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ABSTRACT 

Cutting is one of the most important and common manufacturing processes in industry. 

Machining process is not an easy process to investigate and to model due to the inherent 

difficulty to know exactly what happens in the region around the tool tip. In metal cutting 

operations, the importance of knowledge on the temperature distribution in cutting tool is well 

recognized due to its controlled influence on tool life as well as on the quality of the machined 

part. The effect of process parameters such as cutting speed, feed rate, depth of cut etc in the 

metal cutting process is determined by correlating the process parameters with the tool 

temperature, tool life, wear rate, production cost etc. 

  

 The main objective of this experiment was to determine the chip-tool interface 

temperature in orthogonal turning process depending on cutting parameters i.e. cutting speed and 

depth of cut for different tool and work material combinations using the tool-work thermocouple 

method. The design matrix was prepared on the basis of two factors, two levels, full factorial 

design to identify the limits of process parameters. Response surface methodology and 

regression analysis was used to develop the mathematical model correlating the process 

parameters with the response variable (chip-tool interface temperature). The calculations were 

carried out using the software package Minitab 16. The models once developed were checked for 

adequacy using the ANOVA technique. The significant terms were selected using the p test from 

the adequate models. Following this the final model was proposed and the main and interaction 

effects of the process variables on the response variable were plotted and interpreted from the 

developed graphs. The developed model was used for prediction of response variable by 

selecting the appropriate process parameter values. 

  

 The function of the optimization model was to minimize the chip tool interface 

temperature in orthogonal cutting process using an optimization technique. Genetic algorithm 

technique was used for modeling the cutting process. Predictive equations previously formulated 

by RSM method were used in the development of GA architecture for the determination of the 

temperature for a given set of inputs in the metal cutting problem. A comparative analysis of the 

performance of RSM model and GA model was done. 
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 It was concluded that when the cutting speed and the depth of cut were increased the 

chip-tool interface temperature increased and also observed that the cutting speed has a 

significant effect on the chip-tool interface temperature in comparison to the effect of depth of 

cut. These conclusions were verified by the correlation coefficients. The results obtained from 

the simulation model presented a fast and suitable solution for automatic selection of the 

machining parameters. The results are further analyzed with the literature available. 

 

This experimental work includes discussion on the important input parameters, their 

effects, conclusions and the several considerations for future work.  
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Chapter 1 

INTRODUCTION 

 

 

1.1 MANUFACTURING: AN INTRODUCTION 

Manufacturing is the production of work pieces having defined geometric shapes. It is the 

economic term for making goods and services available to satisfy the human needs. It 

converts the raw materials (from nature or industry) to finished products to be used for 

some purpose. The development of the finished product from raw material undergoes a 

number of processes such as selecting a material, reviewing the basic design model, 

selecting the parameters, type of operations to be performed, economics involved, quality 

testing and inspection, assembling, final testing etc.   

The manufacturing processes are the methods which are required to produce parts and 

then to assemble them to develop a finished product. These processes are mainly 

categorized as:  

a. Primary Shaping Processes 

b. Forming or Metal Working Processes 

c. Machining (Metal removal) Processes 

d. Joining and Assembly processes 

e. Surface Finishing Processes 

 

1.2 METAL CUTTING   

The process of metal removal is a process in which a wedge-shaped tool engages a 

workpiece to remove a layer of material in the form of a chip. It is the process of working 

with metals to develop individual parts, assemblies or large scale structures. It involves a 

wide range of work from large ships and bridges to precise and intricate engine parts and 

jewellery. 

After the selection and refinement of the basic metals, they are given suitable shapes by 

primary processes for metal machining. Final product is obtained by machining the 

metals to the pre-designed dimensions. 
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The simplest model to understand the mechanics of metal cutting is the orthogonal 

cutting process while the simplest form of cutting tool is the single point cutting tool. The 

geometry of the cutting tool decides the efficiency of operation and surface appearance. 

Therefore, the selection of cutting tool depends on various parameters related to work 

material and machine tool. 

1.2.1 ORTHOGONAL CUTTING PROCESS 

This process is the idealized process which is based upon assumptions. In this process, 

the cutting tool is perpendicular to the direction of the cut and it is assumed that there is 

no lateral flow of material and no chip curvature exists. All the parts of the chip have the 

same velocity. Here the tool is assumed to be stationary while the work piece is moving. 

For analysis consider the following Figure 1.1 [1]. 

 

 

Figure 1.1 Orthogonal Cutting Tool Model with Heat Generation Zones [1] 

 

It is assumed that the chip is severed from the work piece by the action of shear force 

across the plane. Since the chip so developed is in compression against the face of the 

tool, a frictional force is also developed. Therefore the work of chip making process must 

overcome both the shearing force and the frictional force. 

This cutting process involves large plastic deformation of the work piece material which 

increases the cutting zone temperature. High temperature at the cutting zone contributes 

to the thermal deformation of the cutting tool. Figure 1.1 shows the three heat generation 

zones related to the plastic deformation around the tool-chip contact area. These zones 
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are Primary deformation zone, Secondary deformation zone and Tertiary deformation 

zone (tool-work interface) [2]. The primary deformation zone represents 80-85% of total 

heat generation, secondary deformation zone represents 10-15% of total heat generation 

and the tertiary deformation zone represents 1-3% of total heat generation.  

 

1.2.2 TURNING PROCESS 

The turning process is the process for producing a cylindrical surface with a single point 

cutting tool on the lathe machine tool. The workpiece is held in the chuck and is rotated 

on the spindle while the cutting tool is fed into it radially, axially or both. The variables 

used for this process are cutting speed, feed rate and the depth of cut. As the depth of cut 

is usually five times the feed rate, the chip is produced in plane strain and hence the width 

of the chip is equal to the undeformed chip width. 

 

 

Figure 1.2 Turning process on a lathe machine tool [2] 

 

Materials appropriate for the turning process are usually soft metals. The cutting tool 

material should always be harder than the material being turned. 
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Chapter 2 

LITERATURE REVIEW AND PROBLEM FORMULATION 

 

2.1   REVIEW OF LITERATURE 

Research in metal cutting was started with Cocquilhat in 1851 which measured the work 

required to remove a given volume of material in drilling. The attempt made by Time led 

to the explanation of formation of chips in 1870 and further research was made by Tresca 

in 1873. Later in 1881, Mallock suggested that the cutting process was the shearing of 

workpiece to form the chip and emphasized the importance of the effect of friction 

occurring on the cutting tool face as the chip was removed. Further, Taylor investigated 

the effect of tool material and cutting conditions on tool life during rough operations. 

Latest fundamental work has been carried out by Ernst and Merchant in 1941 dealing 

with the mechanics of metal cutting process. 

Large number of literature is available on the determination of chip-tool interface 

temperature, factors affecting the interface temperature and techniques of optimization of 

machining parameters including cutting speed, feed rate, cutting zone temperature, etc. 

 

D.O’ Sullivan et al [1] determined the temperature in a single point turning process. The 

total work done by a cutting tool in removing metal can be determined from the force 

components on the cutting tool. Approximately, all of this work or energy is converted 

into heat which is dissipated into the chip, tool and workpiece material. The wear of the 

tool is related to the cutting forces. Initial experiments conducted involved the 

simultaneous measurement of forces and temperatures. These experiments focused on the 

use of embedded thermocouple (in the work piece) and using the infrared thermal camera 

to monitor the process. 

 

N.A. Abukhshim et al [3] reviewed the previous research work. Research on heat 

generation and heat dissipation in the orthogonal machining process is critically studied. 

In addition, temperature measurement techniques applied in metal cutting are also 

reviewed. The emphasis is on the comparability of test results obtained by a thermal 
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imaging camera in high speed cutting of high strength alloys. Finally, latest work on 

these topics in metal machining is also reviewed. The paper then proposes some 

modeling requirement for computer simulation of high speed machining process. 

 

Ismail Lazoglu et al [4] predicted the tool chip temperature in continuous and 

interrupted machining. In this a numerical model based on the finite difference method is 

presented to predict tool and chip temperature fields in continuous and interrupted 

machining and time varying milling processes. Continuous or steady state machining 

operations like orthogonal cutting are studied by modeling the heat transfer between the 

tool and chip at the tool-rake face contact zone. The shear energy created in the primary 

zone, the friction energy produced at the face-chip contact zone and the heat balance 

between the moving chip and stationary tool is considered. The temperature distribution 

is solved using the finite difference method. 

 

G. Sutter et al [5] presented an experimented setup for the measurement of temperature 

field in high speed machining. This paper presents an experimental setup during an 

orthogonal machining operation with 42 CrMo 4 steel. The technique of temperature 

measurement was developed on the principle of pyrometer in the visible spectral range by 

using an intensified CCD camera with very short exposure time and interference filter at 

0.8 micrometer. Temperature gradients were obtained in an area close to the cutting edge 

of the tool, along the secondary shear zone. It was established that this experimental 

arrangement is quite efficient and can provide fundamental data on the temperature field 

in material during orthogonal high speed machining. 

 

Yahya Dogu et al [6] designed a numerical model to determine temperature distribution 

in orthogonal metal cutting. In this study, a thermal analysis model is developed to 

determine temperature distribution in orthogonal in metal cutting using finite element 

methods. The model calculates the temperature distribution as a function of heat function 

of heat generation. The heat generation was introduced in the primary deformation zone, 

the secondary deformation zone and along the sliding frictional zone at the tool-chip 

interface as well. The temperature dependency of material properties was included in the 
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model. A series of thermal simulation have been performed and the value and location of 

maximum temperature have been determined for various cutting condition. The 

comparison of the simulation with simulation with earlier work gave promising trend for 

the presented model. 

 

Haci Saglam et al [7] studied the effect of tool geometry and cutting speed on main 

cutting force and tool tip temperature. In this paper, the effects of rake angle and entering 

angle in tool geometry and cutting speed on cutting force components and the 

temperature generated on the tool tip in turning was investigated. The data used for the 

investigation derived from experiments conducted on a CNC lathe according to the full 

factorial design to observe the effects of each factor level on the process performance. 

During the tests, the depth of cut and feed rate were kept constant and each test was 

conducted with a sharp uncoated tool insert. Finally, it was found that rake angle was 

effective on all the cutting force components, while cutting speed was effective on the 

tool tip temperature. The cutting force signal and temperature values provided extensive 

data to analyze the orthogonal cutting process. 

 

Takashi Ueda et al [8] determined the temperature of a signal crystal diamond tool in 

turning. The temperature on the rake face of a single crystal diamond tool in precision 

turning is investigated experimentally and theoretically. The infrared rays radiated from 

the contact area between chip and the rake face, and transmitted through the diamond 

tool, are accepted by a chalcogenide fiber and led to a two color detector which consists 

of InSb and Hg Cd Te detector. The temperature distribution in the tool and in the work 

piece is calculated numerically using FEM. The temperature increase with the increase of 

cutting speed for the range of cutting speeds investigated. 

 

Tanikic et al [9] studied the metal cutting process’ parameters modeling (cutting 

temperature, cutting force and quality of machined surface) using artificial neural 

network and hybrid, adaptive neuro fuzzy systems. The main aim of this experiment is to 

conduct the qualitative analysis of metal cutting process, identify and resolve the 

frequently occurring problems and improve the productivity by reducing the 
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manufacturing costs. The temperature at the chip tool interface was measured and 

monitored by the infrared camera while an appropriate tool was utilized for measuring 

the height of roughness of machined surface. Later, artificial neural network and neuro 

fuzzy system were used to model the measured data. After all the data measurement and 

its analysis, they concluded that there exists a possibility of implementation of artificial 

intelligence based systems in metal cutting process. Finally, global system for predicting 

the state of cutting tool was proposed (with sub-systems for cutting temperature, cutting 

force and arithmetic mean deviation prediction). 

 

Fata [10] proposed the method of embedded thermocouple for temperature measurement 

along with infrared pyrometer. The experiments are conducted for dry and orthogonal 

machining condition with simultaneous measurement of temperature by embedded 

thermocouple and infrared pyrometer. With the help of these experiments a relation was 

established between tool temperature and cutting parameters such as cutting speed, feed 

rate and depth of cut. The results so obtained showed that if cutting speed, feed rate and 

depth of cut are increased then the tool temperature also increases which reduces the life 

of the cutting tool. These investigations revealed that the most effective cutting parameter 

in tool temperature rise is the cutting speed, especially at high range of cutting conditions. 

It also showed an increase in feed rate and depth of cut will lead to an almost straight line 

with low slope on the graph of tool temperature when plotted against them. 

 

 A. Jameel [11] et al focused their study on the temperature generated at two heat zones 

namely primary heat zone (shear zone) and secondary heat zone (tool chip interface 

zone). They proposed two new objective functions for optimizing the cutting temperature 

problems and this system used particle swarm optimization (PSO) methodology to 

determine the optimal temperature. The experiments showed that major amount of energy 

is converted into heat in the shear zone while the heat generated at the tool chip interface 

zone is due to the rubbing action at that interface. It was concluded that heat distribution 

pattern is dependent on the size and thermal conductivity of the tool-work material and 

the cutting conditions. Specifically the results were obtained for mild steel work and 

carbide insert cutting tool in dry turning operation. The study showed that main cutting 
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force, feed rate and depth of cut greatly influence the shear zone temperature while chip 

thickness and friction force have low effect. Also the chip tool interface temperature 

increased with increase in feed rate and main cutting force while it decreased with 

increase in the depth of cut. Therefore, the study concluded that feed rate has a huge 

effect on shear zone and chip tool interface zone temperature as compared to other 

parameters. 

 

A. Jabri et al [12] presented a multi-optimization technique based on genetic algorithm 

methodology to search optimal cutting parameters such as cutting speed, feed rate and 

depth of cut of multi-pass turning processes. This paper presents the optimization of two 

objective functions i.e. cutting cost and used tool life time simultaneously. Multi-pass 

turning processes are divided into multi-pass rough machining and finish machining. In 

order to minimize two parameters i.e. cutting cost and used tool life time six machining 

parameters are considered which includes three parameters for rough machining and 

three for finish machining. Further a genetic algorithm model is prepared which is 

utilized for optimization and the results are presented in Pareto frontier graphic. 

Therefore it was concluded that the genetic algorithm technique of optimization allowed 

the multi objective optimization of objective functions by selecting optimal cutting 

parameters. 

 

P. P. Shirpurkar et al [13] attempted to review the literature on optimization of 

machining parameters in turning processes by using different tool inserts.  During this 

review different conventional techniques employed for optimization of parameters are 

also studied. These techniques include geometric programming, geometric plus linear 

programming, non-linear programming, goal programming, sequential unconstrained 

minimization technique and dynamic programming. Later the latest optimization 

techniques are also discussed, specifically genetic algorithm, fuzzy logic, ant colony 

technique, Taguchi technique and response surface methodology. These techniques are 

successfully applied in the industrial applications for optimal selection of process control 

variables. The paper concluded that Taguchi approach has the potential for savings in 
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experimental time and cost on product or process, development and quality improvement 

and therefore is widely used in industries. 

 

A. H. Suhail et al [14] optimized the cutting parameters using two performance 

measures, work piece surface temperature and surface roughness. Optimal cutting 

parameters were obtained by using Taguchi techniques. In order to study the performance 

characteristics in turning operation the orthogonal array, signal to noise ratio and analysis 

of variance was used. The experimental results showed that workpiece surface was 

efficiently sensed and can be effectively utilized as an indicator to control cutting 

performance and improve the optimization process. Therefore it can be concluded that in 

the automated manufacturing environment there exist a possibility of increase in machine 

utilization and decrease in production cost. 

 

G. Mohankumar et al [15] conducted experiments in order to determine the machining 

parameters for continuous profile machining taking in account the factor of minimum 

production time. The final profile of the cylindrical bar was done in two stages, rough 

machining and finish machining and number of passes for rough machining was also 

decided. The factors to which the optimal machining parameters were subjected were 

practical constraints, cutting force, power, surface finish and dimensional accuracy. The 

problem was formulated for using genetic algorithm and particle swarm optimization 

techniques in order to optimize the objective function. The results so obtained were 

compared and the conclusion drawn was particle swarm optimization method gave better 

results. Therefore using this technique can further minimize the machining time for the 

given set of machining parameters.  

 

F Cus et al [16] proposed an optimization technique based on genetic algorithm for 

determining the parameters in machining operations. The methodology presented is for 

continual improvement in the cutting conditions with GA. It modifies the recommended 

cutting conditions received from machining data, analyzing them with neural networks 

and substituting the better cutting conditions with the previously existing ones. The 

proposed model shows that GA based procedure for solving optimization problem is 
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effective and efficient and can be easily integrated with any intelligent manufacturing 

system to reduce the production cost, production time and improve the product quality. 

The results so obtained are comparable with the results of simulated annealing, fuzzy 

approach and linear programming approach.  

 

P. E. Amiolemhen et al [17] proposed genetic algorithm based optimization technique 

for determining the cutting parameters in multi-pass machining operations which 

included multi-pass roughing and single-pass finishing operation. The cylindrical bar 

stock is converted into a continuous finished profile involving seven machining 

operations, each subjected to practical constraints. In order to assess the result for each 

machining operation a non-linear, constraint cutting model is developed which is based 

on genetic algorithm. Therefore it was concluded that the proposed model proved 

efficient and effective in optimizing the machining parameters and can be extended to 

other operations such as external and internal threading.  

 

R. Q. Sardinas et al [18] presented a multi-objective optimization technique based on 

genetic algorithm in order to optimize the cutting parameters in turning process. The 

objectives of tool life and operation time are formulated to optimize them using the 

proposed model of microGA. The results are built on the Pareto front graph and are 

analyzed for several different production conditions.  The aspects like diversity 

maintenance and constraint handling have been successfully sorted for the formulated 

cutting problem. Therefore it can be concluded that Pareto front information help in 

decision making process. This paper also lists the advantages of multi-objective 

optimization approach over the single-objective optimization. 

 

D. M. D. Addona et al [19] developed an optimization paradigm based on genetic 

algorithm for determining the cutting parameters in machining operations. Considering 

the technological and material constraints proposed model has to yield minimum 

production time. The proposed model has the advantage to perform multi-objective 

optimization while considering the constraints. The formulated objective is optimized 

using the two point crossover and then mutation operations. A two point crossover with 
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high crossover probability helps in diversity preservation and hence a better optimal 

result is obtained. The experimental results obtained from simulation model are 

comparable with other techniques and this model can be integrated with other intelligence 

techniques in order to solve many complex problems. 

 

D Petkovic et al [20] discussed the optimization problem of machining using genetic 

algorithm methodology. The experiments were performed to determine the optimal 

cutting parameters specifically cutting speed and feed rate. The GA model was 

formulated in order to minimize cost of the turning process. The constraints which were 

utilized in the proposed model were non-linear constraints. The results obtained by GA 

model were checked by the sequential quadratic programming algorithm. The 

comparison of the results showed the same values of machining cost, cutting speed and 

feed rate but concluded that GA method is better than SQP in terms of execution time and 

number of iterations. Therefore they conclude that GA method successfully optimize the 

results based on different cutting parameters. 

 

L. B. Abhang et al [21] experimentally measured the tool-chip interface temperature 

using the tool-work thermocouple technique. Using the response surface methodology 

mathematical models of first and second order were developed in terms of machining 

parameters. The results so obtained were analyzed statistically and graphically. The first 

order model explains the main effect of the cutting parameters while the quadratic model 

shows the variation of chip-tool interface temperature with major interaction effect 

between cutting parameters. The empirical relation formulated agrees well in velocity 

with Shaw’s non-dimensional model. Also this model produce smaller errors and has 

satisfactory results as the multiple regression coefficient is approximately 0.99. 

Therefore, it was concluded that increase in cutting speed, feed rate and depth of cut 

increases the cutting temperature while an increase in tool nose radius reduces the tool-

chip interface temperature. The tool-work thermocouple technique proved to be the best 

method for measuring the average chip-tool interface temperature during metal cutting. 
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K. Kadirgama et al [22] determined the temperature distribution on cutting tool during 

machining operation. First order temperature model was developed using response 

surface methodology in order to minimize the number of experiments. This methodology 

helped in formulation of relationship between the variables (cutting speed, feed rate and 

depth of cut) and the response (temperature). Later the result was verified by the finite 

element analysis which showed clear relation between the cutting variables and the 

response. The predicted values of temperature were quite close to the experimental 

results. It was observed that the tool temperature was significantly affected by the feed 

rate factor. Therefore conclusion drawn from the measured results was that an increase in 

the cutting parameters increases the cutting temperature.  

 

S. R. Das et al [23] presented an optimization method of cutting parameters (cutting 

speed, feed rate and depth of cut) to achieve minimum tool wear and low workpiece 

surface temperature. The experimental model was designed based on Taguchi’s 

orthogonal array technique and analysis of variance (ANOVA) was used to identify the 

effect of cutting parameters on the response variables. The result obtained showed that 

depth of cut and cutting speed are the most influencing parameter on the response 

variables. Later on, optimal ranges of tool wear and workpiece surface temperature was 

predicted. Multiple regression analysis was utilized to develop the relationship between 

factors and performance measures. The results concluded that Taguchi parameter design 

is an effective way of determining the optimal cutting parameter for achieving low tool 

wear and low workpiece surface temperature. 

 

H. M. Mohammad [24] proposed an empirical model to increase the cutting tool life and 

improve the workpiece surface quality by predicting workpiece surface roughness and 

cutting tool temperature. Empirical equations were formulated using the experimental 

results of the turning process. The results indicated that cutting speed and feed rate has a 

major effect on workpiece surface roughness and cutting tool temperature. Letar the 

results were compared which showed an agreeable correlation. It was concluded that 

increasing cutting speed and feed rate improves the surface roughness while depth of cut 
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did not show any considerable effect on the response factors. Hence these facors can be 

utilized as an indicator for the cutting performance. 

 

Kovac et al [25] reviewed the experimental techniques for the measurement of 

temperature generated in the material removal processes. Various factors are studied 

which are affected by the temperature generated in the material removal processes such 

as tool wear, tool life duration, quality of surface finish, chip segmentation and 

lubrication choice. The techniques which are developed to quantify the temperature are 

discussed taking into account the thermal aspect which becomes significant at high 

cutting speeds. The study concluded that techniques to be used for measurement of 

temperature depends on the material used, cutting parameters used etc. The optical and 

infrared radiation pyrometers require elaborate instrumentation and require special 

environment while some techniques give average values such as tool-work thermocouple 

technique. Methods which provide fast response such as tribo-induced thermo-

luminescence were also reviewed.  

 

N. Lungu et al [26] studied the effect of cutting speed and feed rate on tool geometry, 

temperature and cutting forces using finite element method simulation. FEM was used as 

it provides information on deformations, stresses and temperatures that occur during the 

machining process. It also explains the chip shape and tool wear rate. For the research 

purpose six trial runs of simulation were conducted. The machining parameters (cutting 

speed and feed rate) were variable while tool geometrical parameters were kept constant. 

Further FEM simulation was performed which resulted in the conclusion that increasing 

the cutting speed increases the temperature but decreases the cutting force. The Deform 

2D software provided a good prediction of tool displacement, temperature, cutting forces, 

strains and stresses. The conclusion was drawn by comparing results obtained by FEM 

and experimental tests and further optimization was done using statistical methods. 

 

A.Belloufi et al [27] used a new hybrid genetic algorithm-sequential quadratic 

programming for the resolution of the cutting conditions of the multi-pass turning 

process. Using this method the production cost was minimized under a set of machining 
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constraints. They considered six decision variables i.e. cutting speed for rough and finish 

machining, feed rates for rough and finish machining and depth of cut for rough and 

finish machining. Depending on these variables the unit production cost was minimized 

and the optimized results were obtained and compared with the results of genetic 

algorithms, simulated annealing, particle swarm intelligence, scatter search, ant colony 

approaches. The hybrid GA-SQP obtained near optimal solution; therefore it can be used 

for machining parameter selection of complex machined parts that require many 

machining constraints. Further, it can be extended to solve the other metal cutting 

optimization problems such as milling, drilling etc. 

 

A.Aryahnfar et al [28] studied the cutting operations which consist of two stages namely 

roughing and finishing. In the finishing stage, machining parameters including cutting 

speed, feed rate and depth of cut were determined. In roughing stage, in addition to these 

parameters, the number of rough cut passes was also decided. They proposed a non-linear 

constrained mathematical programming model for determination of the aforementioned 

parameters. An optimization technique based on genetic algorithms (GA) was proposed 

to simultaneously optimize the multi-pass roughing and single-pass finishing parameters. 

The objective function was formulated to minimize unit production cost and further result 

was compared with other traditional and non-traditional techniques. Further, the proposed 

technique can be modified to multi-objective constrained optimization problems in 

turning and also other machining problems, such as milling and grinding operations. 

 

A K Sahoo et al [29] presented an experimental investigation on cutting temperature 

during hard turning of EN 24 steel (50 HRC) using TiN coated carbide insert under dry 

environment. The prediction model was developed using response surface methodology 

and optimization of process parameter was performed by desirability approach. A stiff 

rise in cutting temperature was noticed when feed and cutting speed were elevated. The 

experimental and predicted values were found very close to each other.  The optimal 

combination for process parameter was depth of cut at 0.2mm, feed of 0.1597 mm/rev 

and cutting speed of 70m/min. Based on these combination, the value of cutting 

temperature was found to be 302.950 °C whose desirability is one. It was concluded that 
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the cutting temperature value increases with increase of cutting speed, feed and depth of 

cut. ANOVA of second order model was found to be significant as its p-value is less than 

0.05. 

 

D Tanikic et al [30] studied the heat generation in the cutting zone which occurs as a 

result of the work done in metal cutting process, which is consumed in plastic 

deformation of the cutting layer and overcoming of friction, that occurs on the contact 

area of the cutting tool (i.e. cutting insert) and work material (i.e. workpiece). In order to 

model the temperature they carried out large number of experiments at different cutting 

conditions, synchronously measuring the chip’s top temperature using the infrared 

camera. The infrared method gives a relatively good indication of the measured 

temperature, comparing with other methods for temperature measurement, such as: 

thermocouples, radiation methods, metallographic methods etc. Results obtained in the 

first phase were used for modelling of the cutting temperature using the response surface 

methodology model (RSM model), feed forward artificial neural networks (ANN model), 

radial basis function network (RBFN model), generalized regression neural network 

(GRNN model) and adaptive neuro-fuzzy system (NF model). The accuracy of the 

proposed models was presented, as well as their suitability for use in concrete problems. 

The primary goal of this work as the examination of the possibility of using various 

models (most of them based on artificial intelligence) in metal cutting temperature 

modeling which was successfully achieved. The maximum chip’s top temperature was 

adopted as relevant factor.  

 

N. Z. Basha et al [31] investigated the effect of process parameter in turning operation to 

predict the surface roughness. Aluminium 6061 was used as the workpiece as it is found 

in many manufacturing industries such as aircraft and aerospace components, marine 

fittings, transport, bicycle frames, camera lenses, drive, shafts, electrical fittings and 

connectors, brake components, valves, couplings. This paper presented the effect of 

process parameter by considering the Spindle speed, Feed rate and Depth of cut as the 

decision variables while the main objective was to predict the surface roughness. A 

second order mathematical model was developed using regression technique of Box-



16 
 

Behnken of Response Surface Methodology (RSM) in design expert software 8.0 and 

optimization was carried out by using genetic algorithm in matlab8.0. This investigation 

found that optimal solution of the cutting conditions achieved was on spindle speed 

(rpm)= 1999.999, feed rate (mm/min)= 0.041 and depth of cut (mm)=0.6 for giving the 

minimum value of surface roughness(μm)=0.611 using genetic algorithm. The 

confirmatory test was conducted and found that the percentage of error within 0.32%. 

 

G. Ceau et al [32] investigated on the temperature at the edge of the tool, during turning 

of unalloyed steel, depending on the parameters of the cutting process with conventional 

values. For the determination of the temperature values of the cutting edge an 

experimental setup with natural and artificial thermo-couples, infrared camera and optical 

pyrometer was used. To analyze the influence of the variation of the cutting parameters 

on the temperature of the cutting edge an analytical relation, determined through the 

method of symmetrical measurement plans and through mathematical regression was 

used. The temperature was measured using an experimental setup with natural 

thermocouple while the data acquisition was accomplished by using the LabVIEW 

instrumentation. The temperatures, as well as the temperature profiles were obtained 

through analytical calculus using the MATLAB program and the mathematic regression 

method. The successful check of the determined model for other cutting conditions 

showed the validity of the applied theory. The results have emphasized the major 

influence of the cutting speed. It was concluded that the temperature of the cutting edge 

can reach high values even for conventional cutting conditions or for the lower limit of 

the HSC.  

 

M. Bagheri et al [33] determined the tool-chip interface temperature in cutting of ST37 

steel workpiece by applying HSS as the cutting tool in dry turning. Two different 

approaches were implemented for temperature measuring: an embedded thermocouple 

(RTD) in to the cutting tool and infrared (IR) camera. Comparisons were made and 

studied between experimental data and results of MSC.SuperForm and FLUENT 

software. An investigation of heat generation in cutting tool was performed by varying 

cutting parameters at the stable cutting tool geometry and results were recorded after 
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which graphs were plotted between tool temperature and various cutting parameters. The 

experimental results reveal that the main factors of the increasing cutting temperature are 

cutting speed, feed rate and depth of cut, respectively. It was also determined that 

simultaneously change in cutting speed and feed rate has the maximum effect on 

increasing cutting temperature. It was concluded that by increasing the cutting speed, tool 

temperature intensely rises and also temperature will increase by increasing the depth of 

cut; nevertheless, its impact is less than two other parameters as cutting speed and feed 

rate. 

 

M B Silva et al [34] reviewed the analytical and experimental methods used to measure 

cutting temperature. Some experimental results were also used presenting the different 

methods of measurement. Several attempts which have been made to predict the 

temperatures involved in the process as a function of many parameters, as well as many 

experimental methods to measure temperature directly were analyzed. The analytical 

models were used to show the effects of cutting parameters, such as cutting speed and 

feed rate. It was concluded that the majority of methods used to measure the temperature 

are concerned with the temperature at the chip–tool interface, and for this the tool–work 

thermocouple is the best method. It gives the aspect of the temperature trend with the 

cutting parameters, such as cutting speed, feed and depth of cut. Also the infrared method 

gives a good indication of the maximum temperature and the cooling rate of the work. 

 

G. List et al [35] conducted an experiment through a finite elements model using the 

Abaqus TM code to predict the interface cutting temperature and its dependence with the 

crater wear mechanism. They focused their work on the domain of the high speed 

machining above 20m/s and detailed analysis was done on the mechanical and thermal 

parameters that influence the temperature distribution at the tool rake face. A method 

based on some analytical preliminary calculations was proposed to determine the 

adequate values of the friction shear stress and the heat partitioning factor between the 

tool and the chip. Numerical simulations and specific experimental approaches were 

mutually conducted to establish a finite element model in orthogonal cutting process. The 

results were related to the machining of mild steel with an uncoated carbide tool for 
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cutting speeds from 20 to 60 m/s and a cutting depth ranging from 0.26 to 0.48 mm. the 

results obtained were successfully analyzed analytically and experimentally.  

 

I Korkut et al [36] in their paper presented the regression analysis (RA) and artificial 

neural network (ANN) for the prediction of tool–chip interface temperature depends on 

cutting parameters in machining. The RA and ANN model for prediction tool–chip 

interface temperature were developed and mathematical equations derived for tool–chip 

interface temperature prediction were obtained. The tool–chip interface temperature 

results obtained from mathematical equations with RA and ANN model and the 

experimental results available in the literature obtained by using AISI 1117 steel work 

piece with embedded K type thermocouple into the uncoated cutting tool were compared 

and analyzed. It was concluded that the correlation obtained by the training ANN model 

were better than the one obtained by training RA model.  The results showed that the 

tool–chip interface temperature equation derived from RA and ANN model can be used 

for prediction and also RA model had slightly high accuracy. 

 

2.2  IDENTIFIED GAPS IN THE LITERATURE 

After a comprehensive study of the existing literature, a number of gaps have been observed in 

the research work done on the chip-tool interface temperature in orthogonal cutting process. 

1. All the research investigated the effect of cutting parameters on responses such as 

production time, machining time, production cost, surface roughness etc. 

2. Much effort has not been made to optimize the cutting temperature in terms of cutting 

speed, feed rate and depth of cut. 

3. A lot of work has been done on the effects of chip-tool interface temperature on other 

variables such as tool wear rate, work surface roughness, crater wear, tool life etc. 

4. Literature study shows the mathematical techniques being used for modeling the 

metal cutting problems are very limited. Most of the research work has been carried 

out using neural network, quadratic programming and Taguchi approach. 

5. There is very less literature available on effect of the depth of cut on chip-tool 

interface temperature. 
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2.3   MOTIVATION AND OBJECTIVE 

The motivation of this project was to determine the chip–tool interface temperature 

depending on other machining parameters and further optimize it using one of the 

optimization techniques. It also holds the interest to develop the experimental set up for 

determination of temperature and to study the effects of this temperature with other 

machining parameters specifically less explored such as depth of cut, tool nose radius etc.  

The main objective of this project is: 

1. To determine the chip tool interface temperature for different tool and work 

material. 

2. To make a comparison of the tool chip interface temperature for different tool and 

work materials. 

3. To develop the mathematical model and establish predictive equations and 

validate the experimental results. 

4. To optimize the chip tool interface temperature using genetic algorithm 

optimization technique and further analyze the results with the analytical and 

experimental outputs. 

 

2.4   STATEMENT OF THE PROBLEM  

“Measurement of Chip-Tool Interface Temperature for Orthogonal Cutting” 

The research work describes the development of the mathematical models through 

experimental observations made on various tool and work materials using RSM and 

development of genetic algorithm architecture for determining the temperature for a 

given set of inputs. A further comparison between analytical and experimental results is 

to be studied and validated. 

 

2.5   PLAN OF INVESTIGATION 

The research work was planned to be carried out in the following steps: 

1. Identification of important process control parameters based on the literature review. 

2. Selection of working range of process control parameters viz. cutting speed and depth 

of cut. 

3. Development of experimental set-up and conduction of experiment. 
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4. Collection and assessment of responses viz. chip-tool interface temperature. 

5. Development of mathematical models. 

6. Establishment of predictive equations and further checking of model adequacy. 

7. Finding the significant co-efficient and exponents. 

8. Development of the final proposed model. 

9. Plotting of conclusions on graphs. 

10. Development of the GA architecture to model and predict the response. 

11. Comparison of performance of mathematical model, experimental model and GA 

model. 

12. Discussion of result and its effect on process variables. 

 

2.6   PROJECT PLAN 
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Chapter 3 

THEORY AND EXPERIMENTATION 

 

3.1 INTRODUCTION 

In today’s modern industry, with all the sophisticated equipment and techniques being 

used, the basic mechanics of forming a chip remains same. A chip is a shaving or swarf 

removed from the metal during metal cutting operation. The first attempts to explain how 

chips are formed were made by Time in 1870 and the French scientist Tresca in 1873.  

3.1.1 MACHINE TOOLS 

A machine tool is a machine for shaping or machining metal usually by cutting, 

boring, grinding, shearing or other forms of deformation. All machine tools have some 

means of constraining the workpiece and provide a guided movement of the parts of the 

machine. Thus, the relative movement between the workpiece and the cutting tool (called 

as the “toolpath”) is controlled or constrained by the machine. Machine tools are the 

kinds of machines on which metal cutting or metal forming processes are carried out. The 

functions of the machine tools are: 

a. Hold the workpiece 

b. Hold the cutting tool 

c. Move the tool or the workpiece or both relative to each other 

d. Supply power or energy required to perform the metal cutting process 

 

3.1.2 PRINCIPLE OF MACHINE TOOL 

The principle used in all the machine tools is the generation of surfaces required 

by providing suitable relative motions between the cutting tool and the workpiece. The 

cutting edge or edges on the cutting tool remove a layer of work material known as a 

shaving or a chip. The simplest surfaces generated are flat surfaces and internal or 

external cylindrical surfaces. Thus, there are two kinds of relative motion which must be 

provided by the metal cutting machine tool. These motions are called primary motion and 

feed motion which are depicted in the following figure 3.1. 
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Figure 3.1 Schematic depiction of turning operation (G. Boothroyd) 

a. Primary Motion: It is the main motion provided by the machine tool to cause 

relative motion between the tool and the workpiece so that the face of the tool 

approaches the workpiece material. This motion absorbs most of the total power 

required to perform a machining operation. 

b. Feed Motion: This is the motion that may be provided to the tool or workpiece 

by the machine tool which, when added to the primary motion, leads to a repeated 

or continuous chip removal and the creation of a machined surface with the 

desired geometric characteristics. It usually absorbs a small proportion of the total 

power required to perform a machining operation. 

 

3.1.3 WORKING PRINCIPLE OF TURNING OPERATION 

In the metal cutting process, as the cutting tool engages the workpiece, the 

material directly ahead of the tool is sheared and deformed under tremendous pressure. 

The deformed material then seeks to relieve its stressed condition by fracturing and 

flowing into the space above the tool in the form of a chip. Hence, the metal cutting is 

done by a relative motion between the workpiece and the hard edge of a cutting tool as 

shown in the figure 3.1 while different types of chip formation are shown in figure 3.2. 
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Figure 3.2 Schematic representations of different types of chip formation (M. C. Shaw) 

 

3.1.4 PARAMETERS IN METAL CUTTING 

There are number of parameters which affect the cutting operation on a machine 

tool. These parameters are categorized as follows: 

1. Tool related 

a. Material 

b. Geometry 

c. Mounting  

2. Work material related 

a. Material (Composition, Homogeneity) 

b. Geometry (Bar, Block) 

3. Machine tool related 

a. Type of cutting fluid and application method 

b. Depth and width of cut 

c. Spindle speed 

d. Feed rate 
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3.1.5 CUTTING PARAMETERS 

1. Cutting Speed: It is the distance travelled by the work surface in unit time with 

reference to the cutting edge of the tool. It is expressed in m/min. 

 

2. Feed: It is the distance advanced by the tool into or along the workpiece each 

time the tool point passes a certain position in its travel over the surface. It is 

expressed in mm/rev and mm/min. 

 

3. Depth of Cut: It is the distance through which the cutting tool is plunged into the 

workpiece surface. Thus, it is the distance measured perpendicularity between the 

machined surface and the un-machined (uncut) surface or the previously 

machined surface of the workpiece. It is expressed in mm. 

 
Table3.1 Approximate Cutting Speed Range for Turning Operation (S. K. H. Choudhary) 

S. NO. WORKPIECE MATERIALS CUTTING SPEED (m/min) 

1 Aluminum Alloys 200 – 1000 

2 Cast iron, Gray 60 – 900 

3 Copper Alloys 50 – 700 

4 High Temperature Alloys 20 – 400 

5 Steels 50 – 300 

6 Stainless Steels 50 – 300 

7 Thermoplastics 90 – 240 

8 Titanium Alloys 10 – 100 

9 Tungsten Alloys 60 – 150 
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3.1.6 CUTTING TOOLS AND THEIR CHARACTERISTICS  

Cutting tool is a device used to remove the unwanted material from a given 

workpiece. For carrying out the machining or metal removing process, cutting tool is the 

fundamental and essential requirement. A cutting tool must have the following 

characteristics: 

1. Hardness: The tool material must be harder than the workpiece material. Higher 

the hardness, easier it is for the tool to penetrate the work material. 

2. Hot Hardness: It is the ability of the cutting tool to maintain its hardness and 

strength at elevated temperatures. This property is more important when the tool 

is used at higher cutting speeds, for increased productivity. 

3. Toughness: The tool should have enough toughness to withstand the impact loads 

that come at the start of the cut to force fluctuations due to imperfections in the 

work material. This property is needed so that tools do not chip or fracture easily, 

especially during interrupted cutting operations like milling. 

4. Wear Resistance: The tool-chip and chip-work interface are exposed to severe 

conditions that adhesive and abrasive wear takes place very easily. Therefore, 

wear resistance means the attainment of acceptable tool life before tools need to 

be replaced. 

5. Low Friction: The coefficient of friction between the tool and chip should be 

low. This would lower wear rates and allow better chip flow. 

6. Thermal Characteristics: As a lot of heat is generated at the cutting zone, the 

tool material should have higher thermal conductivity to dissipate the heat in 

shortest possible time, otherwise the tool temperature would become higher and 

thereby reducing its life. 

 

3.1.7 CUTTING TOOL MATERIALS 

The selection of proper cutting tool material depends on the type of service to 

which the tool will be subjected. The principal cutting tool materials are: 

1. Carbon and Medium Alloy Steels: These are the oldest of the tool materials 

dating back hundreds of years. It is a high carbon steel containing about 0.9 to 

1.3% carbon. These are inexpensive, easily shaped and sharpened but they do not 
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have sufficient hardness and wear resistance. Therefore, these are used in the 

manufacture of tools operating at low cutting speeds (about 12 m/min) and as 

hand operated tools. 

2. High Speed Steels: It is the general purpose metal for low and medium cutting 

speeds owing to its superior hot hardness and resistance to wear. The major 

difference between high speed tool steel and plain high carbon steel is the 

addition of alloying elements (manganese, chromium, tungsten, vanadium, 

molybdenum, cobalt and niobium) to harden and strengthen the steel and make it 

more resistant to heat (hot hardness). There are three types of high speed steels: 

Tungsten high speed steel (T-series), Molybdenum high speed steel (M-series) 

and Cobalt high speed steel. 

3. Cemented Carbides: They are so named as they are composed principally of 

carbon mixed with other elements. The basic ingredient is tungsten carbide which 

is extremely hard. These tools are produced by powder metallurgy. Carbide tools 

are basically of three types: Tungsten carbide (WC), Tantalum carbide (TaC) 

and Titanium carbide (TiC). 

4. Stellites: They contain 40 to 48% cobalt, 30 to 35% chromium and 12 to 19% 

tungsten. They cannot be forged to shape but are deposited directly on the tool 

shank through an oxyacetylene flame. They preserve hardness up to 1000°C and 

can be operated on steels at cutting speeds 2 times higher than for high speed 

steel. They are used in non-metal cutting application such as rubber, plastics 

(where loads are gradually applied). 

5. Ceramics: These are made by composing aluminum oxide powder in a mould at 

about 280 kg/cm
2
. They are made in the form of tips that are clamped on metal 

shanks. Other materials used to produce ceramic tools include silicon carbide, 

boron carbide and titanium carbide and titanium boride. They have very low heat 

conductivity and extremely high compressive strength. They can withstand 

temperatures up to 1200°C and can be used at cutting speeds 4 times that of 

cemented carbides and up to 40 times that of high speed cutting tools. 

6. Diamond: The diamonds used for cutting tools may be industrial grade natural 

diamonds or synthetic polycrystalline diamonds. It is the hardest known material 



27 
 

and can be run at cutting speeds about 50 times greater than that for high speed 

steel tool and temperatures up to 1650°C. These are used for cutting very hard 

materials such as glass, plastics and ceramics and for producing very fine finishes. 

 

3.2 GENETIC ALGORITHMS 

Genetic algorithms are the adaptive heuristic search algorithms based on the mechanics 

of natural selection and natural genetics. They exploit historical information to direct the 

search into the region of better performance within the search space. This technique was 

developed by John Holland at the University of Michigan.  

3.2.1 INTRODUCTION 

Genetic algorithm is a paradigm which tries to mimic the genetic evolution of a 

species. It simulates the biological processes that allow the consecutive generations in a 

population to adapt to their environment. This process is applied through genetic 

inheritance from parents to children and through survival of the fittest. Therefore, GA is a 

population-based search methodology [19].  

3.2.2 GA PRINCIPLE  

The genetic algorithm is based on the Darwin’s principle of natural selection and 

survival of the fittest. Therefore, it is a paradigm that tries to mimic genetic evolution of a 

species. 

The Darwin’s principle of Natural Selection was: 

a. IF there are organisms that reproduce, and  

b. IF offsprings inherit traits from their progenitors, and  

c. IF there is variability of traits, and  

d. IF the environment cannot support all members of a growing population,  

e. THEN those members of the population with less-adaptive traits (determined 

by the environment) will die out, and  

f. THEN those members with more-adaptive traits (determined by the 

environment) will thrive  
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The result will be the evolution of a new Species.  

Therefore, the essentials of Darwinian evolution were: 

a. Organisms reproduce in a proportion to their fitness in the environment. 

b. Offsprings inherit all traits from their parents. 

c. Traits are inherited with some variation through mutation and recombination 

process. 

The following Figure 3.3 shows the flowchart of Darwin’s principle of natural selection.  

 

Figure 3.3 Flowchart of Darwin’s Principle of Natural Selection (S. N. Deepa) 
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3.2.3 GA PROCEDURE 

The genetic algorithm starts with randomly chosen parent chromosomes from the 

search space to create a population. They work with chromosome genotype. The 

population “evolves” towards the better chromosomes by applying genetic operators 

modeling the genetic processes occurring in the nature-selection, recombination and 

mutation. 

Selection compares the chromosomes in the population aiming to choose these, which 

will take part in the reproduction process. The selection occurs with a given probability 

on the base of fitness functions. The recombination is carried out after selection process 

is finished. It combines, with redefined probability, the features of two selected parent 

chromosomes forming similar children. After recombination offspring undergoes to 

mutation. Generally, the mutation refers to the creation of a new chromosome from one 

and only one individual with predefined probability. After three operators are carried the 

offspring is inserted into the population, replacing the parent chromosomes in which they 

were derived from, producing a new generation. This cycle is performed until the 

optimization criterion is met [37]. 

 

3.2.4 GA TERMINOLOGY WITH MATHEMATICAL PROGRAMMING 

EQUIVALENCE 

Table 3.2 Programming terms analogous to genetic terminology 

(www.aic.nre.navy.mie/galist) 

GENETIC TERMINOLOGY PROGRAMMING EQUIVALENT 

Generation Iteration 

Chromosome/ Individual/ Genotype Coded vector of control variables 

Chromosome Phenotype Vector of real values of control variables 

Gene Coded particular Variable 

Morphogenesis/ Growth Function Decoding function 

Population Set of vectors of control variables 

Objective Function Quality model characteristics for optimization 

Fitness Function Normalized objective function at iteration t 

http://www.aic.nre.navy.mie/galist
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1. INDIVIDUALS 

An individual is a single solution. An individual groups together two forms of 

solution as given below: 

a. The chromosome which is the raw “genetic” information (genotype) that the GA 

deal. 

b. The phenotype which is the expressive of the chromosome in the terms of the 

model. 

A chromosome is subdivided into genes.  A gene is the GA’s representation of a 

single factor for a control factor. Each factor in the solution set corresponds to a gene 

in the chromosome. Figure 3.4 shows the representation of a genotype. 

 

Figure 3.4 Schematic representations of the genotype and phenotype structures [38] 

A chromosome should in some way contain information about the solution that it 

represents. The morphogenesis function associates each genotype with its phenotype 

as shown in Figure 3.4. It simply means that each chromosome must define one 

unique solution, but it does not mean that each solution is encoded by exactly one 

chromosome. 
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2. GENES 

Genes are the basic “instruction” for building a GA. A chromosome is a sequence of 

genes. Genes may describe a possible solution to a problem, without actually being the 

solution. A gene is a bit string of arbitrary lengths. The bit string is a binary 

representation of number of intervals from a lower bound. A gene is the GA’s 

representation of a single factor value for a control factor, where control factor must have 

an upper bound and a lower bound. This range can be divided into the number of 

intervals that can be expressed by the gene’s bit string. A bit string of length “n” can 

represent (2
n
 – 1) intervals. The size of the intervals would be (range) / (2

n
 – 1). The 

following Figure 3.5 shows the representation of a gene. 

 

Figure 3.5 Representation of a Gene [39] 

3. FITNESS 

The fitness of an individual in a GA is the value of an objective function for its type 

phenotype. For calculating fitness, the chromosome has to be first decoded and the 

objective function has to be evaluated. The fitness not only indicates how good the 

solution is, but also corresponds to how close the chromosome is to the optimal one. 

4. POPULATION 

A population is a collection of individuals. A population consists of a number of 

individuals being tested, the phenotype parameters defining the individuals and some 

information about the search space. The two important aspects of population used in 

GA’s are: 

a. The initial population generation. 

b. The population size. 
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For each and every problem, the population size will depend on the complexity of 

the problem. It is often a random initialization of population. 

 

3.2.5 GA OPERATORS 

The basic operators in genetic algorithm include: 

a. Encoding 

b. Selection 

c. Recombination 

d. Mutation 

3.2.5.1 ENCODING 

Encoding is a process of representing individual genes. The process can be 

performed using bits, numbers, trees, arrays, lists, or any other object. 

a. BINARY ENCODING 

The most common way of encoding is a binary string. Each chromosome 

encodes a binary (bit) string. Each bit in the string can represent some 

characteristics of the solution. Every bit string therefore is a solution but not 

necessarily the best solution. Another possibility is that the whole string can be 

represent a number. The way bit strings can code differs from problem to problem. 

 

Figure 3.6 Binary Coding [37] 

Binary coded string with 1s and 0s are mostly used. The length of the string 

depends on the accuracy. In such coding 

 

http://3.bp.blogspot.com/-zhwRuw2Ln_c/UqVofagydRI/AAAAAAAAB0o/RInhjeJ2MVM/s1600/Untitled.png
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1. Integers are represented exactly. 

2. Finite number of real number can be represented. 

3. Numbers of real number represented increases with string length. 

 

b. PERMUTATION ENCODING (REAL NUMBER CODING) 

Every chromosome is a string of number, represented in a sequence. Sometime 

corrections have to be done after genetic operation is complete. In permutation 

encoding, every chromosome is a string of integers/real values, which represent a 

number in a sequence. Permutation encoding is only useful for ordering problems. 

 

Figure 3.7 Real Number Coding [37] 

c. VALUE CODING 

Every chromosome is a string of values and the values can be anything 

connected to the problem. This encoding produces best results for some special 

problems. Direct value encoding can be used in problems, where some 

complicated values, such as real numbers, are used. 

 

Figure 3.8 Value Coding [37] 

In value encoding (Figure 3.8), every chromosome is a string of some values. 

Values can be anything connected to problem, form number, real number or 

characters to some complicated objects. 

http://3.bp.blogspot.com/-JnBOWvS9rEY/UqVp4ASg98I/AAAAAAAAB1A/yhKR0-lyG40/s1600/Untitled.png
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3.2.5.2 SELECTION 

Selection is the process of choosing two parents from the population for crossing. 

After deciding on an encoding, the next side is to decide how to perform selection, i.e., 

how to choose individuals in the population that will create offspring for the next 

generation and how many offspring each will create. The purpose of selection is to 

emphasize fitter individual in the population to be parents for reproduction. The problem 

is how to select these chromosomes. According to Darwin’s theory of evolution the best 

ones survive to create new offspring. Figure 15-20 shows the basic the basic selection 

process. 

Selection is a method that randomly picks chromosomes out of the population 

according to their evaluation function. The higher the fitness function, the better chance 

that an individual will be selected. 

 

Figure 3.9 Selection process [16] 

Selection has to be balanced with variation from crossover and mutation. Too 

strong selection means sub-optimal highly fit individual will take over the population, 

reducing the diversity needed for change and progress; too weak selection will result 

in too slow evolution. The various selection methods are  

a. ROULETTE WHEEL SELECTION 

Roulette selection is one of the traditional GA selection techniques. The 

commonly used reproduction operator is the proportionate reproductive operator 

http://2.bp.blogspot.com/-ELk0IvMh_Vs/UqVqv0tU_MI/AAAAAAAAB1U/5Oi2vHNg4Po/s1600/Untitled.png


35 
 

where a string is selected from the mating pool with the probability proportional 

to the fitness. The principle of roulette selection is a linear search through a 

roulette wheel with the slots in the wheel weighted in proportion to the 

individual’s fitness values. A target value is set, which is a random proportion of 

the sum of the fitness in the population. The population is stepped through until 

the target value is reached. 

The roulette selection can also be explained as follows: Consider the following 

Figure 3.10.  

 

Figure 3.10 Roulette Wheel representation (Newcastle University, CS Resource)  

The expected value of an individual is individual’s fitness divided by the actual 

fitness of the population. Each individual is assigned a slice of the Roulette wheel, 

the size of the slice being proportional to the individual’s fitness. The wheel is 

spun N times, where n is the number of individual in the population. On each 

spin, the individual under the wheel’s marker is selected to be in the pool of 

parents for the generation. This method is implemented as follows: 
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1. Sum the total expected value of the individuals in the population. Let it 

be T. 

2. Repeat N times: 

i. Choose a random integer “r” between 0 and T. 

ii. Loop through the individuals in the population, summing the 

expected values, until the sum is greater than or equal to “r”. The 

individual whose expected value puts the sum over this limit is the 

one selected. 

Roulette wheel selection is easier to implement but is noisy. The rate of          

evolution depends upon the variance of fitness’s in the population. 

b. RANDOM SELECTION 

This technique randomly selects a parent from the population. In terms of 

disruption of genetic codes, random selection is a little more disruptive, on average, 

than Roulette wheel selection. 

c. RANK SELECTION 

The Roulette wheel will have a problem when the fitness values differ very 

much. If the best chromosome fitness is 90%, its circumference occupies 90% of 

Roulette wheel, and then other chromosomes have too few chances to be selected. 

Rank selection ranks the population and every chromosome receive fitness from 

the ranking. The worst has fitness 1 and the best has fitness N. Its results in slow 

convergence but prevents too quick convergence. In effect, potential parents are 

selected and a tournament is held to decide which of the individuals will be 

parents. There are many ways this can be achieved and two suggestions are: 

i. Select a pair of individuals at random. Generate a random number R 

between 0 and 1. If R< r use the first individual as a parent. If the R≥ 

r then use the second individual as the parent. This is repeated to 

select the second parent. The value of r is a parameter to this method. 
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ii. Select two individual at random. The individual with the highest 

evaluation becomes the parent. Repeat to find a second parent. 

d. TOURNAMENT SELECTION  

An ideal selection strategy should be such that it is able to adjust its selective 

pressure and population diversity so as to fine – tune GA search performance. 

Unlike, the Roulette wheel selection, the tournament selection strategy provides 

selective pressure by holding a tournament competition among Nu individuals. 

The best individual from the tournament is the one with the highest fitness, who 

is the winner of Nu. Tournament competition and the winner are then inserted into 

the mating pool. The tournament competition is repeated until the mating pool for 

generating new offspring is filled. The mating pool comprising the tournament 

winner has higher average population fitness. The fitness difference provides the 

selection pressure, which drives GA to improve the fitness of the succeeding genes. 

This method is more efficient and leads to an optimal solution. 

3.2.5.3 CROSSOVER (RECOMBINATION) 

Crossover is the process of taking two parent solutions and producing from them a 

child. After the selection (reproduction) process, the population is enriched with better 

individuals. Reproduction makes clones of good string but does not create new ones. 

Crossover operator is applied to the mating pool with the hope that it creates a better 

offspring. 

Crossover is a recombination operator that proceeds in three steps: 

1. The reproduction operator selects at random a pair of two individual strings 

for the mating. 

2. A cross site is selected at random along the string length. 

3. Finally, the position values are swapped between the two string following the 

cross site. 
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a. SINGLE POINT CROSSOVER 

The traditional genetic algorithm uses single- pint crossover, where the two 

mating chromosomes are cut once at corresponding points and the sections after the 

cuts exchanged. Here, a cross site or crossover point is selected randomly along the 

length of the mated strings and bits next to the cross sites are exchanged. If 

appropriate site is chosen, better children can be obtained by combining good parents, 

else it severely hampers string quality. 

 

Figure 3.11 Single Point Crossover representation (David E. Goldberg) 

b. TWO POINT CROSSOVER 

Apart from single – point crossover, many different crossover algorithms have 

been devised, often involving more than one cut pint. It should be noted that adding 

further crossover reduces the performance of the GA. The problem with adding 

additional crossover is that building blocks are more likely to be disrupted. However, 

an advantage of having more crossover point is that the problem space may be 

searched more thoroughly. 

In two- point crossover, two crossover points are chosen and the contents 

between these points are exchanged between two mated parents. 
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Figure 3.12 Two Point Crossover representation [37] 

c. UNIFORM CROSSOVER 

Each gene in the offspring is created by copying the corresponding gene from one 

or the other parent chosen according to a random generated binary crossover mask of 

the same length as the chromosomes. When there is a 1in the crossover mask, the 

gene is copied from the first parent, and where there is 0 in the mask the gene copied 

from the second parent. A new crossover mask is randomly generated for each pair of 

parents. Offspring, therefore, contain a mixture of genes from each parent. The 

number of effective crossing point is not fixed, but will average L/2 (where L is the 

chromosome length). 

 

Figure 3.13 Uniform Crossover representation [37] 

http://3.bp.blogspot.com/-ry0bh5r-1sE/UqVtbnu96KI/AAAAAAAAB14/Lt7NtiJ7d4k/s1600/Untitled.png
http://2.bp.blogspot.com/-94xRVJUZY24/UqVt_sOBFOI/AAAAAAAAB2A/OVSGmnZYjP4/s1600/Untitled.png
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In Figure 3.13, new children are produced using uniform crossover approach. It 

can be noticed that while producing child 1, when there is 1 in the mask, the gene 

is copied from the parent 1 else it is copies from the parent 2. On producing child 

2, when there is a 1 in the mask, the gene is copied from the parent 2, and when 

there is a 0 in the mask, the gene is copied from the parent 1. 

3.2.5.4 MUTATION 

After crossover, the springs are subjected to mutation. Mutation prevents the 

algorithm to be tapped in a local minimum. Mutation plays a role of recovering the lost 

genetic materials as well as for randomly distributing genetic information. It is an 

insurance policy against the irreversible loss of genetic material. Mutation has been 

traditionally considered as a simple search operator. If crossover is supposed to exploit 

the current solution to find better ones, mutation is supposed to help for the exploration of 

the whole search space.  

It introduces new genetic structures in the population by randomly modifying 

some of its building blocks. Mutation helps escape from local minima’s trap and maintain 

diversity in the population. It also keeps gene pool well stocked, thus ensuring ergodicity. 

A search space is said to be ergodic if there is a non- zero probability of generating any 

solution from any population state. 

There are many different forms of mutation for the different kinds of representation. 

a. FLIPPING 

Flipping of a bit involves changing 0 to 1 and 1 to 0 based on a mutation 

chromosome generated. Figure 3.14 explains mutation- flipping concept. A parent is 

considered and a mutation chromosome is randomly generated. For a 1 in mutation 

chromosome, the corresponding bit in parent chromosome is flipped (0 to 1and 1 to 

0) and child chromosome is produced.  
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Figure 3.14 Mutation Flipping (S. N. Deepa) 

In the case illustrated in Figure 3.14, 1 in red is the place of mutation 

chromosome, therefore the corresponding bits in parent chromosome are flipped 

and the child is generated. 

b. INTERCHANGING 

Two random positions of the string are chosen and the bits corresponding to 

those positions are interchanged (Figure 3.15). 

 

Figure 3.15 Mutation type – Interchanging [40] 

c. REVERSING 

A random position is chosen and the bits next to that position are reversed and 

child chromosome is produced. 

d. MUTATION PROBALBILITY 

An important parameter in the mutation technique is the mutation (Pm). It decides 

how often parts of chromosome will be mutated. If there is no mutation, offspring 

are generated immediately after crossover (or directly copied) without any change. If 
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mutation is performed, one or more parts of a chromosome are changed. If mutation 

probability is 100%, whole chromosome is changed; if it is 0%, nothing is changed. 

Mutation generally prevents the GA from falling into local extremes. Mutation 

should occur very often, because then GA will in fact change to random search. 

3.2.6 GA SPECIAL CASES 

3.2.6.1 ELITISM 

It is a method which copies the best chromosome to the new offspring population 

before crossover and mutation. It is a successful variant of constructing a new 

population which allows better organisms to be carried to next generation unaltered. 

This strategy is known as elitist selection. 

 

Figure 3.16 Elitist selection and participation in formation of new generation [37] 
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Consider the Figure 3.16, while creating a new population by crossover or mutation 

the best chromosome or fittest variable might be lost, in order to preserve it GA copies 

a small proportion of the best chromosome into the next generation unaltered. This 

helps in improving the performance as it does not waste time in re-discovering the 

previously discarded solutions. Therefore, chromosomes preserved unchanged through 

elitism are eligible for selection when the next generation is generated [40, 41]. 

 

3.2.6.2 GENITOR (“DELETE-WORST”) 

In this strategy the worst chromosome or most unfit variable of the population is 

replaced. It immediately improves the mean population fitness and may converge 

prematurely. It is based on rapid takeover policy of using large populations without 

duplicates [41]. 

 

3.2.7 GA WORKING MECHANISM 

The understanding of genetic principle, its terminology and the genetic operators viz. 

selection, crossover (recombination) and mutation including the special cases of 

elitism and genitor helps in formulating the general working flowchart of GA. The 

following Figure 3.17 shows the flowchart of the GA mechanism. 

 

Figure 3.17 Flowchart of Genetic Algorithm [42] 



44 
 

3.2.8 ADVANTAGES OF GENETIC ALGORITHM 

GA is created to work with a predetermined constant size of population and to use 

continuous search space for individuals’ representation. The GA genetic operators 

comprise a great number of selection, recombination and mutation. It provides an 

opportunity for future extension of its capability by involving of new schemes in its 

genetic operators [37].  

Therefore, GA forms a very advantageous optimization technique. The following list 

further elaborates on the advantages of GA. 

1. GA search parallel from a population of points. Therefore, it has the ability to 

avoid being trapped in local optimal solution like traditional methods, which 

search a single point. 

2. GA use probabilistic selection rules, not deterministic ones. 

3. It works on the chromosome, which is encoded version of potential solutions’ 

parameters, rather the parameters themselves. 

4. It uses fitness score, which is obtained from objective functions, without other 

derivative or auxiliary information. 

5. It solves problems with multiple solutions. 

6. Since GA execution technique is not dependent on the error surface, one can use 

it to solve multi-dimensional, non-differential, non-continuous and non-

parametrical problems. 

7. GA is easily transferred to existing simulations and models.  

 

3.2.9 APPLICATIONS OF GENETIC ALGORITHM 

An effective GA representation and meaningful fitness evaluation are the keys of the 

success in GA applications. The appeal of GA’s come from their simplicity and elegance 

as robust search algorithms as well as from their power to discover good solutions rapidly 

for difficult high – dimensional problem. GAs have been used for problem – solving and 

for modeling. GAs are applied to many scientific, engineering problems, in business and 

entertainment, including (S. N. Sivanandam & S. N. Deepa): 
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1. Optimization: GAs have been used in a variety of optimization tasks, including 

numerical optimization and combinatorial optimization problems such as 

travelling salesman problem(TSP), circuit design (Louis, 1993), job shop 

scheduling (Goldstein, 1991) and video & sound quality optimizations. 

2. Automatic programming: GAs have been used to evolve computer programs for 

specific tasks and to design other computational structures, for example, cellular 

automata and sorting networks. 

3. Machine and robot learning: GAs have been used for many machine – learning 

applications, including classifications and prediction, and protein structure 

prediction. GAs have also been used to design neutral networks, to evolve rules 

for learning classifier system or symbolic production systems, and to design and 

control robots. 

4. Economic models: GAs have been used to model processes of innovation, the 

development of bidding strategies and the emergence of economic markets. 

5. Immune system models: GAs have been used to models various aspects of the 

natural immune system including somatic mutation during an individual’s lifetime 

and the discovery of multi- gene families during evolutionary time. 

6. Ecological models: GAs have been used to model ecological phenomena such as 

biological arms races, host- parasite co- evolution, symbiosis and resource flow in 

ecologies. 

7. Population genetics models: GAs have been used to study questions in 

population genetics, such as ‘under what conditions will be a gene for 

recombination be evolutionally viable?’ 

8. Interactions between evolution and learning: GAs have been used to study how 

individual learning and species affect one another. 

9. Models of social systems: GAs have been used to study evolutionary aspects of 

social systems, such as the evolution of cooperation (Chughtai, 1995), the 

evolution of communication and trail – following behavior in ants. 

10. Combinatorial Optimization: GA is extensively used in problems related to 

travelling salesman, routing, bin packing, graph coloring and partitioning. 
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3.3 RESPONSE SURFACE METHODOLOGY 

RSM has proved to be a very helpful model in problems of optimization of process 

parameters. Optimal cutting parameters are determined by RSM method using the grey 

relational grade as the performance index for a problem of turning process. 

In this problem, chip-tool interface temperature, main cutting force, and feed force 

are important characteristics in turning operations. Using these characteristics, the cutting 

operations, including cutting velocity, feed rate, depth of cut, and effective tool nose radius, 

are optimized. A model is developed to correlate the multiple performance characteristic 

called grey relational grade and turning parameters and a new combination of RSM and 

grey relational analysis is proposed [43]. Therefore, RSM is a successful modeling 

technique for determination and analysis of a problem.  

 

3.3.1 INTRODUCTION 

Response surface methodology, or RSM, is a collection of mathematical and 

statistical techniques useful for the modeling and analysis of problems in which a 

response of interest is influenced by several variables and the objective is to optimize 

this response. For example, suppose that an engineer wishes to find the levels of 

temperature (x1) and pressure (x2) that maximize the yields (y) of a process. The process 

yield is a function of the levels of temperature and pressure, say  

     y = f(x1, x2) + ϵ 

which ϵ represents the noise or error observed y. If we denote the expected response by 

E(y) = f(x1, x2) = η, then the surface represented by 

     η = f(x1, x2) 

is called a response surface. Figure 3.18 shows the three-dimensional response surface 

showing the expected yield (η) as a function of temperature (x1) and pressure (x2) while 

Figure 3.19 shows the contour plot of the response surface. 
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Figure 3.18 A three-dimensional response surface (D. C. Montgomery) 

 

Figure 3.19 A contour plot of a response surface (D. C. Montgomery) 
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In most RSM problems, the form of the relationship between the response and the 

independent variables is unknown. Thus, the first step in RSM is to find a suitable 

approximation for the true functional relationship between y and the set of independent 

variables. Usually, a low order polynomial in some region of the independent variables is 

employed.  

If the response is well modeled by a linear function of the independent variables, then the 

approximating function is the first- order model. 

 

If there curvature model in the system, then a polynomial of higher degree must be used, 

such as the second- order model. 

 

Almost all RSM problems use one or both of these model. 

The method of least square is used to estimate the parameters in the approximating 

polynomials. The response surface analysis is then performed using the fitted surface. If 

the fitted surface is an adequate approximation of the true response function, then 

analysis of the fitted surface will be approximately equivalent to analysis of the actual 

system. The model parameters can be estimated most effectively if proper experimental 

designs are used to collect the data. Designs for fitting response surfaces are called 

response surface designs. 

 

The eventual objective of RSM is to determine the optimum operating conditions for the 

system or to determine a region of the factor space in which operating requirement are 

satisfied. 
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3.3.2 THE METHOD OF STEEPEST ASCENT 

The method of steepest ascent is a procedure for moving sequentially in the 

direction of the maximum increase in the response. Of course, if minimization is desired, 

then we call this technique the method of steepest descent.  

The fitted first- order model is 

     

and the first- order response surface, that is, the contours of ŷ, is a series of parallel lines 

as shown in the Figure 3.20. 

 

Figure 3.20 First-order response surface and path of steepest ascent (D. C. Montgomery) 

Experiments are conducted along the path of steepest ascent until no further increase in 

response is observed. Then a new first- order model may be fit, a new path of steepest 

ascent determined, and the procedure continued. Eventually, the experiment will arrive in 

the vicinity of the optimum. This is usually indicated by lack of fit of a first- order model. 
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3.4 DESIGN OF EXPERIMENT 

The section gives the details of the experimental set-up, the specifications of the 

work material and tool material and the recording of results. All the data was 

analyzed on the basis of the literature review done previously and depending on this 

information the process variables were selected. The main objective of this 

experiment is to determine the chip-tool interface temperature in orthogonal turning 

process depending on cutting parameters i.e. cutting speed and depth of cut for 

different tool and work material combinations. 

 

3.4.1 IDENTIFICATION OF PROCESS CONTROL VARIABLES 

Based on the literature review the important process parameters identified for the 

determination of the chip-tool interface temperature in orthogonal turning process 

are cutting speed and depth of cut along with different tool material and work 

material.  

3.4.2 WORKING RANGE OF PROCESS CONTROL VARIABLES 

Trial runs were conducted to find the upper and lower limits of the process 

parameters by varying one of the parameter and keeping the rest parameters at 

constant values. The limits of the process parameters were selected in such a way 

that the chip-tool interface temperature was minimized. The selected process 

control variables’ working range also depended on the machine tool specification 

and the literature review. The upper limit of the parameter is coded as HIGH and 

lower limit as LOW. The process control parameters with their upper and lower 

limits are tabulated as follows: 

 

Table 3.3 Process control parameters and their  

Sl.No Parameters Units Notation -1  0 +1 

1 Cutting Speed m/min V 233 340 530 

2 Depth of Cut mm D 0.5  2.0 4.0 
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3.4.3 DEVELOPMENT OF DESIGN MATRIX 

In the development of the design matrix, two factors namely cutting speed (V) 

and depth of cut (D) were considered, each at two levels. This design is known 

as 2
2
 factorial design and the four treatment combinations were generated. These 

treatment combinations are listed below in Table 3.7. 

Table 3.4 Design Matrix 

 Reading no. Input Parameters Treatment 

Combination Cutting Speed (V) Depth of Cut (D) 

1 -1 -1 (1) 

2 -1 +1 a 

3 +1 -1 b 

4 +1 +1 ab 

 

3.4.4 EXPERIMENTAL SET-UP  

The investigations were carried out in the laboratory by setting up the 

mechanism to measure the chip-tool interface temperature. The most widely used 

method for measuring the average chip-tool interface temperature is the tool-

work thermocouple with due care to avoid generation of parasitic emf and 

electrical short circuit. This method uses the tool and work piece as the elements 

of a thermocouple. The hot junction is the interface between the tool and the 

work piece and cold junction is formed by the remote sections of the tool and 

work piece which must be connected electrically and held at a constant reference 

temperature as shown in the Figure 3.21[21]. 

 
Figure 3.21 Schematic experimental set-up using Tool-Work Thermocouple 

technique [21] 
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An experimental set up was designed and fabricated to measure the temperature 

on cutting tool and work piece junction during metal cutting on  lathe machine 

tool (LMT, heavy duty lathe machine).  

An iron rod was screwed to the work piece through special adaptor whose one end 

was mounted on a three jaw universal chuck while the other end of the rod was 

attached to a metallic (copper) disc by an arrangement of coupling joint (Figure 

3.23). This disc rotated along with the rotation of the chuck and was immersed 

into the mercury box (Figure 3.24). This mercury box was connected to one of the 

terminal of the milli voltmeter. The other terminal of milli voltmeter was screwed 

to the tool insert. The circuit system completed when the tool and work piece 

came into contact. The following Figure 3.22 shows the experimental set-up for 

measuring the chip-tool interface temperature.  

 

Figure 3.22 Designed Experimental Set-up  

Tool and work piece junction acted as the hot junction, while machining was on 

and other ends of the work piece and tool at room temperature, acted as cold 

junction [21].  

Nylon insulation was provided to reduce the noise in the thermocouple signals. 
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Figure 3.23 Coupling joining the iron rod and the mercury box 

 

 

Figure 3.24 Mercury box 

 

3.4.5 CALIBRATION OF TOOL-WORK THERMOCOUPLE 

The purpose in calibrating the tool- work thermocouple is to develop a 

thermoelectric relationship between the cutting tool material and the work piece material. 

Shaw reported a lead bath for the heated junction medium in the calibration of the tool-

work thermocouple. After a lead bath is insulated and uniformly heated, both the tool and 

work piece chip are inserted into the bath with a thermocouple for calibration. Here, the 
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calibration of the tool-work thermocouple was carried out by external flame heating and 

the tool was calibrated directly with the work piece [21]. 

 

Figure 3.25 Experimental Set-up for calibrating tool-work thermocouple [21] 

3.4.6 MATERIAL SPECIFICATION 

ALUMINUM SHAFT 

Table 3.5 Chemical Composition of Aluminium Shaft 

Al Cu Mg Si Fe Mn Ni Zn Pb Sn Ti Cr 

98.49 0.030 0.602 0.565 0.169 0.093 0.001 0.008 0.002 0.001 0.013 0.004 

 

The above chemical composition conforms to IS:733 Gr: 63400 (Al 6063 Grade) 

BRASS SHAFT 

Table 3.6 Chemical Composition of Brass Shaft 

Cu Sn Zn Pb Fe Ni Al Si Mn P Cr S 

61.13 0.250 35.18 2.57 0.328 0.187 0.051 0.043 0.230 0.003 0.002 0.006 

The above chemical composition conforms to IS:318 Gr ‘2’ 

STEEL SHAFT 

Table 3.7 Chemical Composition of Steel Shaft  

C Si Mn P S Cr Mo Ni Al Cu Ti V 

0.213 0.196 0.760 0.036 0.037 0.161 0.007 0.094 0.032 0.169 0.003 0.008 

The above chemical composition conforms to IS: 2062 
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3.4.7 TOOL MATERIAL 

 

Cutting tools are designed with inserts or replaceable tips. These tools are known 

as indexable tools. The cutting edge consists of a separate piece of material, either 

brazed, welded or clamped on to the tool body. Common materials for include 

tungsten carbide, polycrystalline diamond and cubic boron nitride. 

In this experimental work three different tool materials are used namely, 

a. High Speed Steel 

b. Tungsten Carbide  

c. Polycrystalline Diamond 

After a complete study of various types of inserts the above materials were 

selected and the tool inserts used conforms to the “Turning Applications Manual 

of TaeguTec (Member IMC Group)”. 

 

Figure 3.26 High Speed Steel Cutting Tool Data 

 

Figure 3.27 Carbide Tool Grade Data 

 

Figure 3.28 PCD Tool Grade Data  
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3.4.8 RECORDING OF RESPONSES 

The experiment was performed with various combinations of tool and work 

material within the specified working range of the process control parameters. 

The responses (chip-tool interface temperature) determined by the experiment 

were recorded as follows: 

Table 3.8 Experimental Temperature value with corresponding EMF 

TOOL MATERIAL – Tungsten carbide   WORK MATERIAL – Mild Steel 

S. 

NO. 

CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

EMF GENERATED 

(mV) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 3.763 95.6286 

2 233 1.0 4.063 99.1654 

3 233 1.5 4.263 104.0056 

4 233 2.0 5.063 123.4944 

5 233 2.5 5.163 125.9460 

6 233 3.0 5.163 125.9460 

7 233 3.5 5.163 125.9460 

8 233 4.0 5.163 125.9460 

9 340 0.5 4.113 100.3744 

10 340 1.0 4.663 113.7230 

11 340 1.5 5.063 123.4944 

12 340 2.0 5.463 133.3207 

13 340 2.5 5.563 135.7865 

14 340 3.0 5.463 133.3207 

15 340 3.5 5.663 138.2549 

16 340 4.0 5.663 138.2549 

17 530 0.5 4.013 97.9571 

18 530 1.0 5.063 123.4944 

19 530 1.5 5.463 133.3207 

20 530 2.0 5.963 145.6784 

21 530 2.5 6.113 149.3998 

22 530 3.0 6.013 146.6183 

23 530 3.5 6.363 155.6147 

24 530 4.0 6.413 156.8594 
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Table 3.9 Experimental Temperature value with corresponding EMF 

 

TOOL MATERIAL – Tungsten Carbide  WORK MATERIAL – Aluminium 

S. 

NO. 

CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

EMF GENERATED 

(mV) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 1.413 35.1634 

2 233 1.0 1.463 36.3892 

3 233 1.5 1.513 37.6137 

4 233 2.0 1.413 35.1634 

5 233 2.5 1.563 38.8368 

6 233 3.0 1.513 37.6137 

7 233 3.5 1.663 41.2791 

8 233 4.0 1.713 42.4983 

9 340 0.5 1.513 37.6137 

10 340 1.0 1.613 40.0586 

11 340 1.5 1.663 41.2791 

12 340 2.0 1.713 42.4983 

13 340 2.5 1.813 44.9330 

14 340 3.0 1.813 44.9330 

15 340 3.5 1.913 47.3631 

16 340 4.0 1.963 48.5765 

17 530 0.5 1.613 40.0586 

18 530 1.0 1.713 42.4983 

19 530 1.5 1.763 43.7163 

20 530 2.0 1.863 46.1487 

21 530 2.5 1.963 48.5765 

22 530 3.0 2.063 51.4133 

23 530 3.5 1.913 47.3631 

24 530 4.0 1.863 46.1487 

 

 



58 
 

Table 3.10 Experimental Temperature value with corresponding EMF 

 

TOOL MATERIAL – Tungsten Carbide   WORK MATERIAL – Brass 

S. 

NO. 

CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

EMF GENERATED 

(mV) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 1.363 33.9362 

2 233 1.0 1.413 35.1634 

3 233 1.5 1.413 35.1634 

4 233 2.0 1.313 32.7075 

5 233 2.5 1.363 33.9362 

6 233 3.0 1.363 33.9362 

7 233 3.5 1.363 33.9362 

8 233 4.0 1.363 33.9362 

9 340 0.5 1.363 33.9362 

10 340 1.0 1.613 40.0586 

11 340 1.5 1.613 40.0586 

12 340 2.0 1.613 40.0586 

13 340 2.5 1.613 40.0586 

14 340 3.0 1.613 40.0586 

15 340 3.5 1.613 40.0586 

16 340 4.0 1.613 40.0586 

17 530 0.5 1.613 40.0586 

18 530 1.0 1.663 41.2791 

19 530 1.5 1.763 43.7163 

20 530 2.0 1.663 41.2791 

21 530 2.5 1.663 41.2791 

22 530 3.0 1.663 41.2791 

23 530 3.5 1.663 41.2791 

24 530 4.0 1.663 41.2791 
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Table 3.11 Experimental Temperature value with corresponding EMF 

 

TOOL MATERIAL – Polycrystalline Diamond   WORK MATERIAL – Aluminium 

S. 

NO. 

CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

EMF GENERATED 

(mV) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 1.763 43.7163 

2 233 1.0 1.913 47.3631 

3 233 1.5 2.413 59.4555 

4 233 2.0 2.263 55.8366 

5 233 2.5 2.413 59.4555 

6 233 3.0 2.413 59.4555 

7 233 3.5 2.363 58.2499 

8 233 4.0 2.363 58.2499 

9 340 0.5 3.013 73.8881 

10 340 1.0 2.563 63.0688 

11 340 1.5 2.713 66.6778 

12 340 2.0 2.663 65.4804 

13 340 2.5 2.663 65.4804 

14 340 3.0 2.863 70.2838 

15 340 3.5 2.813 69.0821 

16 340 4.0 2.763 67.8801 

17 530 0.5 2.513 61.8649 

18 530 1.0 2.563 63.0688 

19 530 1.5 2.263 55.8366 

20 530 2.0 2.563 63.0688 

21 530 2.5 2.713 66.6778 

22 530 3.0 2.813 69.0821 

23 530 3.5 2.863 70.2838 

24 530 4.0 2.913 71.5560 
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Table 3.12 Experimental Temperature value with corresponding EMF 

 

TOOL MATERIAL – HSS   WORK MATERIAL – Aluminium 

S. 

NO. 

CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

EMF GENERATED 

(mV) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 1.363 33.9362 

2 233 1.0 1.513 37.6317 

3 233 1.5 1.713 42.4983 

4 233 2.0 1.813 44.9330 

5 233 2.5 1.813 44.9330 

6 233 3.0 1.763 43.7163 

7 233 3.5 1.863 46.1487 

8 233 4.0 1.963 48.5765 

9 340 0.5 1.413 35.1634 

10 340 1.0 1.413 35.1634 

11 340 1.5 1.563 38.8368 

12 340 2.0 1.863 46.1487 

13 340 2.5 1.963 48.5765 

14 340 3.0 1.813 44.9330 

15 340 3.5 2.063 51.4133 

16 340 4.0 2.113 52.2111 

17 530 0.5 1.613 40.0586 

18 530 1.0 1.763 43.7163 

19 530 1.5 1.813 44.9330 

20 530 2.0 1.913 47.3631 

21 530 2.5 1.963 48.5765 

22 530 3.0 2.013 49.7889 

23 530 3.5 2.463 60.6605 

24 530 4.0 2.513 61.8649 
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Table 3.13 Experimental Temperature value with corresponding EMF 

 

TOOL MATERIAL – HSS   WORK MATERIAL – Brass 

S. 

NO. 

CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

EMF GENERATED 

(mV) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 1.613 40.0586 

2 233 1.0 2.113 52.2111 

3 233 1.5 2.113 52.2111 

4 233 2.0 2.113 52.2111 

5 233 2.5 2.113 52.2111 

6 233 3.0 2.113 52.2111 

7 233 3.5 2.013 49.7889 

8 233 4.0 2.013 49.7889 

9 340 0.5 1.463 36.3892 

10 340 1.0 2.213 54.6288 

11 340 1.5 2.213 54.6288 

12 340 2.0 2.213 54.6288 

13 340 2.5 2.213 54.6288 

14 340 3.0 2.213 54.6288 

15 340 3.5 2.263 55.8366 

16 340 4.0 2.263 55.8366 

17 530 0.5 1.313 32.7075 

18 530 1.0 2.463 60.6605 

19 530 1.5 2.513 61.8649 

20 530 2.0 2.513 61.8649 

21 530 2.5 2.513 61.8649 

22 530 3.0 2.513 61.8649 

23 530 3.5 2.513 61.8649 

24 530 4.0 2.513 61.8649 
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Table 3.14 Experimental Temperature value with corresponding EMF 

 

TOOL MATERIAL – Polycrystalline Diamond   WORK MATERIAL – Brass 

S. 

NO. 

CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

EMF GENERATED 

(mV) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 2.113 52.2111 

2 233 1.0 2.413 59.4555 

3 233 1.5 2.413 59.4555 

4 233 2.0 2.413 59.4555 

5 233 2.5 2.413 59.4555 

6 233 3.0 2.413 59.4555 

7 233 3.5 2.413 59.4555 

8 233 4.0 2.413 59.4555 

9 340 0.5 2.063 51.4133 

10 340 1.0 2.363 58.2499 

11 340 1.5 2.363 58.2499 

12 340 2.0 2.713 66.6778 

13 340 2.5 2.713 66.6778 

14 340 3.0 2.813 69.0821 

15 340 3.5 2.913 71.5560 

16 340 4.0 2.963 72.6868 

17 530 0.5 2.513 61.8649 

18 530 1.0 2.713 66.6778 

19 530 1.5 2.613 64.2722 

20 530 2.0 2.163 53.4201 

21 530 2.5 2.813 69.0821 

22 530 3.0 3.013 73.8881 

23 530 3.5 2.913 71.5560 

24 530 4.0 2.913 71.5560 
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Chapter 4 

DEVELOPMENT OF MATHEMATICAL MODEL USING 

REGRESSION ANALYSIS 

 

4.1 INTRODUCTION 

In many problems two or more variables are related, and it is of interest to model 

and explore this relationship. For example, in a chemical process the yield of product is 

related to the operating temperature. The engineer may want to build a model relating 

yields to temperature and then use the model for prediction, process optimization, or 

process control. 

In general, suppose that there is a single dependent variable or response y that depends on 

k independent or regressor variables, for example, x1, x2, ……., xk. The relationship 

between these variables is characterized by a mathematical model called regression 

model. The regression model is fit to a set of sample data. 

There is a strong interplay between design of experiment and regression analysis. The 

emphasis is on the importance of expressing the result of an experiment quantitatively, in 

terms of an empirical model, to facilitate understanding, interpretation, and 

implementation. Regression models are the basis for this. 

4.2 LINEAR REGRESSION MODELS 

Consider an example to develop an empirical model relating the viscosity of a 

polymer to the temperature and the catalysts feed rate. A model that might describe this 

relationship is  

    y = β0 + β1x1 + β2x2 + ε    (4.1) 

where y represents the viscosity, x1 represents the temperature, and x2 represents the 

catalysts feed rate. This is a multiple linear regression model with two independent 

variables. The independent variables are also known as predictor variables or regressors. 
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The term linear is used because the equation is a linear function of the unknown 

parameters β0, β1, and β2. The model describes a plane in the two- dimensional x1, x2 

space. The parameter β0 defines the intercept of the plane and β1 and β2 are partial 

regression coefficients because β1 measures the expected change in y per unit change in 

x1 when x2 is held constant and β2 measures the expected change in y per unit change in 

x2 when x1 is held constant. 

In general, the response variable y may be related to k regressor variables. The model 

with general equation  

    y = β0 + β1x1 + β2x2 + ……. + βkxk + ε  (4.2) 

is called a multiple linear regression model with k regressor variables. The parameters βj, 

j=0, 1 ….. ,  k are called the regression coefficients. This model describes a hyperplane in 

the k- dimensional space of the regressor variables {xj}. The parameters βj represents the 

expected change in response y per unit change in xj when all the remaining independent 

variables xi (i=j) are held constant. 

Models that are more complex in appearance than equation may often still be analyzed by 

multiple linear regression techniques. For example, consider adding an interaction term to 

the first- order model in two variables,  

     y = β0 + β1x1 + β2x2 + β12x1x2 + ε   (4.3) 

if x3 = x1x2 and β3 = β12, then equation can be written as 

     y = β0 + β1x1 + β2x2 +β3x3 + ε    (4.4) 

which is a standard multiple linear regression model with three regressors.  

Consider the second- order response surface model in two variables: 

  y = β0 + βix1 + β2x2 + β11x1
2
 + β22x2

2
 + β12x1x2 + ε    (4.5) 

If x3= x1
2
, x4 = x2

2
, x5= x1x2, β3= β11, β4=β22 and β5=β12, then this becomes 

  y = β0 + β1x1 + β2x2 + β3x3 + β4x4 +β5x5 + ε     (4.6) 
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which is a linear regression model.  

Therefore, in general any regression model that is linear in the parameters (the β’s) is a 

linear regression model, regardless of the shape of the response surface that it generates. 

The methods of estimating the parameters in multiple linear regression models is called 

model fitting. 

4.3 ESTIMATION OF THE PARAMETERS IN LINEAR REGRESSION 

MODEL 

The method of least square is typically used to estimate the regression coefficients in a 

multiple linear regression model. Suppose that n > k observations on the response 

variable are available, say y1, y2,  . . ,yn. Along with each observed response yi, there will 

be an observation on each regressor variable and let xij denote the ith observation or level 

of variable xj. The data will appear as in table 4.1. A assumption is made that the error 

term ε in the model has E (x) = 0 and V (ε) = σ
2
 and that the {εi} are uncorrelated random 

variable. 

Therefore the model equation (equation 4.2) can be written in terms of the observation in 

table 4.1 as 

   (4.7)  

Table 4.1 Data for Multiple Linear Regression (D. C. Montgomery) 
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The method of least square chooses the β’s in equation 4.7 so that the sum of the square 

of the errors, εi, is minimized. The least squares function is  

       (4.8) 

  The function L is to be minimized with respect to β0, β1, ……, βk. the least 

square estimators, say β0, β1, ….., βk, must satisfy 

    (4.9a, 4.9b) 

Simplifying equation 4.9, then 

 (4.10)  

These equation are called the least square normal equations. Note that there are p= k + 1 

normal equations, one for each of the unknown regression coefficients. The solutions to 

the normal equations will be the least squares estimators of the regression coefficient β0, 

β1, ……, βk. 

It is simpler to solve the normal equations if they are expressed in matrix notation as 

given below. 
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        (4.11) 

where  

 

 

 The fitted regression model is 

 

In scalar notation, the fitted model is  

 

The difference between the actual observation yi and the corresponding fitted value ŷi, is 

the residual, say ei  = yi – ŷi. Then (n*1) vector of residual is denoted by 

 

4.4 DESIGN OF MATHEMATICAL MODEL W.R.T. EXPERIMENT 

 A mathematical model can be proposed to develop a relationship between the 

process variables (dependent variables) and the output variable (response) which will 

further help in predicting the response. This model can be used as input in the computer 

to predict the response for various combinations of input parameters. The experimental 
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data was used to develop the model and the analysis of the model was carried out by the 

ANOVA (ANalysis Of VAriance) and surface plots. The software used for this model 

development and analysis was MINITAB 16. 

4.4.1 DEVELOPMENT OF MODEL 

The response function can be expressed as: Y = Φ (V, D) 

where Y = Response (chip-tool interface temperature); V = Cutting speed 

(m/min); D = Depth of cut (mm) 

Using the equation 4.3, the regression equation can be formulated as  

   Y = β0 + β1V + β2D + β12V*D    (4.12) 

where β0 is constant while β1, β2, and β12 are partial regression coefficients of 

the model.  

 

4.4.2 EVALUATION OF THE COEFFICIENTS OF MODEL 

The values of the coefficient of the response surface were calculated using the 

regression analysis. The calculations were carried out using the software 

package Minitab 16 and the values are given in the tabular form: 

Table 4.2 Description of tool and work material with combination number 

COMBINATION 

NO. 

TOOL MATERIAL WORKPIECE 

MATERIAL 

1 Tungsten Carbide Mild Steel 

2 Tungsten Carbide Aluminium 

3 Tungsten Carbide Brass 

4 Poly-Crystalline Diamond Aluminium 

5 High Speed Steel Aluminium 

6 High Speed Steel Brass 

7 Poly-Crystalline Diamond Brass 
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Table 4.3 Values of coefficients obtained from Minitab 16 software for various 

tool-work material combinations 

COMBINATION 

NO. 

VALUE OF 

β0 

VALUE OF 

β1 

VALUE OF 

β2 

VALUE OF 

β12 

1 87.8528 0.0364173 5.19486 0.0171856 

2 28.5064 0.0233002 2.21404 0.000423852 

3 29.1979 0.0229529 0.248613 0.0000901811 

4 47.9813 0.025205 1.95918 0.00127404 

5 32.1399 0.00603885 2.05817 0.00785572 

6 46.2108 0.000272313 1.13838 0.0119095 

7 49.8266 0.0150567 1.80926 0.00447773 

 

4.4.3 FORMULATION OF REGRESSION EQUATIONS 

Using the equation 4.12, the regression equations are formed for various tool-work 

material combinations. These equations are given as follows: 

COMBINATION NO. 1: 

Cutting Temperature (T) = 87.8528 + 0.0364173*V + 5.19486*D + 0.0171856*V*D 

COMBINATION NO. 2: 

Cutting Temperature (T) = 28.5064 + 0.0233002*V + 2.21404*D + 0.000423852*V*D 

COMBINATION NO. 3: 

Cutting Temperature (T) = 29.1979 + 0.0229529*V + 0.248613*D +0.0000901811*V*D 

COMBINATION NO. 4: 

Cutting Temperature (T) = 47.9813 + 0.025205*V + 1.95918*D + 0.00127404*V*D 

COMBINATION NO. 5: 

Cutting Temperature (T) = 32.1399 + 0.00603885*V + 2.05817*D + 0.00785572*V*D 

COMBINATION NO. 6: 

Cutting Temperature (T) = 46.2108 + 0.000272313*V + 1.13838*D + 0.0119095*V*D 

COMBINATION NO. 7: 

Cutting Temperature (T) = 49.8266 + 0.0150567*V + 1.80926*D + 0.00447773*V*D 
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4.4.4 MINITAB OUTPUT OF REGRESSION EQUATIONS 

The following results were obtained from the software Minitab 16 by giving 

raw input to the software: 

 

COMBINATION NO. 1: 

Regression Equation 

 

Temperature  =  87.8528 + 0.0364173 Cutting Speed + 5.19486 Depth of Cut + 

                0.0171856 Speed.Depth of Cut 

 

 

Coefficients 

 

Term                   Coef  SE Coef        T      P 

Constant            87.8528  10.5130  8.35662  0.000 

Cutting Speed        0.0364   0.0271  1.34279  0.194 

Depth of Cut         5.1949   4.1638  1.24764  0.227 

Speed.Depth of Cut   0.0172   0.0107  1.59995  0.125 

 

 

COMBINATION NO. 2: 

Regression Equation 

 

Temperature  =  28.5064 + 0.0233002 Cutting Speed + 2.21404 Depth of Cut + 

                0.000423852 Speed.Depth of Cut 

 

 

Coefficients 

 

Term                   Coef  SE Coef        T      P 

Constant            28.5064  3.09980  9.19619  0.000 

Cutting Speed        0.0233  0.00800  2.91374  0.009 

Depth of Cut         2.2140  1.22770  1.80340  0.086 

Speed.Depth of Cut   0.0004  0.00317  0.13383  0.895 

 

 

COMBINATION NO. 3: 
 

Regression Equation 

 

Temperature  =  29.1979 + 0.0229529 Cutting Speed + 0.248613 Depth of Cut + 

                9.01811e-005 Speed.Depth of Cut 

 

 

Coefficients 

 

Term                   Coef  SE Coef        T      P 

Constant            29.1979  2.76594  10.5562  0.000 

Cutting Speed        0.0230  0.00714   3.2168  0.004 

Depth of Cut         0.2486  1.09548   0.2269  0.823 

Speed.Depth of Cut   0.0001  0.00283   0.0319  0.975 
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COMBINATION NO. 4: 

 
Regression Equation 

 

Temperature  =  47.9813 + 0.025205 Cutting Speed + 1.95918 Depth of Cut + 

                0.00127404 Speed.Depth of Cut 

 

Coefficients 

 

Term                   Coef  SE Coef        T      P 

Constant            47.9813  8.77833  5.46588  0.000 

Cutting Speed        0.0252  0.02265  1.11301  0.279 

Depth of Cut         1.9592  3.47674  0.56351  0.579 

Speed.Depth of Cut   0.0013  0.00897  0.14205  0.888 

 

COMBINATION NO. 5: 

 
Regression Equation 

 

Temperature  =  32.1399 + 0.00603885 Cutting Speed + 2.05817 Depth of Cut + 

                0.00785572 Speed.Depth of Cut 

 

Coefficients 

 

Term                   Coef  SE Coef        T      P 

Constant            32.1399  3.55503  9.04069  0.000 

Cutting Speed        0.0060  0.00917  0.65847  0.518 

Depth of Cut         2.0582  1.40800  1.46177  0.159 

Speed.Depth of Cut   0.0079  0.00363  2.16276  0.043 

 

COMBINATION NO. 6: 

 
Regression Equation 

 

Temperature  =  46.2108 + 0.000272313 Cutting Speed - 1.13838 Depth of Cut + 

                0.0119095 Speed.Depth of Cut 

 

Coefficients 

 

Term                   Coef  SE Coef         T      P 

Constant            46.2108  8.78903   5.25779  0.000 

Cutting Speed        0.0003  0.02267   0.01201  0.991 

Depth of Cut        -1.1384  3.48097  -0.32703  0.747 

Speed.Depth of Cut   0.0119  0.00898   1.32623  0.200 

 

COMBINATION NO. 7: 

 
Regression Equation 

 

Temperature  =  49.8266 + 0.0150567 Cutting Speed + 1.80926 Depth of Cut + 

                0.00447773 Speed.Depth of Cut 

 

Coefficients 

 

Term                   Coef  SE Coef        T      P 

Constant            49.8266  6.43040  7.74860  0.000 

Cutting Speed        0.0151  0.01659  0.90765  0.375 

Depth of Cut         1.8093  2.54682  0.71040  0.486 

Speed.Depth of Cut   0.0045  0.00657  0.68153  0.503 
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4.4.5 ANALYSIS OF ADEQUACY OF THE MODEL 

A one-way analysis of variance (ANOVA) tests the hypothesis that the means of 

several populations are equal. The method is an extension of the two-sample t-test, 

specifically for the case where the population variances are assumed to be equal. A 

one-way analysis of variance requires the following: 

a. A response or measurement taken from the units sampled.  

b. A factor or discrete variable that is altered systematically. The different values 

chosen for the factor variable are called levels of the factor. Each level of the 

factor in the analysis corresponds to a larger population with its own mean. 

The sample mean is an estimate of the level mean for the whole population. 

        ANOVA software was used to check the adequacy of the developed models        

based   on the following rules: 

a. The F-ratio of the developed model is calculated and is compared with the 

standard tabulated value of F-ratio for a specific level of confidence. 

b. If calculated value of F-ratio does not exceed the tabulated value, then with 

the corresponding confidence probability the model may be considered 

adequate. For this analysis, the confidence interval is taken as 95%. 

 

4.4.6 ANOVA OUTPUT FOR ADEQUACY OF MODEL 

The following results were obtained by the ANOVA software by giving the 

raw input to the software: 

 

COMBINATION NO. 1: 

Source         DF       SS       MS      F      P 

Cutting Speed   2  2090.01  1045.01  43.15  0.000 

Depth of Cut    7  5024.28   717.75  29.64  0.000 

Error          14   339.08    24.22 

Total          23  7453.37 

 

S = 4.921   R-Sq = 95.45%   R-Sq(adj) = 92.53% 
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COMBINATION NO. 2: 

Source         DF       SS       MS      F      P 

Cutting Speed   2  247.394  123.697  33.21  0.000 

Depth of Cut    7  185.745   26.535   7.12  0.001 

Error          14   52.144    3.725 

Total          23  485.282 

 

S = 1.930   R-Sq = 89.25%   R-Sq(adj) = 82.35% 

 

COMBINATION NO. 3: 

Source         DF       SS       MS      F      P 

Cutting Speed   2  228.141  114.071  74.33  0.000 

Depth of Cut    7   22.889    3.270   2.13  0.108 

Error          14   21.484    1.535 

Total          23  272.514 

 

S = 1.239   R-Sq = 92.12%   R-Sq(adj) = 87.05% 

 

COMBINATION NO. 4: 

Source         DF       SS       MS      F      P 

Cutting Speed   2   698.89  349.446  15.24  0.000 

Depth of Cut    7   216.25   30.893   1.35  0.300 

Error          14   321.01   22.929 

Total          23  1236.15 

 

S = 4.788   R-Sq = 74.03%   R-Sq(adj) = 57.34% 

 

COMBINATION NO. 5: 

Source         DF       SS       MS      F      P 

Cutting Speed   2   211.05  105.523  14.44  0.000 

Depth of Cut    7   815.69  116.527  15.95  0.000 

Error          14   102.28    7.306 

Total          23  1129.01 

 

S = 2.703   R-Sq = 90.94%   R-Sq(adj) = 85.12% 

 

COMBINATION NO. 6: 

Source         DF       SS       MS      F      P 

Cutting Speed   2   265.76  132.882  12.67  0.001 

Depth of Cut    7  1017.16  145.308  13.86  0.000 

Error          14   146.80   10.486 

Total          23  1429.72 

 

S = 3.238   R-Sq = 89.73%   R-Sq(adj) = 83.13% 

 

COMBINATION NO. 7: 

Source         DF       SS       MS     F      P 

Cutting Speed   2   272.24  136.118  6.17  0.012 

Depth of Cut    7   443.43   63.348  2.87  0.044 

Error          14   308.86   22.062 

Total          23  1024.53 

 

S = 4.697   R-Sq = 69.85%   R-Sq(adj) = 50.47% 
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4.5 ANALYSIS AND DISCUSSION OF RESULTS 

4.5.1 RESULTS OF THE MATHEMATICAL MODEL 

The results obtained from the mathematical models depending on the regression 

equations are tabulated for different tool-work material combinations as follows: 

 

Table 4.4 Predicted temperature for tungsten carbide (tool) and mild steel (work)  

READING NO. CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 100.9375824 

2 233 1.0 105.5371348 

3 233 1.5 110.1366872 

4 233 2.0 114.7362396 

5 233 2.5 119.335792 

6 233 3.0 123.9353444 

7 233 3.5 128.5348968 

8 233 4.0 133.1344492 

9 340 0.5 105.753664 

10 340 1.0 111.272646 

11 340 1.5 116.791628 

12 340 2.0 122.31061 

13 340 2.5 127.289592 

14 340 3.0 133.348574 

15 340 3.5 138.867556 

16 340 4.0 144.386538 

17 530 0.5 114.305583 

18 530 1.0 121.457197 

19 530 1.5 128.608811 

20 530 2.0 135.760425 

21 530 2.5 142.912039 

22 530 3.0 150.063653 

23 530 3.5 157.215267 

24 530 4.0 164.366881 

 



75 
 

Table 4.5 Predicted temperature for tungsten carbide (tool) and aluminium (work) 

 

READING NO. CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 35.09174536 

2 233 1.0 36.24814412 

3 233 1.5 37.40454287 

4 233 2.0 38.56094163 

5 233 2.5 39.71763845 

6 233 3.0 40.87373915 

7 233 3.5 42.03013791 

8 233 4.0 43.18653666 

9 340 0.5 37.60754284 

10 340 1.0 38.78636048 

11 340 1.5 39.96569252 

12 340 2.0 41.14476736 

13 340 2.5 42.3238422 

14 340 3.0 43.50291704 

15 340 3.5 44.68229188 

16 340 4.0 45.8610652 

17 530 0.5 42.074484678 

18 530 1.0 43.29418756 

19 530 1.5 44.51352834 

20 530 2.0 45.73286912 

21 530 2.5 46.9522099 

22 530 3.0 48.17155068 

23 530 3.5 49.39089146 

24 530 4.0 50.61023224 
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Table 4.6 Predicted temperature for tungsten carbide (tool) and brass (work) 

 

READING NO. CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 34.68073318 

2 233 1.0 34.8155509 

3 233 1.5 34.95036349 

4 233 2.0 35.08527609 

5 233 2.5 35.22005869 

6 233 3.0 35.35480129 

7 233 3.5 35.49019076 

8 233 4.0 35.62442649 

9 340 0.5 37.14152329 

10 340 1.0 37.28116057 

11 340 1.5 37.42079786 

12 340 2.0 37.56043515 

13 340 2.5 37.70007244 

14 340 3.0 37.83970972 

15 340 3.5 37.97934701 

16 340 4.0 38.1189843 

17 530 0.5 41.51114149 

18 530 1.0 41.65934598 

19 530 1.5 41.80755047 

20 530 2.0 41.95575497 

21 530 2.5 42.10395946 

22 530 3.0 42.25216395 

23 530 3.5 42.40036844 

24 530 4.0 42.54857272 
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Table 4.7 Predicted temperature for PCD (tool) and aluminium (work) 

 

READING NO. CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 54.98208066 

2 233 1.0 56.11009632 

3 233 1.5 57.23811198 

4 233 2.0 58.36612764 

5 233 2.5 59.4941433 

6 233 3.0 60.62215896 

7 233 3.5 61.75012962 

8 233 4.0 62.8748378 

9 340 0.5 57.7471768 

10 340 1.0 59.0033536 

11 340 1.5 60.1395304 

12 340 2.0 61.3357072 

13 340 2.5 62.531884 

14 340 3.0 63.7280608 

15 340 3.5 64.9242376 

16 340 4.0 66.1204144 

17 530 0.5 62.6271606 

18 530 1.0 63.9743712 

19 530 1.5 65.2915818 

20 530 2.0 66.6087924 

21 530 2.5 67.926003 

22 530 3.0 69.2432166 

23 530 3.5 70.5604242 

24 530 4.0 71.87766348 
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Table 4.8 Predicted temperature for high speed steel (tool) and aluminium(work) 

 

READING NO. CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 35.49122638 

2 233 1.0 37.43550276 

3 233 1.5 39.37977914 

4 233 2.0 41.32405552 

5 233 2.5 43.2683319 

6 233 3.0 45.21260828 

7 233 3.5 47.15688466 

8 233 4.0 49.10116104 

9 340 0.5 36.5576664 

10 340 1.0 38.9222238 

11 340 1.5 41.2867812 

12 340 2.0 43.6513386 

13 340 2.5 46.015896 

14 340 3.0 48.3804534 

15 340 3.5 50.7450108 

16 340 4.0 53.1095682 

17 530 0.5 38.4513413 

18 530 1.0 41.5621921 

19 530 1.5 44.6730429 

20 530 2.0 47.7838937 

21 530 2.5 50.8947445 

22 530 3.0 54.0055953 

23 530 3.5 57.1164461 

24 530 4.0 60.2272969 
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Table 4.9 Predicted temperature for high speed steel (tool) and brass (work) 

 

READING NO. CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 47.1024755 

2 233 1.0 47.9107815 

3 233 1.5 48.72904825 

4 233 2.0 49.547315 

5 233 2.5 50.36558175 

6 233 3.0 50.614513 

7 233 3.5 52.00211525 

8 233 4.0 52.820382 

9 340 0.5 47.7588114 

10 340 1.0 49.2142364 

11 340 1.5 50.6696614 

12 340 2.0 52.1250864 

13 340 2.5 53.5805114 

14 340 3.0 55.0359364 

15 340 3.5 56.4914614 

16 340 4.0 57.9467864 

17 530 0.5 48.94195339 

18 530 1.0 51.52878089 

19 530 1.5 54.11560839 

20 530 2.0 56.70243589 

21 530 2.5 59.28916339 

22 530 3.0 61.30690089 

23 530 3.5 64.46291839 

24 530 4.0 67.04974589 

 



80 
 

Table 4.10 Predicted temperature for PCD (tool) and brass (work) 

 

READING NO. CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 54.76109665 

2 233 1.0 56.18738219 

3 233 1.5 57.61366774 

4 233 2.0 59.03995328 

5 233 2.5 60.46623883 

6 233 3.0 61.89252437 

7 233 3.5 63.31880992 

8 233 4.0 64.74509546 

9 340 0.5 56.6117221 

10 340 1.0 58.2775662 

11 340 1.5 59.9434103 

12 340 2.0 61.6092544 

13 340 2.5 63.2750985 

14 340 3.0 64.9409426 

15 340 3.5 66.6067867 

16 340 4.0 68.2726308 

17 530 0.5 59.89787943 

18 530 1.0 61.9891079 

19 530 1.5 64.08033635 

20 530 2.0 66.1715648 

21 530 2.5 68.26279325 

22 530 3.0 70.3540217 

23 530 3.5 72.44525015 

24 530 4.0 74.5364786 
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4.5.2 GRAPHICAL OUTPUT OF MATHEMATICAL MODEL 

The results obtained from the mathematical models depending on the regression 

equations for different tool-work material combinations are plotted showing the main 

effects and interaction of the cutting parameters on the response variable i.e. chip tool 

interface temperature. These are explained as follows: 

COMBINATION NO. 1: 

 

Figure 4.1 Main Effects Plot for Temperature 

 

Figure 4.2 Interaction Plot for Temperature 
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The plot of main effects for tungsten carbide tool and mild steel work shows that when 

cutting speed increases from 233 m/min to 340 m/min and further to 530 m/min, the chip 

tool interface temperature increases. While when depth of cut increases the temperature 

reaches its maximum value at 2.5 mm of DOC and then decreases and further increases 

as DOC is increased. 

The interaction plot shows how the chip-tool interface temperature varies at different 

cutting speeds between 0.5 to 4.0 mm DOC range. 

COMBINATION NO. 2: 

 

Figure 4.3 Main Effects Plot for Temperature 

 

Figure 4.4 Interaction Plot for Temperature 
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The plot of main effects for tungsten carbide tool and aluminium work shows that when 

cutting speed increases from 233 m/min to 340 m/min and further to 530 m/min, the chip 

tool interface temperature increases. While when depth of cut increases the temperature 

also increases. 

The interaction plot shows how the chip-tool interface temperature varies at different 

cutting speeds between 0.5 to 4.0 mm DOC range. At 530 m/min cutting speed the 

temperature decreases when the DOC is increased from 3.0 mm to 3.5 mm and further 

while in other cases it increases. 

COMBINATION NO. 3: 

 
Figure 4.5 Main Effects Plot for Temperature 

 
Figure 4.6 Interaction Plot for Temperature 
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The plot of main effects for tungsten carbide tool and brass work shows that when cutting 

speed increases from 233 m/min to 340 m/min and further to 530 m/min, the chip tool 

interface temperature increases. While when depth of cut increases the temperature 

reaches its maximum value at 1.5 mm DOC after which it decreases and nearly becomes 

constant after 2.55 mm DOC. 

The interaction plot shows how the chip-tool interface temperature varies at different 

cutting speeds between 0.5 to 4.0 mm DOC range. At 530 m/min cutting speed the 

temperature decreases when the DOC is increased from 1.5 mm to 2.0 mm after which it 

becomes constant and in other cases after a slight increase it becomes constant. 

COMBINATION NO. 4: 

 
Figure 4.7 Main Effects Plot for Temperature 

 
Figure 4.8 Interaction Plot for Temperature 
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The plot of main effects for PCD tool and aluminium work shows that when cutting 

speed increases from 233 m/min to 340 m/min the chip tool interface temperature 

increases and further increase of cutting speed to 530 m/min decreases the temperature. 

While when depth of cut increases the temperature increases after initial dip at the value 

at 1.0 mm DOC. 

The interaction plot shows how the chip-tool interface temperature varies at different 

cutting speeds between 0.5 to 4.0 mm DOC range. At 530 m/min cutting speed the 

temperature decreases in the entire DOC as compared to the temperature values at cutting 

speed 233 m/min and 340 m/min. 

COMBINATION NO. 5: 

 
Figure 4.9 Main Effects Plot for Temperature 

 
Figure 4.10 Interaction Plot for Temperature 
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The plot of main effects for HSS tool and aluminium work shows that when cutting speed 

increases from 233 m/min to 340 m/min and further to 530 m/min the chip tool interface 

temperature increases. While when depth of cut increases the temperature increases to a 

maximum value at 2.5 mm DOC after which it decreases and further increase on increase 

in DOC values. 

The interaction plot shows how the chip-tool interface temperature varies at different 

cutting speeds between 0.5 to 4.0 mm DOC range.  

COMBINATION NO. 6: 

 
Figure 4.11 Main Effects Plot for Temperature 

 

Figure 4.12 Interaction Plot for Temperature 
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The plot of main effects for HSS tool and brass work shows that when cutting speed 

increases from 233 m/min to 340 m/min and further to 530 m/min the chip tool interface 

temperature increases. While when depth of cut increases the temperature increases 

steeply to a maximum value at 1.0 mm DOC after which it becomes constant for further 

in DOC values. 

The interaction plot shows how the chip-tool interface temperature varies at different 

cutting speeds between 0.5 to 4.0 mm DOC range. At various cutting speeds the 

temperature remains nearly constant when DOC values are increased. 

COMBINATION NO. 7: 

 
Figure 4.13 Main Effects Plot for Temperature 

 
Figure 4.14 Interaction Plot for Temperature 
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The plot of main effects for PCD tool and brass work shows that when cutting speed 

increases from 233 m/min to 340 m/min and further to 530 m/min the chip tool interface 

temperature increases. While when depth of cut increases the temperature increases 

steeply to a maximum value at 1.0 mm DOC after which it decreases and further 

increases as the DOC values are increased. 

The interaction plot shows how the chip-tool interface temperature varies at different 

cutting speeds between 0.5 to 4.0 mm DOC range. At 233 m/min cutting speed the 

temperature remains nearly constant while at cutting speed of 340 m/min it increases 

gradually and at 530 m/min it initially increases, then falls to a minimum value at 2.0 mm 

DOC value, after which it further increases as DOC values are increased. 
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Chapter 5 

DEVELOPMENT OF MODEL USING GENETIC ALGORITHM 

 

5.1   IMPORTANCE OF GENETIC ALGORITHM 

Genetic algorithms (GAs) are an appealing tool to solve optimization problems [44]. 

This approach is selected as diversity is considered as the variety and the difference is 

considered at the gene, chromosome and population level [45]. 

GAs have the ability to create an initial population of the feasible solutions, and then 

recombine them in a way to guide their search to only the most promising areas of the state 

space [46]. 

5.2   FLOWCHART FOR MODELLING OPTIMIZATION MODEL 

 
Figure 5.1 Steps involved in optimization of the experimental model 
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5.3   MATHEMATICAL MODELLING OF OPTIMIZATION 

Machining optimization provides optimal or near-optimal solutions in actual metal 

cutting process. The optimization procedure has two phases. First phase is mathematical 

modeling of the machining process (cutting performances) where an objective 

multivariable function should be defined. In that phase, all constraints and bounds of the 

variables, by using equalities and (or) inequalities should also be defined. Second phase is 

searching for a global minimum of objective function, under all defined limitations [20]. 

The mathematical model of optimization consists of the objective function and 

constraints, as follows: 

Objective Function: 

Min f (x) 

 

Constraint Functions: 

A* x ≤ b    (Linear Inequalities)  

Aeq * x = beq    (Linear Equalities)  

Ci (x) ≤ 0,i = 1,...,m   (Nonlinear Inequalities)  

Ceqi (x) = 0,i = m+1,...,m+ t  (Nonlinear Equalities) 

Lb ≤ x ≤ Ub    (Bounds of Variables)  

 

The objective function of the optimization model is to minimize the chip tool 

interface temperature in orthogonal cutting process. The chip tool interface temperature is 

directly related to the cutting speed and depth of cut by response surface methodology, 

and is defined by the equation: 

T = C*V
x1

*D
x2 

Where T = chip tool interface temperature (°C) 

C = Constant 

V = Cutting speed (m/min) 

D = Depth of cut (mm) 
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5.4    FORMULATION OF OBJECTIVE FUNCTION FOR OPTIMIZATION 

 

Objective function: 

 

Min T = 32.17*V^0.213733*D^0.179545  (COMBINATION NO. 1) 

Min T = 10.9611*V^0.21971*D^0.0975696  (COMBINATION NO. 2) 

Min T = 9.5671*V^0.234031*D^0.0205877  (COMBINATION NO. 3) 

Min T = 18.79968*V^0.196905*D^0.0718086 (COMBINATION NO. 4) 

Min T = 14.1413*V^0.177342*D^0.188984  (COMBINATION NO. 5) 

Min T = 18.4561*V^0.162331*D^0.16477  (COMBINATION NO. 6) 

Min T = 24.7043*V^0.148959*D^0.0969805  (COMBINATION NO. 7) 

 

Constraint functions: 

   V ≥ 233 

   V ≤ 530 

   D ≥ 0.5 

   D ≤ 4.0 

 

 

5.5    METHODOLOGY OF AN M-FILE 

The Genetic Algorithm Toolbox is a collection of functions that extend the 

capabilities of the Optimization Toolbox and the MATLAB numeric computing 

environment. All the toolbox functions are MATLAB M-files, made up of MATLAB 

statements that implement specialized optimization algorithms. To use this toolbox first an 

M-file is created which computes the function to be optimized. The M-file should accept a 

row vector, whose length is the number of independent variables for the objective function 

and return a scalar. 

5.5.1 STEPS OF WRITING AN M-FILE 

The objective of this experiment is to minimize the chip-tool interface 

temperature. The M-file which computes this function must accept a row vector x 
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of length 2, corresponding to the variables x1(cutting speed) and x2(depth of cut), 

and return a scalar equal to the value of the function at x. the following steps are 

involved in writing the M-file: 

1. Select New in the MATLAB File menu. 

2. Select M-File. This opens a new M-file in the editor. 

3. In the M-file, enter the following two lines of code: 

function T = cutting_temperature(x) 

T = 32.17*x(1)^0.213733*x(2)^0.179545; 

end  

4. Save the M-file in a directory on the MATLAB path. 

5. To check that the M-file returns the correct value, enter in the command 

window 

 

cutting_temperature ([233 0.5]) 

ans =  

91.0720 

5.5.2 M-FILE WRITING AND CHECKING IN MATLAB 

Figure 5.2 M-File in the MATLAB Editor 
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Figure 5.3 Checking the M-File in the Command Window 

 

5.6    USING THE GENETIC ALGORITHM 

There are two ways by which the genetic algorithm with the toolbox can be used: 

1. Calling the genetic algorithm function ga at the command line. 

2. Using the Genetic Algorithm Tool, a graphical interface to the genetic 

algorithm. 

5.6.1 CALLING FUNCTION ga AT COMMAND LINE 

To use the genetic algorithm at the command line, the genetic algorithm 

function ga is called by the syntax 

 

[x fval] = ga(@fitnessfun, nvars, options) 

 

where @fitnessfun is a handle to the fitness function. 

nvars is the number of independent variables for the fitness function. 

options is a structure containing options for the genetic algorithm. 

The results are given by fval – Final value of the fitness function. 

x – Point at which the final value is attained. 
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5.6.2 USING THE GENETIC ALGORITHM TOOL 

The Genetic Algorithm Tool is a graphical user interface which enables the use 

the genetic algorithm without working at the command line. To open this tool, 

enter at the command window 

gatool 

This opens the tool as shown below: 

 

Figure 5.4 GA Optimization Tool window 

To use the above tool, following information is required: 

1. Fitness function – the objective function which is to be minimized. Enter the 

fitness function in the form @cutting_temperature, where cutting_temperature.m 

is an M-file computing the fitness function. The @ sign creates a function handle 

to cutting_temperature. 

2. Number of Variables – the length of the input vector to the fitness function i.e. 

cutting_temperature. 

To run the genetic algorithm, click the Start button. The tool displays the results of 

the optimization in the Status and Results pane. 
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5.7  USING GENETIC ALGORITHM FOR OPTIMISING THE FORMULATED 

MODEL 

Considering the objective functions and constraint functions formulated in Section 

5.4, the GA Optimization Tool is used by calling the already saved M-file in the Editor 

window. The M-file is written as follows: 

 

function T = cutting_temperature(x) 

T = 32.17*x(1)^0.213733*x(2)^0.179545; 

end  

 

This M-file is formulated for the readings of COMBINATION NO. 1. Similarly, 

remaining six M-files are also written following the same rules. These objective 

functions are subjected to four constraint functions which are already discussed in 

Section 5.4. The following figure 5.5 shows the optimized result for 

COMBINATION NO. 1 readings. 

 

Figure 5.5 GA Optimization Tool window for fitness function “cutting_temperature” 
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The various options available in the GA Optimization Tool were set as follows: 

 

1. Population: 

Population type: Double vector 

Population size: 100 

Creation fcn: use constraint dependent default 

Initial population: [] 

Initial scores: [] 

2. Fitness Scaling: 

Fitness scaling fcn: fitscalingrank 

3. Selection: 

Selection fcn: Stochastic uniform 

4. Reproduction: 

Elite count: 2 

Crossover fraction: 0.8 

 

5. Mutation: 

Mutation fcn: use constraint dependent default 

6. Crossover: 

Crossover fcn: Scattered 

7. Migration: 

Migration direction: forward 

Migration interval: 20 

Migration fraction: 0.2 

8. Algorithm Settings: 

Initial penalty: 10 

Penalty factor: 100 

9. Hybrid function: 

Hybrid fcn: [] 

10. Stopping Criteria: 

Generations:100 
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Time limit: Inf 

Fitness limit: -Inf 

Stall gen limit: 50 

Stall time limit: Inf 

Tol fun:1.0000e-015 

Tol con: 1.0000e-015 

11. Plot functions: 

Plot interval: 1 

Plot fcns: @gaplotbestf@gaplotbestindiv 

12. Output function: 

Output fcns: [] @gatooloutput 

13. Display to Command window: 

Display: iterative 

14. User evaluation function: 

Vectorised: off 

Use parallel: never 

 

Diagnostic information 

  Fitness function = @cutting_temperature 

  Number of variables = 2 

  0 Inequality constraints 

  0 Equality constraints 

  0 Total number of linear constraints 

 

 

5.8  RESULTS OF THE GENETIC ALGORITHM MODEL 

The results obtained from the GA model depending on the empirical relationship 

between chip-tool interface temperature and the cutting parameters i.e. cutting speed and 

depth of cut for different tool-work material combinations are tabulated as follows: 
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Table 5.1 Temperature predicted by GA for tungsten carbide (tool) and mild steel (work) 

 

READING NO. CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 91.0720 

2 233 1.0 103.1414 

3 233 1.5 110.9301 

4 233 2.0 116.8104 

5 233 2.5 121.5854 

6 233 3.0 125.6313 

7 233 3.5 129.1570 

8 233 4.0 132.2909 

9 340 0.5 98.7332 

10 340 1.0 111.8180 

11 340 1.5 120.2619 

12 340 2.0 126.6368 

13 340 2.5 131.8135 

14 340 3.0 136.1998 

15 340 3.5 140.0220 

16 340 4.0 143.4196 

17 530 0.5 108.5601 

18 530 1.0 122.9472 

19 530 1.5 132.2315 

20 530 2.0 139.2410 

21 530 2.5 144.9329 

22 530 3.0 149.7557 

23 530 3.5 153.9584 

24 530 4.0 157.6941 
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Table 5.2 Temperature predicted by GA for tungsten carbide (tool) and aluminium (work) 

 

READING NO. CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 33.9324 

2 233 1.0 36.3066 

3 233 1.5 37.7717 

4 233 2.0 38.8470 

5 233 2.5 39.7020 

6 233 3.0 40.4146 

7 233 3.5 41.0271 

8 233 4.0 41.5651 

9 340 0.5 36.8701 

10 340 1.0 39.4499 

11 340 1.5 41.0418 

12 340 2.0 42.2101 

13 340 2.5 43.1392 

14 340 3.0 43.9135 

15 340 3.5 44.5790 

16 340 4.0 45.1636 

17 530 0.5 40.6475 

18 530 1.0 43.4915 

19 530 1.5 45.2466 

20 530 2.0 46.5346 

21 530 2.5 47.5589 

22 530 3.0 48.4125 

23 530 3.5 49.1461 

24 530 4.0 49.7906 
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Table 5.3 Temperature predicted by GA for tungsten carbide (tool) and brass (work) 

 

READING NO. CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 33.7767 

2 233 1.0 34.2622 

3 233 1.5 34.5494 

4 233 2.0 34.7546 

5 233 2.5 34.9146 

6 233 3.0 35.0459 

7 233 3.5 35.1573 

8 233 4.0 35.2541 

9 340 0.5 36.9001 

10 340 1.0 37.4304 

11 340 1.5 37.7442 

12 340 2.0 37.9684 

13 340 2.5 38.1432 

14 340 3.0 38.2867 

15 340 3.5 38.4084 

16 340 4.0 38.5141 

17 530 0.5 40.9400 

18 530 1.0 41.5284 

19 530 1.5 41.8765 

20 530 2.0 42.1253 

21 530 2.5 42.3193 

22 530 3.0 42.4784 

23 530 3.5 42.6134 

24 530 4.0 42.7307 
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Table 5.4 Temperature predicted by GA for PCD (tool) and aluminium (work) 

 

READING NO. CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 52.3213 

2 233 1.0 54.9914 

3 233 1.5 56.6160 

4 233 2.0 57.7978 

5 233 2.5 58.7314 

6 233 3.0 59.5054 

7 233 3.5 60.1677 

8 233 4.0 60.7474 

9 340 0.5 56.3631 

10 340 1.0 59.2395 

11 340 1.5 60.9897 

12 340 2.0 62.2627 

13 340 2.5 63.2684 

14 340 3.0 64.1022 

15 340 3.5 64.8157 

16 340 4.0 65.4402 

17 530 0.5 61.5117 

18 530 1.0 64.6508 

19 530 1.5 66.5609 

20 530 2.0 67.9502 

21 530 2.5 69.0477 

22 530 3.0 69.9577 

23 530 3.5 70.7364 

24 530 4.0 71.4179 
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Table 5.5 Temperature predicted by GA for high speed steel (tool) and aluminium (work) 

 

READING NO. CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 32.6160 

2 233 1.0 37.1810 

3 233 1.5 40.1420 

4 233 2.0 42.3849 

5 233 2.5 44.2105 

6 233 3.0 45.7603 

7 233 3.5 47.1130 

8 233 4.0 48.3171 

9 340 0.5 34.8768 

10 340 1.0 39.7582 

11 340 1.5 42.9245 

12 340 2.0 45.3228 

13 340 2.5 47.2750 

14 340 3.0 48.9322 

15 340 3.5 50.3787 

16 340 4.0 51.6662 

17 530 0.5 37.7336 

18 530 1.0 43.0148 

19 530 1.5 46.4404 

20 530 2.0 49.0352 

21 530 2.5 51.1472 

22 530 3.0 52.9403 

23 530 3.5 54.5052 

24 530 4.0 55.8982 
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Table 5.6 Temperature predicted by GA for high speed steel (tool) and brass (work) 

 

READING NO. CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 39.8873 

2 233 1.0 44.7173 

3 233 1.5 47.8024 

4 233 2.0 50.1229 

5 233 2.5 52.0001 

6 233 3.0 53.5859 

7 233 3.5 54.9644 

8 233 4.0 56.1871 

9 340 0.5 42.4108 

10 340 1.0 47.5420 

11 340 1.5 50.8267 

12 340 2.0 53.2940 

13 340 2.5 55.2899 

14 340 3.0 56.9791 

15 340 3.5 58.4418 

16 340 4.0 59.7419 

17 530 0.5 45.5799 

18 530 1.0 51.0944 

19 530 1.5 54.6247 

20 530 2.0 57.2763 

21 530 2.5 59.1214 

22 530 3.0 61.2336 

23 530 3.5 62.8088 

24 530 4.0 64.2060 
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Table 5.7 Temperature predicted by GA for PCD (tool) and brass (work) 

 

READING NO. CUTTING SPEED 

(m/min) 

DEPTH OF CUT 

(mm) 

CHIP-TOOL INTERFACE 

TEMPERATURE (°C) 

1 233 0.5 52.0256 

2 233 1.0 55.6431 

3 233 1.5 57.8747 

4 233 2.0 59.5121 

5 233 2.5 60.8141 

6 233 3.0 61.8989 

7 233 3.5 62.8312 

8 233 4.0 63.6508 

9 340 0.5 55.0383 

10 340 1.0 58.8653 

11 340 1.5 61.2261 

12 340 2.0 62.9583 

13 340 2.5 64.3356 

14 340 3.0 65.4833 

15 340 3.5 66.4696 

16 340 4.0 67.3360 

17 530 0.5 58.8009 

18 530 1.0 62.8895 

19 530 1.5 65.4117 

20 530 2.0 67.2622 

21 530 2.5 68.7338 

22 530 3.0 69.9599 

23 530 3.5 71.0137 

24 530 4.0 71.9393 
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5.9  GRAPHICAL OUTPUT OF FORMULATED GA MODEL 

The results obtained from the formulated GA model depending on the equations generated 

by the response surface methodology for different tool-work material combinations are plotted 

showing the effects of the cutting parameters on the response variable i.e. chip tool interface 

temperature as shown below: 

COMBINATION NO. 1: 

 

Figure 5.6 Plot for temperature obtained by GA Model 

COMBINATION NO. 2: 

 

Figure 5.7 Plot for temperature obtained by GA Model 



106 
 

COMBINATION NO. 3: 

 

Figure 5.8 Plot for temperature obtained by GA Model 

COMBINATION NO. 4: 

 

Figure 5.9 Plot for temperature obtained by GA Model 
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COMBINATION NO. 5: 

 

Figure 5.10 Plot for temperature obtained by GA Model 

COMBINATION NO. 6: 

 

Figure 5.11 Plot for temperature obtained by GA Model 
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COMBINATION NO. 7: 

 

Figure 5.12 Plot for temperature obtained by GA Model 

It can be interpret from the above graphs that on increasing the cutting speed a significant 

increase is observed in the chip-tool interface temperature. Similarly, an increase in the depth of 

cut increases the chip-tool interface temperature but the increase is small as compared to cutting 

speed. Therefore, the chip-tool interface temperature largely varies with cutting speed and then 

depth of cut. 
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Chapter 6 

OPTIMIZATION OF PROCESS PARAMETERS 

 

6.1 OPTIMIZATION: AN INTRODUCTION 

In mathematics, computer science or management science, mathematical optimization 

is the selection of a best element (with regard to certain criteria) from a set of available 

alternatives.  

An optimization problem consists of maximizing or minimizing a real function by 

systematically choosing input values from within an allowed set and computing the 

value of the function. The generalization of optimization theory and techniques to other 

formulations comprises a large area of applied mathematics. Optimization includes 

finding “best available” values of some objective function given a defined domain (or 

set of constraints) including a variety of different types of objective functions and 

different types of domains. 

 

6.2 OPTIMIZATION PROBLEM 

An optimization problem in general form can be represented as: 

 

Given: a function f: A R from some set A to the real numbers 

Sought: an element x0 in A such that f(x0) ≤ f(x) for all x in A (minimization) or such 

that f(x0) ≥ f(x) for all x in A (maximization) 

 

Such a formulation is known as an “optimization problem”. The function f is called, an 

objective function, a loss function or cost function (minimization), indirect utility 

function (minimization), a utility function (maximization), or a fitness function 

(maximization). A feasible solution that minimizes (or maximizes) the objective 

function is called an optimal solution. 
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6.3 OPTIMIZATION TECHNIQUES 

There are many techniques which are being used for optimizing problem in various 

fields of engineering. The following Table 6.1 presents a list of these techniques: 

Table 6.1 Methods of Operation Research [47] 

 

The technique GA, which is being used in the present investigation, is one of the 

evolutionary algorithms which is based on the mechanics of biological evolution. GA is 

one of the efficient and effective techniques of optimization that is being used today in 

business, scientific and engineering circles. It is a heuristic algorithm which can be 

easily applied to determine approximate solutions to the optimization problems. 

Following Figure 6.1 shows another classification based on the search techniques.  

 
Figure 6.1 Classification based on Search techniques [48] 
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6.4 OPTIMAL RESULTS FOR DIFFERENT TOOL-WORK COMBINATIONS 

USING GENETIC ALGORITHM 

The genetic algorithm minimized the chip-tool interface temperature depending on the 

cutting speed and depth of cut for various too-work combinations. The results obtained are 

given as follows: 

 

 

Figure 6.2 GA Optimal result window for tungsten carbide (tool) and mild steel (work) 

 

OPTIMIZED RESULT 

Minimized chip-tool interface temperature – 91.13170203163669 °C 

Cutting Speed – 233.574 m/min 

Depth of cut – 0.5 mm 

MATLAB ITERATIONS 

Diagnostic information. 

 Fitness function = @cutting_temperature 



112 
 

 Number of variables = 2 

 0 Inequality constraints 

 0 Equality constraints 

 0 Total number of linear constraints 

 

Modified options: 

 options.InitialPopulation = [  260 4 ] 

 options.Display = 'diagnose' 

 options.PlotFcns = {  @gaplotbestf @gaplotdistance @gaplotexpectation @gaplotgenealogy 

@gaplotrange @gaplotselection } 

 options.OutputFcns = {  [] @gatooloutput } 

End of diagnostic information. 

 

                               Best           Mean      Stall 

Generation      f-count        f(x)           f(x)    Generations 

    1            40           94.99           104.6        0 

    2            60           94.74             102        0 

    3            80           94.66           99.88        0 

    4           100           94.66           100.6        1 

    5           120           94.57           98.88        0 

    6           140           94.57           97.61        1 

    7           160           94.57           97.56        2 

    8           180           94.49           96.03        0 

    9           200           94.44           96.86        0 

   10           220           94.44           98.35        1 

   11           240            94.4           95.43        0 
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   12           260           94.36            94.5        0 

   13           280           94.36           94.45        1 

   14           300           94.32           94.95        0 

   15           320           94.32           96.19        1 

   16           340           94.32           95.58        2 

   17           360            94.3           94.66        0 

   18           380           94.27           95.49        0 

   19           400           94.23           94.61        0 

   20           420           94.23           95.51        1 

   21           440           94.23           97.65        2 

   22           460           94.23           97.46        3 

   23           480           94.22           97.21        0 

   24           500           94.22            97.1        1 

   25           520           94.22            95.9        2 

   26           540           92.49            94.4        0 

   27           560           92.38           94.29        0 

   28           580           92.38           94.41        1 

   29           600           92.37           93.98        0 

   30           620           92.37           94.24        1 

 

                               Best           Mean      Stall 

Generation      f-count        f(x)           f(x)    Generations 

   31           640           92.37           93.75        2 

   32           660            91.4           93.61        0 

   33           680           91.38           93.21        0 
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   34           700           91.38           92.77        1 

   35           720           91.38           92.54        2 

   36           740           91.37           92.14        0 

   37           760           91.36           91.65        0 

   38           780           91.34           92.21        0 

   39           800           91.34           93.76        1 

   40           820           91.34            91.7        2 

   41           840           91.34           91.93        3 

   42           860           91.33           91.95        0 

   43           880           91.33           91.95        1 

   44           900           91.33            91.7        2 

   45           920           91.33           91.67        3 

   46           940           91.33           91.41        0 

   47           960           91.33           91.42        1 

   48           980           91.15           91.38        0 

   49          1000           91.15            91.4        1 

   50          1020           91.14            91.3        0 

   51          1040           91.14           91.27        1 

   52          1060           91.13           91.22        0 

   53          1080           91.13           91.17        1 

   54          1100           91.13           91.16        0 

   55          1120           91.13           91.16        1 

Optimization terminated: average change in the fitness value less than options.TolFun. 
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Figure 6.3 Graphical representation of fitness value for tungsten carbide (tool) and mild steel 

(work) 

 

Figure 6.4 GA Optimal result window for tungsten carbide (tool) and aluminium (work) 
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OPTIMIZED RESULT 

Minimized chip-tool interface temperature – 34.04206256331308 °C 

Cutting Speed – 235.886 m/min 

Depth of cut – 0.530 mm 

 

Figure 6.5 Graphical representation of fitness value for tungsten carbide (tool) and 

aluminium (work) 

 

Figure 6.6 GA Optimal result window for tungsten carbide (tool) and brass (work) 
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OPTIMIZED RESULT 

Minimized chip-tool interface temperature – 33.935891526198695 °C 

Cutting Speed – 237.728 m/min 

Depth of cut – 0.5 mm 

 

Figure 6.7 Graphical representation of fitness value for tungsten carbide (tool) and brass (work) 

 

Figure 6.8 GA Optimal result window for PCD (tool) and aluminium (work) 
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OPTIMIZED RESULT 

Minimized chip-tool interface temperature – 52.537064516957116 °C 

Cutting Speed – 237.827 m/min 

Depth of cut – 0.501 mm 

 

Figure 6.9 Graphical representation of fitness value for PCD (tool) and aluminium (work) 

 

Figure 6.10 GA Optimal result window for high speed steel (tool) and aluminium(work) 
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OPTIMIZED RESULT 

Minimized chip-tool interface temperature – 32.69404922126979 °C 

Cutting Speed – 235.87 m/min 

Depth of cut – 0.501 mm 

 

Figure 6.11 Graphical representation of fitness value for high speed steel (tool) and 

aluminium(work) 

 

Figure 6.12 GA Optimal result window for high speed steel (tool) and brass (work) 
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OPTIMIZED RESULT 

Minimized chip-tool interface temperature – 39.90797660444781 °C 

Cutting Speed – 233.574 m/min 

Depth of cut – 0.5 mm 

 

Figure 6.13 Graphical representation of fitness value for high speed steel (tool) and brass 

(work) 

 

Figure 6.14 GA Optimal result window for PCD (tool) and brass (work) 



121 
 

OPTIMIZED RESULT 

Minimized chip-tool interface temperature – 52.03977246237789 °C 

Cutting Speed – 233.019 m/min 

Depth of cut – 0.501 mm 

 

Figure 6.15 Graphical representation of fitness value for PCD (tool) and brass (work) 
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Chapter 7 

RESULTS AND DISCUSSIONS 

7.1   COMPARATIVE ANALYSIS OF CHIP-TOOL INTERFACE TEMPERATURES 

A comparative analysis is carried out for the chip-tool interface temperature obtained 

from the three models. The percentage error is also calculated between experimental and 

predicted results which are tabulated as follows:  

Table 7.1 Temperature analysis with % error for tungsten carbide and mild steel  

READING 

NO. 

CUTTING 

SPEED 

(m/min) 

DEPTH 

OF CUT 

(mm) 

CHIP-TOOL INTERFACE TEMPERATURE  (°C) 

EXPERIMENTAL 

TEMP. 

PREDICTED 

TEMP. 

PERCENTAGE 

ERROR (%) 

GA MODEL 

TEMP. 

1 233 0.5 95.6286 100.9375824 5.2595 91.0720 

2 233 1.0 99.1654 105.5371348 6.0374 103.1414 

3 233 1.5 104.0056 110.1366872 5.5667 110.9301 

4 233 2.0 123.4944 114.7362396 -7.633 116.8104 

5 233 2.5 125.9460 119.335792 -5.5391 121.5854 

6 233 3.0 125.9460 123.9353444 -1.6223 125.6313 

7 233 3.5 125.9460 128.5348968 2.0141 129.1570 

8 233 4.0 125.9460 133.1344492 5.3993 132.2909 

9 340 0.5 100.3744 105.753664 5.0611 98.7332 

10 340 1.0 113.7230 111.272646 -2.2021 111.8180 

11 340 1.5 123.4944 116.791628 -5.7391 120.2619 

12 340 2.0 133.3207 122.31061 -9.0018 126.6368 

13 340 2.5 135.7865 127.289592 -6.6752 131.8135 

14 340 3.0 133.3207 133.348574 0.0208 136.1998 

15 340 3.5 138.2549 138.867556 0.4411 140.0220 

16 340 4.0 138.2549 144.386538 4.2466 143.4196 

17 530 0.5 97.9571 114.305583 14.3024 108.5601 

18 530 1.0 123.4944 121.457197 -1.6773 122.9472 

19 530 1.5 133.3207 128.608811 -3.6637 132.2315 

20 530 2.0 145.6784 135.760425 -7.3055 139.2410 

21 530 2.5 149.3998 142.912039 -4.6926 144.9329 

22 530 3.0 146.6183 150.063653 2.2958 149.7557 

23 530 3.5 155.6147 157.215267 1.0180 153.9584 

24 530 4.0 156.8594 164.366881 4.5674 157.6941 
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Table 7.2 Temperature analysis with % error for tungsten carbide and aluminium 

 

READING 

NO. 

CUTTING 

SPEED 

(m/min) 

DEPTH 

OF CUT 

(mm) 

CHIP-TOOL INTERFACE TEMPERATURE  (°C) 

EXPERIMENTAL 

TEMP. 

PREDICTED 

TEMP. 

PERCENTAGE 

ERROR (%) 

GA MODEL 

TEMP. 

1 233 0.5 35.1634 35.09174536 -0.2043 33.9324 

2 233 1.0 36.3892 36.24814412 -0.3893 36.3066 

3 233 1.5 37.6137 37.40454287 -0.5593 37.7717 

4 233 2.0 35.1634 38.56094163 8.8107 38.8470 

5 233 2.5 38.8368 39.71763845 2.2176 39.7020 

6 233 3.0 37.6137 40.87373915 7.9757 40.4146 

7 233 3.5 41.2791 42.03013791 1.7868 41.0271 

8 233 4.0 42.4983 43.18653666 1.5935 41.5651 

9 340 0.5 37.6137 37.60754284 -1.6497 36.8701 

10 340 1.0 40.0586 38.78636048 -3.2802 39.4499 

11 340 1.5 41.2791 39.96569252 -3.2864 41.0418 

12 340 2.0 42.4983 41.14476736 -3.2897 42.2101 

13 340 2.5 44.9330 42.3238422 -6.1649 43.1392 

14 340 3.0 44.9330 43.50291704 -3.2875 43.9135 

15 340 3.5 47.3631 44.68229188 -5.9999 44.5790 

16 340 4.0 48.5765 45.8610652 -5.9212 45.1636 

17 530 0.5 40.0586 42.074484678 4.7911 40.6475 

18 530 1.0 42.4983 43.29418756 1.8382 43.4915 

19 530 1.5 43.7163 44.51352834 1.8313 45.2466 

20 530 2.0 46.1487 45.73286912 -0.9092 46.5346 

21 530 2.5 48.5765 46.9522099 -3.4596 47.5589 

22 530 3.0 51.4133 48.17155068 -6.7295 48.4125 

23 530 3.5 47.3631 49.39089146 4.1054 49.1461 

24 530 4.0 46.1487 50.61023224 8.8154 49.7906 
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Table 7.3 Temperature analysis with % error for tungsten carbide (tool) and brass 

(work) 

READING 

NO. 

CUTTING 

SPEED 

(m/min) 

DEPTH 

OF CUT 

(mm) 

CHIP-TOOL INTERFACE TEMPERATURE  (°C) 

EXPERIMENTAL 

TEMP. 

PREDICTED 

TEMP. 

PERCENTAGE 

ERROR (%) 

GA MODEL 

TEMP. 

1 233 0.5 33.9362 34.68073318 2.1468 33.7767 

2 233 1.0 35.1634 34.8155509 -0.9992 34.2622 

3 233 1.5 35.1634 34.95036349 0.6096 34.5494 

4 233 2.0 32.7075 35.08527609 6.7769 34.7546 

5 233 2.5 33.9362 35.22005869 3.6452 34.9146 

6 233 3.0 33.9362 35.35480129 4.0124 35.0459 

7 233 3.5 33.9362 35.49019076 4.3786 35.1573 

8 233 4.0 33.9362 35.62442649 4.7389 35.2541 

9 340 0.5 33.9362 37.14152329 8.6300 36.9001 

10 340 1.0 40.0586 37.28116057 -7.4500 37.4304 

11 340 1.5 40.0586 37.42079786 -7.0491 37.7442 

12 340 2.0 40.0586 37.56043515 -6.6511 37.9684 

13 340 2.5 40.0586 37.70007244 -6.2561 38.1432 

14 340 3.0 40.0586 37.83970972 -5.8640 38.2867 

15 340 3.5 40.0586 37.97934701 -5.4748 38.4084 

16 340 4.0 40.0586 38.1189843 -5.0884 38.5141 

17 530 0.5 40.0586 41.51114149 3.4990 40.9400 

18 530 1.0 41.2791 41.65934598 0.9126 41.5284 

19 530 1.5 43.7163 41.80755047 -4.5656 41.8765 

20 530 2.0 41.2791 41.95575497 1.6127 42.1253 

21 530 2.5 41.2791 42.10395946 1.9590 42.3193 

22 530 3.0 41.2791 42.25216395 2.3029 42.4784 

23 530 3.5 41.2791 42.40036844 2.6444 42.6134 

24 530 4.0 41.2791 42.54857272 2.9835 42.7307 
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Table 7.4 Temperature analysis with % error for PCD (tool) and aluminium (work) 

 

READING 

NO. 

CUTTING 

SPEED 

(m/min) 

DEPTH 

OF CUT 

(mm) 

CHIP-TOOL INTERFACE TEMPERATURE  (°C) 

EXPERIMENTAL 

TEMP. 

PREDICTED 

TEMP. 

PERCENTAGE 

ERROR 

GA MODEL 

TEMP. 

1 233 0.5 43.7163 54.98208066 20.4898 52.3213 

2 233 1.0 47.3631 56.11009632 15.5888 54.9914 

3 233 1.5 59.4555 57.23811198 -3.8740 56.6160 

4 233 2.0 55.8366 58.36612764 4.3338 57.7978 

5 233 2.5 59.4555 59.4941433 0.0648 58.7314 

6 233 3.0 59.4555 60.62215896 1.9243 59.5054 

7 233 3.5 58.2499 61.75012962 5.6683 60.1677 

8 233 4.0 58.2499 62.8748378 7.3557 60.7474 

9 340 0.5 73.8881 57.7471768 -27.9510 56.3631 

10 340 1.0 63.0688 59.0033536 -6.8903 59.2395 

11 340 1.5 66.6778 60.1395304 -10.8719 60.9897 

12 340 2.0 65.4804 61.3357072 -6.7574 62.2627 

13 340 2.5 65.4804 62.531884 -4.7153 63.2684 

14 340 3.0 70.2838 63.7280608 -10.2871 64.1022 

15 340 3.5 69.0821 64.9242376 -6.4041 64.8157 

16 340 4.0 67.8801 66.1204144 -2.6613 65.4402 

17 530 0.5 61.8649 62.6271606 1.2643 61.5117 

18 530 1.0 63.0688 63.9743712 1.4154 64.6508 

19 530 1.5 55.8366 65.2915818 14.4811 66.5609 

20 530 2.0 63.0688 66.6087924 5.3144 67.9502 

21 530 2.5 66.6778 67.926003 1.8374 69.0477 

22 530 3.0 69.0821 69.2432166 0.2326 69.9577 

23 530 3.5 70.2838 70.5604242 0.3919 70.7364 

24 530 4.0 71.5560 71.87766348 0.4473 71.4179 
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Table 7.5 Temperature analysis with % error for high speed steel (tool) and 

aluminium(work) 

READING 

NO. 

CUTTING 

SPEED 

(m/min) 

DEPTH 

OF CUT 

(mm) 

CHIP-TOOL INTERFACE TEMPERATURE  (°C) 

EXPERIMENTAL 

TEMP. 

PREDICTED 

TEMP. 

PERCENTAGE 

ERROR (%) 

GA MODEL 

TEMP. 

1 233 0.5 33.9362 35.49122638 4.3814 32.6160 

2 233 1.0 37.6317 37.43550276 -0.4761 37.1810 

3 233 1.5 42.4983 39.37977914 -7.9191 40.1420 

4 233 2.0 44.9330 41.32405552 -8.7335 42.3849 

5 233 2.5 44.9330 43.2683319 -3.8475 44.2105 

6 233 3.0 43.7163 45.21260828 3.3094 45.7603 

7 233 3.5 46.1487 47.15688466 2.1379 47.1130 

8 233 4.0 48.5765 49.10116104 1.0683 48.3171 

9 340 0.5 35.1634 36.5576664 3.8137 34.8768 

10 340 1.0 35.1634 38.9222238 9.6571 39.7582 

11 340 1.5 38.8368 41.2867812 5.9339 42.9245 

12 340 2.0 46.1487 43.6513386 -5.7211 45.3228 

13 340 2.5 48.5765 46.015896 -5.5648 47.2750 

14 340 3.0 44.9330 48.3804534 7.1255 48.9322 

15 340 3.5 51.4133 50.7450108 -1.3169 50.3787 

16 340 4.0 52.2111 53.1095682 1.6916 51.6662 

17 530 0.5 40.0586 38.4513413 -4.1800 37.7336 

18 530 1.0 43.7163 41.5621921 -5.1829 43.0148 

19 530 1.5 44.9330 44.6730429 -0.5819 46.4404 

20 530 2.0 47.3631 47.7838937 0.8804 49.0352 

21 530 2.5 48.5765 50.8947445 4.5541 51.1472 

22 530 3.0 49.7889 54.0055953 7.8077 52.9403 

23 530 3.5 60.6605 57.1164461 -6.2050 54.5052 

24 530 4.0 61.8649 60.2272969 -2.7191 55.8982 
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Table 7.6 Temperature analysis with % error for high speed steel (tool) and brass 

(work) 

READING 

NO. 

CUTTING 

SPEED 

(m/min) 

DEPTH 

OF CUT 

(mm) 

CHIP-TOOL INTERFACE TEMPERATURE  (°C) 

EXPERIMENTAL 

TEMP. 

PREDICTED 

TEMP. 

PERCENTAGE 

ERROR (%) 

GA MODEL 

TEMP. 

1 233 0.5 40.0586 47.1024755 14.9542 39.8873 

2 233 1.0 52.2111 47.9107815 -8.9757 44.7173 

3 233 1.5 52.2111 48.72904825 -7.1457 47.8024 

4 233 2.0 52.2111 49.547315 -5.3762 50.1229 

5 233 2.5 52.2111 50.36558175 -3.6643 52.0001 

6 233 3.0 52.2111 50.614513 -3.1544 53.5859 

7 233 3.5 49.7889 52.00211525 4.2559 54.9644 

8 233 4.0 49.7889 52.820382 5.7391 56.1871 

9 340 0.5 36.3892 47.7588114 23.8061 42.4108 

10 340 1.0 54.6288 49.2142364 -11.0020 47.5420 

11 340 1.5 54.6288 50.6696614 -7.8136 50.8267 

12 340 2.0 54.6288 52.1250864 -4.8032 53.2940 

13 340 2.5 54.6288 53.5805114 -1.9564 55.2899 

14 340 3.0 54.6288 55.0359364 0.7397 56.9791 

15 340 3.5 55.8366 56.4914614 1.1592 58.4418 

16 340 4.0 55.8366 57.9467864 3.6415 59.7419 

17 530 0.5 32.7075 48.94195339 33.1707 45.5799 

18 530 1.0 60.6605 51.52878089 -17.7217 51.0944 

19 530 1.5 61.8649 54.11560839 -14.3200 54.6247 

20 530 2.0 61.8649 56.70243589 -9.5398 57.2763 

21 530 2.5 61.8649 59.28916339 -4.3445 59.1214 

22 530 3.0 61.8649 61.30690089 -0.9103 61.2336 

23 530 3.5 61.8649 64.46291839 4.0301 62.8088 

24 530 4.0 61.8649 67.04974589 7.8701 64.2060 
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Table 7.7 Temperature analysis with % error for PCD (tool) and brass (work) 

 

READING 

NO. 

CUTTING 

SPEED 

(m/min) 

DEPTH 

OF CUT 

(mm) 

CHIP-TOOL INTERFACE TEMPERATURE  (°C) 

EXPERIMENTAL 

TEMP. 

PREDICTED 

TEMP. 

PERCENTAGE 

ERROR (%) 

GA MODEL 

TEMP. 

1 233 0.5 52.2111 54.76109665 4.6565 52.0256 

2 233 1.0 59.4555 56.18738219 -5.8165 55.6431 

3 233 1.5 59.4555 57.61366774 -3.1969 57.8747 

4 233 2.0 59.4555 59.03995328 -0.7039 59.5121 

5 233 2.5 59.4555 60.46623883 1.6714 60.8141 

6 233 3.0 59.4555 61.89252437 3.9374 61.8989 

7 233 3.5 59.4555 63.31880992 6.1012 62.8312 

8 233 4.0 59.4555 64.74509546 8.1697 63.6508 

9 340 0.5 51.4133 56.6117221 9.1825 55.0383 

10 340 1.0 58.2499 58.2775662 0.0474 58.8653 

11 340 1.5 58.2499 59.9434103 2.8251 61.2261 

12 340 2.0 66.6778 61.6092544 5.4526 62.9583 

13 340 2.5 66.6778 63.2750985 -5.3777 64.3356 

14 340 3.0 69.0821 64.9409426 -6.4027 65.4833 

15 340 3.5 71.5560 66.6067867 -7.4306 66.4696 

16 340 4.0 72.6868 68.2726308 -6.4655 67.3360 

17 530 0.5 61.8649 59.89787943 -3.2840 58.8009 

18 530 1.0 66.6778 61.9891079 -7.5638 62.8895 

19 530 1.5 64.2722 64.08033635 -0.2995 65.4117 

20 530 2.0 53.4201 66.1715648 19.2707 67.2622 

21 530 2.5 69.0821 68.26279325 -1.2002 68.7338 

22 530 3.0 73.8881 70.3540217 -5.0233 69.9599 

23 530 3.5 71.5560 72.44525015 1.2273 71.0137 

24 530 4.0 71.5560 74.5364786 3.9985 71.9393 
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7.2   GRAPHICAL INTERPRETATION OF CHIP-TOOL INTERFACE  

TEMPERATURE 

The following graphs were obtained for the chip-tool interface temperature depending on 

cutting speed and depth of cut for different tool-work material combinations. Further the 

interpretation of graphs was carried out to understand the effects of the cutting parameters on the 

response variable i.e. chip tool interface temperature. 

      TOOL MATERIAL - Tungsten carbide WORK MATERIAL - Mild Steel 

 

Figure 7.1 The variation of the temperature with the depth of cut (Cutting speed = 233m/min) 

 

Figure 7.2 The variation of the temperature with the depth of cut (Cutting speed = 340 m/min) 
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Figure 7.3 The variation of the temperature with the depth of cut (Cutting speed = 530 m/min) 

The above graphs show the variation of chip-tool interface temperature with depth of cut at three 

different cutting speeds. The temperature measured experimentally and calculated theoretically 

shows an increase with the increase in the depth of cut. The measured values of temperature lie 

within the range of experimental error. 

TOOL MATERIAL – Tungsten carbide WORK MATERIAL – Aluminium 

 

 

Figure 7.4 The variation of the temperature with the depth of cut (Cutting speed = 233 m/min) 
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Figure 7.5 The variation of the temperature with the depth of cut (Cutting speed = 340 m/min) 

 

Figure 7.6 The variation of the temperature with the depth of cut (Cutting speed = 530 m/min) 

The above graphs show the variation of chip-tool interface temperature with depth of cut at three 

different cutting speeds. The temperature measured experimentally and calculated theoretically 

shows an increase with the increase in the depth of cut but after 3.0 mm depth of cut a decrease 

in temperature is observed. The measured values of temperature lie within the range of 

experimental error. 
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TOOL MATERIAL – Tungsten carbide WORK MATERIAL – Brass 

 

 

Figure 7.7 The variation of the temperature with the depth of cut (Cutting speed = 233 m/min) 

 

Figure 7.8 The variation of the temperature with the depth of cut (Cutting speed = 340 m/min) 
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Figure 7.9 The variation of the temperature with the depth of cut (Cutting speed = 530 m/min) 

The above graphs show the variation of chip-tool interface temperature with depth of cut at three 

different cutting speeds. The temperature measured experimentally shows an increase with the 

increase in the depth of cut upto a certain value after which a decrease is experienced but the 

theoretically calculated value shows a continuous increase in temperature with the increase in the 

value of depth of cut.  

TOOL MATERIAL – PCD WORK MATERIAL – Aluminium 

 

Figure 7.10 The variation of the temperature with the depth of cut (Cutting speed = 233 m/min) 
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Figure 7.11 The variation of the temperature with the depth of cut (Cutting speed = 340 m/min) 

 

Figure 7.12 The variation of the temperature with the depth of cut (Cutting speed = 530 m/min) 

The above graphs show the variation of chip-tool interface temperature with depth of cut at three 

different cutting speeds. The temperature measured experimentally and calculated theoretically 

shows an increase with the increase in the depth of cut but a slight decrease at some values in 

between is observed. The measured values of temperature lie within the range of experimental 

error. 
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TOOL MATERIAL – High speed steel WORK MATERIAL – Aluminium 

 

Figure 7.13 The variation of the temperature with the depth of cut (Cutting speed = 233 m/min) 

 

Figure 7.14 The variation of the temperature with the depth of cut (Cutting speed = 340 m/min) 
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Figure 7.15 The variation of the temperature with the depth of cut (Cutting speed = 530 m/min) 

The above graphs show the variation of chip-tool interface temperature with depth of cut at three 

different cutting speeds. The temperature measured experimentally and calculated theoretically 

shows an increase with the increase in the depth of cut but a slight decrease at some values in 

between is observed at all the three cutting speed due to some experimental error. The measured 

values of temperature lie within the range of experimental error. 

TOOL MATERIAL – High speed steel WORK MATERIAL – Brass 

 

Figure 7.16 The variation of the temperature with the depth of cut (Cutting speed = 233 m/min) 
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Figure 7.17 The variation of the temperature with the depth of cut (Cutting speed = 340 m/min) 

 

Figure 7.18 The variation of the temperature with the depth of cut (Cutting speed = 530 m/min) 

The above graphs show the variation of chip-tool interface temperature with depth of cut at three 

different cutting speeds. The temperature measured experimentally and calculated theoretically 

shows an increase with the increase in the depth of cut. The measured values of temperature lie 

within the range of experimental error. 
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TOOL MATERIAL – PCD WORK MATERIAL – Brass 

 

 

Figure 7.19 The variation of the temperature with the depth of cut (Cutting speed = 233 m/min) 

 

Figure 7.20 The variation of the temperature with the depth of cut (Cutting speed = 340 m/min) 
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Figure 7.21 The variation of the temperature with the depth of cut (Cutting speed = 530 m/min) 

The above graphs show the variation of chip-tool interface temperature with depth of cut at three 

different cutting speeds. The temperature measured experimentally and calculated theoretically 

shows an increase with the increase in the depth of cut. At cutting speed 530 m/min a decrease in 

temperature is observed as the depth of cut is increased from 1mm while further increase in 

depth of cut increases the chip-tool interface temperature. The measured values of temperature 

lie within the range of experimental error. 
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Chapter 8 

CONCLUSIONS AND FUTURE SCOPE 

 

8.1 CONCLUSIONS 

 Temperature and wear of cutting tools are investigated by means of cutting experiments 

and numerical analysis. The purpose of the temperature analysis is twofold: to propose a simple 

model which will predict temperature changes and to verify the propriety of the temperature 

measurement [49]. The cutting temperature during metal cutting processes has been recognized 

as one of the major factors influencing the tool performance and workpiece geometry accuracy 

[50]. Temperature on the chip-tool interface is an important parameter in the analysis and control 

of machining process. Total tool wear rate and crater wear on the rake face are strongly 

influenced by the temperature at chip-tool interface. The amount of heat generated varies with 

the type of material being machined, cutting parameters, contact length between tool and chip, 

cutting forces and friction between tool and workpiece material. To measure the tool temperature 

at the tool chip interface many experimental methods have been developed. The main techniques 

used to evaluate the cutting temperature during machining are tool-work thermocouple, 

embedded thermocouple and thermal radiation method [51]. 

The average chip-tool interface temperature was measured in turning process and the measured 

results were compared with the calculated (predicted) values. The effects of cutting speeds and 

depth of cuts were further studied and analyzed for different tool and work material 

combinations. The following conclusions and observations were drawn from the experiment 

performed and the analytical model predicted. 

1. Theoretical methods and empirical approach were developed depending upon the 

regression analysis method and the response surface methodology (RSM).  

2. The empirical equations derived from the orthogonal cutting process were used for 

temperature calculation and in order to obtain reliable results, the factors for each set of 

cutting parameters were re-evaluated. 
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3. Under the cutting conditions specified in this investigation, the chip-tool interface 

temperature was measured and compared with the calculated results. It was found that the 

maximum percentage error with different used combination of tool and work material 

was 30% occurring due to the error in the performance of the machine tool, milli 

voltmeter, environmental condition, human error etc. 

4. When the cutting speed and the depth of cut were increased the chip-tool interface 

temperature increased. 

5. It was observed that the cutting speed has a significant effect on the chip-tool interface 

temperature in comparison to the effect of depth of cut. These conclusions were verified 

by the correlation coefficients. 

6. Further a model was formulated to optimize the chip-tool interface temperature 

considering the technological and material constraints. The heuristic technique used was 

genetic algorithm which is based on the mechanics of biological evolution. 

7. The results obtained from the simulation model have presented a fast and suitable 

solution for automatic selection of the machining parameters. 

 

8.2  FUTURE WORK 

 The tools and techniques used in this investigation can be applied in future to other 

cutting processes with different cutting parameter ranges. It can be shown that the effect of 

independent variables considered – cutting speed, cutting feed and radial cutting depth - as well 

as its interactions, on temperature can be compared with other traditional methods of 

optimization [52]. The approaches for modeling the prediction of the temperature distribution at 

the interface can be done with number of the commercial package such as DEFORM 3D [53] 

and also with other techniques such as SQP, ANN etc.  

The proposed model can be extended and many other cutting variables can be included in order 

to optimize the cutting process. Integration of the proposed approach with an intelligent 

manufacturing system will lead to reduction in the chip-tool interface temperature and other 

parameters such as production cost, reduction in production time, flexibility in machining 

parameter selection, and improvement of product quality. 
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This genetic algorithm-based approach and simulation model can find the application in complex 

machining systems and automated process planning system. Further this approach can be 

compared with a number of other emerging optimization techniques. Since the genetic 

algorithm-based approach can obtain near optimal solution, the formulated model can be further 

enhanced and applied to other machining process such as milling, threading, grinding etc. 
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