

DELHI TECHNOLOGICAL UNIVERSITY, DELHI

CERTIFICATE

This is to certify that the project report entitled "Consolidation of thin clay lamina in sand" is a bona fide record of work carried out by Sakshi Sharma (Roll No. 2K12/GTE/15) under my guidance and supervision, during the session 2014 in partial fulfilment of the requirement for the degree of Master of Technology (Geotechnical Engineering) from Delhi Technological University, Delhi.

The work embodied in this major project has not been submitted for the award of any other degree to the best of our knowledge.

Prof. A. Trivedi

Department of Civil Engineering

Delhi Technological University, Delhi

Delhi-110042

2012-2014

DELHI TECHNOLOGICAL UNIVERSITY, DELHI

ACKNOWLEDGEMENT

This acknowledgement is a sincere note of thanks and regard from my side to express my gratitude for those who were associated with this project and without whose co-operation and guidance this project work could not have been conducted properly.

Words fail me to express my regards towards my project guide, **Dr. A. Trivedi**, Professor and Head, Department of Civil Engineering, Delhi Technological University, Delhi for giving me an opportunity to work under his guidance, which really instilled in me the requisite confidence. His guidance and motivation helped me through completion of project. Without his help and guidance, this project would not have been possible.

I am greatly thankful to all the laboratory assistants of Department of Civil Engineering, Delhi Technological University who helped me a lot for conducting the practical work.

Also I would like to thank my family and friends who stimulated me to bring this work to a successful closure.

Sakshi Sharma

M. Tech (Geotechnical Engineering)

2K12/GTE/15

The main objective of this work is to evaluate the consolidation characteristics of a multilayered soil system and implement the analytical and numerical solutions for comparative study with the experimental results. Ground is heterogeneous always constituting various kinds of soils in layers. Thus, study of the multi-layered soils is essential for accurate analysis of the settlement of ground. For a layered soil, the solution can be approximated using finite difference techniques in which different properties are assigned to different layers. Analytical solutions for multi-layered soils are complex whereas numerical techniques are easier to implement. In case of clay-sand layers used in this study, sand possesses high permeability whereas clay used is of low permeability. Thus the low permeability of clay slows down the settlement of the sand layer lying underneath. Also clay layer prevents percolation of fluids to the sandy soil beneath which is useful in lining and containments.

This work estimates the consolidation behaviour of the layered soil system as a whole. Experimental results are thus used to validate the analytical and numerical solutions for the one dimensional consolidation of soils.

CHAPTER	TITLE	PAGE
		NO.
	CANDIDATE CERTIFICATE	i
	ACKNOWLEDGEMENT	ii
	ABSTRACT	iii
	CONTENTS	iv
	LIST OF TABLES	vi
	LIST OF FIGURES	vii
	LIST OF ABBREVATIONS AND NOTATIONS	viii
	DEDICATION	х
1	INTRODUCTION	1
1.1	Motivation	1
1.2	Objective of Study	2
1.3	Major Scientists and Their Contribution	6
1.4	Physical Background: Error Function	8
1.5	Organization of Report	11
2	LITERATURE REVIEW	12
2.1	Consolidation: Basic Concept	12

CI				PAGE
CHAPTER			TITLE	NO.
	2.2		General Theories	13
	2.3		Applications	15
		2.3.1	Fourier Series	15
		2.3.2	Error Function	16
3			NUMERICAL ANALYSIS	18
	3.1		Fourier Series	18
	3.2		Theory of Consolidation Using Fourier Series	20
	3.3		Error Function	23
	3.4		Theory of Consolidation Using Error Function	24
4			MATERIALS AND METHODS	27
	4.1		Materials	27
	4.2		Methods	27
		4.2.1	Specific Gravity Determination	27
		4.2.2	Grain Size Analysis by Hydrometer Test	28
		4.2.3	Liquid Limit Determination	29
		4.2.4	Plastic Limit Determination	29
		4.2.5	Consolidation by Odeometer	29
5			RESULTS AND DISCUSSION	32
	5.1		Experimental Results	32

CHAPTER		TITLE	PAGE NO.
	5.1.1	Specific Gravity	32
	5.1.2	Liquid Limit of Clay	32
	5.1.3	Plastic Limit of Clay	32
	5.1.4	Grain Size Analysis of Clay	33
	5.1.5	Consolidation Properties	33
5.2		Numerical Results	42
5.3		Theoretical Comparison of Models	62
5.4		Validation of Numerical Model with	63
5.5		Experimental Analysis	66
		Discussion	
6		CONCLUSION	67
6.1		Conclusions	67
6.2		Limitations	68
6.3		Future Scope	68
7		REFERENCES	69

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
1.1	Major Scientists and Their Contribution.	6
5.1	Specific Gravity of soil samples	33
5.2	Consolidation characteristics for different samples	36
5.3	Comparison of Two Models	57

LIST OF FIGURES

FIGURE NO. TITLE

1.1	Idealization of Consolidation	3
1.2	Sand-clay layers under applied stress	4
1.3	Variation of total, pore-water and effective stresses in clay layer	4
1.4	Stages of Consolidation	5
1.5	Plot of Error function	8
1.6	Generalised Error function	10
3.1	Fourier series of sine function	19
4.1	Liquid limit apparatus	28
4.2	Consolidometer ring with sample	29
4.3	Consolidation test apparatus	29
5.1	Liquid limit determination	30
5.2	Particle size distribution of clay	31
5.3	Load settlement curve for tc/(tc+ts)=1.0	31
5.4	Square root of time vs. Settlement for tc/(tc+ts)=1.0	32
5.5	Load settlement curve for tc/(tc+ts)=0.8	32
5.6	Square root of time vs. Settlement for tc/(tc+ts)=0.8	33
5.7	Load settlement curve for tc/(tc+ts)=0.6	33
5.8	Square root of time vs. Settlement for tc/(tc+ts)=0.6	34
5.9	Load settlement curve for tc/(tc+ts)=0.4	34

FIGURE NO. TITLE

5.10	Square root of time vs. Settlement for tc/(tc+ts)=0.4	35
5.11	Load settlement curve for tc/(tc+ts)=0.4	35
5.12	Square root of time vs. Settlement for tc/(tc+ts)=0.2	36
5.13	Pore pressure distribution for tc/(tc+ts)=0.2 at 10 kPa	37
5.14	Pore pressure distribution for tc/(tc+ts)=0.2 at 20 kPa	38
5.15	Pore pressure distribution for tc/(tc+ts)=0.2 at 40 kPa	38
5.16	Pore pressure distribution for tc/(tc+ts)=0.2 at 80 kPa	39
5.17	Pore pressure distribution for tc/(tc+ts)=0.2 at 160 kPa	39
5.18	Pore pressure distribution for tc/(tc+ts)=0.2 at 320 kPa	40
5.19	Pore pressure distribution for tc/(tc+ts)=0.2 at 640 kPa	40
5.20	Pore pressure distribution for tc/(tc+ts)=0.2 at 24 hours for different loads	41
5.21	Pore pressure distribution for tc/(tc+ts)=0.4 at 10 kPa	41
5.22	Pore pressure distribution for tc/(tc+ts)=0.4 at 20 kPa	42
5.23	Pore pressure distribution for tc/(tc+ts)=0.4 at 40 kPa	42
5.24	Pore pressure distribution for tc/(tc+ts)=0.4 at 80 kPa	43
5.25	Pore pressure distribution for tc/(tc+ts)=0.4 at 160 kPa	43
5.26	Pore pressure distribution for tc/(tc+ts)=0.4 at 320 kPa	44
5.27	Pore pressure distribution for tc/(tc+ts)=0.4 at 24 hours for different loads	44
5.28	Pore pressure distribution for tc/(tc+ts)=0.6 at 10 kPa	45

FIGURE NO. TITLE

5.29	Pore pressure distribution for tc/(tc+ts)=0.6 at 20 kPa	45
5.30	Pore pressure distribution for tc/(tc+ts)=0.6 at 40 kPa	46
5.31	Pore pressure distribution for tc/(tc+ts)=0.6 at 80 kPa	46
5.32	Pore pressure distribution for tc/(tc+ts)=0.6 at 160 kPa	47
5.33	Pore pressure distribution for tc/(tc+ts)=0.6 at 320 kPa	47
5.34	Pore pressure distribution for tc/(tc+ts)=0.6 at 640 kPa	48
5.35	Pore pressure distribution for tc/(tc+ts)=0.6 at 24 hours for different loads	48
5.36	Pore pressure distribution for tc/(tc+ts)=0.8 at 10 kPa	49
5.37	Pore pressure distribution for tc/(tc+ts)=0.8 at 20 kPa	49
5.38	Pore pressure distribution for tc/(tc+ts)=0.8 at 40 kPa	50
5.39	Pore pressure distribution for tc/(tc+ts)=0.8 at 160 kPa	50
5.40	Pore pressure distribution for tc/(tc+ts)=0.8 at 320 kPa	51
5.41	Pore pressure distribution for tc/(tc+ts)=0.8 at 640 kPa	51
5.42	Pore pressure distribution for tc/(tc+ts)=0.8 at 24 hours for different loads	52
5.43	Pore pressure distribution for tc/(tc+ts)=1.0 at 10 kPa	52
5.44	Pore pressure distribution for tc/(tc+ts)=1.0 at 20 kPa	53
5.45	Pore pressure distribution for tc/(tc+ts)=1.0 at 40 kPa	53
5.46	Pore pressure distribution for tc/(tc+ts)=1.0 at 80 kPa	54
5.47	Pore pressure distribution for tc/(tc+ts)=1.0 at 160 kPa	54

FIGURE NO. TITLE

5.48	Pore pressure distribution for tc/(tc+ts)=1.0 at 320 kPa	55
5.49	Pore pressure distribution for tc/(tc+ts)=1.0 at 640 kPa	55
5.50	Pore pressure distribution for tc/(tc+ts)=1.0 at 24 hours for different loads	56
5.51	Comparison of theoretical results	58
5.52	Variation of degree of consolidation with time factor for tc/(tc+ts)=0.2	59
5.53	Variation of degree of consolidation with time factor for tc/(tc+ts)=0.4	59
5.54	Variation of degree of consolidation with time factor for tc/(tc+ts)=0.6	60
5.55	Variation of degree of consolidation with time factor for tc/(tc+ts)=0.8	60
5.56	Variation of degree of consolidation with time factor for $tc/(tc+ts)=1.0$	61

LIST OF SYMBOLS

S.NO.	SYMBOL	NOMENCLATURE
1	u	Pore water pressure
2	C_{v}	Coefficient of consolidation
3	α	Constant equivalent to coefficient of consolidation
4	Δσ	Effective pressure increment
5	Δρ	Settlement
6	Н	Depth of soil strata
7	m_v	Coefficient of volume compressibility
8	U	Degree of consolidation
9	T_{v}	Time factor
10	х	Depth variable
11	t	Variable time
12	u_0	Initial pore pressure
13	G	Specific gravity
14	k	Coefficient of permeability
15	Е	Compression strain
16	$ ho_f$	Final settlement
17	\overline{u}	Pore pressure at any time t
18	t_c	Thickness of clay layer
19	t_s	Thickness of sand layer

<u>Dedication</u>

I dedicate this thesis to

My family, teachers and friends