PERFORMANCE ANALYSIS OF INDIRECT VECTOR CONTROL OF INDUCTION MOTOR USING INTELLIGENT CONTROLLERS

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY IN CONTROL & INSTRUMENTATION (Electrical Engineering)

Submitted by:

Abhishek Choudhary

2K12/C&I/01

Under the supervision of

Prof. Madhusudan Singh

DEPARTMENT OF ELECTRICAL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Bawana Road, Delhi-110042 2014

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CERTIFICATE

I, Abhishek Choudhary, Roll No. 2K12/C&I/01 student of M. Tech. (Control & Instrumentation), hereby declare that the dissertation titled "<u>Performance analysis of indirect vector control of induction motor using intelligent controllers</u>" is a bonafied record of the work carried out by me under the supervision of Prof. Madhusudan Singh of Electrical Engineering Department, Delhi Technological University in partial fulfillment of the requirement for the award of the degree of Master of Technology has not been submitted elsewhere for the award of any Degree.

Place: Delhi Date: 13.07.2014 ABHISHEK CHOUDHARY

Prof. MADHUSUDAN SINGH

Supervisor

ACKNOWLEDGEMENT

First and foremost, I express my sense of gratitude to my supervisor Prof. Madhusudan Singh, Head of Department of Electrical Engineering for his guidance, support, motivation and encouragement throughout the period this work was carried out. His readiness for consultation at all times, his educative comments, his concern and assistance has been invaluable.

I also thank all the non-teaching staff of the Electrical Engineering Department for their fullest cooperation.

I would like to thank all those who have directly or indirectly helped me in completion of the thesis well in time.

Finally, I wish to thanks my parents for their moral support and confidence showed in me to pursue M.Tech at an advanced stage of my academic career.

Delhi, 2014

ABHISHEK CHOUDHARY

ABSTRACT

This dissertation deals with performance analysis of Vector control of IM using intelligent control schemes. Drives today have become an indispensable part of the industrial applications requiring high performance. Electric motors have their impact on almost every sphere of modern life. Electric motors convert electrical energy into useful mechanical energy. The induction motor drives are superior to the dc drives in many aspects such as performance, power to weight ratio, maximum speed capability, efficiency, low initial cost and robustness. The DC motor like performance of drive is achievable using Vector control of induction motor. The induction machine has a very non-linear multivariable structure which makes it very difficult to control. The temperature dependence on motor parameters affects the response of the drive.

The 3 phase squirrel cage induction motor is generally used for the variable speed application because they are rugged, reliable, and economical and require less maintenance. These are least expensive motors. Induction motor is a complex higher-order, nonlinear, strongly coupled, and multi-variable system. When operated directly from the line voltages, an induction motor operates at a almost constant speed.

In the present work, the indirect vector control of Induction motor has been studied, simulated and hardware prototype of the same is developed. The three phase induction motor is fed from a Voltage source IGBT inverter which is controlled using a Hysteresis PWM controller. The load currents i_a , i_b and i_c are compared with the reference currents i_a^* , i_b^* and i_c^* and error signals are passed through hysteresis band to generate the firing pulses, which are operated to produce output voltage in manner to reduce the current error. Various intelligent control schemes like fuzzy logic control and ANFIS control have been developed for speed control of IVCIM and performance of these intelligent control schemes are compared with the conventional PI controller. The comparison between the three techniques shows that the FLC has a robust performance. The transient response is smoother in case of FLC. During sudden load changes, the response obtained from the ANFIS is better. The ANFIS eliminates the transients during sudden change in load as compared to that of PI and fuzzy logic controller. On the other hand, the PI controller shows significant variations to change in load conditions. The response of FLC is faster than PI and ANFIS controller.

CONTENTS

Certificate	ii
Acknowledgement	iii
Abstract	iv
Contents	V
List of figures	viii
List of tables	Х
List of symbols	xi
List of symbols	XI

Chapter 1 Introduction

1.1 General		1
1.2 Literature	Review	2
1.2.1	Indirect Vector control	3
1.2.2	Direct Vector control	5
1.2.3	Direct Torque control	6
1.2.4	Sensor less Vector control	7
1.3 Objective	of present work	9
1.4 Outline of	f the project	10

Chapter 2 Dynamics of vector Control of Induction Motor

2.1 General	11
2.2 Various methods of speed control of induction motor	12
2.2.1 Scalar Control	13
2.2.2 Vector Control	14
2.3 Axes Transformation	15
2.4 Dynamics of Induction motor Control	17
2.5 Insights of Vector Control	20
2.5.1 Principle of operation of Vector Control	20
2.5.2 Synchronously rotating frame	22
2.6 Types of Vector Control	23
2.6.1 Direct vector control	23
2.6.2 Indirect Vector control	25
2.7 Conclusion	27

Chapter 3 Control schemes for indirect vector control of induction motor

3.1 General	28
3.2 Proportional Plus integral controller (PI)	28
3.3 Fuzzy Logic controller	29
3.3.1 Fuzzification	30
3.3.2 Rule base and inference	31
3.3.3 Defuzzification	32
3.3.4 Tuning Fuzzy Logic controller	32

3.4 Adaptive Neuro Fuzzy Inference System (ANFIS)	
3.4.1 Structure of Adaptive Neuro-Fuzzy controller	34
3.4.2 Training Adaptive Neuro Fuzzy Inference System	35
3.4.3 Loading, Plotting and Clearing the data	35
3.4.4 Generating or Loading the Initial FIS structure	35
3.4.5 Training the FIS	36
3.5 Conclusion	36

Chapter 4 Performance of IVCIM using PI, Fuzzy and ANFIS controllers

4.1 General	37
4.2 MATLAB model	
4.3 Hardware description of IVCIM	39
4.3.1 Three phase IGBT inverter (VSI)	39
4.3.2 Hall effect current sensor	41
4.3.3 Voltage sensors	41
4.3.4 Optical isolator and gain circuit	41
4.3.5 DS-1104 Controller board	42
4.4 Experimental Setup	43
4.4.1 Operation with PI (Proportional plus integral) controller	44
4.5 Conclusion	45

Chapter 5 Results and discussion

5.1 General	46
5.2 Simulation results of indirect vector control	46
5.2.1 Performance analysis with proportional integral controller (PI)	
5.2.1.1 Performance of IVCIM under starting and sudden switching of	f
loads	47
5.2.1.2 Performance of IVCIM under sudden change of speed	48
5.2.1.3 Performance of IVCIM under sudden change in load and change	ge
in reference speed	49
5.2.1.4 Performance of IVCIM under sudden change reversal of	
speed	51
5.2.2 Performance analysis with fuzzy logic controller	52
5.2.2.1 Performance of IVCIM under starting and sudden switching	
of loads.	52
5.2.2.2 Performance of IVCIM under sudden change of speed	53
5.2.2.3 Performance of IVCIM under sudden change in load and	
change in reference speed	54
5.2.2.4 Performance of IVCIM under sudden change reversal of	
Speed	55
5.2.3 Performance analysis with ANFIS controller	56
5.2.3.1 Performance of IVCIM under starting and sudden switching of	f
loads.	56

5.2.3.2 Performance of IVCIM under sudden change of speed	58
5.2.3.3 Performance of IVCIM under sudden change in load and	
change in reference speed	59
5.2.3.4 Performance of IVCIM under sudden change reversal of	
Speed	60
5.3 Hardware results of indirect vector control of induction motor with PI controller	61
5.3.1 Performance of IVCIM using PI controller under condition of variable load	62
5.3.2 Performance of IVCIM using PI controller under condition of reverse braking	63
5.4 Comparison of performance of various control schemes of IVCIM5.5 Conclusion	64 64
Chapter 6 Conclusion and future scope	
6.1 Main conclusion	66
6.2 Future scope of present work	66
References	68
Appendix A	

Appendix A Appendix B Appendix C

LIST OF FIGURES

Serial number	Figure Name	Page number
2.1	Internal structure of three phase induction motor	11
2.2	Equivalent two phase machine	16
2.3	abc-dq axes transformation in synchronously rotating frame of reference	17
2.4 (a)	Equivalent circuit of induction motor in a synchronously rotating frame,	18
	quadrature axes circuit	
2.4 (b)	Equivalent circuit of induction motor in a synchronously rotating frame,	18
	direct axes circuit	
2.5	Separately Excited DC motor	21
2.6	Stationary frame to synchronously rotating frame transformation	23
2.7	Block diagram representing direct vector control scheme	24
2.8	Block Diagram showing PWM generation in indirect vector control	26
	scheme	
3.1	Proportional plus Integral Controller block diagram	29
3.2	Block diagram of fuzzy logic controller	30
3.3	Input and Output membership function representation	32
3.4	Block diagram of Fuzzy logic controller	34
3.5	Basic structure of ANFIS controller	35
4.1	Simulink model of indirect vector control of induction motor	39
4.2	Block diagram of hysteresis PWM controller	40
4.3	Block diagram representing the Implementation of Indirect vector control	41
	scheme	
4.4	Optical isolator and gain circuit	43
4.5	Picture of original hardware setup	45
4.6	Proportional Integral Controller block diagram	46
5.1	Dynamic performance of IVCIM under variable load condition	48

5.2	Dynamic performance of IVCIM under variable speed condition	49
5.3	Dynamic performance of IVCIM under variable speed & variable load	50
	condition	
5.4	Dynamic performance of IVCIM under condition of reverse braking	51
5.5	Dynamic performance of IVCIM under condition of variable load	53
5.6	Dynamic performance of IVCIM under variable speed condition	54
5.7	Dynamic performance of IVCIM under variable speed & variable load	55
	condition	
5.8	Dynamic performance of IVCIM under condition of reverse braking	56
5.9	Dynamic performance of IVCIM under condition of variable load	57
5.10	Dynamic performance of IVCIM under variable speed condition	59
5.11	Dynamic performance of IVCIM under variable speed & variable load	60
	condition	
5.12	Dynamic performance of IVCIM under condition of reverse braking	61
5.13	Dynamic performance of IVCIM under variable load condition	62
5.14	Dynamic performance of IVCIM under reverse braking condition	63
5.15	Comparison of speed variation in PI, Fuzzy and ANFIS controllers	64

LIST OF TABLES

Sr No.	Table Name	Page Number
1	Fuzzy rule bas	31
2	Comparison of various control schemes	64

LIST OF SYMBOLS

IM	Induction Motor
R _s	Stator Resistance
R _r	Rotor Resistance
R _r '	Rotor Resistance Referred to Stator side
X _s	Stator Reactance
X _r	Rotor Reactance
X _r '	Rotor Reactance Referred to Stator side
X _m	Leakage Inductance
I ₁	Stator Current
I_2	Rotor Current
I ₂ '	Rotor Current Referred to Stator side
Im	Magnetizing Current
V ₀	Stator Voltage
S	Slip
ω_{s}	Synchronous Speed
$\omega_{\rm m}$	Rotor Speed (Machine Speed)
$\Omega_{\rm S}$	Average Synchronous Speed (in RPM)
f	Supply Frequency
р	No. of Poles
Pg	Air-gap Power
P _{cu}	Copper loss in the machine
P _m	Mechanical Power output of the machine
Т	Torque Developed by the motor
s _m	Slip at maximum torque
T _{max}	Maximum Torque
V _d	DC Link Voltage
ω_{ref}	Reference Speed
ω_{sl}	Slip Speed

Rotor Speed at Frequency f
Space Vector in d-axis
Space Vector in q-axis
Space Vector of a-phase
Space Vector of b-phase
Space Vector of c-phase
q-axis Stator Voltage with stationary frame
d-axis Stator Voltage with stationary frame
q-axis Stator Current with stationary frame
d-axis Stator Current with stationary frame
q-axis Rotor Current with stationary frame
d-axis Rotor Current with stationary frame
d-axis Stator flux with stationary frame
q-axis Stator flux with stationary frame
d-axis Rotor flux with stationary frame
q-axis Rotor flux with stationary frame
q-axis Rotor flux with stationary frame
Stator Self-Inductance
Rotor Self-Inductance
Stator Mutual-Inductance
Complex Conjugate of Stator Current
Instantaneous Active Power
Instantaneous Reactive Power