 0.1874 10. 764.6625 91 0.1693 11. 762.1127 102 0.1909 12. 761.3658 93 0.169 13. 766.6079 94 0.1733 14. 762.1437 105 0.1889 15. 763.0847 106 0.1952 16. 761.2003 101 0.1904 17. 763.6541 100 0.1867 18. 766.1019 95 0.1729 19. 763.2724 107 0.1968 20. 761.1464 99 0.1754 Avg. 763.0972 99 0.1819 Trial Fuel Cost No. of Time No. (in %hr.) literation (in sec.) 1. 7	4.	763.4789	96	0.178	4.	762.1022	223	0.5765		
7. 766.2869 96 0.1761 8. 766.279 101 0.1972 9. 762.2343 108 0.1874 10. 764.6625 91 0.1693 11. 762.1127 102 0.1909 12. 761.3658 93 0.169 13. 766.6079 94 0.1733 14. 762.1437 105 0.1889 15. 763.0847 106 0.1952 16. 761.2003 101 0.1904 17. 763.6541 100 0.1867 18. 766.1019 95 0.1729 19. 763.2724 107 0.1968 20. 761.1464 99 0.1754 Avg. 763.0972 99 0.1819 Trial Fuel Cost No. of Time No. (in \$hr.) Iteration (in sec.) 1. 762.3534 218 0.3625 2. 761.1352	5.	761.1357	96	0.1835	5.	761.6559	183	0.3898		
8. 766.279 101 0.1972 9. 762.2343 108 0.1874 10. 764.6625 91 0.1693 11. 762.1127 102 0.1909 12. 761.3658 93 0.169 13. 766.6079 94 0.1733 14. 762.1437 105 0.1889 15. 763.0847 106 0.1952 16. 761.2003 101 0.1904 17. 763.6541 100 0.1867 18. 766.1019 95 0.1729 19. 763.2724 107 0.1968 20. 761.1464 99 0.1754 Avg. 763.0972 99 0.1819 IPSO-B Trial Fuel Cost (in \$\frac{k}{k}).) No. of (in \$\frac{k}{k}).) Time (in \$\frac{k}{k}).) No. of (i	6.	763.3765	97	0.1769	6.	761.2539	185	0.3876		
9. 762.2343 108 0.1874 10. 764.6625 91 0.1693 11. 762.1127 102 0.1909 12. 761.3658 93 0.169 13. 766.6079 94 0.1733 14. 762.1437 105 0.1889 15. 763.0847 106 0.1952 16. 761.2003 101 0.1904 17. 763.6541 100 0.1867 18. 766.1019 95 0.1729 19. 763.2724 107 0.1968 20. 761.1464 99 0.1754 Avg. 763.0972 99 0.1819 IPSO-B Trial Fuel Cost (in \$\mathrix*) No. of (in \$\mathrix*) Iteration (in sec.) 1. 762.3534 218 0.3625 2. 761.1352 219 0.5882 3. 761.1352 219 0.5882 6. 761.4505 216	7.	766.2869	96	0.1761	7.	761.7013	217	0.4919		
10. 764.6625 91 0.1693 11. 762.1127 102 0.1909 12. 761.3658 93 0.169 13. 766.6079 94 0.1733 14. 762.1437 105 0.1889 15. 763.0847 106 0.1952 16. 761.2003 101 0.1904 17. 763.6541 100 0.1867 18. 766.1019 95 0.1729 19. 763.2724 107 0.1968 20. 761.1464 99 0.1754 Avg. 763.0972 99 0.1819	8.	766.279	101	0.1972	8.	761.17	215	0.5056		
11. 762.1127 102 0.1909 12. 761.3658 93 0.169 13. 766.6079 94 0.1733 14. 762.1437 105 0.1889 15. 763.0847 106 0.1952 16. 761.2003 101 0.1904 17. 763.6541 100 0.1867 18. 766.1019 95 0.1729 19. 763.2724 107 0.1968 20. 761.1464 99 0.1754 Avg. 763.0972 99 0.1819 IPSO-B IPSO-B IPSO-B IPSO-C Trial Fuel Cost No. of (in \$\frac{1}{3}\) 761.2354 218 0.3625 2. 761.1352 216 0.368 3. 761.1749 202 0.339 4. 761.2884 216 0.372 5. 761.4505 216 0.3652 7. 761.4505 216 0.3652 7. 761.2288 216 0.377 8. 761.4505 216 0.3652 7. 761.288 216 0.377 8. 761.4505 216 0.3652 7. 761.288 216 0.377 8. 761.4505 216 0.3652 7. 761.288 216 0.377 8. 761.4505 216 0.3652 7. 761.288 216 0.3652 7. 761.288 216 0.377 8. 761.4505 216 0.3652 7. 761.288 216 0.3652 7. 761.288 216 0.364 11. 761.6002 223 0.3702 12. 761.266 216 0.3634 13. 761.4394 217 0.3694 14. 762.5657 221 0.3736 15. 761.1357 216 0.3667 16. 761.2111 301 0.4999 16. 761.1353 216 0.3557 16. 761.2111 301 0.4999 16. 761.1353 216 0.3557 16. 761.2111 301 0.4999 16. 761.1353 216 0.3557 16. 761.2111 301 0.4999 16. 761.1353 216 0.3557 16. 761.2111 301 0.4999 16. 761.1353 216 0.3557 16. 761.2111 301 0.4999 17. 761.6182 189 0.4511 13. 761.224 216 0.5191 14. 761.6182 189 0.4511 13. 761.224 216 0.5033 15. 761.177 210 0.6074 16. 761.5042 216 0.5033 17. 761.4719 218 0.5628 17. 761.4719 218 0.5628 17. 761.574 216 0.5583 17. 761.1352 183 0.2908 18. 761.1352 183 0.2908 18. 761.1352 183 0.2908 18. 761.1352 183 0.2908 18. 761.1352 183 0.2908 18. 761.1352 183 0.2908 18. 761.1352 183 0.2908 18. 761.1352 183 0	9.	762.2343	108	0.1874	9.	761.8811	217	0.4931		
12. 761.3658 93 0.169 13. 766.6079 94 0.1733 14. 762.1437 105 0.1889 15. 763.0847 106 0.1952 16. 761.2003 101 0.1904 17. 763.6541 100 0.1867 18. 766.1019 95 0.1729 19. 763.2724 107 0.1968 20. 761.1464 99 0.1754 Avg. 763.0972 99 0.1819	10.	764.6625	91	0.1693	10.	761.3344	212	0.4334		
13. 766.6079 94 0.1733 14. 762.1437 105 0.1889 15. 763.0847 106 0.1952 16. 761.2003 101 0.1904 17. 763.6541 100 0.1867 18. 766.1019 95 0.1729 19. 763.2724 107 0.1968 20. 761.1464 99 0.1754 Avg. 763.0972 99 0.1819 IPSO-B Trial Fuel Cost (in \$/hr.) Iteration (in sec.) 1. 762.3534 218 0.3625 2. 761.1953 216 0.368 3. 761.1749 202 0.339 4. 761.2884 216 0.372 5. 761.1352 199 0.3549 5. 761.4505 216 0.3652 7. 761.2288 216 0.377 8. 761.4505 216 0.3652 7. 761.2884 216 0.3664 11.	11.	762.1127	102	0.1909	11.	761.7206	223	0.5469		
14. 762.1437 105 0.1889 15. 763.0847 106 0.1952 16. 761.2003 101 0.1904 17. 763.6541 100 0.1867 18. 766.1019 95 0.1729 19. 763.2724 107 0.1968 20. 761.1464 99 0.1754 Avg. 763.0972 99 0.1819 IPSO-B Trial Fuel Cost No. of (in \$/hr.) Iteration (in sec.) 1. 762.3534 218 0.3625 2. 761.1953 216 0.368 3. 761.1749 202 0.339 4. 761.2884 216 0.372 4. 761.352 219 0.5882 6. 761.4505 216 0.3652 5. 762.5331 155 0.2648 7. 761.288 216 0.377 8. 761.4352 16 0.3652 7. 761.8961 221 0.513 9.	12.	761.3658	93	0.169	12.	761.6182	189	0.4511		
15. 763.0847 106 0.1952 16. 761.2003 101 0.1904 16. 761.5042 216 0.5033 17. 763.6541 100 0.1867 18. 766.1019 95 0.1729 19. 763.2724 107 0.1968 20. 761.1464 99 0.1754 Avg. 763.0972 99 0.1819	13.	766.6079	94	0.1733	13.	761.2224	216	0.5191		
16. 761.2003 101 0.1904 17. 763.6541 100 0.1867 18. 766.1019 95 0.1729 19. 763.2724 107 0.1968 20. 761.1464 99 0.1754 Avg. 763.0972 99 0.1819 IPSO-B Trial Fuel Cost No. of (in \$\frac{1}{2}\) (in \$\frac	14.	762.1437	105	0.1889	14.	761.9998	214	0.4908		
17. 763.6541 100 0.1867 18. 766.1019 95 0.1729 19. 763.2724 107 0.1968 20. 761.1464 99 0.1754 Avg. 763.0972 99 0.1819 IPSO-B Trial Fuel Cost (in \$/hr.) Iteration (in sec.) 1. 762.3534 218 0.3625 2. 761.1953 216 0.368 3. 761.1749 202 0.339 4. 761.2884 216 0.372 5. 761.1352 219 0.5882 6. 761.4505 216 0.3652 7. 761.2288 216 0.377 8. 761.4053 216 0.4032 9. 761.8961 221 0.513 10. 762.7156 216 0.3634 11. 761.6002 223 0.3702 12. 761.2266 216 0.3634 <	15.	763.0847	106	0.1952	15.	761.177	210	0.6074		
18. 766.1019 95 0.1729 19. 763.2724 107 0.1968 20. 761.1464 99 0.1754 Avg. 763.0972 99 0.1819 IPSO-B Trial No. (in \$/hr.) Iteration (in sec.) 1. 762.3534 218 0.3625 2. 761.1953 216 0.368 2. 761.1357 210 0.3434 2. 761.1953 216 0.368 3. 761.1749 202 0.339 4. 761.2884 216 0.372 4. 761.1352 119 0.3649 5. 761.1352 219 0.5882 5. 762.5331 155 0.2648 6. 761.4505 216 0.3652 5. 761.1352 161 0.2653 7. 761.8961 221 0.513 9. 761.1352 182 0.3039 9. 761.8961 221 0.513 10. 761.1352 176 <td< td=""><td>16.</td><td>761.2003</td><td>101</td><td>0.1904</td><td>16.</td><td>761.5042</td><td>216</td><td>0.5033</td></td<>	16.	761.2003	101	0.1904	16.	761.5042	216	0.5033		
19. 763.2724 107 0.1968 20. 761.1464 99 0.1754 Avg. 763.0972 99 0.1819 IPSO-B IPSO-B IPSO-C Trial Fuel Cost No. of time No. (in \$\frac{1}{3}\triangle r) Iteration (in sec.) 1. 762.3534 218 0.3625 2. 761.1953 216 0.368 3. 761.1749 202 0.339 4. 761.2884 216 0.372 5. 761.1352 219 0.5882 6. 761.4505 216 0.3652 7. 761.2288 216 0.377 8. 761.4053 216 0.4032 9. 761.8961 221 0.513 10. 762.7156 216 0.364 11. 761.6002 223 0.3702 12. 761.2266 216 0.3634 13. 761.4394 217 0.3694 14. 762.5657 221 0.3736 15. 761.1357 216 0.367 16. 761.1357 216 0.367 16. 761.1357 216 0.367 16. 761.1357 216 0.367 16. 761.1357 216 0.367 16. 761.1357 216 0.367 16. 761.1357 216 0.367 16. 761.1357 216 0.367 16. 761.1357 216 0.367 16. 761.1357 216 0.367 16. 761.1357 216 0.367 16. 761.1357 216 0.367 16. 761.1353 216 0.3557 16. 761.1357 216 0.367 16. 761.1353 216 0.3557 16. 761.1357 216 0.367 16. 761.1353 216 0.3557 16. 761.1357 216 0.367 16. 761.1353 216 0.3557 16. 761.1357 216 0.367 16. 761.1353 216 0.3557 16	17.	763.6541	100	0.1867	17.	761.4719	218	0.5628		
ZO. 761.1464 99 0.1754 Avg. 763.0972 99 0.1819 IPSO-B Trial No. Fuel Cost (in \$/hr.) No. of (in sec.) 1. 762.3534 218 0.3625 2. 761.1953 216 0.368 3. 761.1749 202 0.339 4. 761.2884 216 0.372 5. 761.1352 219 0.5882 6. 761.4505 216 0.3652 7. 761.2288 216 0.377 8. 761.4953 216 0.4032 9. 761.8961 221 0.513 10. 762.7156 216 0.364 11. 761.6002 223 0.3702 12. 761.2266 216 0.3634 13. 761.4394 217 0.3694 14. 762.5657 221 0.3736 15. 761.1357 216 0.367	18.	766.1019	95	0.1729	18.	761.2443	223	0.6677		
Avg. 763.0972 99 0.1819 IPSO-B IPSO-B IPSO-C Trial Fuel Cost No. of (in s/hr.) Iteration (in sec.)	19.	763.2724	107	0.1968	19.	762.404	201	0.4976		
Trial Fuel Cost No. of Time No. (in \$\frac{1}{9}\trian) Iteration (in sec.)	20.	761.1464	99	0.1754	20.	761.574	216	0.5583		
Trial No. Fuel Cost (in \$/hr.) No. of Iteration (in sec.) Trime (in \$/hr.) Trial Iteration (in sec.) Trial No. Fuel Cost (in \$/hr.) No. of Iteration (in sec.) 1. 762.3534 218 0.3625 1. 761.1357 210 0.3434 2. 761.1953 216 0.368 2. 761.1352 183 0.2908 3. 761.1749 202 0.339 4. 761.2884 216 0.372 5. 761.1352 199 0.3549 5. 761.4505 216 0.3652 6. 761.4505 216 0.3652 7. 761.2288 216 0.377 8. 761.4053 216 0.4032 9. 761.8961 221 0.513 9. 761.1352 176 0.3403 10. 762.7156 216 0.364 10. 761.1352 171 0.2785 13. 761.4394 217 0.3694 12. 761.1352 270 0.4395 14.	Avg.	763.0972	99	0.1819	Avg.	761.6365	211	0.5129		
No. (in \$/hr.) Iteration (in sec.) No. (in \$/hr.) Iteration (in sec.) 1. 762.3534 218 0.3625 1. 761.1357 210 0.3434 2. 761.1953 216 0.368 2. 761.1352 183 0.2908 3. 761.1749 202 0.339 3. 761.1352 317 0.4992 4. 761.2884 216 0.372 4. 761.1352 199 0.3549 5. 761.4505 216 0.3652 5. 762.5331 155 0.2648 6. 761.4505 216 0.3652 7. 761.352 161 0.2653 7. 761.8961 221 0.513 9. 761.1352 182 0.3039 9. 761.8961 221 0.513 10. 761.1352 176 0.3403 12. 761.2266 216 0.3634 11. 761.1352 298 0.4808 13. 7		IPSC	D-B							
1. 762.3534 218 0.3625 2. 761.1953 216 0.368 3. 761.1749 202 0.339 4. 761.2884 216 0.372 5. 761.1352 219 0.5882 6. 761.4505 216 0.3652 7. 761.2288 216 0.377 8. 761.4053 216 0.4032 9. 761.8961 221 0.513 10. 762.7156 216 0.364 11. 761.6002 223 0.3702 12. 761.2266 216 0.3634 13. 761.4394 217 0.3694 14. 762.5657 221 0.3736 15. 761.1357 216 0.367 16. 761.2111 301 0.4999	Trial	Fuel Cost	No. of	Time	Trial	Fuel Cost	No. of	Time		
2. 761.1953 216 0.368 3. 761.1749 202 0.339 4. 761.2884 216 0.372 5. 761.1352 219 0.5882 6. 761.4505 216 0.3652 7. 761.2288 216 0.377 8. 761.4053 216 0.4032 9. 761.8961 221 0.513 10. 762.7156 216 0.364 11. 761.6002 223 0.3702 12. 761.2266 216 0.3634 13. 761.4394 217 0.3694 14. 762.5657 221 0.3736 15. 761.1357 216 0.367 15. 761.2111 301 0.4999 2. 761.1352 183 0.2908 3. 761.1352 199 0.3549 4. 761.1352 161 0.2653 7. 761.1352 182 0.3039 9. 761.1352 <					No.			(in sec.)		
3. 761.1749 202 0.339 4. 761.2884 216 0.372 5. 761.1352 219 0.5882 6. 761.4505 216 0.3652 7. 761.2288 216 0.377 8. 761.4053 216 0.4032 9. 761.8961 221 0.513 10. 762.7156 216 0.364 11. 761.6002 223 0.3702 12. 761.2266 216 0.3634 13. 761.4394 217 0.3694 14. 762.5657 221 0.3736 15. 761.1357 216 0.367 15. 761.2111 301 0.4999 3. 761.1352 199 0.3549 4. 761.1352 161 0.2648 5. 762.5331 155 0.2648 8. 761.1352 176 0.3403 9. 761.1352 171 0.2785 11. 761.1352		762.3534		0.3625	1.	761.1357	210	0.3434		
4. 761.2884 216 0.372 5. 761.1352 219 0.5882 6. 761.4505 216 0.3652 7. 761.2288 216 0.377 8. 761.4053 216 0.4032 9. 761.8961 221 0.513 10. 762.7156 216 0.364 11. 761.6002 223 0.3702 12. 761.2266 216 0.3634 13. 761.4394 217 0.3694 14. 762.5657 221 0.3736 15. 761.1357 216 0.367 16. 761.2111 301 0.4999	2.	761.1953	216	0.368	2.	761.1352	183	0.2908		
5. 761.1352 219 0.5882 6. 761.4505 216 0.3652 7. 761.2288 216 0.377 8. 761.4053 216 0.4032 9. 761.8961 221 0.513 10. 762.7156 216 0.364 11. 761.6002 223 0.3702 12. 761.2266 216 0.3634 13. 761.4394 217 0.3694 14. 762.5657 221 0.3736 15. 761.1357 216 0.367 16. 761.2111 301 0.4999 5. 762.5331 155 0.2648 6. 761.1352 182 0.3039 9. 761.1352 176 0.3403 10. 761.1352 171 0.2785 11. 761.6002 223 0.3634 12. 761.1352 151 0.2585 14. 761.	3.	761.1749	202	0.339	3.	761.1352	317	0.4992		
6. 761.4505 216 0.3652 7. 761.2288 216 0.377 8. 761.4053 216 0.4032 9. 761.8961 221 0.513 10. 762.7156 216 0.364 11. 761.6002 223 0.3702 12. 761.2266 216 0.3634 13. 761.4394 217 0.3694 14. 762.5657 221 0.3736 15. 761.1357 216 0.367 15. 761.2111 301 0.4999	4.	761.2884	216	0.372	4.	761.1352	199	0.3549		
7. 761.2288 216 0.377 8. 761.4053 216 0.4032 9. 761.8961 221 0.513 10. 762.7156 216 0.364 11. 761.6002 223 0.3702 12. 761.2266 216 0.3634 13. 761.4394 217 0.3694 14. 762.5657 221 0.3736 15. 761.1357 216 0.367 16. 761.2111 301 0.4999	5.	761.1352	219	0.5882	5.	762.5331	155	0.2648		
8. 761.4053 216 0.4032 8. 761.1352 182 0.3039 9. 761.8961 221 0.513 9. 761.1352 176 0.3403 10. 762.7156 216 0.364 10. 761.1352 171 0.2785 11. 761.6002 223 0.3702 11. 761.1352 298 0.4808 12. 761.2266 216 0.3634 12. 761.1352 270 0.4395 13. 761.4394 217 0.3694 13. 761.1352 151 0.2585 14. 762.5657 221 0.3736 14. 761.6407 197 0.3313 15. 761.1357 216 0.367 15. 761.1754 293 0.4623 16. 761.2111 301 0.4999 16. 761.1353 216 0.3557	6.	761.4505	216	0.3652	6.	761.1352	161	0.2653		
9. 761.8961 221 0.513 10. 762.7156 216 0.364 11. 761.6002 223 0.3702 12. 761.2266 216 0.3634 13. 761.4394 217 0.3694 14. 762.5657 221 0.3736 15. 761.1357 216 0.367 16. 761.2111 301 0.4999 16. 761.1353 216 0.3557	7.	761.2288	216	0.377	7.	761.1354	363	0.5607		
10. 762.7156 216 0.364 11. 761.6002 223 0.3702 12. 761.2266 216 0.3634 13. 761.4394 217 0.3694 14. 762.5657 221 0.3736 15. 761.1357 216 0.367 16. 761.2111 301 0.4999 10. 761.1352 171 0.2785 11. 761.1352 298 0.4808 12. 761.1352 270 0.4395 13. 761.1352 151 0.2585 14. 761.6407 197 0.3313 15. 761.1754 293 0.4623 16. 761.2111 301 0.4999 16. 761.1353 216 0.3557	8.	761.4053	216	0.4032	8.	761.1352	182	0.3039		
11. 761.6002 223 0.3702 12. 761.2266 216 0.3634 13. 761.4394 217 0.3694 14. 762.5657 221 0.3736 15. 761.1357 216 0.367 16. 761.2111 301 0.4999 11. 761.1352 298 0.4808 12. 761.1352 270 0.4395 13. 761.1352 151 0.2585 14. 761.6407 197 0.3313 15. 761.1754 293 0.4623 16. 761.2111 301 0.4999 16. 761.1353 216 0.3557	9.	761.8961	221	0.513	9.	761.1352	176	0.3403		
12. 761.2266 216 0.3634 13. 761.4394 217 0.3694 14. 762.5657 221 0.3736 15. 761.1357 216 0.367 16. 761.2111 301 0.4999 12. 761.1352 270 0.4395 13. 761.1352 151 0.2585 14. 761.6407 197 0.3313 15. 761.1754 293 0.4623 16. 761.1353 216 0.3557	10.	762.7156	216	0.364	10.	761.1352	171	0.2785		
13. 761.4394 217 0.3694 14. 762.5657 221 0.3736 15. 761.1357 216 0.367 16. 761.2111 301 0.4999 13. 761.1352 151 0.2585 14. 761.6407 197 0.3313 15. 761.1754 293 0.4623 16. 761.1353 216 0.3557	11.	761.6002	223	0.3702	11.	761.1352	298	0.4808		
14. 762.5657 221 0.3736 15. 761.1357 216 0.367 16. 761.2111 301 0.4999 14. 761.6407 197 0.3313 15. 761.1754 293 0.4623 16. 761.1353 216 0.3557	12.	761.2266	216	0.3634	12.	761.1352	270	0.4395		
15. 761.1357 216 0.367 16. 761.2111 301 0.4999 15. 761.1754 293 0.4623 16. 761.1353 216 0.3557	13.	761.4394	217	0.3694	13.	761.1352	151	0.2585		
16. 761.2111 301 0.4999 16. 761.1353 216 0.3557	14.	762.5657	221	0.3736	14.	761.6407	197	0.3313		
	15.	761.1357	216	0.367	15.	761.1754	293	0.4623		
17. 762.7848 216 0.3896 17. 761.1353 275 0.4607	16.	761.2111	301	0.4999	16.	761.1353	216	0.3557		
	17.	762.7848	216	0.3896	17.	761.1353	275	0.4607		
18. 761.218 223 0.3676 18. 761.1352 154 0.2652	18.	761.218	223	0.3676	18.	761.1352	154	0.2652		

19.	761.9148	216	0.3607	1
20.	762.3978	223	0.3757	2
Avg.	761.6669	221	0.3945	A

19.	761.1352	174	0.3013
20.	761.1417	316	0.5164
Avg.	761.2327	223	0.3687

Table 6.4: Results of IEEE 14-BUS System

	CF-F	PSO			IW-P	PSO	
Trial	Fuel Cost	No. of	Time	Trial	Fuel Cost	No. of	Time
No.	(in \$/hr.)	Iteration	(in sec.)	No.	(in \$/hr.)	Iteration	(in sec.)
1.	1150.438	86	0.2141	1.	1164.589	216	0.6626
2.	1163.459	92	0.2257	2.	1146.295	270	0.9164
3.	1151.778	91	0.2235	3.	1147.372	206	0.6412
4.	1164.253	88	0.2118	4.	1143.884	206	0.6371
5.	1147.883	88	0.2109	5.	1161.208	203	0.6312
6.	1147.105	90	0.2171	6.	1144.145	278	0.9934
7.	1151.818	88	0.2181	7.	1149.61	208	0.6373
8.	1151.365	88	0.2239	8.	1160.572	262	0.9568
9.	1159.595	90	0.2207	9.	1145.327	270	0.9741
10.	1143.908	86	0.2116	10.	1156.66	210	0.6476
11.	1155.479	91	0.2192	11.	1186.491	260	0.9124
12.	1150.767	91	0.2223	12.	1143.885	212	0.6706
13.	1158.797	88	0.2094	13.	1172.65	217	0.6791
14.	1149.814	92	0.2158	14.	1147.763	208	0.6684
15.	1157.591	95	0.2338	15.	1157.131	258	0.8996
16.	1159.537	90	0.2158	16.	1147.736	251	0.8461
17.	1150.343	88	0.2127	17.	1147.269	258	0.856
18.	1148.798	88	0.2099	18.	1147.161	207	0.6323
19.	1171.506	86	0.2115	19.	1147.777	204	0.6331
20.	1157.282	90	0.2167	20.	1147.39	255	0.878
Avg.	1154.576	89	0.2172	Avg.	1153.246	233	0.7687
	CI-P	SO			IPSC)-A	
Trial	Fuel Cost	No. of	Time	Trial	Fuel Cost	No. of	Time
No.	(in \$/hr.)	Iteration	(in sec.)	No.	(in \$/hr.)	Iteration	(in sec.)
1.	1158.469	110	0.2551	1.	1150.913	214	0.7656
2.	1144.111	111	0.3595	2.	1156.915	238	0.8858
3.	1146.389	108	0.2533	3.	1149.377	216	0.776
4.	1161.444	112	0.2571	4.	1154.128	232	0.9445
5.	1151.028	108	0.2519	5.	1145.613	229	0.9499
6.	1154.499	93	0.2285	6.	1148.896	210	0.7265

7.	1151.266	95	0.2235	7.	1145.139	208	0.7248
8.	1150.729	117	0.2731	8.	1147.484	205	0.7246
9.	1153.375	107	0.2444	9.	1163.342	227	0.9193
10.	1167.771	113	0.2596	10.	1147.764	233	0.9334
11.	1150.66	113	0.2629	11.	1157.427	231	0.9999
12.	1163.097	100	0.2333	12.	1154.072	229	0.8359
13.	1149.195	109	0.2569	13.	1158.279	227	0.8572
14.	1145.301	109	0.2505	14.	1150.968	230	0.9004
15.	1160.012	104	0.2479	15.	1144.201	226	0.9161
16.	1164.61	107	0.2479	16.	1160.347	236	1.007
17.	1145.717	114	0.2657	17.	1149.933	233	1.005
18.	1150.318	113	0.2584	18.	1154.18	229	0.8933
19.	1153.219	104	0.246	19.	1148.369	226	0.8922
20.	1146.404	115	0.2619	20.	1153.952	224	0.9552
Avg.	1153.381	108	0.2569	Avg.	1153.515	225	1.0019
	IPSC)-В			IPSC)-C	
Trial	Fuel Cost	No. of	Time	Trial	Fuel Cost	No. of	Time
No.	(in \$/hr.)	Iteration	(in sec.)	No.	(in \$/hr.)	Iteration	(in sec.)
1.	1157.753	249	0.7634	1.	1146.265	291	0.9707
2.	1153.237	247	0.7068	2.	1143.859	297	0.7148
3.	1153.494	215	0.6883	3.	1146.419	301	0.7137
4.	1145.833	224	0.7298	4.	1143.853	301	0.7305
5.	1149.282	208	0.6816	5.	1144.155	307	1.353
6.	1148.743	214	0.7009	6.	1143.853	294	0.9041
7.	1153.823	236	0.7245	7.	1144.177	298	0.8931
8.	1149.545	206	0.7009	8.	1148.058	299	0.6884
9.	1157.223	264	0.791	9.	1153.009	302	0.8275
10.	1147.41	215	0.916	10.	1143.853	291	0.6653
11.	1147.75	205	0.6804	11.	1144.056	301	0.7355
12.	1145.859	296	0.6817	12.	1143.924	292	0.9573
13.	1152.194	225	0.7255	13.	1143.872	297	0.7486
14.	1153.052	211	0.7048	14.	1146.643	306	0.8567
15.	1159.719	201	0.6711	15.	1143.854	298	0.8557
16.	1152.559	255	0.7772	16.	1150.204	297	0.6609
17.	1162.29	207	0.682	17.	1143.89	295	0.7556
18.	1151.45	205	0.6884	18.	1143.902	294	0.7525
19.	1150.062	219	0.7178	19.	1143.864	309	0.6603
20.	1147.135	221	0.6669	20.	1144.448	296	0.6977
Avg.	1151.921	226	0.7349	Avg.	1145.308	298	1.0058

Table 6.5: Results of IEEE 30-BUS System

	CF-PSO			IW-PSO				
Trial	Fuel Cost	No. of	Time	Trial	Fuel Cost	No. of	Time	
No.	(in \$/hr.)	Iteration	(in sec.)	No.	(in \$/hr.)	Iteration	(in sec.)	
1.	1271.72	89	0.1956	1.	1257.35	241	0.4618	
2.	1256.401	95	0.2228	2.	1257.312	237	0.4716	
3.	1257.761	91	0.2075	3.	1256.823	232	0.4436	
4.	1278.789	89	0.1974	4.	1279.779	237	0.4604	
5.	1256.876	89	0.1979	5.	1266.617	237	0.4666	
6.	1259.723	96	0.2081	6.	1279.141	232	0.4492	
7.	1269.204	89	0.2506	7.	1256.279	237	0.4602	
8.	1257.477	91	0.2113	8.	1257.057	267	0.7334	
9.	1275.185	93	0.2304	9.	1264.149	234	0.4352	
10.	1278.166	88	0.2215	10.	1259.052	230	0.4346	
11.	1260.94	91	0.2069	11.	1256.264	237	0.4552	
12.	1280.52	91	0.2442	12.	1257.662	239	0.5449	
13.	1260.779	91	0.2347	13.	1265.116	242	0.4574	
14.	1284.09	98	0.2962	14.	1273.777	233	0.4904	
15.	1257.756	93	0.2047	15.	1256.293	233	0.4406	
16.	1264.617	92	0.2205	16.	1257.8	236	0.5885	
17.	1259.847	93	0.2141	17.	1283.973	230	0.4464	
18.	1261.267	91	0.2605	18.	1262.642	237	0.4405	
19.	1276.012	92	0.2077	19.	1284.362	235	0.4645	
20.	1273.753	84	0.2022	20.	1256.657	233	0.4508	
Avg.	1267.044	91	0.2217	Avg.	1264.405	237	0.4798	
	CI-P	PSO			IPSC)-A		
Trial	Fuel Cost	No. of	Time	Trial	Fuel Cost	No. of	Time	
No.	(in \$/hr.)	Iteration	(in sec.)	No.	(in \$/hr.)	Iteration	(in sec.)	
1.	1256.527	95	0.3126	1.	1261.02	230	0.6839	
2.	1256.29	105	0.3039	2.	1265.735	236	0.7809	
3.	1269.379	110	0.2647	3.	1257.599	232	0.6824	
4.	1274.647	108	0.3179	4.	1259.944	232	0.6602	
5.	1257.508	113	0.2882	5.	1256.264	231	0.8659	
6.	1259.848	106	0.2812	6.	1257.679	227	0.7342	
7.	1262.224	118	0.3448	7.	1261.402	234	0.6876	
8.	1257.031	117	0.2663	8.	1256.708	233	0.8216	
9.	1256.642	105	0.2316	9.	1256.664	228	0.7329	
10.	1259.092	116	0.2553	10.	1258.757	236	0.7089	
11.	1279.952	106	0.2528	11.	1261.222	235	0.8425	

12.	1271.287	110	0.2538	12.	1256.726	238	0.7196
13.	1263.164	113	0.2422	13.	1357.143	232	0.6872
14.	1259.459	118	0.2627	14.	1257.154	232	0.7121
15.	1280.542	123	0.2652	15.	1258.03	223	0.5732
16.	1268.984	109	0.2507	16.	1257.826	242	0.7765
17.	1256.306	112	0.2586	17.	1277.472	232	0.7144
18.	1258.716	112	0.2491	18.	1257.421	229	0.6283
19.	1258.489	110	0.2553	19.	1260.135	235	0.7108
20.	1256.925	118	0.4929	20.	1256.627	234	0.6722
Avg.	1263.150	111	0.2825	Avg.	1259.576	233	0.7198
	IPSO	D-B			IPSC	O-C	
Trial	Fuel Cost	No. of	Time	Trial	Fuel Cost	No. of	Time
No.	(in \$/hr.)	Iteration	(in sec.)	No.	(in \$/hr.)	Iteration	(in sec.)
1.	1260.127	233	0.4774	1.	1256.193	255	0.6141
2.	1258.97	234	0.5079	2.	1256.669	179	0.4731
3.	1258.756	238	0.7357	3.	1256.465	170	0.3347
4.	1256.645	234	0.4693	4.	1256.192	222	0.4968
5.	1256.587	239	0.4827	5.	1257.129	497	1.1552
6.	1256.637	238	0.5081	6.	1256.192	268	0.5054
7.	1256.303	236	0.4781	7.	1256.368	309	0.6067
8.	1256.603	235	0.6612	8.	1256.193	417	0.8118
9.	1265.598	244	0.5068	9.	1256.193	412	0.7755
10.	1257.632	231	0.4972	10.	1256.192	215	0.6425
11.	1256.365	233	0.5099	11.	1256.192	411	0.7638
12.	1258.436	233	0.4929	12.	1257.719	469	1.1079
13.	1262.795	234	0.5001	13.	1256.192	319	0.6454
14.	1257.044	235	0.5024	14.	1272.138	190	0.3645
15.	1267.616	232	0.4822	15.	1258.073	387	0.8488
16.	1256.217	231	0.4938	16.	1258.781	227	0.5138
17.	1261.508	233	0.4862	17.	1258.06	558	1.1207
18.	1256.492	231	0.4837	18.	1256.635	157	0.3922
19.	1258.448	237	0.4844	19.	1256.196	244	0.4796
20.	1265.353	235	0.4909	20.	1256.192	223	0.5084
Avg.	1259.207	235	0.5125	Avg.	1257.498	306	0.6580

6.5 DISCUSSION

The best cost, average cost, worst cost, average number of iteration, average computational time and standard deviation cost of 20 trials are summarized for different PSO algorithms. Table 6.6 shows the compact results of IEEE 5 bus system. Similarly table 6.7 and table 6.8 show the compact results of IEE 14 and 30 bus systems respectively.

Table 6.6: Compact Results of IEEE 5-bus system of 20 trials

	Best	Average	Worst	Average	Average	Standard
	Fuel Cost	Fuel Cost	Fuel Cost	no. of	Computational	Deviation
	(in \$/hr.)	(in \$/hr.)	(in \$/hr.)	Iteration	Time (in Sec.)	(in \$/hr.)
CF-PSO	761.1372	762.3686	766.0175	82	0.1620	1.544677
IW-PSO	761.1360	761.8916	764.9750	225	0.3867	0.894688
CI-PSO	761.1357	763.0972	766.6079	99	0.1819	1.941389
IPSO-A	761.1700	761.6365	762.4040	211	0.5129	0.370428
IPSO-B	761.1352	761.6669	762.7848	221	0.3945	0.581103
IPSO-C	761.1352	761.2327	762.5331	223	0.3687	0.326141

Table 6.7: Compact Results of IEEE 14-bus system of 20 trials

	Best	Average	Worst	Average	Average	Standard
	Fuel Cost	Fuel Cost	Fuel Cost	no. of	Computational	Deviation
	(in \$/hr.)	(in \$/hr.)	(in \$/hr.)	Iteration	Time (in Sec.)	(in \$/hr.)
CF-PSO	1143.908	1154.576	1171.506	89	0.2172	6.843359
IW-PSO	1143.884	1153.246	1186.491	233	0.7687	11.16492
CI-PSO	1144.111	1153.381	1167.771	108	0.2569	6.968287
IPSO-A	1144.201	1153.515	1163.342	225	1.0019	5.290987
IPSO-B	1145.833	1151.921	1162.29	226	0.7349	4.593381
IPSO-C	1143.853	1145.308	1153.009	298	1.0058	2.516282

Table 6.8: Compact Results of IEEE 30-bus system of 20 trials

	Best	Average	Worst	Average	Average	Standard
	Fuel Cost	Fuel Cost	Fuel Cost	no. of	Computational	Deviation
	(in \$/hr.)	(in \$/hr.)	(in \$/hr.)	Iteration	Time (in Sec.)	(in \$/hr.)
CF-PSO	1256.401	1267.044	1284.090	91	0.2217	9.329782

IW-PSO	1256.264	1264.405	1284.362	237	0.4798	10.04872
CI-PSO	1256.285	1263.150	1280.542	111	0.2825	8.037626
IPSO-A	1256.264	1259.576	1277.472	233	0.7198	4.819535
IPSO-B	1256.217	1259.207	1267.616	235	0.5125	3.528597
IPSO-C	1256.192	1257.498	1272.138	306	0.6580	3.536436

The Bar chart of average computational time and standard deviation cost for different PSO algorithms are shown below. The bar chart is used for comparisons of data of the groups. The computational time is the measure of the computational efforts. The consistency of the results is indicated by standard deviation cost.

Fig. 6.1 and Fig 6.2 shows the bar chart for average computational time and standard deviation cost of different PSO algorithms for 5, 14 and 30 bus system respectively.

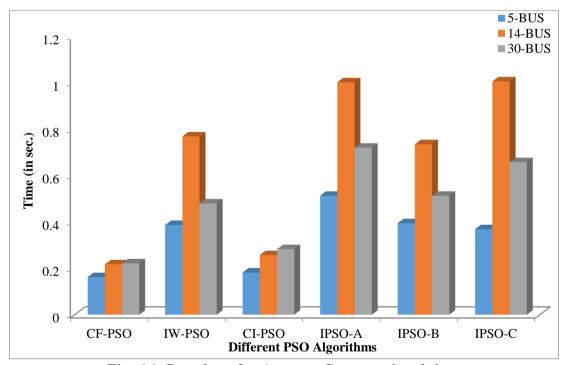


Fig. 6.1: Bar chart for Average Computational time

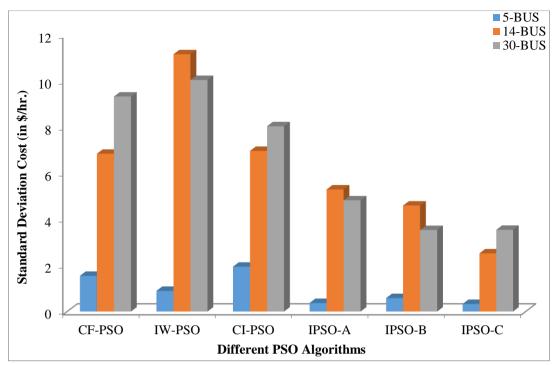


Fig. 6.2: Bar Chart for Standard Deviation costs

The results show that the CF-PSO give results in less number of iteration and hence takes less computational time for all the bus system but the standard deviation cost is in considerable amount. The IW-PSO gives maximum standard deviation cost for 14 and 30 bus system. The CI-PSO also takes less number of iteration except CF-PSO, but standard deviation cost in case of 5 bus system is highest. The IPSO-A gives better results than CF-PSO, IW-PSO & CI-PSO in terms of standard deviation cost. The IPSO-B gives optimum cost for 5 bus systems and lowest standard deviation cost for 30 bus systems. The IPSO-C gives optimum (best) cost for all bus system and lowest standard deviation cost for 5 and 14 bus systems.

CHAPTER 7

CONCLUSIONS & FUTURE DIRECTIONS

The results show that constriction factor reduces the computational time and the number of iteration. The linearly decreasing inertia weight shifts search from an exploratory mode to an exploitative mode. It has been seen that the use of constriction factor simultaneously with inertia weight gives better results for mathematical benchmark functions. But the main objective of ELD problem is to minimize the fuel cost of the plant. The improved PSO (IPSO-A, IPSO-B and IPSO-C) described in this work gives better results than conventional PSO (CF-PSO, IW-PSO and CI-PSO) in terms of optimum fuel costs. The improved PSO gives the consistent results than conventional PSO. The comparison between the improved PSO shows that, the IPSO-C gives minimum fuel cost among them with consistency in all cases.

The other objective of ELD can also be considered like- transmission losses, environmental pollution etc. and solved by improved PSO (IPSO-A, IPSO-B and IPSO-C) in future works.

APPENDIX- I

1) IEEE 5 BUS SYSTEM

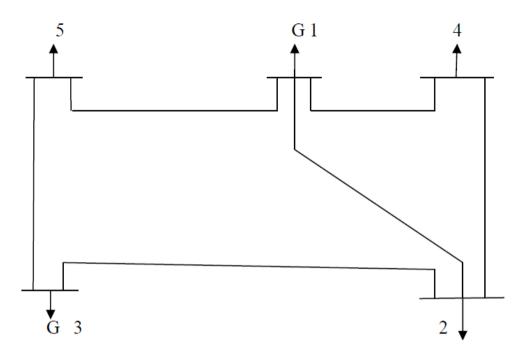


Fig. I-A: BUS-CODE DIAGRAM OF 5 BUS SYSTEM

TABLE I-A: LINE DATA or IMPEDANCE DATA (5 BUS SYSTEM)

LINE DESIGNATION	*R(p.u.)	*X(p.u.)	LINE CHARGING
1-2	0.10	0.4	0.0
1-4	0.15	0.6	0.0
1-5	0.05	0.2	0.0
2-3	0.05	0.2	0.0
2-4	0.10	0.4	0.0
3-5	0.05	0.2	0.0

^{*}The impedance are based on MVA as 100

TABLE I-B: BUS DATA or OPERATING CONDITIONS (5 BUS SYSTEM)

		GENERATION	LC	OAD
BUS NO.	MW VOLTAGE MAGNITUDE		MW	MVAR
1*		1.02		
2			60	30
3	100	1.04		
4			40	10
5			60	20

^{*}Slack Bus

TABLE I-C: REGULATED BUS DATA (5 BUS SYSTEM)

BUS	VOLTAGE	MVAR C	APACITY	MW CA	PACITY
NO.	MAGNITUDE	MINIMUM MAXIMUM		MINIMUM	MAXIMUM
1	1.02	0.0	60	30	120
3	1.04	0.0	60	30	120

The nodal load voltage inequality constraints are 0.9≤Vi≤1.05

Cost characteristics of IEEE 5 bus system

The cost characteristics of the IEEE 5 Bus System are as follows:

 $C_1 = 50p_1^2 + 351p_1 + 44.4$ \$/hr.

 $C_3 = 50p_3^2 + 389p_3 + 40.6$ \$/hr.

Here, the total load demand of the system is 160 MW. Maximum and minimum active power constraint on the generator bus for the given system is 120 MW and 30 MW respectively. Voltage magnitude constraint for generator at bus 3 is 1.04 pu.

M-file For Calculating B- Coefficients:

Clear

basemva=100

accuracy=0.0001

maxiter=10

busdata=[1 1 1.02 0 0 0 0 0 0 60 0;2 0 1 0 60 30 0 0 0 0;3 2 1.04 0 0 0 82 0 0 60 0;4 0 1 0 40 10 0 0 0 0;5 0 1 0 60 20 0 0 0 0];

Linedata=[1 2 0.10 0.4 0 1;1 4 0.15 0.6 0 1; 1 5 0.05 0.2 0 1;2 3 0.05 0.2 0 1;2 4 0.10 0.4 0 1;3 5 0.05 0.2 0 1];

disp(busdata)

disp(linedata)

mwlimit=[30 120;30 120];

Ifybus

Ifnewton

busout

bloss

B-Coefficient Calculated is as:

B11 = 0.00035336 B12 = 0.0000103196

B21 = 0.0000103196 B22 = 0.000368992

2) IEEE 14 BUS SYSTEM

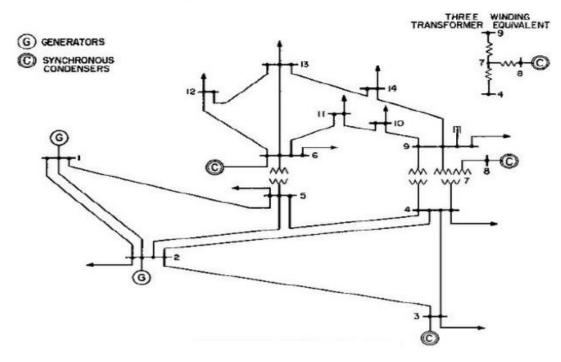


Fig. I-B: BUS-CODE DIAGRAM OF 14 BUS SYSTEM

TABLE I-D: IMPEDANCE & LINE-CHARGING DATA (14 BUS SYSTEM)

Line	Resistance	Reactance	Line	Tap Setting
Designation	p.u. *	p.u. *	Charging	Tap Setting
	_	-		1
1-2	0.019379	0.059170	0.0264	1
1-5	0.054029	0.223040	0.0264	1
2-3	0.046980	0.197970	0.0219	1
2-4	0.058110	0.176320	0.0187	1
2-5	0.056950	0.173880	0.0170	1
3-4	0.067010	0.171030	0.0173	1
4-5	0.013350	0.042110	0.0064	1
4-7	0	0.20912	0	1
4-9	0	0.55618	0	1
5-6	0	0.25202	0	1
6-11	0.09498	0.19890	0	1
6-12	0.12291	0.25581	0	1
6-13	0.06615	0.13027	0	1
7-8	0	0.17615	0	1
7-9	0	0.11001	0	1
9-10	0.03181	0.08450	0	1
9-14	0.12711	0.27038	0	1
10-11	0.08205	0.19207	0	1
12-13	0.22092	0.19988	0	1
13-14	0.17093	0.34802	0	1

^{*} Impedance and line-charging susceptance in p.u. on a 100 MVA base.

TABLE I-E: BUS DATA or OPERATING CONDITIONS (14 BUSSYSTEM)

Bus	Volt	age	Gene	ration	Lo	Load	
No.	Magnitude	Phase angle	MW	MVAR	MW	MVAR	
	(in pu)	(deg.)					
1*	1.06	0	0	0	0	0	
2	1	0	40	0	21.7	12.7	
3	1	0	0	0	94.2	19.0	
4	1	0	0	0	47.8	-3.9	
5	1	0	0	0	7.6	1.6	
6	1	0	0	0	11.2	7.5	
7	1	0	0	0	0	0	
8	1	0	0	0	0	0	
9	1	0	0	0	29.5	16.6	
10	1	0	0	0	9.0	5.8	
11	1	0	0	0	3.5	1.8	
12	1	0	0	0	6.1	1.6	
13	1	0	0	0	13.5	5.8	
14	1	0	0	0	14.9	5.0	

^{*}Slack Bus

TABLE I-F: REGULATED BUS DATA (14 BUS SYSTEM)

Bus no.	Voltage magnitude	Minimum MVAR	Maximum MVAR
	(in pu)	capability	capability
2	1.05	-40	50
3	1.010	0	40
6	1.070	-6	24
8	1.090	-6	24

Cost characteristics of IEEE 14 bus system

The cost characteristics of the IEEE 14 Bus System are as follows:

$$C_1 = 50p_1^2 + 245p_1 + 105$$
\$/hr.

$$C_2 = 50p_2^2 + 351p_2 + 44.4 \text{ } \text{/hr.}$$

$$C_6 = 50p_6^2 + 389p_6 + 40.6$$
\$/hr.

Here, the total load demand of the system is 259 MW. The maximum active power constraint is 200 MW, 100MW and 100 MW for the generators of bus no. 1, 2 and 6 respectively. The minimum active power constraint is 50 MW, 20MW and 20 MW for the generators of bus no. 1, 2 and 6 respectively. Voltage magnitude

constraint for generator at bus 2 is 1.045, for bus no. 6 is 1.070, for bus no. 3 is 1.010 & for bus no. 8 is 1.090.

M-file For Calculating B- Coefficients:

Clear

basemva=100

accuracy=0.0001

maxiter=10

busdata=[1 1 1.06 0 0 150 0 0 0 0 0;2 2 1.045 0 21.7 12.7 63.11 0 -40 50 0;3 0 1.01 0 94.2 19 0 0 0 40 0;4 0 1 0 47.8 -3.9 0 0 0 0 0;5 0 1 0 7.6 1.6 0 0 0 0 0;6 2 1.07 0 11.2 7.5 77.12 0 -6 24 0;7 0 1 0 0 0 0 0 0;8 0 1.09 0 0 0 0 0 -6 24 0;9 0 1 0 29.5 16.6 0 0 0 0 0; 10 0 1 0 9 5.8 0 0 0 0 0;11 0 1 0 3.5 1.8 0 0 0 0 0;12 0 1 0 6.1 1.6 0 0 0 0 0;13 0 1 0 13.5 5.8 0 0 0 0 0;14 0 1 0 14.9 5 0 0 0 0];

 $\begin{array}{l} {\rm linedata} = & [1\ 2\ 0.01938\ 0.05917\ 0.0264\ 1; 1\ 5\ 0.05403\ 0.22304\ 0.0246\ 1; 2\ 3\ 0.04699\ 0.19797\ 0.0219\ 1; 2\ 4\ 0.05811\ 0.17632\ 0.0170\ 1; 2\ 5\ 0.05695\ 0.17388\ 0.0173\ 1; 3\ 4\ 0.06701\ 0.17103\ 0.0064\ 1; 4\ 5\ 0.01335\ 0.04211\ 0.0\ 1; 4\ 7\ 0.0\ 0.20912\ 0.0\ 0.978; 4\ 9\ 0.0\ 0.55618\ 0.0\ 0.969; 5\ 6\ 0.0\ 0.25202\ 0.0\ 0.932; 6\ 11\ 0.09498\ 0.19890\ 0.0\ 1; 6\ 12\ 0.12291\ 0.25581\ 0.0\ 1; 6\ 13\ 0.06615\ 0.13027\ 0.0\ 1; 7\ 8\ 0.0\ 0.17615\ 0.0\ 1; 7\ 9\ 0.0\ 0.11001\ 0.0\ 1; 9\ 10\ 0.03181\ 0.08450\ 0.0\ 1; 9\ 14\ 0.12711\ 0.27038\ 0.0\ 1; 10\ 11\ 0.08205\ 0.19207\ 0.0\ 1; 12\ 13\ 0.22092\ 0.19988\ 0.0\ 1; 13\ 14\ 0.17093\ 0.34802\ 0.0\ 1]; \end{array}$

disp(busdata)

disp(linedata)

mwlimit=[50 200;20 100;20 100]

Ifybus

Ifnewton

busout

bloss

B-Coefficient Calculated is as:

B11 = 0.0231 B12 = 0.0078 B13 = -0.0007 B21 = 0.0078 B22=0.0182 B23= 0.0022 B31=-0.0007 B32= 0.0022 B33= 0.0329

C) IEEE 30 BUS SYSTEM

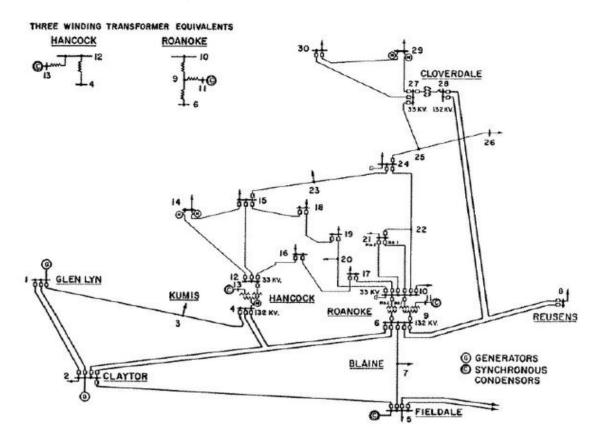


Fig. I-C: BUS-CODE DIAGRAM OF 30 BUS SYSTEM

TABLE I-G: IMPEDANCE & LINE-CHARGING DATA (30 BUS SYSTEM)

TABLE 1-G: IMPEDANCE & LINE-CHARGING DATA (30 DUS SISTEM)					
Resistance	Reactance	Line	Tap Setting		
p.u.*	p.u.*	Charging			
0.0192	0.0575	0.0264	1		
0.0452	0.1852	0.0204	1		
0.0570	0.1737	0.0184	1		
0.0132	0.0379	0.0042	1		
0.0472	0.1983	0.0209	1		
0.0581	0.1763	0.0187	1		
0.0119	0.0414	0.0045	1		
0.0460	0.1160	0.0102	1		
0.0267	0.0820	0.0085	1		
0.0120	0.0420	0.0045	1		
0	0.2080	0	0.978		
0	0.5560	0	0.969		
0	0.2080	0	1		
0	0.1100	0	1		
0	0.2560	0	0.932		
0	0.1400	0	1		
0.1231	0.2559	0	1		
0.0662	0.1304	0	1		
	Resistance p.u.* 0.0192 0.0452 0.0570 0.0132 0.0472 0.0581 0.0119 0.0460 0.0267 0.0120 0 0 0 0 0 0 0 0 0.1231	Resistance Reactance p.u.* p.u.* 0.0192 0.0575 0.0452 0.1852 0.0570 0.1737 0.0132 0.0379 0.0472 0.1983 0.0581 0.1763 0.0119 0.0414 0.0460 0.1160 0.0267 0.0820 0 0.2080 0 0.2560 0 0.2560 0 0.1231 0.2559	Resistance p.u.* Reactance p.u.* Line Charging 0.0192 0.0575 0.0264 0.0452 0.1852 0.0204 0.0570 0.1737 0.0184 0.0132 0.0379 0.0042 0.0472 0.1983 0.0209 0.0581 0.1763 0.0187 0.0119 0.0414 0.0045 0.0460 0.1160 0.0102 0.0267 0.0820 0.0085 0.0120 0.0420 0.0045 0 0.2080 0 0 0.2080 0 0 0.2080 0 0 0.2560 0 0 0.1400 0 0 0.1231 0.2559 0		

12-16	0.0945	0.1987	0	1
14-15	0.2210	0.1997	0	1
16-17	0.0824	0.1923	0	1
15-18	0.1070	0.2185	0	1
18-19	0.0639	0.1292	0	1
19-20	0.0340	0.0680	0	1
10-20	0.0936	0.2090	0	1
10-17	0.0324	0.0845	0	1
10-21	0.0348	0.0749	0	1
10-22	0.0727	0.1499	0	1
21-22	0.0116	0.0236	0	1
15-23	0.1000	0.2020	0	1
22-24	0.1150	0.1790	0	1
23-24	0.1320	0.2700	0	1
24-25	0.1885	0.3292	0	1
25-26	0.2544	0.3800	0	1
25-27	0.1093	0.2087	0	1
27-28	0	0.3960	0	0.968
27-29	0.2198	0.4153	0	1
27-30	0.3202	0.6027	0	1
29-30	0.2399	0.4533	0	1
8-28	0.0636	0.2000	0.0214	1
6-28	0.0169	0.0599	0.0065	1
ψT 1	11' 1 '		100 3 437 4 1	•

^{*}Impedance and line-charging susceptance in p.u. on a 100 MVA base.

TABLE I-H: BUS DATA or OPERATING CONDITIONS (30 BUS SYSTEM)

Bus	Vo	ltage	Gene	ration	Lo	ad
No.	Magnitude	Phase angle	MW	MVAR	MW	MVAR
	(in pu)	(deg.)				
1*	1.06	0	0	0	0	0
2	1	0	40	0	21.7	12.7
3	1	0	0	0	2.4	
4	1	0	0	0	7.6	
5	1	0	0	0	94.2	
6	1	0	0	0	0	0
7	1	0	0	0	22.8	10.9
8	1	0	0	0	30.0	30.0
9	1	0	0	0	0	0
10	1	0	0	0	5.8	2.0
11	1	0	0	0	0	0
12	1	0	0	0	11.2	7.5
13	1	0	0	0	0	0
14	1	0	0	0	6.2	1.6
15	1	0	0	0	8.2	2.5
16	1	0	0	0	3.5	1.8
17	1	0	0	0	9.0	5.8
18	1	0	0	0	3.2	0.9

19	1	0	0	0	9.5	3.4
20	1	0	0	0	2.2	0.7
21	1	0	0	0	17.5	11.2
22	1	0	0	0	0	0
23	1	0	0	0	3.2	1.6
24	1	0	0	0	8.7	6.7
25	1	0	0	0	0	0
26	1	0	0	0	3.5	2.3
27	1	0	0	0	0	0
28	1	0	0	0	0	0
29	1	0	0	0	2.4	0.9
30	1	0	0	0	10.6	1.9

^{*}Slack Bus

TABLE I-I: REGULATED BUS DATA (30 BUS SYSTEM)

Bus no.	Voltage magnitude	Minimum MVAR	Maximum MVAR	
	(in pu)	capability	capability	
2	1.045	-40	50	
5	1.01	-40	40	
8	1.01	-10	40	
11	1.082	-6	24	
13	1.071	-6	24	

TABLE I-J: TRANSFORMER DATA (30 BUS SYSTEM)

Transformer designation	Tap setting*
4-12	0.932
6-9	0.978
6-10	0.969
28-27	0.968

^{*}Off nominal turns ratio, as determined by the actual transformer-tap position and the voltage bases. In the case of nominal turns ratio, this would equal to 1.

TABLE I-K: STATIC CAPACITOR DATA (30 BUS SYSTEM)

Bus no	Susceptance*p.u.	
10	0.19	
24	0.043	

^{*}Susceptance in p.u. on 100 MVA base.

Cost characteristics of IEEE 30 bus system:

The cost characteristics of the IEEE 30 Bus System are as follows:

$$C_1 = 50p_1^2 + 245p_1 + 105$$
\$/hr

$$C_2 = 50p_2^2 + 351p_2 + 44.4$$
 \$\frac{1}{2}hr

$$C_8 = 50p_8^2 + 389p_8 + 40.6$$
\$/hr

The total load demand of the IEEE 30 bus system is 283.4 MW. The maximum active power constraint is 250 MW, 100MW and 100 MW for the generators of bus no. 1, 2 and 8 respectively. The minimum active power constraint is 50 MW, 30MW and 30 MW for the generators of bus no. 1, 2 and 8 respectively. Voltage magnitude constraint for generator at bus 2 is 1.045, for bus no. 5 is 1.01, for bus no. 8 is 1.010, for bus no. 11 is 1.082 &for bus no. 13 is 1.071.

M-file For Calculating B- Coefficients:

Clear

basemva=100

accuracy=0.0001

maxiter=10

busdata=[1 1 1.06 0 0 0 0 0 0 0;2 2 1.045 0 21.7 12.7 90 0 -40 50 0; 3 0 1 0 2.4 1.2 0 0 0 0 0;4 0 1 0 7.6 1.6 0 0 0 0 0;5 0 1.01 0 94.2 19 0 0 -40 40 0; 6 0 1 0 0 0 0 0 0 0; 7 0 1 0 22.8 10.9 0 0 0 0;8 2 1.010 30 30150 0 -10 40 0; 9 0 1 0 0 0 0 0 0 0; 10 0 1 0 5.8 2 0 0 0 0 0.19; 11 0 1.082 0 0 0 0 0 -6 24 0; 12 0 1 0 11.2 7.5 0 0 0 0 0; 13 0 1.071 0 0 0 0 0 -6 24 0: 14 0 1 0 6.2 1.6 0 0 0 0 0:15 0 1 0 8.2 2.5 0 0 0 0 0:16 0 1 0 3.5 1.8 0 0 0 0 0: 17 0 1 0 9 5.8 0 0 0 0 0; 18 0 1 0 3.2 0.9 0 0 0 0; 19 0 1 0 9.5 3.4 0 0 0 0 0; 20 0 1 0 2.2 0.7 0 0 0 0 0;21 0 1 0 17.5 11.2 0 0 0 0 0;22 0 1 0 0 0 0 0 0;23 1 0 3.2 1.6 0 0 0 0; 24 0 1 0 8.7 6.7 0 0 0 0 0.043; 25 0 1 0 0 0 0 0 0 0;26 0 1 0 3.5 2.3 0 0 0 0 0; 27 0 1 0 0 0 0 0 0 0 0; 28 0 1 0 0 0 0 0 0 0; 29 0 1 0 2.4 0.9 0 0 0 0; 30 0 1 0 10.6 1.9 0 0 0 0]; linedata=[1 2 0.0192 0.0575 0.0264 1;1 3 0.0452 0.1852 0.0204 1; 2 4 0.0570 0.19797 0.0219 1; 2 4 0.05811 0.17632 0.0170 1; 2 5 0.05695 0.17388 0.0173 1; 3 4 0.06701 0.17103 0.0064 1; 4 5 0.01335 0.04211 0.0 1; 4 7 0.0 0.20912 0.0 0.978; 4 9 0.0 0.55618 0.0 0.969;5 6 0.0 0.25202 0.0 0.932; 6 11 0.09498 0.19890 0.0 1;6 12 0.12291 0.25581 0.0 1;6 13 0.06615 0.13027 0.0 1;7 8 0.0 0.17615 0.0 1; 7 9 0.0 0.11001 0.0 1; 9 10 0.03181 0.08450 0.0 1;9 14 0.12711 0.27038 0.0 1; 10 11 0.08205 0.19207 0.0 1;12 13 0.22092 0.19988 0.0 1;13 14 0.17093 0.34802 0.0 1];

disp(busdata)

disp(linedata)

mwlimit=[50 150;50 150;50 150]

Ifybus

Ifnewton

busout

bloss

B-Coefficient Calculated is as:

B11 = 0.0307 B12 = 0.0129 B13 = 0.0002 B21 = 0.0129 B22=0.0152 B23= - 0.0011 B31=0.0002 B32=- 0.0011 B33= 0.0190

APPENDIX- II

1. MATLAB Program for the optimization of benchmark functions using PSO

```
disp('Function to be minimize f = (1.5-x1+x1+x2)^2 + (2.25-x1+x1+x2^2)^2
+ (2.625-x1+x1*x2^3)^2 i.e. beale's function');
%disp('Function to be minimize f = (x1+2*x2-7)^2 + (2*x1+x2-5)^2 i.e.
booth's function');
%disp('Function to be minimize f = 100(x1^2-x2)^2+(1-x1)^2 i.e.
rosenbrock function');
%disp('Function to be minimize f = x1^2 + x2^2 i.e. Sphere function');
p=input('Enter the no. of particles in a swarm= ');
it=input('Enter the maximum no. of iterations to be performed= ');
T=input('Enter the tolerance value= ');
tic;
% Initialization of variables
x1=zeros(p,it);
x2=zeros(p,it);
v1=zeros(p,it);
v2=zeros(p,it);
f=zeros(p,it);
fp=zeros(1,p);
df=zeros(1,(it-1));
r1=0.5;
r2=0.5;
c1=2;
c2=2;
%c1=2.05 %when constriction factor is used
%c2=2.05 %when constriction factor is used
%Initial random position and velocity selection
x1(:,1) = unifrnd(-4.5,4.5,1,p);
x2(:,1) = unifrnd(-4.5,4.5,1,p);
v1(:,1) = rand(1,p);
v2(:,1) = rand(1,p);
print = [x1(:,1) \ x2(:,1) \ v1(:,1) \ v2(:,1) \ f(:,1)];
                                                     f')
disp('
        x1
                     x2
                                vz 1
                                          \sqrt{2}
disp(print)
% fitness evaluation
for j=1:p
f(j,1) = (1.5-x1(j,1)+x1(j,1)*x2(j,1))^2 + (2.25-x1(j,1))^2
x1(j,1)+x1(j,1)*x2(j,1)^2)^2 + (2.625-x1(j,1)+x1(j,1)*x2(j,1)^3)^2;
f(j,1) = (x1(j,1)+2*x2(j,1)-7)^2 + (2*x1(j,1)+x2(j,1)-5)^2;
f(j,1) = 100*((x1(j,1))^2 - x2(j,1))^2 + (1-x1(j,1))^2;
%f(j,1) = x1(j,1)^2 + x2(j,1)^2;
%Initial personal best values
x1p=x1(:,1);
x2p=x2(:,1);
%for Initial Global best values
fmin=min(f(:,1));
for j=1:p
    if f(j,1) == fmin
        x1g = x1(j,1);
        x2g = x2(j,1);
    else
    end
end
```

```
%Updation by PSO algorithm
for i=1:it
disp(sprintf('This is %d no. of iteration',i))
%for inertia weight W
  wmax=0.9;
  wmin=0.4;
%Linearly Decreasing inertia weight W
  w = wmax-i*((wmax-wmin)/it);
%constriction factor
  cf = 0.729;
for j=1:p
%For velocity updation
%Only active inertia weight(IW-PSO), IPSO-B, IPSO-C
v1(j,(i+1)) = w*v1(j,i) + r1*c1*(x1p(j)-x1(j,i)) + r2*c2*(x1g-x1(j,i));
v2(j,(i+1)) = w*v2(j,i) + r1*c1*(x2p(j)-x2(j,i)) + r2*c2*(x2q-x2(j,i));
%Only constriction factor(CF-PSO)
v1(j,(i+1)) = cf *(v1(j,i)+r1*c1*(x1p(j)-x1(j,i))+r2*c2*(x1g-x1(j,i)));
v2(j,(i+1)) = cf *(v2(j,i)+r1*c1*(x2p(j)-x2(j,i))+r2*c2*(x2g-x2(j,i)));
%Both inertia weight and constriction factor (CI-PSO)
 \text{%v1}(j,(i+1)) = \text{cf*}(w*\text{v1}(j,i) + \text{r1*c1*}(x1p(j) - x1(j,i)) + \text{r2*c2*}(x1g-x1(j,i))); 
v^2(j,(i+1)) = cf^*(w^2(j,i) + r^2(1,i) - x^2(j,i)) + r^2(2,i)) + r^2(2,i));
%For IPSO-A
 %kk=1:
  %if f(j,i) == fmin
      kk = 0;
  %end
v1(j,(i+1)) = wv1(j,i) + r1*c1*(x1p(j)-x1(j,i)) + r2*c2*(x1q-x1(j,i));
v2(j,(i+1)) = wv2(j,i) + r1*c1*(x2p(j)-x2(j,i)) + r2*c2*(x2q-x2(j,i));
%For Position updation
%IW-PSO, CF-PSO, CI-PSO, IPSO-A
x1(j,(i+1)) = x1(j,i) + v1(j,(i+1));
x2(j,(i+1)) = x2(j,i) + v2(j,(i+1));
%IPSO-B
 %kk=1;
  %if f(j,i) == fmin
      kk = 0;
%x1(j,(i+1)) = x1(j,i) + kk*v1(j,(i+1));
%x2(j,(i+1)) = x2(j,i) + kk*v2(j,(i+1));
%IPSO-C
 %kk=1;
  %if f(j,i) < fp(j)
      kk = 0;
  %end
%x1(j,(i+1)) = x1(j,i) + kk*v1(j,(i+1));
%x2(j,(i+1)) = x2(j,i) + kk*v2(j,(i+1));
%Fitness evaluation
f(j,(i+1)) = (1.5-x1(j,(i+1))+x1(j,(i+1))*x2(j,(i+1)))^2+(2.25-x1)
x1(j,(i+1)) + x1(j,(i+1)) *x2(j,(i+1))^2)^2 + (2.625-
x1(j,(i+1))+x1(j,(i+1))*x2(j,(i+1))^3)^2;
f(j,(i+1)) = (x1(j,(i+1))+2*x2(j,(i+1))-7)^2
+(2*x1(j,(i+1))+x2(j,(i+1))-5)^2;
f(j,(i+1)) = 100*((x1(j,(i+1)))^2 - x2(j,(i+1)))^2 + (1-i)
x1(j,(i+1)))^2;
f(j,(i+1)) = x1(j,(i+1))^2 + x2(j,(i+1))^2;
end
```

%To find change in the values of f

```
for j=1:p
       df(j,i) = abs(f(j,(i+1))-f(j,i));
%personal best values updation
  for j=1:p
  fp(j) = (1.5-x1p(j)+x1p(j)*x2p(j))^2+(2.25-
x1p(j)+x1p(j)*x2p(j)^2, x2p(j)^2, x2p(j)^2, x2p(j)^3, x2
   fp(j) = (x1p(j) + 2 \times x2p(j) - 7)^2 + (2 \times x1p(j) + x2p(j) - 5)^2;
   fp(j) = 100*((x1p(j))^2 - x2p(j))^2 + (1-x1p(j))^2;
  f(j) = x1p(j)^2 + x2p(j)^2;
  end
  for j=1:p
       if f(j, i+1) < fp(j)
                    x1p(j) = x1(j, i+1);
                                                                           %personal best values
                    x2p(j)=x2(j,i+1);
                    else
       end
     end
%for Global best values updation
       if min(f(:,(i+1)))<fmin
                    fmin=min(f(:,(i+1)));
       else
       end
     for j=1:p
          if f(j, i+1) == fmin
                      x1g = x1(j,i+1);
                                                                        %global best values
                      x2g = x2(j,i+1);
               else
          end
       end
print = [x1(:,i) x2(:,i) v1(:,i) v2(:,i) f(:,i)];
                                                 x2
disp(' x1
                                                                                                                               f')
                                                                           v/1
disp(print)
%Stoping criterion
ki=0;
for j=1:p
  if (df(j,i) \le 10^{(-T)})
       ki=ki+1;
  end
end
  if ki >= p
       break
  end
end
t=toc;
[r,c]=find(f==fmin);
x1q+x1q*x2q^3)^2;
minf = (x1g+2*x2g-7)^2 + (2*x1g+x2g-5)^2;
% \min f = 100*((x1g^2 - x2g)^2 + (1-x1g)^2);
%\min f = (x1g^2 + x2g^2);
disp(sprintf('min\ value\ of\ function\ is\ %d\ and\ at\ values\ of\ x1=%d\ and
x2=%d',minf,x1g,x2g));
disp(sprintf('time = %d ',t));
```

2. MATLAB Program for the solution of IEEE 5-bus system using PSO

```
clear all
clc
disp(' we have to minimize the cost function of a IEEE 5-BUS system')
p=input('Enter the no. of particles in a swarm= '); %no. of particles
it=input('Enter the no. of iterations= ');
tic; %time calculation
%Input Data
a=10^{(-4)}*[50 50];
b=10^{(-2)} * [351 389];
c=[44.4 40.6];
B=10^{(-2)}*[0.0349 0.0086; -0.0055 0.0371];
%Initialization of variables
p1=zeros(p,it);
p2=zeros(p,it);
v1=zeros(p,it);
v2=zeros(p,it);
f=zeros(p,it);
df=zeros(p,it);
sp=zeros(p,it);
csp=zeros(p,it);
pl=zeros(p,it);
C1=zeros(p,it);
C2=zeros(p,it);
C=zeros(p,it);
r1=0.5;
r2=0.5;
c1=2;
c2=2;
pd=160;
p1g=zeros(p);
p2g=zeros(p);
fp=zeros(1,p);
plp=zeros(1,p);
k=50;
w1=1;
n=1;
while n==1
    for j=1:p
    p1(j,1) = unifrnd(30,120,1);
    p2(j,1) = pd-p1(j,1);
    if p2(j,1)<30\&\&p2(j,1)>120
        n=1;
        break;
    else
        n=0;
    end
    end
end
v1(:,1) = rand(1,p);
v2(:,1) = rand(1,p);
%Total cost calculation
for j=1:p
         C1(j,1) = a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1);
         C2(j,1) = a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2);
         C(j,1) = C1(j,1) + C2(j,1);
%To calculate initial value of cost function we need PL
for j=1:p
```

```
pl(j,1) = [pl(j,1) p2(j,1)]*B*[pl(j,1) p2(j,1)]';
end
%To calculate initial value of cost function
for j=1:p
f(j,1) = w1*((a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1))+(a(2)*(p2(j,1))^2
+ b(2)*p2(j,1) + c(2)) + k*abs(pd+pl(j,1)-p1(j,1)-p2(j,1));
%Oth iteration data display
disp('this is the Oth iteration')
print0 = [p1(:,1) p2(:,1) v1(:,1) v2(:,1) f(:,1) C1(:,1) C2(:,1)
C(:,1)];
disp('
                        P2
                                   V1
                                               v2
            Р1
                                                         f
                                                                 C1
          C ')
C2
disp(print0)
%Initial personal besst values
p1p=p1(:,1);
p2p=p2(:,1);
%for Initial Global best values updation
fmin=min(f(:,1));
for m=1:p
    if f(m, 1) == fmin
        gb=m;
    else
    end
end
%Initial global best value
for m=1:p
p1g(m) = p1(gb, 1);
p2g(m) = p2(gb, 1);
end
fgm = min(f(:,1));
%Main iterations starts from here
for i=1:it
    disp(sprintf('This is iteration no.= %d',i))
%for inertia weight W
wmax=0.9;
wmin=0.4;
%Linearly Decreasing inertia weight W
w = wmax-i*((wmax-wmin)/it);
% for constraction Factor
cf = 0.729;
%For calculatiing velocities for updation
 for j=1:p
 kk=1;
 %if f(j,i) == fqm
 % kk = 0;
 %end
v1(j,(i+1)) = kk*(w*v1(j,i) + r1*c1*(p1p(j)-p1(j,i)) + r2*c2*(p1g(j)-p1(j,i))
p1(j,i)));
v2(j,(i+1)) = kk*(w*v2(j,i) + r1*c1*(p2p(j)-p2(j,i)) + r2*c2*(p2g(j)-p2(j,i))
p2(j,i));
 %V(min) and V(max) constraint
 for j=1:p
        if v1(j,(i+1)) < -15
            v1(j,(i+1)) = -15;
        end
        if v2(j,(i+1)) < -15
            v2(j,(i+1)) = -15;
        end
        if v1(j,(i+1)) > 60
```

```
v1(i,(i+1)) = 60;
        end
        if v2(j,(i+1)) > 60
            v2(j,(i+1)) = 60;
        end
 end
%Updation of p values
for j=1:p
         kk=1;
        % if f(j,i) == fqm
         % kk = 0;
        %end
        %if f(j,i)<fp(j)
         용
             kk = 0;
        %end
        p1(j,(i+1)) = p1(j,i) + kk*v1(j,(i+1));
        p2(j,(i+1)) = p2(j,i) + kk*v2(j,(i+1));
 end
 %Pmin and Pmax constraint
 for j=1:p
        if p1(j,(i+1)) < 30
            p1(j,(i+1)) = 30;
        if p2(j,(i+1)) < 30
            p2(j,(i+1)) = 30;
        end
        if p1(j,(i+1)) > 120
            p1(j,(i+1)) = 120;
        end
        if p2(j,(i+1)) > 120
            p2(j,(i+1)) = 120;
        end
 end
 %For losses formulation (PL)
 for j=1:p
   pl(j,(i+1)) = [pl(j,(i+1)) p2(j,(i+1))]*B*[pl(j,(i+1)) p2(j,(i+1))]';
%Main objective function
for j=1:p
 f(j,(i+1)) = w1*((a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) +c(1))+
(a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2)))+
k*abs(pd+pl(j,(i+1))-pl(j,(i+1))-p2(j,(i+1)));
%personal best values updation
%For losses formulation (PL)
 for j=1:p
    plp(j) = [p1p(j) p2p(j)]*B*[p1p(j) p2p(j)]';
 end
 for j=1:p
        fp(j) = w1*((a(1)*(p1p(j))^2 + b(1)*p1p(j) +
c(1))+(a(2)*(p2p(j))^2 + b(2)*p2p(j) + c(2))) + k*abs(pd+p1p(j) -
p1p(j)-p2p(j));
 end
 for m=1:p
        if f(m,i) < fp(m)
            p1p(m) = p1(m, (i+1));
            p2p(m) = p2(m, (i+1));
        else
        end
 end
```

```
%for Global best values updation
    if min(f(:,(i+1)))<fqm
        fgm=min(f(:,(i+1)));
    else
    end
   for j=1:(i+1)
        for m=1:p
            if f(m,j) == fgm
                for l=1:p
                     p1q(1) = p1(m,j);
                                            %global best values
                     p2g(1) = p2(m,j);
                end
            else
            end
        end
    end
    %For Cost Calculation
    for j=1:p
         C1(j,(i+1)) = a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) + c(1);
         C2(j,(i+1)) = a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2);
         C(j,(i+1)) = C1(j,(i+1)) + C2(j,(i+1));
    end
    %To find change in the values of f
    for j=1:p
        df(j,i) = abs(f(j,(i+1))-f(j,i));
        sp(j,i) = abs(pd+pl(j,(i+1))-pl(j,(i+1))-p2(j,(i+1)));
        csp(j,i) = abs(C(j,(i+1))-C(j,i));
    end
print=[p1(:,(i+1)) p2(:,(i+1)) v1(:,(i+1)) v2(:,(i+1)) f(:,(i+1))
C1(:,(i+1)) C2(:,(i+1)) C(:,(i+1))];
disp('P1
                                                 с1
                                                           с2
             Ρ2
disp(print)
Stoping criterion (df(j,i) <= 10^{-6}) & & (csp(j,i) <= 10^{-6})
    ki=0;
    for j=1:p
        if ((df(j,i) \le 10^{(-6)}) \&\& (sp(j,i) \le 10^{(-6)}))
            ki=ki+1;
        end
    end
    if ki == p
        break
    end
end
t=toc;
disp('Initial values of generations of 2 generators')
initial=[p1(:,1) p2(:,1)];
disp('
         Р1
                     P2
disp(initial)
disp(sprintf('\nPD+Pl = %d',pd+pl(1,i)))
disp(sprintf('\nP1+P2=%d\n',p1(1,i)+p2(1,i)))
disp(sprintf('No. of total Iterations took place = %d \n',i))
disp(sprintf('Total loses in the lines Pl = %d \setminus n', pl(1,i))
disp(sprintf('Minimum cost incured = %d \n', C(1,i)))
disp('\nFinal values of generations of the three generators')
disp(sprintf('P1=%d',p1(1,i)))
disp(sprintf('P2=%d',p2(1,i)))
disp(sprintf('Computational Time = %d ',t));
```

3. MATLAB Program for the solution of IEEE 14-bus system using PSO

```
clear all
clc
disp('we have to minimize the cost function of IEEE 14-BUS system')
p=input('Enter the no. of particles in a swarm= ');%no. of particles
it=input('Enter the maximum no. of iterations to be performed= ');
tic; %time calculation
%Input Data
a=10^{(-4)} * [50 50 50];
b=10^{(-2)} * [245 351 389];
c=[105 44.4 40.6];
B=10^(-2)*[0.0349 0.0068 -0.0039; 0.0068 0.0157 0.0015; -0.0039 0.0015
0.0275];
B0=10^{(-2)} * [0.0044 0.0024 0.0000];
B00=2.5408*10^{(-4)};
%Initialization of variables
p1=zeros(p,it);
p2=zeros(p,it);
p3=zeros(p,it);
v1=zeros(p,it);
v2=zeros(p,it);
v3=zeros(p,it);
f=zeros(p,it);
df=zeros(p,it);
sp=zeros(p,it);
csp=zeros(p,it;
pl=zeros(p,it);
C1=zeros(p,it);
C2=zeros(p,it);
C3=zeros(p,it);
C=zeros(p,it);
r1=0.5;
r2=0.5;
c1=2;
c2=2;
pd = 259;
plq=zeros(p);
p2q=zeros(p);
p3g=zeros(p);
fp=zeros(1,p;
plp=zeros(1,p;
k=50;
w1=1;
n=1;
while n==1
    for j=1:p
    p1(j,1) = unifrnd(50,200,1);
    p2(j,1) = unifrnd(20,100,1);
    p3(j,1) = pd-p1(j,1) - p2(j,1);
    if p3(j,1)<20\&\&p3(j,1)>100
        n=1;
        break;
    else
        n=0;
    end
    end
end
v1(:,1) = rand(1,p);
```

```
v2(:,1) = rand(1,p);
v3(:,1) = rand(1,p);
%Total cost calculation
    for j=1:p
         C1(j,1) = a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1);
         C2(j,1) = a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2);
         C3(j,1) = a(3)*(p3(j,1))^2 + b(3)*p3(j,1) + c(3);
         C(i,1) = C1(i,1) + C2(i,1) + C3(i,1);
    end
%To calculate initial value of cost function we need PL
for j=1:p
    pl(j,1) = [p1(j,1) p2(j,1) p3(j,1)]*B*[p1(j,1) p2(j,1) p3(j,1)]
+[p1(j,1) p2(j,1) p3(j,1)]*B0'+B00;
%To calculate initial value of cost function
for j=1:p
    f(j,1) = w1*((a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1)) +
(a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2))+(a(3)*(p3(j,1))^2 +
b(3)*p3(j,1) + c(3))) + k*abs(pd+pl(j,1)-p1(j,1)-p2(j,1)-p3(j,1));
end
%Initial personal besst values
p1p=p1(:,1);
p2p=p2(:,1);
p3p=p3(:,1);
%for Initial Global best values updation
fmin=min(f(:,1));
for m=1:p
    if f(m, 1) == fmin
        gb=m;
    else
    end
end
%Initial global best value
for m=1:p
p1g(m) = p1(gb,1);
p2g(m) = p2(gb,1);
p3q(m) = p3(qb, 1);
fgm = min(f(:,1));
%Main iterations starts from here
for i=1:it
    disp(sprintf('This is iteration no.= %d',i))
%for inertia weight W
wmax=0.9;
wmin=0.4;
%Linearly Decreasing inertia weight W
w = wmax-i*((wmax-wmin)/it);
% for constraction Factor
cf = 0.729;
%For calculatiing velocities for updation
for j=1:p
 kk=1;
 %if f(j,i) == fgm
    kk = 0;
 %end
 v1(j,(i+1)) = kk*(w*v1(j,i) + r1*c1*(p1p(j)-p1(j,i)) + r2*c2*(p1g(j)-p1(j,i))
p1(j,i)));
 v2(j,(i+1)) = kk*(w*v2(j,i) + r1*c1*(p2p(j)-p2(j,i)) + r2*c2*(p2p(j)-p2(j,i))
p2(j,i)));
```

```
p3(j,i)));
 end
   %V(min) and V(max) constraint
   for j=1:p
        if v1(j,(i+1)) < -25
           v1(j,(i+1)) = -25;
        if v2(j,(i+1)) < -10
            v2(j,(i+1)) = -10;
       end
       if v3(j,(i+1)) < -10
           v3(j,(i+1)) = -10;
       end
        if v1(i,(i+1)) > 100
           v1(j,(i+1)) = 100;
       end
       if v2(j,(i+1)) > 50
           v2(j,(i+1)) = 50;
       end
        if v3(j,(i+1)) > 50
           v3(j,(i+1)) = 50;
        end
   end
%Updation of p values
    for j=1:p
       kk=1;
       if f(j,i) == fgm
           kk = 0;
       end
       % if f(j,i) < fp(j)
       용
            kk = 0;
       %end
       p1(j,(i+1)) = p1(j,i) + kk*v1(j,(i+1));
       p2(j,(i+1)) = p2(j,i) + kk*v2(j,(i+1));
       p3(j,(i+1)) = p3(j,i) + kk*v3(j,(i+1));
    end
    %Pmin and Pmax constraint
    for j=1:p
       if p1(j,(i+1)) < 50
           p1(j,(i+1)) = 50;
       end
        if p2(j,(i+1)) < 20
           p2(j,(i+1)) = 20;
        end
        if p3(j,(i+1)) < 20
           p3(j,(i+1)) = 20;
       end
       if p1(j,(i+1)) > 200
           p1(j,(i+1)) = 200;
        end
        if p2(j,(i+1)) > 100
           p2(j,(i+1)) = 100;
       end
       if p3(j,(i+1)) > 100
           p3(j,(i+1)) = 100;
       end
    end
  %For losses formulation (PL)
 for j=1:p
```

```
pl(j,(i+1)) = [p1(j,(i+1)) p2(j,(i+1)) p3(j,(i+1))]*B*[p1(j,(i+1))]
p2(j,(i+1)) p3(j,(i+1))]'+[p1(j,(i+1)) p2(j,(i+1))
p3(j,(i+1))]*B0'+B00;
 end
%Main objective function
 for j=1:p
   f(j,(i+1)) = w1*((a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) + c(1))+
(a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2))+(a(3)*(p3(j,(i+1)))^2
+ b(3)*p3(j,(i+1)) + c(3)) + k*abs(pd+p1(j,(i+1))-p1(j,(i+1))-
p2(j,(i+1))-p3(j,(i+1));
 end
%personal best values updation
%For losses formulation (PL)
for j=1:p
  plp(j) = [p1p(j) p2p(j) p3p(j)]*B*[p1p(j) p2p(j) p3p(j)]'+[p1p(j)
p2p(j) p3p(j)]*B0'+B00;
end
for j=1:p
  fp(j) = w1*((a(1)*(p1p(j))^2 + b(1)*p1p(j) + c(1))+(a(2)*(p2p(j))^2 +
b(2)*p2p(j) + c(2))+(a(3)*(p3p(j))^2 + b(3)*p3p(j) + c(3))) +
k*abs(pd+plp(j)-p1p(j)-p2p(j)-p3p(j));
end
    for m=1:p
        if f(m,i) < fp(m)
            p1p(m) = p1(m, (i+1));
            p2p(m) = p2(m, (i+1));
            p3p(m) = p3(m, (i+1));
        else
        end
    end
%for Global best values updation
    if min(f(:,(i+1)))<fqm
        fgm=min(f(:,(i+1)));
    else
    end
    for j=1:(i+1)
        for m=1:p
        if f(m,j) == fqm
            for l=1:p
                p1g(1) = p1(m,j);
                                       %global best values
                p2g(1) = p2(m,j);
                p3g(1) = p3(m,j);
            end
        else
        end
        end
    end
    %For Cost calculation
    for j=1:p
         C1(j,(i+1)) = a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) + c(1);
         C2(j,(i+1)) = a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2);
         C3(j,(i+1)) = a(3)*(p3(j,(i+1)))^2 + b(3)*p3(j,(i+1)) + c(3);
         C(j,(i+1)) = C1(j,(i+1)) + C2(j,(i+1)) + C3(j,(i+1));
    end
    %To find change in the values of f
    for j=1:p
      df(j,i) = abs(f(j,(i+1))-f(j,i));
      sp(j,i) = abs(pd+pl(j,(i+1))-pl(j,(i+1))-p2(j,(i+1))-p3(j,(i+1)));
      csp(j,i) = abs(C(j,(i+1))-C(j,i));
    end
```

```
Stoping criterion &&(csp(j,i) <= 10^{-6}) & (df(j,i) <= 10^{-6}) &&
    ki=0;
    for j=1:p
        if ((df(j,i) \le 10^{(-6)}) \&\& (sp(j,i) \le 10^{(-6)}))
            ki=ki+1;
        end
    end
    if ki >= p
        break
    end
end
t=toc;
disp('Initial values of generations of 3 generators')
initial=[p1(:,1) p2(:,1) p3(:,1)];
          Р1
                    Р2
disp(initial)
disp(sprintf('\nPD+Pl = %d',pd+pl(1,i)))
disp(sprintf('\nP1+P2+P3=%d\n',p1(1,i)+p2(1,i)+p3(1,i)))
disp(sprintf('No. of total Iterations took place = %d \n',i))
disp(sprintf('Total loses in the lines Pl = %d \n',pl(1,i)))
disp(sprintf('Minimum cost incured = %d \n',C(1,i)))
disp('\nFinal values of generations of the three generators')
disp(sprintf('P1=%d',p1(1,i)))
disp(sprintf('P2=%d',p2(1,i)))
disp(sprintf('P3=%d',p3(1,i)))
disp(sprintf('Computational Time = %d ',t));
```

4. MATLAB Program for the solution of IEEE 30-bus system using PSO

```
clear all
clc
disp(' we have to minimize the cost function of IEEE 30-BUS system')
p=input('Enter the no. of particles in a swarm= '); %no. of particles
it=input('Enter the maximum no. of iterations to be performed= ');
tic; %time calculation
%Input Data
a=10^{(-4)}*[50 50 50];
b=10^{(-2)} * [245 351 389];
c=[105 44.4 40.6];
B=10^{(-2)}*[0.0307\ 0.0129\ -0.0002;\ 0.0129\ 0.0152\ -0.0011;\ -0.0002\ -
0.0011 0.01901;
%Initialization of variables
p1=zeros(p,it);
p2=zeros(p,it);
p3=zeros(p,it);
v1=zeros(p,it);
v2=zeros(p,it);
v3=zeros(p,it);
f=zeros(p,it);
df=zeros(p,it);
sp=zeros(p,it);
csp=zeros(p,it);
pl=zeros(p,it);
C1=zeros(p,it);
C2=zeros(p,it);
C3=zeros(p,it);
C=zeros(p,it);
```

```
r1=0.5;
r2=0.5;
c1=2;
c2=2;
pd=283.4;
p1g=zeros(p);
p2g=zeros(p);
p3q=zeros(p);
fp=zeros(1,p);
plp=zeros(1,p);
k=50;
w1=1;
n=1;
while n==1
    for j=1:p
    p1(j,1) = unifrnd(50,250,1);
    p2(j,1) = unifrnd(30,100,1);
    p3(j,1) = 283.4 - p1(j,1) - p2(j,1);
    if p3(j,1) < 30 \& p3(j,1) > 100
        n=1;
        break;
    else
        n=0;
    end
    end
end
v1(:,1) = rand(1,p);
v2(:,1) = rand(1,p);
v3(:,1) = rand(1,p);
%Total cost calculation
    for j=1:p
         C1(j,1) = a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1);
         C2(j,1) = a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2);
         C3(j,1) = a(3)*(p3(j,1))^2 + b(3)*p3(j,1) + c(3);
         C(j,1) = C1(j,1) + C2(j,1) + C3(j,1);
    end
%To calculate initial value of cost function we need PL
for j=1:p
    pl(j,1) = [p1(j,1) \ p2(j,1) \ p3(j,1)]*B*[p1(j,1) \ p2(j,1) \ p3(j,1)]';
end
%To calculate initial value of cost function
for j=1:p
    f(j,1) = w1*((a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1)) +
(a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2))+(a(3)*(p3(j,1))^2 +
b(3)*p3(j,1) + c(3)) + k*abs(pd+pl(j,1)-p1(j,1)-p2(j,1)-p3(j,1));
end
%Initial personal besst values
p1p=p1(:,1);
p2p=p2(:,1);
p3p=p3(:,1);
%for Initial Global best values updation
fmin=min(f(:,1));
for m=1:p
    if f(m, 1) == fmin
        gb=m;
    else
    end
end
%Initial global best value
for m=1:p
```

```
p1g(m) = p1(gb, 1);
p2g(m) = p2(gb,1);
p3g(m) = p3(gb,1);
end
fgm = min(f(:,1));
%Main iterations starts from here
for i=1:it
    disp(sprintf('This is iteration no.= %d',i))
%for inertia weight W
wmax=0.9;
wmin=0.4;
%Linearly Decreasing inertia weight W
w = wmax-i*((wmax-wmin)/it);
% for constraction Factor
cf = 0.729;
%For calculatiing velocities for updation
 for j=1:p
 kk=1;
 %if f(j,i) == fgm
 % kk = 0;
 %end
 v1(j,(i+1)) = kk*(w*v1(j,i) + r1*c1*(p1p(j)-p1(j,i)) + r2*c2*(p1g(j)-p1(j,i))
p1(j,i)));
 v2(j,(i+1)) = kk*(w*v2(j,i) + r1*c1*(p2p(j)-p2(j,i)) + r2*c2*(p2g(j)-p2(j,i))
p2(j,i)));
 v3(j,(i+1)) = kk*(w*v3(j,i) + r1*c1*(p3p(j)-p3(j,i)) + r2*c2*(p3g(j)-p3(j,i))
p3(j,i)));
 end
   %V(min) and V(max) constraint
    for j=1:p
        if v1(j,(i+1)) < -25
            v1(j,(i+1)) = -25;
        end
        if v2(j,(i+1)) < -15
            v2(j,(i+1)) = -15;
        end
        if v3(j,(i+1)) < -15
             v3(j,(i+1)) = -15;
        end
        if v1(j,(i+1)) > 125
            v1(j,(i+1)) = 125;
        end
        if v2(j,(i+1)) > 50
            v2(j,(i+1)) = 50;
        end
        if v3(j,(i+1)) > 50
             v3(j,(i+1)) = 50;
        end
    end
%Updation of p values
    for j=1:p
        kk=1;
       if f(j,i) == fqm
             kk = 0;
       end
       %if f(j,i) < fp(j)
        용
             kk = 0;
       %end
        p1(j,(i+1)) = p1(j,i) + kk*v1(j,(i+1));
        p2(j,(i+1)) = p2(j,i) + kk*v2(j,(i+1));
```

```
p3(j,(i+1)) = p3(j,i) + kk*v3(j,(i+1));
    end
    %Pmin and Pmax constraint
   for j=1:p
        if p1(j,(i+1)) < 50
            p1(j,(i+1)) = 50;
        end
        if p2(i,(i+1)) < 30
            p2(j,(i+1)) = 30;
        end
        if p3(j,(i+1)) < 30
            p3(j,(i+1)) = 30;
        end
        if p1(j,(i+1)) > 250
            p1(j,(i+1)) = 250;
        end
        if p2(j,(i+1)) > 100
            p2(j,(i+1)) = 100;
        end
        if p3(j,(i+1)) > 100
            p3(j,(i+1)) = 100;
        end
    end
  %For losses formulation (PL)
 for j=1:p
  pl(j,(i+1)) = [pl(j,(i+1)) p2(j,(i+1)) p3(j,(i+1))]*B*[pl(j,(i+1))]
p2(j,(i+1)) p3(j,(i+1))]';
 end
%Main objective function
 for j=1:p
   f(j, (i+1)) = w1*((a(1)*(p1(j, (i+1)))^2 + b(1)*p1(j, (i+1)) +
c(1))+(a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) +
c(2))+(a(3)*(p3(j,(i+1)))^2 + b(3)*p3(j,(i+1)) + c(3))) +
k*abs(pd+pl(j,(i+1))-pl(j,(i+1))-p2(j,(i+1))-p3(j,(i+1)));
end
%personal best values updation
%For losses formulation (PL)
for j=1:p
  plp(j) = [plp(j) \ p2p(j) \ p3p(j)]*B*[plp(j) \ p2p(j) \ p3p(j)]';
end
for j=1:p
  fp(j) = w1*((a(1)*(p1p(j))^2 + b(1)*p1p(j) + c(1))+(a(2)*(p2p(j))^2 +
b(2)*p2p(j) + c(2))+(a(3)*(p3p(j))^2 + b(3)*p3p(j) + c(3))) +
k*abs(pd+plp(j)-p1p(j)-p2p(j)-p3p(j));
end
    for m=1:p
        if f(m,i) < fp(m)
            p1p(m) = p1(m, (i+1));
            p2p(m) = p2(m, (i+1));
            p3p(m) = p3(m, (i+1));
        else
        end
    end
%for Global best values updation
    if min(f(:,(i+1))) < fgm
        fgm=min(f(:,(i+1)));
    else
    end
    for j=1:(i+1)
        for m=1:p
```

```
if f(m,j) == fgm
            for l=1:p
                p1g(1) = p1(m,j);
                                       %global best values
                p2g(1) = p2(m,j);
                p3g(1) = p3(m,j);
            end
        else
        end
        end
    end
    %For Cost calculation
    for j=1:p
         C1(j,(i+1)) = a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) + c(1);
         C2(j,(i+1)) = a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2);
         C3(j,(i+1)) = a(3)*(p3(j,(i+1)))^2 + b(3)*p3(j,(i+1)) + c(3);
         C(j,(i+1)) = C1(j,(i+1)) + C2(j,(i+1)) + C3(j,(i+1));
    end
    %To find change in the values of f
    for j=1:p
        df(j,i) = abs(f(j,(i+1))-f(j,i));
        sp(j,i) = abs(pd+pl(j,(i+1))-pl(j,(i+1))-p2(j,(i+1))-
p3(j,(i+1));
        csp(j,i) = abs(C(j,(i+1))-C(j,i));
    end
    %Stoping criterion &&(csp(j,i)<=10^(-6)) (df(j,i)<=10^{(-6)}) &&
    ki=0;
    for j=1:p
        if ((df(j,i) \le 10^{(-6)}) \&\& (sp(j,i) \le 10^{(-6)}))
            ki=ki+1;
        end
    end
    if ki >= p
        break
    end
end
t=toc;
disp('Initial values of generations of 3 generators')
initial=[p1(:,1) p2(:,1) p3(:,1)];
                     Р2
                               P3
disp('
          Ρ1
disp(initial)
disp(sprintf('\nPD+Pl = %d',pd+pl(1,i)))
disp(sprintf('\nP1+P2+P3=%d\n',p1(1,i)+p2(1,i)+p3(1,i)))
disp(sprintf('No. of total Iterations took place = %d \n',i))
disp(sprintf('Total loses in the lines Pl = %d \n',pl(1,i)))
disp(sprintf('Minimum cost incured = %d \n',C(1,i)))
disp('\nFinal values of generations of the three generators')
disp(sprintf('P1=%d',p1(1,i)))
disp(sprintf('P2=%d',p2(1,i)))
disp(sprintf('P3=%d',p3(1,i)))
disp(sprintf('Computational Time = %d ',t));
```

REFERENCES

- [1] Chem-Lin Chen and Shun-Chung Wang, "BRANCH-AND-BOUND SCHEDULING FOR THERMAL GENERATING UNITS", IEEE Trans. on Energy Conversion, Vol. 8, No. 2, June 1993
- [2] K.Y. Lee., Y.M. Park. and J.L. Ortiz., "Fuel-cost minimisation for both real- and reactive-power dispatches", IEE Proceeding, Vol. 131, Pt. C, No. 3, May 1984
- [3] J.P.Zhan, Q.H. Wu, C.X.Guo, and X.X. Zhou, "Fast -Iteration Method for Economic Dispatch With Prohibited Operating Zones", IEEE Trans. on power system, Vol. 29, No. 2, March 2014
- [4] Rabih A. Jabr, Alun H. Coonick and Brian J. Cory, "A Homogeneous Linear Programming Algorithm for the Security Constrained Economic Dispatch Problem", IEEE Trans. on power system, Vol. 15, No. 3, August 2000
- [5] Leandro dos Santos Coelho and Viviana Cocco Mariani, "Combining of Chaotic Differential Evolution and Quadratic Programming for Economic Dispatch Optimization With Valve-Point Effect", IEEE Trans. on power system, Vol.21, No.2, May 2006
- [6] Ioannis G. Damousis, Anastasios G. Bakirtzis, and Petros S. Dokopoulos, "Network-Constrained Economic Dispatch Using Real-Coded Genetic Algorithm", IEEE Trans. on power system, Vol. 18, No. 1, Feb. 2003
- [7] Aniruddha Bhattacharya and Pranab Kumar Chattopadhyay, "Biogeography-Based Optimization for Different Economic Load Dispatch Problems", IEEE Trans. on power system, Vol. 25, No. 2, May 2010
- [8] Kuntal Bhattacharjee, Aniruddha Bhattacharya and Sunita Halder nee Dey, "Chemical reaction optimisation for different economic dispatch problems", IET Gener. Transm. Distrib., 2014, Vol.8, Iss.3, pp. 530–541
- [9] Taher Niknam and Faranak Golestaneh, "Enhanced Bee Swarm Optimization Algorithm for Dynamic Economic Dispatch", IEEE Systems Journal, Vol. 7, No. 4, December 2013
- [10] Taher Niknam, Rasoul Azizipanah, Abarghooee, and Jamshid Aghaei, "A New Modified Teaching-Learning Algorithm for Reserve Constrained Dynamic Economic Dispatch", IEEE Trans. on power system, Vol. 28, No. 2, May 2013

- [11] Irina Ciornei, and Elias Kyriakides, "A GA-API Solution for the Economic Dispatch of Generation in Power System Operation", IEEE Trans. on power system, Vol. 27, No. 1, February 2012
- [12] Aniruddha Bhattacharya and Pranab Kumar Chattopadhyay, "Hybrid Differential Evolution With Biogeography-Based Optimization for Solution of Economic Load Dispatch", IEEE Trans. on power system, Vol. 25, No. 4, Nov. 2010
- [13] Jong-Bae Park, Ki-Song Lee, Joong-Rin Shin, and Kwang Y. Lee, "A Particle Swarm Optimization for Economic Dispatch With Nonsmooth Cost Functions", IEEE Transaction on power system, Vol. 20, No. 1, Feb. 2005
- [14] Leandro dos Santos Coelho and Chu-Sheng Lee, "Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches", Electrical Power and Energy Systems 30 (2008) 297– 307
- [15] Vahid Hosseinnezhad and Ebrahim Babaei, "Economic load dispatch using θ-PSO", Electrical Power and Energy Systems 49 (2013) 160–169
- [16] M.A. Abido, "Multiobjective particle swarm optimization for environmental/economic dispatch problem", Electric Power Systems Research 79 (2009) 1105–1113
- [17] Ke Meng, Hong Gang Wang, ZhaoYang Dong, and Kit Po Wong, "Quantum-Inspired Particle Swarm Optimization for Valve-Point Economic Load Dispatch", IEEE Trans. on power system, Vol. 25, No. 1, Feb. 2010
- [18] T.O. Ting, M.V.C. Rao and C.K.Loo, "A Novel Approach for Unit Commitment Problem via an Effective Hybrid Particle Swarm Optimization", IEEE Transaction on power system, Vol. 21, No. 1, February 2006
- [19] S. Chakraborty, T. Senjyu, A. Yona, A.Y. Saber and T. Funabashi, "Solving economic load dispatch problem with valve-point effects using a hybrid quantum mechanics inspired particle swarm optimization", IET Gener. Transm. Distrib., 2011, Vol. 5, Iss. 10, pp. 1042–1052
- [20] James Kennedy and Russell Eberhart, "Particle Swarm Optimization", 0-7803-2768-3/95/\$4.00 1995 IEEE

- [21] Ioan Cristian Trelea, "The particle swarm optimization algorithm: convergence analysis and parameter selection", Information Processing Letters 85 (2003) 317–325
- [22] Maurice Clerc and James Kennedy, "The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space", IEEE Trans. on evolutionary computation, Vol. 6, No.1, February 2002
- [23] Yuhui Shi and Russell Eberhart, "A Modified Particle Swarm Optimizer", 0-7803-4869-9198 \$10.0001998 IEEE
- [24] R. C. Eberhart and Y. Shi, "Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization", 0-7803-6375-2/00/\$10.00 02000 IEEE.
- [25] Frans van den Bergh and Andries P. Engelbrecht, "A Cooperative Approach to Particle Swarm Optimization", IEEE Trans. on evolutionary computation, Vol. 8, No. 3, June 2004
- [26] Jang-Ho Seo, Chang-Hwan Im, Chang-Geun Heo, Jae-Kwang Kim, Hyun-Kyo Jung and Cheol-Gyun Lee4, "Multimodal Function Optimization Based on Particle Swarm Optimization", IEEE Trans. on magnetics, Vol. 42, No. 4, April 2006
- [27] J. J. Liang, A. K. Qin, Ponnuthurai Nagaratnam Suganthan and S. Baskar, "Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions", IEEE Trans. on evolutionary computation, Vol. 10, No. 3, June 2006
- [28] Jin S. Heo, Kwang Y. Lee and Raul Garduno-Ramirez, "Multiobjective Control of Power Plants Using Particle Swarm Optimization Techniques", IEEE Trans. on energy conversion, Vol. 21, No. 2, June 2006
- [29] Yamille del Valle, Ganesh Kumar Venayagamoorthy, Salman Mohagheghi, Jean-Carlos Hernandez, and Ronald G. Harley, Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems, IEEE Trans. on evolutionary computation, Vol. 12, No. 2, April 2008
- [30] C.L. WADHWA, "Electrical Power Systems", New Age International(P) Limited, Publishers, 6th Edition, Page 628-661