MRAS BASED SENSORLESS VECTOR CONTROL OF INDUCTION MOTOR

DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN
CONTROL & INSTRUMENTATION
(ELECTRICAL ENGINEERING)

Submitted by:

Ashish Chourasia

2k12/C&I/04

Under the supervision of

Dr. Madhusudan Singh

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

ii

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CERTIFICATE

I, Ashish Chourasia, Roll No. 2k12/C&I/04 student of M. Tech. Control & Instrumentation

(C&I), hereby declare that the dissertation titled "Model Reference Adaptive System

(MRAS) based Sensorless Vector Control of Induction Motor" under the supervision of

Dr. Madhusudan Singh of Electrical Engineering Department Delhi Technological

University in partial fulfillment of the requirement for the award of the degree of Master of

Technology has not been submitted elsewhere for the award of any Degree.

Place: Delhi

ASHISH CHOURASIA

Date:

Dr. Madhusudan Singh

SUPERVISOR

Professor& HOD

Department of Electrical Engineering

Delhi Technological University

ABSTRACT

Induction motors are widely used in many industrial applications, represent the starting point and often termed as the workhorse machinery for any electrical drive system, whenever planned to be designed. In correspondence to the modern control theory of electrical machines, the induction motor can be described by more than one mathematical model, in accordance to the employed control method. In the symmetrical three-phase version or in the unsymmetrical two-phase version, this electrical motor type can be associated with vector control strategy. Through this control method, the induction motor operation can be analyzed in a similar way to a separately excited DC motor. The goal of this dissertation is to summarize the existing speed control techniques available through vector control. Starting from vector control principles, the work suggests the d-q axes unified approach for understanding the important concepts of contrast among different techniques of speed control through vector control. However, the vector control or field oriented control is one of the basic modern tools of speed control; the dependence of the technique on mechanical measuring sensors is one of the major areas of concern. The estimation techniques are available to counter this, from which Model Reference Adaptive Control scheme is also discussed and simulated. The MRAC based scheme will not only improve the system efficiency, cost, and maintenance requirement of the mechanical sensing components.

ACKOWNELDGEMENT

I am obliged to my guide **Dr. Madhusudan Singh**, **HOD**, department of **Electrical Engineering**, **Delhi Technological University**, who has very kindly extended his help, encouragement and support throughout the making of this project "Model Reference Adaptive System (MRAS) based Sensorless Vector Control of Induction Motor". I sincerely acknowledge him for providing the necessary lab facilities and I wish to thank all faculty members who helped to finish my thesis in all aspects.

I am honour bound to my **parents** for their continuous love and support that helped me achieve my target. I am grateful to my friends **Mr. Sandeep Madishetti** (PhD. Scholar, IIT Delhi), **Ashok Kumar Kumawat, Sakshi Praliya, Vishal Shrivastava** (M.Tech Scholar, DTU, Electrical Department), (M.Tech Scholar, DTU, Electrical Department) who helped me a lot during my project work. I am also grateful to all those who are directly or indirectly a part of this work.

Above all, thanks for **Almighty** for blessing and guiding me throughout my life.

Ashish Chourasia 2K12/C&I/04

CONTENTS

Cert	ificate		ii	
Abst	iii			
Acknowledgement			iv	
Tabl	Table of Contents			
List	vii			
List of Tables List of Abbreviation			X	
			xi	
List	of Symb	pols	xii	
CHA	PTER 1	1 INTRODUCTION		
1.0	Gener	ral	1	
1.1	Control Techniques		2	
	1.1.1	Scalar Control	3	
	1.1.2	Vector Control	4	
	1.1.3	Sensorless Vector Control	4	
		1.1.3.1 Slip Calculation	5	
		1.1.3.2 Direct Synthesis from State Equations	5	
		1.1.3.3 Model reference Adaptive System	5	
		1.1.3.4 Speed adaptive Flux Observer	5	
		1.1.3.5 Extended Kalman Filter	5	
		1.1.3.6 Slot Harmonics	6	
1.2	Objec	ctive of the Present Work	6	
1.3	Outlin	ne of the Thesis	6	
CHA	PTER 2	2 LITERATURE REVIEW		
2.0	Gener	ral	7	

			vi
2.1	Brief 1	Literature Review	8
	2.1.1	Induction Motor Drives	8
	2.1.2	Scalar Control	9
	2.1.3	Vector Control/Field Oriented Control	12
	2.1.4	Sensor less Vector Control	14
	2.1.5	Parameter Variations – Rotor Resistance Estimation	2
	2.1.6	Controllers	2
2.2	Concl	usion	6
CHA	APTER 3	MODELING AND CONTROL OF INDUCTION MOTOR	
3.0	Gener	al	16
3.1	Dynar	nic D-Q Mathematical Model of Induction Motor	19
3.2	Axis	Transformation	19
3.3	Vector Control or Field Oriented Control		20
	3.3.1	Principles of Vector Control	21
	3.3.2	Direct or Feedback Vector Control	21
	3.3.3	Indirect or Feedforward Vector Control	22
3.4	Sensorless Vector Control of Induction Motor		23
	3.4.1	Speed Adaptive Flux Observer (Leunberger Observer)	23
	3.4.2	Extended Kalman Filter (EKF)	23
	3.4.3	Speed Estimation using Model Reference Adaptive System (MRAS)	23
3.4	Concl	usion	23
CHA	APTER 4	RESULT AND DISCUSSION	
4.0	Gener	al	37
4.1	Indirect Vector Control of Induction Motor		38
	4.1.1	Using PI Controller	38
	4.1.2	Using Fuzzy Logic Controller	42
4.2	MRAS	based Sensorless Vector Control of Induction Motor	33
	4.2.1	Using PI Controller	45
4.3	Conclu	asion	52

		vii
CHAI	PTER 5 MAIN CONCLUSION AND FUTURE SCOPE OF WORK	
5.1	Main Conclusion	53
5.2	Future Scope of Work	54
REFE	CRENCES	
APPE	ENDIX I MATLAB BLOCK USED	61-62
APPE	ENDIX II FUZZY LOGIC TOOLBOX	63-65
APPE	NDIX III MODEL REFERENCE ADAPTIVE CONTROLLER BLOCK	66

LIST OF FIGURES

TITLE PAGE N	О.
1-1 (a) Separately excited dc motor (b) Vector-controlled induction motor	3
2-1 Modern Electric drive system employing power electronic converters	7
3-1 Representation of three phase induction motor	20
3-2 Equivalent two phase machine model	21
3-3 Dynamic De-Qe eqivalent circuits of machine (a) Qe-axis circuit (b) De-axis circuit	22
3-4 Stationary frame a-b-c- to Ds-Qs axes transformation	24
3-5 Stationary frame Ds-Qs synchronously rotating frame De-Qe transformation	25
3-6 Vector Control implementation principle with De-Qe model	26
3-7 Steady State phasor (in terms of peak values) (a) Increase of torque component current	ıt
(b) Increase of flux component of current	28
3-8 Direct Vector Control block diagram with the rotor flux orientation	
3-9 Ds-Qs and De-Qe phasor showing correct rotor flux orientation	30
3-10 Phasor diagram for Indirect Vector Control	31
3-11 Indirect Vector Control of Induction motor	32
3-12 Calculation of Speed using Model Referencing Adaptive Control principle	35
4-1 MATLAB simulation of Direct Vector Control of Induction motor	38
4-2 Performance Analysis of IVCIMD with constant speed and constant load	39
4-3 Performance analysis of IVCIMD with variable speed and variable load	40
4- 4 Performance analysis of IVCIMD on reversal of speed direction with varying load	
using PI Controller	41
4-5 Indirect Vector Control of Induction Motor using FLC	42
4-6 Performance Analysis of IVCIMD with constant speed and constant load using FLC.	42
4-7 Performance analysis of IVCIMD with variable speed and variable load using FLC	43

4-8 Performance analysis of IVCIMD on reversal of speed direction with varying load	
using FLC	.44
4-9 MRAS based Sensorless Vector Control of Induction Motor using PI controller	.45
4-10 Performance Analysis of SVCIMD with constant speed and constant load using	
MRAC	.46
4-11 Error between estimated Speed and Rotor Speed for SVCIMD	.47
4-12 Performance Analysis of SVCIMD with variable speed and variable load using	
MRAC	.48
4-13 Error between Estimated Speed and Rotor Speed for SVCIMD	.49
4-14 Error between Estimated Speed and Reference Speed for SVCIMD	.49
4-15 Performance Analysis of SVCIMD with reversa lof speed with varying load using	
MRAC	.50
4-16 Error between Estimated Speed and Rotor Speed for SVCIMD	.51
4-17 Error between Estimated Speed and Rotor Speed for SVCIMD	.51

LIST OF TABLES

TITLE	PAGE NO.
4-1 Specification of Induction Motor	40

LIST OF ABBREVIATION

MRAS Model Reference Adaptive System

MRAC Model Reference Adaptive Controller

SVCIM Sensorless Vector Control of Induction Motor Drive

EKF Extended Kalman Filter

FLC Fuzzy Logic Controller

VSI Voltage Source Inverter

PI Proportional Integral

CEMF Counter Electromotive Force

VR Vector Rotation

LIST OF SYMBOLS

Symbols

Description

 $d^s - q^s$ Stationary rotating reference frame direct or quadrature axis $d^e - q^e$ Synchronously rotating reference frame direct or quadrature axis Armature reaction flux linkage (Webber – turns) ψ_a ψ_r Rotor flux linkage Stator flux linkage ψ_s ψ_m Air gap flux q^e – axis stator flux linkage ψ_{as} ψ_{qr} q^e – axis rotor flux linkage d^e – axis stator flux linkage ψ_{ds} d^e – axis rotor flux linkage ψ_{dr} d^e – axis air gap flux linkage ψ_{dm} q^e – axis air gap flux linkage ψ_{qm} ψ_{as}^{s} q – axis stator flux linkage ψ_{ds}^{s} d – axis stator flux linkage q^e – axis stator current i_{as} q^e – axis rotor current i_{ar} d^e — axis rotor current i_{dr} d^e – axis stator current i_{ds} L_m Magnetizing Inductance Stator Leakage inductance L_{ls} Rotor Leakage inductance L_{lr} q^e – axis stator voltage v_{qs} d^e — axis stator voltage v_{ds}

 q^e – axis rotor voltage

 v_{qr}

 d^e – axis rotor voltage v_{dr} Stator resistance R_s R_r Rotor resistance Stator inductance L_{s} Rotor inductance L_r Stator or Line frequency ω_e ω_r or W_m Rotor electrical speed W_{es} Estimated speed W_{ref} Reference Speed Slip frequency ω_{sl} S Laplace operator P Poles θ_e Angle of synchronously rotating frame θ_r Rotor angle θ_{sl} Slip angle q^s – axis stator voltage v_{ds}^{s} d^s – axis stator voltage i_{qs}^s q^s – axis stator current d^s – axis stator current K_{s} Slip gain Q Reactive power Q^* Reactive power reference

Estimated Slip Gain

Incremental slip gain

Stator current reference

Stator flux reference input

Developed Torque (Nm)

Stator quadrature-axis reference current

Stator direct-axis reference current

Weighting factor

 $\widehat{K_s}$

 K_f

 ΔK_s

 $i_a^*, i_b^* \& i_c^*$

 i_{qs}^*

 i_{ds}^*

 $|\psi_r^*|$

 T_e

T_L Load Torque

 t_{off} Turn-Off time (sec)

 T_e^* Torque reference

V_d DC voltage

 V_m Peak phase voltage

 V_f Induced Emf

*V*_I Inverter DC voltage

 V_g Rms air gap voltage

 V_R Rectifier DC voltage

 v_d Inst. DC voltage

 v_s Inst. Supply voltage

 v_f Inst. Field voltage

 $|\psi|_{r\,est}$ Estimated rotor flux linkage

N_s Synchronous Speed (rpm)

 N_r Rotor Speed