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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1 GENERAL 

In this chapter, analysis of the performance of induction motor drive controlled using Indirect 

Vector control method is carried out and various performance checks are observed under 

different operating condition. The performance of IVCIM has been analysed using various 

intelligent controllers and compared with conventional PI controller. 

5.2 SIMULATION RESULTS OF INDIRECT VECTOR CONTROL 

An indirect vector control of induction motor was implemented through simulation and hardware 

and realised on a 3 HP, 415 volt, 50 Hz, 1440 rpm motor. 

Induction motor simulation was tested under various operating conditions. These operating 

conditions were chosen to make sure that drive can work satisfactory under worst working 

conditions. The drive was tested for following conditions: 

A. Machine was started then gradually load was applied. 

B. Machine was started then reference speed was changed. 

C. Machine was started and then both load and reference speed was changed in running 

conditions. 

D. Machine was started as a motor under no load and then condition of reverse braking was 

checked. 

The variation of stator current, stator voltage, reference and actual speed of motor along with 

variation of electromagnetic torque is discussed in upcoming sections. In each case, the load 

torque and speed is varied independently and it is observed that the through indirect vector 

control of induction motor an independent variation of speed and torque is achieved. 

 

 

 

 

 



47 
 

5.2.1 Performance analysis with Proportional Integral Controller (PI) 

The dynamic behavior of Indirect Vector controlled Induction motor, was studied initially 

through a conventional PI speed controller, where the actual speed of the motor was sensed 

through a techogenerator and the output voltage of techogenerator was sensed through a voltage 

sensor. For the speed variation in the range of 1200-1440 rpm, the voltage sensor provides a 

voltage in the range of 68-78 V respectively. The actual speed is compared with voltage 

corresponding to reference speed and the difference is processed by PI controller. 

5.2.1.1 Performance of IVCIM under starting and sudden switching of loads 

In Simulation, initially the motor is run at no load up to t=0.4 sec. After this a load of 4 N-m is 

applied on the motor. The motor speed is set at a reference speed of 150 rad/sec with a rated rms 

voltage of 230V. 

It is observed that the speed transition from zero to rated speed takes place in just over 0.05 sec. 

The starting current is initially higher and eventually reduces to steady state at 3.5 Amps. Again 

at time t= 0.6 sec, load was increased to 6 N-m. On application of load of 6 N-m, there is a 

momentary dip in the speed which is regulated by PI controller in 0.1 second and finally motor 

attains speed of 150 rad/sec and current eventually achieves steady state value of 6 Amp.  

Figure 5.1 shows the variation of the speed, line current (𝑖𝑎𝑏𝑐 ) and electromagnetic torque 

developed by the motor for above operating conditions.  
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Figure 5.1 Dynamic performance of IVCIM under variable load condition 

5.2.1.2 Performance of IVCIM under sudden change of speed 

In Simulation, initially the motor is run at a load of 4 N-m with reference speed of 100 radian/sec 

up to t=0.4 sec. After this, reference speed is changed to 125 radian/sec and 150 radian/sec at 

time t=0.5 sec and t=0.6 sec.  

It is observed that speed transition from zero to 100 takes place in 0.05 seconds and speed 

transition from 100 to 125 takes place in 0.0076 seconds. During the speed transitions, stator line 
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currents have high value which eventually reduces to steady state current of 4.9 Amps. The 

transition in developed electromagnetic torque is observed during speed transitions. 

Figure 5.2 shows the variation of the speed, line current (𝑖𝑎𝑏𝑐 ) and electromagnetic torque 

developed by the motor for above operating conditions. 

Figure 5.2 Dynamic performance of IVCIM under variable speed condition 

5.2.1.3 Performance of IVCIM under sudden load change and change in reference speed 

In Simulation, initially the motor is run at a load of 2 N-m with reference speed of 100 radian/sec 

up to t=0.4 sec. After this, reference speed is changed to 125 radian/sec and 150 radian/sec at 

time t=0.5 sec and t=0.6 sec. A load of 5 N-m is applied at t=0.5 sec.  
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It is observed that speed transition from zero to 100 rad/sec takes 0.045 seconds and speed 

transition from 100 to 125 takes place in 0.01 second respectively.  

On application of load of 5 N-m, there is a momentary dip in speed which is recovered in just 0.1 

seconds and the motor once again settles at the rated speed of 125 rad/sec with offset 2 rad/sec.  

The transitions in currents are more during first speed transition and current eventually attains 

steady state value of 5.08 Amps. Figure 5.3 shows the variation of the speed, line current (𝑖𝑎𝑏𝑐 ) 

and electromagnetic torque developed by the motor for above operating conditions.   

Figure 5.3 Dynamic performance of IVCIM under variable speed & variable load condition 
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5.2.1.4 Performance of IVCIM under sudden reversal of speed 

In this condition, machine was started at 100 rad/sec and reference speed was changed without 

changing the load on the machine. Under this operating condition, reference speed was changed 

to -100 rad/sec from 125 rad/sec at t=0.6 sec.  

It is observed that the speed transition from zero to 100 radian/seconds take place in 0.49 

seconds and speed transition from 125 rad/sec to -125 rad/sec take place in 0.38 seconds. 

Fluctuations in developed electromagnetic torque are observed during speed changes which are 

mitigated in very less time by PI controller. 

Figure 5.4 Dynamic performance of IVCIM under condition of reverse braking 
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5.2.2 Performance analysis with Fuzzy Logic Controller (FLC) 

The dynamic performance of IVCIM is analyzed using a Fuzzy Logic Controller also. The FLC 

speed controller is developed using rule base discussed in the previous chapter. The operating 

conditions are kept the same as that for the simulation using PI controller to analyze the 

performance of the two control schemes under same operating conditions.  

5.2.2.1 Performance of IVCIM under starting and sudden switching of loads  

In Simulation, initially the motor is run at no load up to t=0.4 sec. After this a load of 4 N-m is 

applied on the motor. The motor speed is set at a reference speed of 150 rad/sec with a rated rms 

voltage of 230V. 

It is observed that the speed transition from zero to rated speed takes place in 0.2 sec. The 

starting current is initially higher and eventually reduces to steady state at 3.7 Amps. Again at 

time t= 0.6 sec, load was increased to 6 N-m. On application of load of 6 N-m, there is a 

momentary dip in the speed which is regulated by PI controller in 0.15 second and finally motor 

attains speed of 150 rad/sec and current eventually achieves steady state value of 5.8 Amp.  

Figure 5.5 shows the variation of the speed, line current (𝑖𝑎𝑏𝑐 ) and electromagnetic torque 

developed by the motor for above operating conditions. 
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Figure 5.5 Dynamic performance of IVCIM under condition of variable load 

5.2.2.2 Performance of IVCIM under sudden change of speed 

In Simulation, initially the motor is run at a load of 4 N-m with reference speed of 100 rad/sec up 

to t=0.4 sec. After this, reference speed is changed to 125 radian/sec and 150 radian/sec at time 

t=0.5 sec and t=0.6 sec.  

It is observed that speed transition from zero to 100 takes place in 0.03 seconds and speed 

transition from 100 to 125 takes place in 0.015 seconds. During the speed transitions, stator line 

currents have high value which eventually reduces to steady state current of 4.9 Amps. The 

transition in developed electromagnetic torque is observed during speed transitions. 

Figure 5.6 shows the variation of the speed, line current (𝑖𝑎𝑏𝑐 ) and electromagnetic torque 

developed by the motor for above operating conditions.  
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Figure 5.6 Dynamic performance of IVCIM under condition of variable speed condition 

 

5.2.2.3 Performance of IVCIM under sudden load change and change in reference speed 

In Simulation, initially the motor is run at a load of 2 N-m with reference speed of 100 radian/sec 

up to t=0.4 sec. After this, reference speed is changed to 125 radian/sec and 150 radian/sec at 

time t=0.5 sec and t=0.6 sec. A load of 5 N-m is applied at t=0.5 sec.  

It is observed that speed transition from zero to 100 rad/sec takes 0.15 seconds and speed 

transition from 100 to 125 takes place in 0.09 second respectively.  

On application of load of 5 N-m, there is a momentary dip in speed which is recovered in just 

0.02 seconds and the motor once again settles at the rated speed of 125 rad/sec with offset 0.6 

rad/sec.  

The transitions in currents are more during first speed transition and current eventually attains 

steady state value of 4.9 Amps. Figure 5.7 shows the variation of the speed, line current (𝑖𝑎𝑏𝑐 ) 

and electromagnetic torque developed by the motor for above operating conditions. 
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 Figure 5.7 Dynamic performance of IVCIM under condition of variable speed and load 

5.2.2.4 Performance of IVCIM under sudden reversal of speed 

In this condition, machine was started at 100 rad/sec and reference speed was changed without 

changing the load on the machine. Under this operating condition, reference speed was changed 

to -100 rad/sec from 125 rad/sec at t=0.6 sec.  

It is observed that the speed transition from zero to 100 radian/seconds take place in 0.05 

seconds and speed transition from 100 rad/sec to -100 rad/sec take place in 0.038 seconds. 

Fluctuations in developed electromagnetic torque are observed during speed changes which are 

mitigated in very less time by FLC controller. Figure 5.8 shows the variation of the speed, line 

current (𝑖𝑎𝑏𝑐 ) and electromagnetic torque developed by the motor for above operating conditions 
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Figure 5.8 Dynamic performance of IVCIM under condition of reverse braking  

5.2.3 Performance analysis with ANFIS Controller 

The performance of Induction motor drive with indirect vector control implemented using 

ANFIS controller was analysed. The ANFIS controller was trained using the data obtained from 

conventional PI controller The operating conditions are kept the same as that for the simulation 

using PI controller to analyze the performance of the two control schemes under same operating 

conditions. 

5.2.3.1 Performance of IVCIM under starting and sudden switching of loads 

In Simulation, initially the motor is run at no load up to t=0.4 sec. After this a load of 4 N-m is 

applied on the motor. The motor speed is set at a reference speed of 150 rad/sec with a rated rms 

voltage of 230V. 
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It is observed that the speed transition from zero to rated speed takes place in just over 0.16 sec. 

The starting current is initially higher and eventually reduces to steady state at 3.57 Amps. Again 

at time t= 0.6 sec, load was increased to 6 N-m. On application of load of 6 N-m, there is a 

momentary dip in the speed which is regulated by PI controller in 0.015 second and finally motor 

attains speed of 150 rad/sec and current eventually achieves steady state value of 6.1 Amp.  

Figure 5.9 shows the variation of the speed, line current (𝑖𝑎𝑏𝑐 ) and electromagnetic torque 

developed by the motor for above operating conditions. 

Figure 5.9 Dynamic performance of IVCIM under variable load 
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5.2.3.2 Performance of IVCIM under sudden change of speed 

In Simulation, initially the motor is run at a load of 3 N-m with reference speed of 50 rad/sec up 

to t=0.4 sec. After this, reference speed is changed to 100 radian/sec and 125 radian/sec at time 

t=0.4 sec and t=0.6 sec.  

It is observed that speed transition from zero to 100 takes place in 0.13 seconds and speed 

transition from 100 to 125 takes place in 0.14 seconds. During the speed transitions, stator line 

currents have high value which eventually reduces to steady state current of 4.85 Amps. The 

transition in developed electromagnetic torque is observed during speed transitions. 

Figure 5.10 shows the variation of the speed, line current (𝑖𝑎𝑏𝑐 ) and electromagnetic torque 

developed by the motor for above operating conditions. 
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Figure 5.10 Dynamic performance of IVCIM under variable load 

5.2.3.3 Performance of IVCIM under sudden load change and change in reference speed 

In Simulation, initially the motor is run at a load of 3.5 N-m with reference speed of 50 

radian/sec up to t=0.4 sec. After this, reference speed is changed to 100 radian/sec and 150 

radian/sec at time t=0.5 sec and t=0.6 sec. A load of 5 N-m is applied at t=0.5 sec.  

It is observed that speed transition from zero to 50 rad/sec takes 0.1 seconds and speed transition 

from 50 to 100 takes place in 0.048 second respectively.  

On application of load of 5 N-m, there is a momentary dip in speed which is recovered in just 

0.02 seconds and the motor once again settles at the rated speed of 150 rad/sec with offset 0.6 

rad/sec.  

The transitions in currents are more during first speed transition and current eventually attains 

steady state value of 5.05 Amps. Figure 5.11 shows the variation of the speed, line current (𝑖𝑎𝑏𝑐 ) 

and electromagnetic torque developed by the motor for above operating conditions. 
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Figure 5.11 Dynamic performance of IVCIM under variable speed and load  

5.2.3.4 Performance of IVCIM under sudden reversal of speed 

In this condition, machine was started at 50 rad/sec and reference speed was changed without 

changing the load on the machine. Under this operating condition, reference speed was changed 

to -100 rad/sec from 100 rad/sec at t=0.6 sec.  

It is observed that the speed transition from zero to 50 radian/seconds take place in 0.16 seconds 

and speed transition from 100 rad/sec to -100 rad/sec take place in 0.182 seconds. Fluctuations in 

developed electromagnetic torque are observed during speed changes which are mitigated in very 
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less time by ANFIS controller. Figure 5.12 shows the variation of the speed, line current (𝑖𝑎𝑏𝑐 ) 

and electromagnetic torque developed by the motor for above operating conditions 

Figure 5.12 Dynamic performance of IVCIM under reverse braking condition 

5.3 Hardware Results of Indirect Vector Control of Induction Motor Drive with PI 

controller 

A complete hardware setup for the 3 HP, 230 V, 1440 rpm Induction motor operated with 

indirect vector control is implemented and its operation with PI is described to validate the 

results shown through simulation study. The experimental is already described in the previous 

chapter. 
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5.3.1 Performance of IVCIM using PI controller under condition of variable load 

Initially the Induction motor is made to run at no load. The motor is set to a rated speed of 150 

rad/sec. At t= 10 sec, the load was increased to 7 N-m. On applying the load, there was 

momentary dip in the motor speed but PI controller regulates the speed of the motor to 150 

rad/sec within 2 seconds.  The profile of the stator current (𝑖𝑎), motor speed (𝜔𝑟 ) and 

electromagnetic torque (𝑇𝑒)  is shown in figure 5.13.   

Figure 5.13 Dynamic performance of IVCIM under variable load condition 
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5.3.2 Performance of IVCIM using PI controller under condition reverse braking 

Initially motor was made to run in forward motoring mode and then at t= 6.2 secs, drive was 

made to run under reverse braking condition with reference speed of 100 radian/ sec. And again 

at t=14 sec, motor was brought to forward motoring mode with reference speed of 100 

radian/sec. The profile of the stator current (𝑖𝑎), motor speed (𝜔𝑟 ) and electromagnetic torque 

(𝑇𝑒)  is shown in figure 6.14. 

Figure 5.14 Dynamic performance of IVCIM under reverse braking condition 
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5.4 COMPARISON OF PERFORMANCE OF VARIOUS CONTROL SCHEMES OF 

IVCIM   

Figure 5.15 shows the comparison of performance of the two controllers when they attain desired 

speed. Comparison shows the performance of Fuzzy logic controller is better than the PI 

controller in terms of settling time and regaining the desired speed after application of sudden 

load.  

Figure 5.15 Comparison of speed variation in PI, Fuzzy  and  ANFIS controllers 

Drive was operated at rated speed (150 rad/sec) and load of 4 N-m was applied at t=0.4 seconds, 

the performance index of drive under above operating conditions is summarized in table 2. 

          Control scheme 

Parameter 

PI Fuzzy logic controller ANFIS 

Rise time (𝑡𝑟)  0.0269 sec 0.0323 sec 0.322 sec 

Peak time (𝑡𝑝) 0.034 sec 0.0421 sec 0.381 sec 

Steady state error  0.25 rad/sec 0.015 rad/sec 0.011 rad/sec 

Maximum overshoot 1.7 % 0.14 % 30 % 

Table 2: Comparison of various control schemes  

5.5 CONCLUSION 

The results of simulation in MATLAB were presented in this chapter and also performance of 

the drive was analysed. Also the results obtained from hardware setup for PI controller were 

presented and analysed for the performance estimation. From the comparison made in section 5.4 

of the chapter, it is evident that performance of drive controlled with Fuzzy Logic controller is 
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superior to that of PI and ANFIS controller in terms of maximum overshot. If we compare in 

terms of steady state error, then ANFIS controller is found to be superior of other two 

controllers. In terms of speed of response, PI control scheme is superior. The intelligent 

controllers are gaining the popularity these days because of this enhanced performance of the 

drive. The performance of the drive for forward and reverse braking was also analysed and it was 

observed that performance of Fuzzy logic controller was superior.  
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

6.1 MAIN CONCLUSION 

In  this  project,  an  extensive  review  of  PI, FLC  and  ANFIS  controllers   and   feedback  

signal  estimation techniques for squirrel  cage-type induction motor drives is carried out. This  

class  of  drives  is  widely  gaining  popularity  in  various  industrial  applications,   and   the  

technology        is   continuously        expanding.        An     intimate     understanding         of    

machine performance, under different operating conditions, is necessary to design modern high- 

performance drives.  Often,  for  a  particular  application,  where  more  than  one  type  of  

machines is being used, this analysis is necessary.   

Vector control was discussed extensively because of its importance in high-performance drive 

applications.  The  vector  control  implementation  with  corresponding  feedback  signal  

estimation  is  complex.  The Fuzzy Logic Controller was reviewed in this thesis.  The results are 

obtained in both MATLAB/Simulink and in real time through hardware implementation. 

The performance of the drive was analysed using above three control schemes and few 

conclusions were drawn. The performance of PI controller is superior to other two control 

schemes in terms of rise time. During the operation of the drive in reverse braking condition, 

performance of Fuzzy logic controller was found to be superior. In is found that sudden change 

of load caused ripples in the developed electromagnetic torque which are minimised efficiently 

by ANFIS controller. 

The characteristics of the drives are obtained and verified for the forward and reverse motoring 

mode and as well for plugging mode.  The results from both simulation in MATLAB/Simulink   

and   hardware confirm the conclusion.    

6.2 FUTURE SCOPE OF PRESENT WORK 

A  number  of  control  techniques  are  available  that  can  be  implemented  to  improve  the  

performance of the AC drives. The  conventional  PID  technique  implementation  in  real  time  

requires  tuning  of  three parameters which is not simple  and  easy to achieve  in real time. The 

implementation of the PI controller is relatively simple but the performance of the drive 



67 
 

deteriorates due to variations in motor parameters.  The PI and FLC can be implemented in 

hybrid mode to obtain a better performance.   

The Neural Network techniques are being studied presently.  The recent trend of the utilization 

of ANFIS, which is a hybrid of Fuzzy and Neural Network control algorithms, has also shown, 

wide potential for application in high performance IM drives. Besides  this,  in  the  present  

analysis,  the  hysteresis  current  control  technique  has  been  used for control of VSI, however, 

the SVPWM technique reduces the computational time  of the processors. A synchronous current 

control voltage PWM can also be used.   Speed   Sensor less   vector   control   is   an   emerging   

technology.   A   number   of   speed estimation techniques are being reviewed. However, very 

low-speed operation including start-up at zero frequency remains a challenge. Besides Sensor 

less Vector Control Scheme, there is also Direct Torque Control Scheme.   

Its  response  has  been  found  to  be  more  superior  to  FOC  scheme.  Torque and flux are 

changed very fast by changing the references. High efficiency and low losses - switching losses 

are minimized because the transistors are switched only when it is needed to keep torque and 

flux within their hysteresis bands.   
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