IMPROVED PARTICLE SWARM OPTIMIZATION WITH VARYING PARAMETER SETTINGS FOR ECONOMIC LOAD DISPATCH

DISSERTATION
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE
OF

MASTER OF TECHNOLOGY IN POWER SYSTEM

Submitted by:

MUKESH KUMAR Roll No. 2K12/PSY/09

Under the supervision of

Prof. N.K.JAIN

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

2014

IPSO WITH VARYING PARAMETERS FOR ELD | iii

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CERTIFICATE

I, MUKESH KUMAR, Roll No. 2K12/PSY/09 student of M. Tech. (POWER

SYSTEM), hereby declare that the dissertation/project titled "IMPROVED

PARTICLE SWARM OPTIMIZATION WITH VARYING PARAMETER

SETTINGS FOR ECONOMIC LOAD DISPATCH" under the supervision of Prof.

N.K. JAIN of Electrical Engineering Department Delhi Technological University in

partial fulfillment of the requirement for the award of the degree of Master of

Technology has not been submitted elsewhere for the award of any Degree.

Place: Delhi

(MUKESH KUMAR)

Date:

(Prof. N.K. JAIN) SUPERVISOR

Professor

Department of Electrical Engineering

Delhi Technological University

ABSTRACT

In this thesis, four evolutionary optimization models (IPSO 1, 2, 3, and 4) based on the particle swarm optimization algorithms for Economic Load Dispatch considering cost of generation. Comparative analysis suggests that IPSO (Improved Particle Swarm Optimization) significantly improves the performance with less no of iteration. In the last version of IPSO, we have moved acceleration coefficient for personal factor Cp and global factor Cg in opposite direction (i.e. Cp maximum to minimum and Cg minimum to maximum), while keeping other parameter with some constant value, which shows that there is tremendous reduction in no of iteration. All different IPSO has been implemented to ECONOMIC LOAD DISPATCH to get optimum value of cost with less no of iteration.

A MATLAB program has been developed for Evolutionary Programming and Evolutionary Computation such as Particle Swarm Optimization (PSO) to solve economic load dispatch problem considering cost of generation.

IPSO WITH VARYING PARAMETERS FOR ELD **v**

ACKNOWLEDGMENT

I wish to express my deep sense of gratitude to my supervisors Prof. N.K. JAIN,

Professor, Department of Electrical Engineering, for their constant motivation and

support during the course of my work in the last one year. I truly appreciate and

value their esteemed guidance and encouragement from the beginning to the end of

the thesis. I would like to express my sincere thanks to Prof. Uma Nangia,

Professor, Delhi Technological University, Delhi.

I am grateful to **Prof. Madhusudan Singh**, present head of the department (EE) and

Dr. Bharat Bhushan for extending me all the possible facilities to carry out the

research work.

All my Electrical department teachers have been great sources of inspiration to me

and I thank them from the bottom of my heart. I would be failing in my duty if I do

not mention the laboratory staff particularly, the power electronics and

instrumentation and analog electronic laboratory of EE department for their timely

help.

I am indebted to my dear parent and Rupesh Kumar Churiwal, my elder brother

for their continuous love and support that helped me achieve my target. I would also

like to thank all those persons whose direct or indirect support helped me in timely

completion of my project.

Above all, thanks to the **God** for blessing and guiding me throughout my life.

MUKESH KUMAR 2K12/PSY/09

CONTENTS

Cer	tificate		ii
Abs	tract		iii
Ack	nowledgen	nent	iv
Con	tents		v
List	of Tables		vii
List	of Figures		viii
List	of Symbol	s and abbreviation	ix
CH	APTER 1	INTRODUCTION	1
1.1	OVER	VIEW	1
1.2	OBJEC	TIVE AND METHODOLOGY	2
1.3	LITER	ATURE SURVEY	2
1.4	PLAN	OF THESIS	4
CH	APTER 2	PARTICLE SWARM OPTIMIZATION (PSO)	6
2.1	INTROI	DUCTION	6
2.2	PARTIC	LE SWARM OPTIMIZATION (PSO) AND	7
	TRADIT	IONAL SEARCH METHODS	
2.3	BIOLOG	GICAL TERMINOLOGY	8
2.4	COMPU	TATIONAL PROCEDURE	10
2.5	ADVAN	TAGES OF PARTICLE SWARM OPTIMIZATION	11
CH	APTER 3	SOLUTION OF MATHEMATICAL	13
		BENCHMARK FUNCTION USING PSO	
3.1	STEPS	OF PARTICLE SWARM OPTIMIZATION IN MATLAB	13
3.2	DIFFER	RENT PARAMETERS OF PARTICLE	14
	SWAR	M OPTIMIZATION	
3.3	APPLICA	ATION OF PARTICLE SWARM OPTIMIZATION TO	14
	MATHEN	MATICAL BENCHMARK TEST FUNCTIONS	
	COMPUT	TATIONAL RESULTS	15
CH	APTER 4	ECONOMIC LOAD DISPATCH	20
4.1	PROBLE	EM FORMULATION IN 2-D SPACE	20

	IPSO WITH VARYING PARAMETERS FOR ELD vii WITH EQUALITY CONSTRAINTS	
4.2	COMPUTATIONAL PROCEDURE FOR APPLICATION	23
	OF PSO IN ECONOMIC LOAD DISPATCH	
4.3	COMPUTATIONAL RESULTS IN 2D SPACE	27
CHA	APTER 5 CONCLUSIONS AND FUTURE DIRECTION	29
5.1	CONCLUSIONS	29
5.2	FUTURE DIRECTION	20

LIST OF TABLES

Table 2.1 Comparision between Conventional Optimization	8
procedure and Evolutionary Algorithms	
Table 3.1 Different type of PSO with varying parameter	18
Table 3.2 Total no of iteration in different benchmark Function	18
TABLE 4.1 Values of Cost Coefficients	21
TABLE 4.2 Values of Loss Coefficients	21
TABLE 4.3 Variation of no of iteration required with different	27
equality constraint parameter K for IEEE 5 bus system by taking	
SPSO(standard particle swarm optimization) parameter	
TABLE 4.4 Variation of no of iteration required with	28
different IPSO for IEEE 5 bus system	
TABLE 4.5 Variation of no of iteration required with	28
different IPSO for IEEE 14 bus system	
TABLE 4.6 Variation of no of iteration required with	28
different IPSO for IEEE 30 bus system	
APPENDIX I	30
APPENDIX II	42
(1) MATLAB Program for optimization of benchmark	42
functions using PSO.	
(2) MATLAB Programs for ELD in IEEE 5	65
bus systems using PSO	
REFERENCES	89

LIST OF FIGURES:

Fig 2.1: Various Biological Terminology	10
Fig 2.2: Generalized Flowchart for Particle Swarm Optimization Algorithm	10
Fig 3.1: 3d Representation of Rosenbrock's Function	16
Fig 3.2: 3d Representation of Beale function	17
Fig 3.3: 3d Representation of Sphere function	17
Fig 3.4: 3d Representation of Booth function	18
Fig. (I-A): BUS-CODE DIAGRAM 5 BUS SYSTEM	30
Fig. (I-B): BUS-CODE DIAGRAM 14 BUS SYSTEM	33
Fig. (I-B): BUS-CODE DIAGRAM 30 BUS SYSTEM	36

LIST OF SYMBOLS AND ABBREVIATIONS

IPSO	Improved Particle Swarm Optimization
PSO	Particle Swarm Optimization
Cp	Acceleration coefficient for cognitive component
Cg	Acceleration coefficient for social component
W	Inertia weight
p	No of particles
Itmax	Maximum no. of iteration
K	Penalty coefficient