CHARACTERIZATION OF RURAL DRINKING WATER SOURCE WITH REMOVAL OF HIGH CHLORIDE THROUGH BIOADSORPTION: A CASE STUDY

A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF DEGREE OF

MASTER OF TECHNOLOGY IN ENVIRONMENTAL ENGINEERING

By LOKESH KUMAR (2K11/ENE/05)

UNDER THE SUPERVISION OF DR. S. K. SINGH PROFESSOR & HEAD

DEPARTMENT OF ENVIRONMENTAL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY

(FORMERLY DELHI COLLEGE OF ENGINEERING) BAWANA ROAD, NEW DELHI-110042 JUNE, 2014

ii

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly DELHI COLLEGE OF ENGINEERING) BAWANA ROAD, NEW DELHI-110042

DEPARTMENT OF ENVIRONMENTAL ENGINEERING

CERTIFICATE

This is to certify that the research work embodied in this dissertation entitled "CHARACTERIZATION OF RURAL DRINKING WATER SOURCE WITH REMOVAL OF HIGH CHLORIDE THROUGH BIOADSORPTION: A CASE STUDY" by LOKESH KUMAR, Roll No. 2K11/ENE/05 in partial fulfillment of the requirement for the award of the degree of Master of Technology in Environmental Engineering, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, is an authentic record. The work is being carried out by me. The work embodied in this major project has not been submitted for the award of any other degree to the best of our knowledge.

Date: -Place: - Lokesh Kumar (Candidate)

Prof. S. K. Singh (Supervisor)

Prof. S. K. Singh (Head- Environmental Engineering Department)

ACKNOWLEDGEMENT

It is of extreme pleasure to express my deep sense of gratitude and indebtedness to my guide **Dr. S.K. SINGH,** Professor and head of the department, Environmental Engineering, Delhi Technological University (Formerly Delhi College of Engineering), for his invaluable guidance, encouragement and patient reviews. Without their help and guidance, this dissertation would have been impossible.

I am highly obliged and pay my gratitude to the Haryana Pollution Control Board, India for providing the required data regarding the well and surface water quality of District Bhiwani, Haryana and provide me with the information needed for my project.

I am grateful to my parents & social group for their moral support; they have been always around to cheer me up, in the odd times of this work. I am also thankful to my classmates and friends for their unconditional support and motivation during this work. I want to thank specially to my wife Neelu Verma (Bhumika) & my Daughter Arpita Verma for facing my absence & hard time during my frequent visits to outside Delhi to visit the village for testing sample for this project.

Lastly I want to thank to all the Villagers of the Village & PO Kharak Kalan, Bhiwani.

LOKESH KUMAR

ABSTRACT

The demand of Drinking water in rural India is being fulfilled either by the limited surface sources or by the underground water wells. Contamination levels of these water sources are generally high. To deal with the Quality issue of drinking water in the rural India is very important. In Rural India about 700 million people are residing in about 1.5 million habitations spread over multi different ecological regions. It is very difficult to meet the drinking water needs of such a large population with a good efficiency. Because of the different level of awareness, social and economical development, education, poverty, practices, rituals and water availability add to the complexity of the task. Regardless of an estimated total of Rs. 1,105 billion spent on providing safe drinking water since the First Five Year Plan was launched in 1951, lack of safe and secure drinking water continues to be a major problem and a national economical burden. In rural India, village ponds and groundwater well have been playing very vital role in social, cultural, economical and environmental development of the users. These ponds are the social resources of Indian villages and support the livelihoods of the marginalized community in rural, urban, coastal and tribal areas of India. Due to contaminations of these drinking water sources in villages, around 37.7 million Indians are affected by waterborne diseases annually, 1.5 million children are estimated to die of Diarrhea alone and 73 million working days are lost due to waterborne disease each year. The resulting economic burden is estimated at Rs.36000 million a year. While 'traditional diseases' such as diarrhea continue to take a heavy toll, 66 million Indians are at risk due to excess fluoride and 10 million due to excess arsenic in groundwater. In all, 1, 95,813 habitations in the country are affected by poor water quality. Hardness and Chloride are also deteriorating the water supply lines and structures along with few reported health issues like hypertension and bone disease in rural India. This is an effort to characterize the drinking water quality parameters available in the village ponds and deep wells and suggestion for removal of excess chloride content by bio-adsorbent. A case study of Village & P O Kharak kalan District Bhiwani, Haryana.

Keywords: Contamination, Drinking Water Quality, Rural India, Chloride Bioadsorption, waterborne disease.

Table of Contents

TITLES Page 1		
CERTIFICATE i		
	VLEDGEMENT	ii
ABSTRACT iii		
LIST OF TABLES vi		
LIST OF	FIGURES	vii
LIST OF	ABBREVIATIONS	ix
СНАРТЕ	R 1. INTRODUCTION	1-4
1.1	BACKGROUND	1
1.2	PRESENCE OF CHLORIDE AND ITS REMOVAL	1
1.3	OBJECTIVE OF THE STUDY	3
СНАРТЕ	R 2. LITERATURE REVIEW	5-15
2.1		5
2.2	INTRODUCTION OF CHLORIDE	10
	2.2.1 C HEMICAL IDENTIFICATION	10
	2.2.2 ELECTRONIC PROPERTIES	11
	2.2.3 OCCURRENCE IN NATURE	11
	2.2.4 REACTION OF CHLORIDE	11
	2.2.5 EXAMPLE OF CHLORIDE COMBINATION	12
2.3		13
2.4		14
	2.4.1 EFFECTS ON HUMAN BODY	14
2.5	SCOPE OF PRESENT STUDY	14
СНАРТЕ	R 3 SOURCES OF WATER FOR WATERSUPPLY IN RURAL AREA	16-22
3.	RAW WATER SOURCES	16
3.1	2 WATER QUALITY	16
3.	B LAKES & PONDS	17
	3.3.1 FORMATION	17
	3.3.2 PHYSICAL & CHEMICAL FEATURES	18
	3.3.3 HABITATS AND DIVERSITY	19
3.4	WELL AND TUBWELL WATER	19
	3.4.1 GERMS IN WELL WATER	20
	3.4.2 MINERALS	21
	3.4.3 TYPES OF WELLS.	21
3.		23
3.		26
3.		27
СНАРТЕ	R 4 REMOVAL TECHNIQUES OF CHLORIDE	28-30
4.	-	28 28
4.		28
4		28 28
		28 29
4.4	CALCINED LAYERED DOUBLE HYDROXIDE (CLDH) METHOD	27

4.5 ELECTROCHEMICAL METHOD FOR THE REMOVAL OF CHLORIE	DE 29
4.6 BIO-ADSORPTION	30
	31-39
CHAPTER 5 MATERIAL AND METHODS	
5.1 STUDY AREA	
5.2 MATERIALS AND REAGENTS	32
5.2.1 USE OF CHLORIDE SAMPLE & PARTHENIUM AS BIO-ADSORBE	
5.2.2 METHOD OF ACTIVATION OF BIO- ADSORBENT	
5.2.3 DETERMINATION OF CHLORIDE ION.	
5.3 BATCH MODE ADSORPTION EXPERIMENTS5.4 ANALYTICAL TECHNIQUE	
5.5 COLUMN STUDY	
5.5 COLOMIN STOD 1	
CHAPTER 6 RESULTS AND DISCUSSION	40-70
6.1 RESULT SYNOPSIS OF ONSITE TESTING OF WATER	40
6.2 TESTING RESULT OF ONSITE TEST USING JALTARA KIT	45
6.3 GRAPHICAL PRESENTATION OF POLLUTANT CONCENTRATION	
6.4 EFFECT OF REACTION pH IN BATCH STUDY	
6.5 EFFECT OF ADSORPTION TIME IN BATCH STUDY	
6.6 EFFECT OF ADSORBENT DOSE.	
6.7 ADSORPTION ISOTHERMS.	
6.7.1 LANGMUIR ISOTHERM	
6.7.2 FREUNDLICH ISOTHERMS	53
6.7.3 TEMPKIN ISOTHERMS	58
6.8 ADSORPTION KINETICS	60
6.8.1 FIRST ORDER ADSORPTION MODEL	60
6.8.2 SECOND ORDER ADSORPTION MODEL	61
6.9 LIMITATION OF BATCH PROCESS	63
6.10 MODEL ON COLUMN PERFORMANCE	
6.10.1 BED DEPTH SERVICE TIME (BDST) MODEL	63
6.10.2 COLUMN ADSORPTION EXPERIMENTS6.10.3 EFFECT OF FLOW RATE	
6.10.3 EFFECT OF BED HEIGHT	
6.10.5 THOMAS MODEL & BDST MODEL PARAMETERS	01
0.10.5 THOMAS MODEL & BUST MODEL FARAMLTERS	09
CHAPTER 7 CONCLUSION & RECOMMENDATIONS	71-72
7.1 CONCLUSION	
7.2 RECOMMENDATIONS	
7.3 FUTURE SCOPE OF THE STUDY	
REFERENCES	73-77

List of Tables

Sl no.	Table no.		Captions	Page no
1	2.1	:	INDIAN STANDERED SPECIFICATION OF DRINKING	7
			WATER	
2	2.2	:	DIFFERENT STATES OF CHLORINE WITH FORMULAE &	13
			STRUCTURE	
3	5.1	:	LIST OF PARAMETERS CHECK BY JAL TARA KIT	33
4	5.2	:	EXPERIMENTAL DATA FROM BATCH STUDY WITH CHLORIDE AND BIO ADSORBENT	37
5	6.1	:	OBSERVATION TABLE FOR DEEP WELL WATER	45
6	6.2	:	OBSERVATION TABLE FOR POND WATER	46
7	6.3	:	COEFFICIENT OF LANGMUIR AND FREUNDLICH ISOTHERM	55
8	6.4	:	OBSERVATION TABLE OF BATCH STUDY	56
9	6.5	:	TEMPKIN COEFFICIENT	59
10	6.6	:	COMPARISON OF CHLORIDE ADSORPTION CAPACITY OF VARIOUS ADSORBENT	59
11	6.7	:	COFFICIENT OF FIRST ORDER MODEL FOR CHLORIDE ADSORPTION BY PARTHENIUM	61
12	6.8	:	COFFICIENT OF SECOND ORDER MODEL FOR CHLORIDE ADSORPTION BY PARTHENIUM	62
13	6.9	:	BDST MODEL COEFFICIENT	69
14	6.10		THOMAS MODEL COEFFICIENT	70

List of Figures

SL NO.	FIGURE NO.		CAPTIONS	PAGE NO
1	2.1	:	Microscopic crystal view of NaCl	12
2	2.2	:	Lattice of chloride	12
3	3.1	:	Ground water recharge cycle	20
4	5.1	:	Map of Bhiwani district	31
5	5.2	:	satellite view of village Kharak Kalan	31
6	5.3	:	Jal Tara Kit	32
7	5.4	:	Water testing onsite	32
8	5.5	:	Sample collection from pond	33
9	5.6	:	Sample collection from well	33
10	5.7	:	Parthenium	34
11	5.8	:	Batch process	36
12	5.9	:	Linear graph between concentration of chloride & sorption	38
13	5.10	:	Lay out of column analysis	39
14	6.1	:	Microscopic pic of coliform bacteria	40
15	6.2	:	Chloride concentration variation chart	47
16	6.3	:	TDS concentration in well and pond water	47
17	6.4	:	Phosphate concentration	48
18	6.5	:	DO Concentration	48
19	6.6	:	Effect of Reaction pH on adsorption of chloride by Parthenium	49
20	6.7	:	Effect of Reaction time on adsorption % by Parthenium	50
21	6.8	•	Effect of Reaction time on chloride concentration by Parthenium	50
22	6.9	:	Effect of Reaction time on adsorption % of chloride	51
23	6.10	:	Removal % of chloride with various dose of Parthenium	51
24	6.11	:	Plot of removal (qe) for chloride Vs dose of Parthenium	52
25	6.12	:	Langmuir adsorption isotherm	57

CAPTIONS

SL NO.	FIGURE NO.			PAGE NO
26	6.13	:	Freundlich adsorption isotherm	57
27	6.14	:	Comparison between experimental qe & predicted qe of Langmuir & Freundlich	58
28	6.15	:	Tempkin Isotherm	59
29	6.16	:	Plot of time Vs ln (qe-qt) for first order kinetic model	61
30	6.17	:	Plot of time Vs t/qt for second order kinetic model	62
31	6.18	:	Column testing	65
32	6.19	:	Adsorbent activation	66
33	6.20	:	Breakthrough curve with different flow rate	67
34	6.21	:	Breakthrough curve with different bed depth	68
35	6.22	:	Parameters for BDST models	69
36	6.23	:	Parameters for Thomas model with 5 ml/min flow rate	69
37	6.24	:	Parameters for Thomas model with 10 ml/min flow rate	70
38	6.25	:	Parameters for Thomas model with 15 ml/min flow rate	70

LIST OF ABBREVIATIONS

DO	Dissolve Oxygen
СРСВ	Central Pollution Control Board
BDST	Bed Depth Service Time
SPCB	State Pollution Control Board
UHLA	Ultra- High Lime With Aluminum
CLDH	Calcined Layered Double Hydroxides
TDS	Total Dissolve Solids