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ABSTRACT 

 
Images often suffer from noise and intensity inhomogeneity this makes segmentation 

challenging. Especially in medical images accurate segmentation of the voxels is 

necessary. They often corrupted by noise and non-uniformity. Fuzzy c means clustering 

is one of the popular method in medical image segmentation. But this can’t dealt with 

noise and intensity inhomogeneity. Recently level set based active contour models are 

also used in medical image analysis. Precise segmentation capability of active contour 

models make them attractive. Chumming Li’s model is proposed to deal with intensity 

inhomogeneity by using an energy function based on K-means clustering. In this report 

we propose a new energy model based on Li’s model. Our addition is twofold, first we 

introduce a fuzzy factor into the energy function which is somewhat similar to fuzzy c-

means clustering in continuous domain and secondly we utilize a special function which 

will be advantageous for segmenting noisy image. The proposed method can dealt with 

intensity inhomogeneity and noise as well. Even in the presence on noise it can result in 

smooth boundaries. The proposed method is verified on different MRI image which 

contain noise and intensity inhomogeneity and also on some natural images as well as 

synthetic images. The results shows that the proposed method is showing improved 

performance when compared with the state of the art techniques when dealing with 

images containing inhomogeneity and noise. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 IMAGE SEGMENTATION 

 

Image segmentation is a challenging task in image analysis as the images 

contain complex boundaries and often affected by noise. The main types of segmentation 

methods are Region based, Texture based, Edge based, Clustering and Active contours. 

Medical images mostly contain complicated structures and their precise segmentation is 

necessary for clinical diagnosis [39]. Image segmentation and contour extraction are the 

most intuitive methods for medical image visualization [49]. A detailed review about 

segmentation can be found in [35-37]. 

Medical imaging is essential and important to biomedical research and 

clinical applications due to its valuable intra vital information. Among various medical 

image modalities, magnetic resonance imaging (MRI) provides high contrast images that 

has been widely used in the interpretation and visualization of various anatomical 

structures. Segmentation in MR images plays a fundamental role and simplifies 

subsequent analysis procedures by extracting certain useful anatomical structures. 

Intuitively, the segmentation work is carried out by experts such as doctors and 

physicians. However, as the amount of MR image data is exploding nowadays, manual 

segmentation has the following disadvantages  

(1) Due to the complex anatomical structure in MR images, the slice-by-slice manual 

segmentation is time-consuming and tedious. 

(2) The identification of target boundary is subjective and the segmentation results with 

user-intervention are prone to operator bias. 

(3) Manual segmentation is less effective and impractical to the huge amount of MR 

image data. 
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Consequently, a wide variety of studies have been devoted to semi- or fully 

automatic computer-aided segmentation for achieving fast and objective segmentation  

with high accuracy to facilitate subsequent analyses. 

In this report a level set and fuzzy c-means clustering based segmentation 

technique has been proposed. For the better understanding of the rest of the paper basic 

knowledge required about FCM, Curve evolution and Level set are being discussed in the 

following sections. 

 

1.2 Literature Survey of FCM 

 

Medical images mostly contain complicated structures and their precise 

segmentation is necessary for clinical diagnosis [39]. Image segmentation and contour 

extraction are the most intuitive methods for medical image visualization [49]. Image 

segmentation is a challenging task in image analysis as the images contain complex 

boundaries and often affected by noise. FCM is one of the mostly used algorithms in 

medical image applications because of its fuzzy nature where one pixel can belong to 

multiple clusters which lead to better performance than crisp methods [39]. Most of the 

times, MRI images, contains noise and intensity inhomogeneity. Conventional FCM 

couldn't dealt with these things [50], so many FCM variations are proposed in the recent 

years to overcome disadvantages of conventional FCM by using the spatial information 

or by estimating the bias field for in-homogeneity or by making changes to the cost 

function.  

K.Xiao et.al [40] performed Gaussian smoothing on input image and 

proposed a method to find the weightage for each feature using bootstrapping technique 

when dealing with multiple features. To deal with intensity inhomogeneity Pham et.al 

[41] proposed Adaptive FCM, the centroids are multiplied by a unknown multiplier filed 

which represents the inhomogeneity .First and second order regularization terms are 

included in the cost function to make the multiplier field slowly varying and smooth. Jude 

et.al [42] used multidimensional features formed by GLCM feature generation model to 

include spatial information into FCM. Extra dimensions make the process time 

consuming to overcome this distance metric based compression is proposed which selects 

the representative pixels of the groups and perform clustering on them which resulted in 

fast and effective clustering. Enhanced FCM is proposed by Szilagyi et.al [43] to fasten 
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the segmentation process as well as reduce the noise effect. For achieving this a new 

factor which includes the pixel intensity along with mean of neighbourhood pixels is 

calculated before the segmentation process. Computational complexity is reduced by 

considering the histogram count of the voxels into the cost function. Noise inhomogeneity 

effect is reduced in a faster way by GCFFCM proposed by Jingjing Song et.al.[44] 

GCFFCM algorithm uses a gain field to deal with inhomogeneity and uses the histogram 

of the image to reduce the computational time. Abbas Biniaz et.al [45] proposed Gaussian 

spatial FCM, in which to reduce the noise effect the membership function is updated twice 

in the algorithm. First update is similar to the conventional FCM, in the second update a 

spatial factor is included which consists the Gaussian average of neighbourhood 

membership values. Another method to deal with noise affect is proposed by Shan Shen 

et.al [46] called as Improved FCM. In IFCM the distance term in FCM is modified by 

including two terms feature attraction and distance attraction which are calculated by 

considering weighted average of neighbourhood intensity differences and weighted 

average of spatial difference respectively. The parameters that are giving weightage to 

these terms are optimized at every step by using a simple artificial neural network model. 

Aprior probability and fuzzy spatial information are used in ISFCM proposed by Zulaikha 

Bevi et.al [47] to overcome the noise affect in MRI images. Cluster centres are initialized 

using histogram based FCM in the first step to achieve faster convergence and the 

membership updating equation is modified in a way to use probability obtained by the 

ratio of number of pixels belongs to the cluster to the number of pixels in the 

neighbourhood and spatial information. 

2.2 Literature Survey of Active Contours 

 

Active contours are the models which will are used to extract the objects by 

making curves evolve by minimizing a defined energy. These are sometimes referred as 

snakes. The energies used in these models will be such that they will minimized when the 

curves evolving are at the boundaries of the required object. Usually these energies will 

have two main components internal energy and external energy [5]. Internal energy will 

make the evolving curve smooth and regularize it and external energy will guide the 

motion of the curve towards its optimal position. The active contour models have 

applications in various domains like computer vison, image processing, medical analysis 

etc. In the recent years they gain lead in movie industry where tracking of objects or 
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persons is of crucial importance. They can be applied to 2D as well 3D situations. They 

will automatically search for their minimum energy positions but sometimes they may 

settle at local minimum.  

There is freedom to use different types of external energies to guide the 

motion of the curve. The commonly used external energies are edge based [7],[20],[24] 

and region based [1],[2],[5], [26]. Integration of level set approach and edge based active 

contour models and applying them to image processing application was pioneered by 

Malladi et al. [24]. Until then Snake models are implemented based on parameterized 

approaches which face lot of complexities. Their proposed method includes an energy 

term based on edge information into level set model which normally utilizes curvature 

motion. A similar approach based on level sets was proposed independently by Caselles 

et al. [18]. After few years Caselles et al. [7] propose one more approach based on edge 

information called as Geodesic Active Contours. A gradient flow based model which is 

similar to Caselles et al. [7] was proposed by Satyanand et al. [20] in the same year. 

Mumford Shah et al. [1] proposed a region based approach to approximate an image using 

a piece wise smooth model of it. The energy term used here is minimized when the 

approximation contains smooth regions as well as sufficient number of edges that can 

model the given image. The implementational approach for a special case of the Mumford 

Shah model is given by Chan-Vese [5]. In [5] a piece wise constant approximation of an 

image is obtained instead of piece wise smooth. The required approximation of image is 

achieved is using level set model developed by Sethian et al. [4]. The multiphase 

extension of [5] is proposed in [26] by Vese et al. where the similar algorithm as in [5] is 

used but with more number of level sets. In the recent years there are many advancements 

were made based on the Chan-Vese [5] model. One of such is proposed by C. Li et al. [2] 

to overcome the intensity inhomogeneity affect that occur in images. An energy function 

based on K-means clustering model is used. The intensity is modelled using a 

multiplicative bias field term and a local intensity clustering property is utilized to deal 

efficiently with inhomogeneity. Chen et al.[29] also proposed a method to dealt with 

intensity inhomogeneity almost with similar approach as in [2] but using an additive bias 

field. Region based model depends less on initial level set. But edge base models 

commonly suffer with the problem of level set initialization. B.N. Li et al.[10] have used 

fuzzy c-means clustering’s membership function to initialize level set to overcome the 

before mentioned problem. They also used the membership function to select the 
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parameters required in level set model. Cui et al.[16] have utilized the local intensity 

clustering property in forming a new FCM based clustering. L.Tang et al. [27] have 

utilized the concept of introducing fuzziness into the level set approach. They have 

developed an energy function by integrating FCM_S1&S2 model proposed by Chen et 

al. [57] and level set model by Samson et al. [33] .They showed that this model can 

successfully segment out images with high noise.  
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CHAPTER 2 

BACKGROUND 

 

2.1 FUZZY C-MEANS CLUSTERING 

 

          FCM [38, 39] finds its applications in variety of problems varying from data 

analysis to segmentation of images. In FCM it is possible for a data sample to belong to 

multiple clusters at the same time. The similarity is indicated by the membership value. 

In FCM a data sample is assigned with a membership value based on its similarity with 

the cluster centre. The membership values lie between 0 to 1, more the similarity higher 

the membership value [38]. Defuzzification is applied at the end of the clustering process 

to decide the clustering. FCM is a repetitive algorithm; the solution is achieved by 

repetitively updating the cluster centre and membership value. These updating equations 

are obtained by solving the cost function. 

Let  𝑿 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … 𝒙𝑵} denotes the data with N data samples; it has to be 

partitioned into c-clusters by minimizing the following cost function 

 

𝐽 = ∑ ∑ 𝑢𝑖𝑗
𝑚‖𝑥𝑗 − 𝑣𝑖‖

2
𝑐

𝑖=1

𝑁

𝑗=1

 (2.1) 

where, 𝒖𝒊𝒋 represents the membership of  𝒙𝒋 with the 𝒊𝒕𝒉cluster, 𝒗𝒊 is the 𝒊𝒕𝒉 cluster centre, 

‖. ‖ is a norm metric and m is a constant. The parameter m controls the fuzziness of the 

resulting partition. 

Taking the derivative of the equation and make it equal to zero by using Lagrange method 

we can get the following equations 

 
𝑣𝑖 =

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑗=1 𝑥𝑗

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑗=1

 

 

(2.2) 
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𝑢𝑖𝑗 = ∑ (

‖𝑥𝑗 − 𝑣𝑖‖

‖𝑥𝑗 − 𝑣𝑘‖
)

−2𝑐

𝑘=1

 

 

(2.3) 

and ∑ 𝑢𝑖𝑗 = 1    ∀ 𝑖 = 1,2, … 𝑁𝑐
𝑗=1   

 

2.1.1 Algorithm: 

1. Initialize U=[uij] matrix,  

2. Calculate the centres vectors V=[ vi ]using U matrix 

 

vi =
∑ uij

mN
j=1 xj

∑ uij
mN

j=1

 

 

3. Update U 

uij = ∑ (
‖xj − vi‖

‖xj − vk‖
)

−2c

k=1

 

 

4. If maxij {‖vold
ij − vnew

ij‖} < ϵ  end the process  

    Otherwise go to Step 2 

 

2.2 FCM Methods in Detail 

 

2.2.1 BCFCM 

 

Ahmed et al. [53] proposed a bias field estimation based FCM .To deal with 

intensity inhomogeneity   intensity of MRI voxel is modelled as the sum of observed 

intensity and a bias field term and the objective function of FCM is modified by including 

neighbourhood information it acts as regularization term it helps  to reduce the effect of 

salt and pepper noise. 

The modified objective function used in BCFCM is given by 
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𝐽 = ∑ ∑ 𝑢𝑖𝑗

𝑚‖𝑦𝑗 − 𝛽𝑗 − 𝑣𝑖‖
2

𝑐

𝑖=1

𝑁

𝑗=1

+
𝛼

𝑁𝑅
∑ ∑ 𝑢𝑖𝑗

𝑚 (∑ ‖𝑦𝑘 − 𝛽𝑘 − 𝑣𝑖‖2

𝑘∈𝑁(𝑥𝑗)
)

𝑐

𝑖=1

𝑁

𝑗=1

 

 

(2.4) 

Here 𝛽𝑗  is the bias field value at the jth voxel estimating this helps in removing the 

inhomogeneity effect in segmentation. The neighbourhood effect on objective function is 

controlled by the parameter 𝛼 .For low SNR MRI signals where noise effect is heavy 

giving importance to neighbourhood helps so a high 𝛼 value is required, for High SNR 

vice versa.𝑁𝑅 represents the size of neighbourhood to be considered. To get the updating 

equations for membership term, Cluster centre and bias filed term objective function is 

minimized using one Lagrange multiplier similar to the method used in FCM. 

  BCFCM works well for high SNR as well as low SNR MRI signals and helps to reduce 

the effect of inhomogeneity. Selection of the parameter 𝛼 heavily effects the accuracy of 

results for example small value of 𝛼 for low SNR resulted in leakage of boundaries in the 

segmented image. This method cannot be applied when considering multiple features as 

input. 

2.2.2 PFCM 

 

Yang et al. [54] introduced a penalty term to the FCM objective function 

which is inspired by Neighbourhood EM algorithm to reduce the effect of noise in the 

segmentation process. The penalty is formed by using the neighbourhood information 

similar to NEM a few changes are made to it to satisfy the criterion of FCM. 

     

 

2

1 1 1 1 1

( ) ( , ) ( ) (1 )
N c N N c

m m m

PFCM ij j i ij ik jk

j i j k i

J u d x v u u w
    

     (2.5) 

where 
jkw  represents the neighborhood region if kx is neighbor of 

jx  then 
jkw =1 else 

jkw

=0 .   is the controlling parameter similar to 𝛼 in BFCM. To get the updating equations 

similar procedure is followed as in conventional FCM. In PFCM cluster center updating 

equation hasn't affected by the changes made to objective function only membership 

Updation will change which will result in less computational complexity. 
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Like BFCM, PFCM also gives satisfactory results for low SNR data also. But 

it also has dependence on the controlling parameter . It deals only with noise it can’t 

reduce the effect of intensity inhomogeneity .PFCM can be applied even for 

multidimensional input feature data.  

2.2.3 SFCM 

 

To overcome the noise effect on the segmentation phase Chuang et al. [50] used 

spatial information while updating the membership function in the repetitive FCM 

algorithm, because the neighbourhood pixels possess same properties as the centre pixel. 

In contrast to BCFCM and PFCM the objective function is not changed in the Spatial 

FCM (SFCM) instead the membership function is updated twice.  

The first Updation is similar to the conventional FCM, in the second step a spatial 

function is defined as sum of the membership values in spatial domain in the entire 

neighbourhood around the pixel under consideration. 

     

 

ℎ𝑖𝑗 = ∑ 𝑢𝑖𝑘
𝑘∈𝑁(𝑥𝑗)

 
(2.6) 

where, 𝑁(𝑥𝑗) is the neighbourhood under consideration around 𝑥𝑗 

The spatial function is used in updating membership function again given by the equation 

     

 
𝑢𝑖𝑗 =

𝑢𝑖𝑗
𝑝 ℎ𝑖𝑗

𝑞

∑ 𝑢𝑘𝑗
𝑝 ℎ𝑘𝑗

𝑞𝑐
𝑘=1

 
(2.7) 

When surrounding pixels belongs to the same cluster as the centre pixel the membership 

function will gain larger values. In smooth regions clustering remains unchanged because 

spatial function will just strengthens the membership function. The correction of 

misclassified pixels from noisy regions will happen when spatial function reduces the 

weight of a noisy pixel by considering its neighbourhood pixels. The p and q value can 

be varied as per the requirement large q value implies effect of neighbourhood 

information in the segmentation process is more, this is suitable when the image is 

affected by high density noise. 

The Spatial FCM works well for high as well as low density noise. It can be 

applied for single and multiple feature data .Compared to other methods gives superior 

results without any boundary leakage even at high density noise when q value is carefully 
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selected. Parameter (p, q) selection is crucial in SFCM also. High value of q may results 

in blurring of fine details. 

2.2.4 FCM_s1 &FCM_s2 

 

Chen et al. [57] proposed a new algorithm to reduce the computational 

complexity taken by BCFCM. The noise reduction is taken care by taking the 

neighbourhood information but in contrast to BCFCM it computes the spatial term prior 

to the repetitive FCM algorithm. The variations of FCM proposed here are FCM_S1, 

FCM_S2. 

The modified cost function is given by   

     

 

22

1 1 1 1

c N c N
m m

km ik k i ik i

i k i k

J u x v u x v
   

      (2.8) 

where kx  is made by taking the mean or median of neighbourhood pixels respectively 

these algorithms named FCM_S1, FCM_S2. They have proposed kernel version of these 

algorithms also. 

 These algorithms may work well in the presence of noise also since it used spatial 

information also in the cost function. It can be used for multidimensional data. This 

algorithm is dependent on parameter ( ). The computational complexity will be less as 

the spatial term is computed only once. 

2.2.5 FLICM 

 

The limitations faced by most of the variations of FCM techniques which are 

trying to use the spatial information are their dependence on noise density and type of 

noise for which a parameter is being used. Fuzzy Local Information C- means algorithm 

is proposed by Krinidis and Chatzis [55] to overcome the usage of the parameter selection 

when dealing with segmentation of noisy images. A fuzzy factor G is introduced into the 

objective function of conventional FCM.  
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G is defined as   

     

 

21
(1 )

1
i

m

ki kj j k

j N ij
i j

G u x v
d



  


  (2.9) 

and the objective function of FLICM is given as 

     

 

2

1 1

[ ]
N c

m

m ki i k ki

i k

J u x v G
 

    

(2.10) 

where 
ijd  is the spatial Euclidean distance from pixel i to j, so pixels near to the centre 

pixel will affect the fuzzy factor most. The objective function looks like a small change 

to BCFCM but it resulted in better approach, by observing the cost function it is clear that 

when a centre pixel is a noisy pixel it will belong to a noisy cluster but the neighbourhood 

forces the noisy pixel to their cluster in order to minimize the objective function.  

FLICM can be used when the prior knowledge of noise is not available. It is 

independent of any parameter selection. It can be used to multidimensional data. It can't 

deal with intensity inhomogeneity.  

2.2.6 MDFCM 

 

Jamal et al. [56] introduced a new method to reduce the noise effect by using 

spatial information. The segmentation is carried by considering the multiple features like 

mean, standard deviation, singular value and intensity of the pixel hence called multi-

dimensional FCM.  

The features used in FLICM can be expressed as 

  1F = jx  ,Pixel intensity 

2
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x l

x

F
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




    , Mean
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 , Standard Deviation
 

Where L is the local window around 

 Before the segmentation instead of using all the features, different 

combination of features can be formed. The feature set selection depends on the 

requirement if accuracy is the constraint considering all the features gives better results. 

Computational cost is the criteria then selecting few important features like Eigen value, 

pixel intensity is recommended. 

In MDFCM by considering the spatial information in terms of different 

features resulted in better performance than most of the variations of FCM. Even with the 

images corrupted by high density noise MDFCM resulted in clear boundaries and noise 

free clustering. The main disadvantage of this method is computational complexity 

because of multidimensional data. 

2.2.7 WIPFCM 

 

A new approach to use the spatial information in FCM process was introduced by 

Zexuan Ji et.al [59]. In this method image patches are considered instead of just pixels 

which will add additional information to the data. Weight vectors are assigned to every 

image patch based on their variance with respect to their neighbouring pixels. The 

expression to carry out this weight assignment is given by,  

     

 exp[ ( )]k

kr

r N

kr kr

kn



 


  


 

 

(2.11) 

where kr and kr represent the weight and variance of rth pixel in kth patch 

respectively, later it is normalized to make the sum of the weights equal to one. 

The weight vector assigned here results in removing the effect of edges and noisy 

pixel on clustering process by assigning less weight to them. 

The objective function for WIPFCM is given by 
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  

    

 

(2.12) 

where kI  represents the image patch of size q q  around the pixel kx , iv  represents the 

cluster centre of size q q . 

 In this method by utilizing the spatial information it handled noise effectively, 

there is no external parameter to be selected like in other methods. Increased 

computational burden because each pixel need to be represented by a patch and additional 

step of calculation of their weights.  

2.2.8 KWFLICM 

 

 Maoguo Gong et.al [60] proposed an variation of FLICM  Kernal weighted FCM. 

In this approach they have introduced trade off weights to the pixels and replaced the 

Euclidean distance with kernel metric based distance. 

 In FLICM a factor is introduced which utilizes spatial distance and Euclidian 

distance of neighbouring pixels from the centre pixels but it fails to analyse the 

neighbouring pixels when the centre pixel itself is noisy , to overcome this disadvantage 

in KWFLICM utilizes more local information by utilizing spatial variance instead of 

Euclidian distance . The weight assigning technique is similar to the one used in 

WIPFCM, here in addition to that it utilizes spatial distance also, and it can be explained 

by these equations 

     

 
ij gc scw w w   

 

(2.13) 

     

 
𝑤𝑔𝑐 = {

2 + 𝛽𝑖𝑗    𝜎𝑗 < 𝜎

2 − 𝛽𝑖𝑗    𝜎𝑗 ≥ 𝜎
 

 

(2.14) 

 

   

and      

 

𝑤𝑔𝑐 = {
2 + 𝛽𝑖𝑗    𝜎𝑗 < 𝜎

2 − 𝛽𝑖𝑗    𝜎𝑗 ≥ 𝜎
 

 

(2.15) 
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Where, 𝛽
𝑖𝑗

 is the weight obtained using the formula given in WIPFCM after 

normalization, 𝑤𝑔𝑐 is made positive by keeping these conditional statements, 𝜎̅ is 

the average variance in the local window. 

 The objective function is given by 

     

 
'

1 1

(1 ( , ))
N c

m

m ik i k ki

i k

J u K x v G
 

    

 

(2.16) 

and the fuzzy factor '

kiG  is given by 

     

 

'

1 1

(1 ) (1 ( , ))

i

N c
m m

ki ik ij ki i k

i k i j
j N

G u w u K x v
  



     (2.17) 

 

where, i
N  represents the local window around the pixel,  

( , )i kK x v  is the kernel based distance measure , the kernel used in this method is Gaussian 

radial basis function (GRBF). For this Gaussian kernel the band width parameter used is 

estimated using the variance of the zero-mean input data, it can be expressed by the 

following relation 

     

 

1

2 2

1

1
( ( ) )

1

N

i

i

d d
N




 

  

(2.18) 

 

     

 
i id x x   

(2.19) 

 The kernel distance used here is obtained by projecting the input data into a high 

dimensional space by using the kernel. KFLICM is independent of any external parameter 

selection; it utilizes local information in an effective way by using the spatial variance 

and spatial positioning. Kernel metric distance used here may lead to better clustering 

performance in the presence of image artifacts, noise and outliers. 
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2.2.9 STRONG FCM 

 

The data given to FCM is projected into a high dimensional space using kernels 

and distance between the cluster centre and data points is calculated in that domain.it may 

leads to better clustering of complex noised data this technique is proposed by 

S.R.Kannan et.al. [58] In this they have proposed two techniques based on this approach 

and also a new method to initialize the cluster centres to improve the performance of 

FCM. 

The method proposed by S.R.Kannan et.al to initialize the centres is as follows, 

first find the median of each data sample (in case of multidimensional data) and sort the 

data in descending order with respect to the magnitude of medians, Now, make the data 

into C (no. of clusters) groups i.e. first N/C (N-total no. of samples) data samples in the 

sorted data form one group and rest follows the same manner. In a group find out the 

distance between every pair of data sample and take the average of pair of samples with 

maximum distance, that average value will become the prototype for the respective 

cluster. 

First FCM technique proposed is Robust Fuzzy C-means based kernel function 

(RFCMK) in this technique the modified cost function is given by 

     

 1 1

2 ( ( , ))
n c

m

ik i k

i k

J u K x v
 

   
(2.20) 

The Kernel function is expressed as 

     

 

2

( , )
i k

i k

x v
K x v 




   ,  ,  >0 

(2.21) 

Cost function here is obtained by projecting the data into higher dimensional space by 

non-linear transformation and it is minimized using the properties of kernel functions. 

The updating expressions for membership function and cluster centres can be obtained 

by differentiating the cost function and making it equal to zero using Lagrange multiplier 

technique as done in the conventional FCM. 

 Second FCM technique proposed is Tsallis entropy based fuzzzy c-means 

algorithm (TEFCM). This is an extension to the previous technique, because above 
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technique cannot distinguish similar intensity objects of different clusters. To overcome 

this problem an extra term is introduced into the cost function 

     

 
1 1 1 1

2 ( ( , )) ( 1)
1

n c n c
m mi
ik i k ik

i k i k

J u K x v u



   

   


   

(2.22) 

where, ( (( / ) / ) )
i

i i R j

j N

n
x n c N x

 

     is a term which will include data from 

neighborhood and   is a parameter to control the effect of neighborhood term. 

By including this extra term spatial information is also included in the objective function 

which will lead to improved performance. 

 The above discussed methods can be used to multidimensional data, 

compared to FCM which will give good clustering when all the clusters are of same size 

and well separated these techniques which utilized higher dimensional space may give 

better results even when the data is not well distributed and noisy also. TEFCM 

performance is parameter dependent. Time consumption may be less due to because 

neighbourhood term is calculated only once and it is utilized in the clustering process 

 

2.3 CLOSED PLANAR CURVES 

 

2.3.1 Introduction 

 

A curve can be defined as a collection of points, near each point it looks like a line with 

some deformation, called as curvature. A straight is a simple curve with null curvature. The 

difference between a function and a curve is that a curve can possess two different values for the 

same values of ( , )x y . A function can be considered as a part of the curves.  

A curve is defined as  

( ) { ( ), ( )}C p x p y p  Where, [0,1]p   
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The tangent and normal of a curve can be defined as, 

By the basic theory of geometry a tangent can be obtained by taking the derivative of the curve, 

So, a unit tangent can be given by, 

 
p

p

C
t Cs

C
   

 

(2.23) 

where 
p

C
C

p





 

 

The normal to the curve will always be in perpendicular direction to the tangent. 

1sC   

, 1s sC C   

By taking partial derivative on  both sides w.r.t ‘s’ 

, 0s ssC C   

s ssC C   

 
ssC kn  (2.24) 

where, n  is normal to the curve, k represents the curvature 

 

 

Fig. 2.1. Representation of a closed planar curve 
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2.3.2 Curve evolution 

 

The planar curves can be made to change their topology with time this is called as 

Curve evolution. The deformation of the curve is controlled by a velocity factor V .  

We can define the time changing curve as, 

 ( )
( , )

C p
V p t

t





 

(2.25) 

       

  Fig. 2.2 Tangent and normal of a velocity vector of a curve 

The geometry of the evolving curve is not affected by the tangential component. So, 

we can consider only the component in normal direction. 

 
,tC V n n  

(2.26) 

 

 

 

tC n  Constant flow 

tC kn  Curvature flow 

1/3

tC k n  Equi-Affine 

heat flow 

( ( , ) ( , ), )tC g x y k g x y n n    Geodesic 

Active 

contours [7] 

 

Table 1.1.Some of the basic velocity functions for curve evolution 
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The curve evolution can be controlled by different types of velocities. Care should be 

taken in order to control the motion of a curve in a homogeneous manner, otherwise it might lead 

to disturbances in curves. Some of the basic velocity functions that can be considered are listed in 

Table 1.1 

The constant flow leads the curve to evolve with unit velocity in normal direction, it 

causes the curve to change the topology which will not happen in curvature flow as the curve 

changes depends on the curvature which makes it smooth. Curvature flow is rotational invariant. In 

this the curve vanishes as a circular point, while in equi-affine flow curve vanishes as an elliptical 

point. Equi-affine flow is affine invariant. When it comes to geodesic active contours they make the 

curvature flow depend on the edge information. In application to image processing ( , )g x y  is 

defined such that it will have higher values near the edges, which makes the curve stop at the edges 

in the image. 

2.4 LEVEL SET METHOD 

Images often contain complex topologies and weak boundaries segmenting out these 

kind of images is problematic and most of the times results in faulty segmentation. Regular 

approaches like region growing fail to achieve consistent accuracy when dealing with complex 

boundaries.  

Level set methods are used for tracking of shapes and interfaces. In the recent year’s 

level set methods gained attention because of their successful and efficient applications. The recent 

developments in computer advancements made the faster phase growth of level set methods easier. 

It made researchers to shift from the conventional discrete domain to continuous domain and PDE’s 

in image processing applications. The advantage of level set methods over the parameterized 

models is that parameterization of the contour points is not required the computations can be carried 

out in a fixed Cartesian grid. It shows its superiority when changing the topology of curves like 

merging and splitting. Achieving the same using the conventional parameterized models is quite 

difficult because care should be taken in case of splitting where the new points should come from 

and in the case of merging which points are eliminated. On the other hand level set methods can 

naturally change topologies.  

Dervieux and Thomassett have developed the basic concepts of Level set method, but 

with the work of Osher and Sethian (‘87) [4] only level set Method became popular for the first 

time. At first level set method was just used to track shapes and interfaces by Osher and Sethian but 

after some years the reach of the level set method has been expanded to multiple domains like image 
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processing, computer vision, fluid dynamics etc. The Level set function is defined as a zero level 

set which can represent the contour of a higher dimensional space. 

The planar curves discussed in the above section can be used to detect the boundaries 

of the objects in the image. Level set methods are the popular techniques used for numerical 

implementation of the curve evolution. The level set  will take positive values inside the curve, 

outside the curve it will have negative values and zero value on the curve.  

 

A closed planar curve or a contour can be defined as the zero level set of  , Given by 

{( , ), ( , ) 0}C x y x y   

 

         Fig. 2.3. A Curve representation using level set 

 

To implement curvature flow now the level set will evolve so that the zero 

level set will change with time which will give the contour. Before that it is important to 

derive some basic properties of levelset which will be utilized in future. 

The normal of the level set can be obtained by derivation, since zero change 

along the level set 

2.4.1 Level set Normal: 

 

( , ) 0s x y   

( , ) ,s x s y sx y x y T        
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, 0T   

, 0T








(Since the normal should have unit length, divide it by  ) 

 

 

So,     

 
N






 


 

(2.27) 

2.4.2 Level set curvature: 

 

The curvature can be obtained by taking the second derivative of the level set, 

( , ) 0ss x y   

, , , 0

, [ ],

( )

xx s xy s yx s yy s

d d
T T k N

ds ds

k k x y x y T

k div

  


     



 

     


       



   

 

So,     

 
( )k div









 

(2.28) 

 

A new variable time can be included in  time varying level set function 

( , , )x y t  .The level set formulation defined by Osher and Sethian [4] is given by, 

 

The level set will evolve with time using the above equation, it can be derived as 

In planar curves, tC V N  

By taking derivative w.r.to ‘t’ 

     

 
V

t





 


 

(2.29) 

T








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2.5. ACTIVE CONTOURS IN DETAIL 

 

2.5.1 Shape Modelling with front propagation 

 

In application to computer graphics and computer vision there is a 

requirement of accurately modelling the shape of an object. Malladi et al. [24] proposed 

a technique for shape modelling by extending the existed methods by overcoming their 

limitations. They have proposed a front propagation based level set approach which will 

evolve the curve based on the edge information available from the images. The edge term 

defined by Malladi et al. will be utilized to stop the curve at the evolution of the curve at 

the boundaries of a required object.  

The energy guiding the level set will usually contain two types of energies, 

one is internal energy GF which is depending on the geometry of the curve. It will 

regularize the curve shape from degrading and make it smooth and the second one AF is 

the external energy which comes from the information of the image it will guide the curve 

how to evolve and where the object boundaries can occur. It can be represented as, 

     

 

A GF F F   (2.30) 

The evolution of the level set guided by the gradient descent is, 

     

 
F

t





  


 

(2.31) 
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( )A GF F

t


 


    


 

 

(2.32) 

If the internal energy 0GF  , then the curve evolution depends on AF , which is 

independent of curve’s geometry , so curve evolves with a constant velocity. Malladi et.al 

defined a negative speed function IF , that goes in addition with AF . Which is defined as, 
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(2.33) 

where, 1 max( * )M G I   and 2 min( * )M G I   . When the value of *G I takes 

maximum value (i.e., at the boundaries) we can observe from the equation that the force 

will become null. Which forces the curve to stop at boundaries. 

But when 0GF  the force can’t take null value, it forces the curve to flow 

even when the boundary is reached. To overcome this an extra term g has been proposed. 

It is defined as, 

     

 

1

1 ( * )
g

G I


 

 
(2.34) 

This term is added as a multiplicative term to the original force function. Because

g will take values near to zero when *G I  reaches high values. This will bring the 

force values also to zero, which will make the curve evolution to stop at the boundaries. 

There are other options for g as well, which can reach null values even faster. One of 

such g is given as, 

     

 

*G I
g e 
  

(2.35) 

The updated level set evolution equation with new forces is, 
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(2.36) 
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(2.37) 
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The above discussed concepts about the curve evolution on level set function 

are valid only for zero level set 0  . In a level set evolution formation when considering 

complete level set  , there should be force values for other points as well as which are 

not on 0   as well. For this Malladi et al. given an algorithm to define forces for other 

points on level set. Let us consider a point on c  it can be seen as a point which is c

units away from the zero level set. For every point on non-zero level set 0  find its 

nearest point on zero level set 0  and assign its force to the point on 0  . This process 

repeats on every iteration and using these forces total level set will evolve. 

2.5.2 Geodesic Active Contours 

 

Caselles et al. [7] proposed edge based technique which will extend the model 

proposed by Malladi et al. [24]. This method acted as one of the state of the art model for 

recent advances in edge based active contour models. The main goal of this model is to 

take the advantage of both geometric active contour which are based on curve evolution 

and classical snakes which are based on energy minimization .They have proposed a 

Riemannian metric based term and proved that the geodesic curve with a metric derived 

from image information in Riemannian space serve the similar to classical snake based 

models. They have derived the level set evolution by minimizing the length based on the 

new metric.  

The conventional snake model given by Kass et al. [34] can be represented as, 

     

 

2 21 1

0 0

p ppE C dp C dp   
21

0

( )I C dp   

 

(2.38) 

where  ,   and  are positive real constants. The first two terms are to maintain 

smoothness of the curve that are based on curves properties and also called as internal 

energy. The third term is external energy obtained from image .Which will make the 

contour attract towards the boundaries of object in the image. In the above model the goal 

is to find a contour which will be at the points where I is maximum and having good 

number of edges which is controlled by the internal energy. Which will be controlled by 

the parameters ,   and  . 
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The modified model proposed by Caselles et al. [7] is by neglecting the 

second term in the snake model and by replacing the edge term with a more generalized 

edge indicator g . Which is strictly decreasing function. 

     

 

2 21 1

0 0

( ( ) )pE C dp g I C dp      
(2.39) 

Based on the above model, a length term in Riemannian space is derived. That is 

     

 RL =

1

0

( ( ) ) pg I C C dp  
(2.40) 

Let us look at conventional formation of the Euclidean length term of a curve is, 

     

 

pL C dp ds    (2.41) 

where ds is Euclidean arc-length and we know that 
tC kn , k is Euclidean curvature 

The equation (2.40) can be written as 

     

 RL
0

( ( ) )

L

g I C ds   
(2.42) 

By observing the above formulation we can note that, This new term is 

obtained weighting the conventional length with the factor ( ( ) )g I C . This new metric 

contains the edge information, so when minimizing the new length term we are 

considering image information also in contrast to the conventional length term where only 

curve’s internal characteristics are considered. Which can lead to better results. 

So the curve flow equations can be obtained by finding the Euler-Lagrange 

of the proposed energy function. The resultant curve evolution equation will be 

     

 

( ) ( . )tC g I kn g n n    (2.43) 

The GAC (Geodesic Active Contour) model proposed by Caselles et al. 

[7]can be implemented using the level set evolution method proposed by Sethian et al.[4] 

. By considering the level set function   where the zero level set ( ) 0x  intrinsically 

represents the curve to be evolved. From the previous chapter’s knowledge we can state 

that 
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If 
tC V n  (2.44) 
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(2.45) 

So, the level set evolution equation for the proposed model will be, 
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(2.46) 

The proposed evolution can make the curve stop at the boundaries where the 

gradient value is not complete null. While in previous models the curve stops only at ideal 

edge ( 0g  ), which is not possible in real images. This model can also. To increase the 

speed of convergence an optional term ( )cg I   can also be added to the equation. It 

might also help to avoid local minimum .Where c is the Lagrange multiplier. The 

modified level set evolution equation is, 
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(2.47) 

2.5.3 Mumford-Shah Model 

 

Mumford and Shah [1] proposed a piece-wise smooth model to segment the 

image, based on the following assumption a) image varies smoothly with in a region and 

b) varies discontinuously across the boundaries between regions. Let us assume that 

:I  is a gray scale image, Where   represents the image domain. Segmentation 

of the image is achieved by dividing   into different regions  1 2, ,..., N   which are 

separated by a contour C , it can be represent as i i C   .   

To achieve piece-wise smooth approximation of the image I  the model proposed by 

Mumford-Shah should be minimized which is given by, 

     

 

 
2 2

\

( , )MS

C

F u C I u dx u dx v C
 

       (2.48) 

where,  and v  are fixed parameters. u represents the piece-wise smooth approximation 

of the observed image I , u should be such that it should contain smoothly varying values 

with in a region i and varies rapidly across the boundaries. The first and second terms 
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in the above model will make u follow the above described properties. First term will 

force u to close to the image I , smoothness of u is controlled by the second term.. C  

gives the length the curve which will regularize the contour. 

2.5.4 Two phase Chan-Vese model 

 

The implementational approach for Mumford-Shah [1] model is proposed 

by Chan-Vese [5] by taking a special case of it. A Piece wise constant model is considered 

by Chan-Vese [5] where the piece wise smooth model u is replaced by a piece wise 

constant approximation of it. This can be also called as minimal partition problem.  

The above mentioned Mumford-Shah model can also be represented like, 
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Minimization of two phase model of Chan-Vese will achieve two separate 

regions 1 2,  in the image which are separated by a contour C . They assumed that the 

intensities inside these two regions are approximately piecewise constant. The fitting term 

used for this purpose is given by, 

     

 

   
1 2

2 2

1 2 1 2( ) ( ) ( )E C E C E C I c dx I c dx
 

        
(2.50) 

where 1c and 2c  represents the intensity average of image I in the regions 1 2, 

respectively. 1 2,   can be assumed regions inside and outside of contour C  respectively. 

The above mentioned fitting function will achieve the value when the contour 

is exactly at the boundaries.  ( 0( ) 0E C  , 0C is the boundary of the piecewise constant 

image). When the contour C is outside the boundary 1 2( ) 0, ( ) 0E C E C   and if the 

contour C  is outside of the boundary 1 2( ) 0, ( ) 0E C E C  . 

The Energy function given by Chan-Vese by adding regularizing terms to the 

fitting energy is given by, 
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   
1 2

2 2

1 2 1 1 1 2 2( , , ) . ( ) . ( )CVF c c C Length C v Area I c dx I c dx  
 

         
(2.51) 

where   and v are constant parameters whose values can be positive or zero. Values of

1 , 2 will affect the weightage given to the each region, most of the cases there are taken 

as unity. The model given above will be equivalent to the Mumford-Shah model by taking 

0v  , 1 2     and the constant approximations 1 2,c c  are replaced by piecewise 

smooth approximations. 

2.5.4.1 Implementation of Chan-Vese model using Level sets 

 

Chan-vese used the level set approach proposed by Osher and Sethian [4] to 

implement their model. The curve/contour C  was represented by the zero level set 0( )x

of the level set function ( )x : , The level set function is defined such that, 

     

 ( )x =
1

2

; ( ) 0;

; ( ) 0;

; ( ) 0;

x C x

x x

x x







  
 

  
   

 (2.52) 

Using the level set function definition, we can change the energy function of 

the Chan- Vese model into the level set form by replacing the unknown C  with unknown 

 . 

     

 

( )Length C =  0 ( ( ))Length H x dx 


    

 0 ( ) ( )x x dx  


   

(2.53) 

     

 

1( ) ( 0)Area Area    = ( ( ))H x dx


  (2.54) 

where, ( ( ))H x  represents Heaviside function and  0 ( )x   represents the Dirac delta 

function. They are defined as, 

     

 

𝐻(𝑧) = {
1, 𝑖𝑓 𝑧 ≥ 0
0, 𝑖𝑓 𝑧 < 0

 and 𝛿0(𝑧) =
𝑑

𝑑𝑧
𝐻(𝑧) 

(2.55) 

The Fitting energy term can also be represented using the level set function, 
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          (2.57) 

The Chan-Vese energy function in level set form is, 

     

 

1 2( , , )CVF c c    0 ( ) ( )x x dx   


  + ( ( ))v H x dx

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   
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(2.58) 

  The optimal values of 1c  and 2c  can be achieved by minimizing the fitting 

energy ( )E C  with respect to  , The updating equations are given by, 
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Regularized versions of H and 0 are used for numerical computations and 

practical implementation purposes. H was approximated in the present model using the 

following expression and 0  can be obtained by taking derivative of it. 

     

 

1 2
( ) 1 arctan
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z
H z

 

  
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  
 

(2.61) 

To achieve the segmentation using the Chan-Vese model the level set 

function ( )x  has to get an extra parameter t (time). As proposed by Osher et al. the level 

set function should be updated in a repetitive manner so as to achieve the optimal solution 

to fit the model. Time varying level set function ( , )x t  is initialized with an initial 

contour 0 ( ,0)x  .  

The level set update function is given by, 
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t





 
 
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(2.62) 
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Minimizing 
CVF  with respect to   by keeping 1c and 2c  using Euler – 

Lagrange equation results in, 
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2 2 1 1( ) I c I c div v
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 (2.63) 

 

2.5.4.2 Algorithm 

 

The important steps of Chan-Vese model can be summarized as follows 

 Initialize 0 ( ,0)x  , Iter=0 

 Update 
1( )Iterc   and 

2 ( )Iterc   using update equations 

 Update 1Iter  , using the above PDE 

 Re-initialization (if required) 

 Check if 1c and 2c  are changing, if yes repeat the process 

2.5.5 Multiphase Chan-Vese Model 

 

Chan Vese [26] proposed a new approach ,it can be applied to multi-phase 

applications where the image can be segmented into multiple regions .The two phase case 

of the Mumford shah problem can only be used to segment an image into two regions 

using one level set function. It can be extended to multiphase and in [26] Chan-Vese tried 

to achieve this using just log N level sets for N-phase problem. 

Before Chan-Vese  Zhao et.al [51] proposed an approach deal with 

multiphase. In this approach they have considered N level sets to deal with N-phase 

problem. Each region can be defined using these level sets as { ; ( ) 0)i ix x   . The 

challenge to be faced is that N level sets defined shouldn’t overlap and their union should 

result in complete domain  . To achieve this they have added a regularizing energy term 

2

( ) 1i

i

H dx 


 
 

 
  , at each time step  is updated.  

To understand the level set model proposed by Chan-Vese , let us assume 

logm N  level set functions  1 2, ,..., m    , and their corresponding Heaviside 
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functions  1 2( ) ( ), ( ),..., ( )mH H H H    . The union of the zero level of these level set 

functions should result in boundaries of the image. A region can be defined using these 

m- Heaviside functions, this function will take the values either 0 or 1. So it can be 

considered as binary code, 2m
different levels can be represented using m-bits.  

 

 

 

 

 

 

 

 

For better understanding let us consider the 4-phase case which requires 2- level set 

functions which can be visualized as shown in the Fig. (2.1) and its fitting energy can be 

written as, 

     

 
 

2

11 1 2( , ) ( ) ( )E c I c H H dx 


    
2

10 1 2( )(1 ( ))I c H H dx 


                

 
2

01 1 2(1 ( )) ( )I c H H dx 


    
2

00 1 2(1 ( ))(1 ( ))I c H H dx 


     

(2.64) 

And the length term is given by, 

     

 

( )Length C   1 2( ( )) ( ( ))H x H x dx 


    
(2.65) 

where, 11 10 01 00{ , , , }c c c c c  is representing the constant values for each region and 

1 2{ , }   . The parameter  is assumed unit value here. The piece wise constant 

function u representing the approximation of image can be written as, 

     

 

11 1 2 10 1 2( ) ( ) ( )(1 ( ))u c H H c H H       

        01 1 2(1 ( )) ( )c H H   00 1 2(1 ( ))(1 ( ))c H H     
(2.66) 

      

Fig. 2.1 Representation of four regions using 2 Level sets 



32 

 

The fitting energy term is minimized with respect to c  by keeping   as 

constant , to achieve the updating equations for 11 10 01 00{ , , , }c c c c c  which will change 

their values at each iteration. They are  
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By minimizing Euler –Lagrange equations by using the energy equation

( , ) ( )MCVF E c Length C    with respect to   by keeping c as constant are given by, 
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CHAPTER 3 

 

PROPOSED METHOD 

 

3.1 INTRODUCTION 

 

Image segmentation has still a lot of scope to be explored.  From many years 

research has been going on to fill this area. Still, there are many challenges to be faced, 

some are application specific. Complex boundaries, illumination variations, 

environmental noise, device noise, object specifications make the segmentation complex 

and a single method to deal with all these issues is not easy. There are various methods 

proposed based on region growing, edge detection, clustering and active contours to 

segment a given image.  

In the recent years level set based methods are extensively been used in image 

segmentation applications [2]. Active contour use level set methods for mathematical 

implementation of their models. Level are method proposed by Osher and Sethian [4] is 

one of the popular approach. It acted as a base for modern active contour algorithms 

development. Level sets are introduced to image processing applications by Malladi et al. 

[24], Caselles et al.[18]. Active contour or snake models by Mumford Shah [1],Chan-

Vese [5], Caselles et al. [7], Satyanand et al.[20], Chenyang et al.[9] and C. Li et al.[2] 

are some of the prominent models in the history. 

Segmentation of medical images is still a challenging task. They often contain 

noise, inhomogeneity and blurred boundaries. Accurately detecting the tissue type is quite 

difficult. Imaging modalities like MRI images contain large of number of voxels to be 

segmented when considering a 3D model. MRI images contains regions like Gray matter, 

White matter, cerebral fluid, skin, skull, background. Most of these regions intensity 

properties look similar, so intensity based approaches sometimes fail to achieve good 

accuracies. In medical applications active contour models are very efficient in 

distinguishing the boundaries and extensively used in applications like detecting tumour 

or any deficiency in image modalities like Magnetic Resonance Image (MRI) and 

Position Emission Tomography (PET), function MRI (fMRI), diffusion MRI (dMRI) etc. 

But most of methods fail to perform better when images containing noise and 
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inhomogeneity are given as input. There is a need to develop a method which can segment 

the image even in the presence of noise and intensity inhomogeneity.  

In this paper the addition is twofold. (1) We add the fuzzy term to the model 

proposed in [2] and (2) an additional term is used to effectively deal with the noise. We 

propose a method by integrating active contours and fuzzy c-means clustering and a Sfcm 

based approach to deal with noise. An energy function is proposed by modelling the 

image intensity using a bias filed to nullify the intensity inhomogeneity and introducing 

fuzziness into it for better performance. We take help of the spatial term proposed in 

spatial fcm [50] method which utilizes neighbourhood membership function to reduce the 

effect of noise. 

3.2 Proposed Model 

 

Images are often corrupted by intensity inhomogeneity and noise it is a 

challenge task to segment these images. Chan-Vese[5] model is based on the assumption 

that intensities inside the regions are approximately piecewise constant. Which is not true 

in most of the cases .Chumming Li et.al [2,12] proposed a region based level set model 

to segment the images which are affected by intensity inhomogeneity. To deal with the 

issue they make use of bias field which will be used to model the inhomogeneity occurring 

in the image. Based on the properties of the bias field term they proposed a local region 

based energy function.  

Modelling real world images as a multiplicative field added by noise. Which 

can be represented as, 

     

 

I bJ n   
(3.1) 

where I is the observed image, J  is the true image, b  represents the bias filed 

term which will represent the intensity inhomogeneity and n is the additive noise.  

The assumptions made in this model are 

 The true image J  assumed as a piecewise constant. i.e. in a given region i  it 

will take a constant value ic  

  Bias field b  is assumed to be slowly varying, which implies in a small 

neighbourhood b is constant. 
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3.2.1 Local region based energy function 

 

In a given image I which is modelled using the Equation (3.1) and based on the 

assumptions made above, we can consider the value of b  in a local neighbourhood region 

as constant. i.e. Consider a circular region 
y  :x x y r   , where r represents the 

radius of the circular region and y . Then, 

     

 

( ) ( )b x b y  for 
yx  

(3.2) 

So, intensity in the local region can be modelled as 

 

 

( ) ( ) ( ) ( )I x b y J x n x   for 
yx  

(3.3) 

Based on the first assumption about ( )J x , ( )I x  can be written as 

     

 

( ) ( ) ( )iI x b y c n x   for 
y ix   

(3.4) 

      

The additive Gaussian noise term can be eliminated by considering, pixels in 

a region i are considered to be drawn from a Gaussian distribution with mean 

( )i im b y c . 

 

The Local region based model mentioned above can be used to define the 

energy term of our model. The problem statement can be formulated as dividing the 

 

 

 

 

Fig 3.1 Representation of a local region  
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region 
y into N clusters, having centres at ( )i im b y c , i varying from 1 to N. An energy 

by using the Fuzzy c-means [38] concept is defined to achieve this purpose. In contrast 

to the K-means clustering model used in [2]. This fuzzy factor will make each pixel 

assigned to a region based on its membership function. It will be more suitable for these 

type of applications on image, instead of hard assignment [16]. This membership function 

is also utilized to reduce the effect of noise as discussed Section 3.5. In continuous form 

the energy can be written as, 

     

 
 

2

1

( ) ( )

y i

N
m

y i i

i

F u x I x m dx
  

    (3.5) 

The fuzzy factor m decide the fuzziness, its value is normally taken as 2. 

In a local region 
y the centre of the cluster im can be replaced by ( ) ib y c  and 

considering a window function ( )W y x  ( ) 0, yW y x x    . 

     

  
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( ) ( ) ( )

i

N
m

y i i

i

F u x W y x I b y c dx
 

    (3.6) 

The 
yF will represent the energy after assigning the each pixel in the 

neighbourhood 
y to any of the N clusters. The purpose is achieved when the energy 

yF  

is minimized. The overall energy by considering the total image domain   is given by, 

     

 

yF F dy  
(3.7) 

i.e.,  
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(3.8) 

where, 1 2{ , ,..., }Nc c c c  represents the constants .The selection of Kernel W selection is 

flexible. It should take null values outside the local region for a given x and y . i.e., 

( ) 0W z   for z r and inside the region it should have a sum of unity i.e., ( ) 1W z  . 

The one that is used in this model is, 

     

 
𝑊(𝑧) = {

1

𝑎
𝑒

−|𝑢|2

2𝜎2⁄
 , 𝑓𝑜𝑟 |𝑢| ≤ 𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.9) 



37 

 

 

 The selection of the parameter a , will depend on the value of 𝜎 (standard 

deviation) ,such that the property ( ) 1W z  is satisfied. The selection of r is one of the 

crucial factor the assumption made on bias field will be valid only when the 

neighbourhood is small. In an image with more intensity inhomogeneity the bias field 

varies faster so the value of r  should be small. 

There are two purposes to be achieved using the above energy function one 

is segmenting the image and other is to estimate the bias field. It can be achieved by 

minimizing F with respect to i , ic and b , 1,...,i N . 

3.2.2 Two phase level set Formulation 

 

Firstly for simplicity purpose we observe the 2 phase level set model of the 

proposed model. In this we divide the image into two regions 1 2,   using a single level 

set  . The two regions are defined using the level set as, 

In the region 1 , 1( ) ( )M H   and in 2 2 ( ) (1 ( ))M H    

 The energy function can be rewritten using these definitions as, 
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The order of integration can be exchanged and the equation becomes 
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where ( )ie x  is defined as, 

     

 

 
2

( ) ( ) ( )i ie x W y x I b y c dy    (3.12) 

For implementational purpose ( )ie x can be written in matrix form as, 

     

 

22 2( ) 1 2 ( * ) ( * )i K i ie x I c I b K c b K    
(3.13) 
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where,  *  represents the convolution and 1 ( ) ( )K x W y x dy   

The energy used for variational level set model is given by,  

     

 

( , , , ) ( , , , ) ( ) ( )pF b c u F b c u vL R         
(3.13) 

In this equation ( , , , )F b c u   is used as data term. 

( )L  and ( )pR  act as regularizing terms which are defined as, 

     

 

( )L  = ( )H dx  

 

(3.14) 

It will represents the length of the contour or zero level set of  .Which will serve the 

purpose of  keeping the curve smooth by punishing arc length of it. 

and 

     

 

( )pR  = p dx   
(3.15) 

this term is used to avoid the re-initialization in the level set evolution. 

Re-initialization is one of the disadvantage of conventional level set model. 

During the level set evolution they develop irregularities. It may leads to numerical errors 

[6]. To overcome this formal approach is to stop the evolution and using a signed distance 

function to reshape it. It is quite difficult to predict when to apply the re-initialization 

some researchers also found that re-initialization as disagreement between theory and 

implementation. . To overcome this conflicts Li et al. [6] proposed a term called as 

distance regularized level set evolution (DRLSE).  In the Level set functions signed 

distance will be maintained by this term. 

The gradient descent form for evolution of level set function is given by, 

     

 

F

t





 
 

 
 (3.16) 

 

The minimization of the energy term ( , , , )F b c u   with respect to  by keeping ,b c as 

constants results in the following equation, 
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(3.18) 

To achieve the optimal solution using the energy function define , along with 

the level set function the values of bias field b and constants c  are also should be updated 

in a repetitive manner. The updating equations for the bias field b , member ship function 

u and constants c  can be obtained by minimizing ( , , , )ChF b c u  with respect to b ,u or c

by keeping the other variables constant.  

3.2.3 Multi-phase level set Formulation 

 

When considering segmentation as a multiphase problem the above 

mentioned 2-pahse model can be extended to multiphase applications. The multiphase 

model is utilized here to solve the segmentation problem using the proposed energy 

function. There will be requirement for 
2logNk  level sets to solve N-phase problem, by 

using these we can divide  into N regions which are represented by 1( ( ),..., ( ))i kM x x   

and defined as, 

     

 1( ( ),..., ( ))i kM x x  = {
1,      𝑥 ∈ i

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.19) 

 

The energy function F  for multiphase is given by, 

     

 1
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i

F b c u u x e x M x dy
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    (3.20) 

where,  1,..., k   represents the level set vector.  
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The final energy function having regularizing terms is given by, 

     

 1 1

( , , ) ( , , ) ( ) ( )
k k

i p i

i i

F b c F b c v L R  
 

        (3.21) 

Gradient descent equations can be obtained in a similar fashion as obtained 

in 2-phase problem, by minimizing ( , , )F b c   with respect to  by keeping as ,b c

constants and they are obtained as, 
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(3.22) 

where, 1, 2,...,j k  

3.2.4 Updating Equations 

 

3.2.4.1 Updating equation for constants 

 

To get the update equation for c  minimize  ( , , )F b c   with respect to c by 

keeping , ,b u as constants, the estimated value of the constant vector c is denoted by c

and is obtained as, 

If we take the derivative w.r.to 
jc by taking , ,b u  as constant, the other 

terms in the summation are independent of 
jc , except the thj term, 
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By substituting 
( )j

j

e x

c




 in the above equation, 
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(3.27) 

3.2.4.2 Updating equation for bias field  

 

By minimizing ( , , , )F b c u   with respect b  to by keeping , ,c u as constants. 

The estimated value of b is obtained and it is given by, 
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and              
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By substituting 
( )

( )

ie x

b y




 in the above equation gives, 
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3.2.4.3 Updating equation for membership function 

 

 To get the updating equation for 
ju , it can be done by solving the energy using 

Lagrange multiplier. 
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   Taking the derivative of mF with respect to respect 
ju  and equating it to 

zero, by keeping , ,b c   as constants. The estimated value of 
ju can be obtained as, 

     

 

1( ) ( ) 0
( )

m

m j j

j

F mu x e x
u x


  


 (3.35) 

 

     

 

1/( 1)

1( ) ( )

m

j m

j j

u
mu x e x






 
    

 

 (3.36) 

 

1

( ) 1,
k

m

i

i

u x x


   



43 

 

     

 

1/( 1)

1
1

1
( ) ( )

m
k

m
i i imu x e x







 
 

 
  (3.37) 

 

     

 
 

( 1)
1/( 1)

1

1

( ) ( )

m
k

m
m

i i

i

mu x e x

 
 





 
  
 
  (3.38) 

 

By, substituting value of  , in ju gives 
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3.2.5 Spatial term for reducing noise effect 

 

Using the proposed energy function we can deal with intensity 

inhomogeneity, In this section we are introducing a spatial term to subjugate the noise 

effect. A spatial term for fuzzy clustering using membership function is introduced by 

K.S.Chuang et al. [50] . We use this spatial term in our level set formulation. At every 

step along with bias filed, constants, membership functions, spatial term is also 

calculated. The spatial term is given as, 
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x N x

h x u x

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(3.40) 

The average of membership values of neighbouring pixels is considered in 

this term. It is like mean filter applied on membership function. By taking this extra spatial 

term into consideration, a pixels membership value is decided by the neighbouring pixels. 

i.e., even if the centre pixel is noisy its effect can be truncated. Using this spatial term the 

membership function is updated again using the following term, 
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where, p and q represents the weightage given to each term. If noisy is heavy by 

considering large values for q , more weightage is given to the spatial term. It might result 

in better evolution of curve.  
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CHAPTER 4 

RESULTS 

 

The proposed method was tested on several synthetic and medical images and 

the results were compared with some of the state of the art techniques.  

                                                                                        

(a)                                                                      (b) 

   

(c)                                                                      (d) 

    

(e)                                                                      (f) 

Fig.4.1 Contour evaluation using different types of Initialization 
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The methods were implemented in MATLAB 2013b on a 2.1 GHz Intel 

Core2Duo processor with 3GB RAM.  

The values of parameters considered in this experimental analysis are

1, 1p q  , 4  , 1  , 0.1t   and the mask size for spatial term is considered as 3. 

Until and otherwise specified throughout the experiment the above specified values are 

only considered. Fig. 4.1 shows results of evaluation of our method on a CT scan image 

of heart . From the figures we can observe that independent of the initialization of initial 

contour. The initial contour in Fig. 4.1(a) and 4.1(f) is inside the region of interest and in 

Fig. 4.1(e) it is completely outside the region. In all the cases the final contour is same. 

Here we have used the method without the spatial term and with spatial term included the 

results are same, since these are non-noisy images our method works well even on clear 

images. The original CT scan image, the final segmented image, bias field and corrected 

image using the bias field are given in Fig. 4.2 (a),(b),(c),(d) respectively. 

             

(a)                                                                  (b) 

                

(c)                                                                   (d) 

Fig. 4.2 (a) Heart CT scan image, (b) Segmented image, (c) Bias field image, (d) Bias 

corrected image 
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In Fig. 4.3 MRI synthetic images obtained from Brain web [61] data set are used. The 

MRI data used is T1 normal MRI of 1mm thickness with noise density of 9%  and 

intensity non-uniformity of 40%. The column c&d in Fig. 4.3 are the estimated bias field 

and final contour obtained using the proposed method, similarly column a&b are obtained 

using method proposed by C.Li et al.[2]. From the figure we can observe that the 

proposed method can result in smooth contour even in the presence of noise and non-

uniformity.  

  

  

  

(a)                                  (b)                                    (c)                                  (d) 

Fig.4.3 Results of proposed method and  Li’s method [12] on a noisy MRI image.  Column (a, b) 

Bias field & Final contour using Li’s method [2],Column(c, d ) Bias field & Final contour using 

proposed method. 
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To compare the proposed method with other methods, an image added with Gaussian 

     

                (a)          (b) 

      

        (c)           (d) 

 

     

        (e)           (f) 

Fig. 4.4: (a) Noisy coins image with Gaussian noise density of 0.02   , Results using 

(b) C. LI et al.[2], (c) CV [4], (d) S.B. Arabe et al.[52], (e) B.N. Li et al.[10] ,(f) 

Proposed Method 
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noise of 2% is used. The results are shown in Fig. 4. Fig. 4a contains the original noisy 

image and Fig. 4.4(b-e) contains the results of methods in [2],[4],[52] and [10] 

respectively and Fig. 4.4 f contains result of the proposed method. As we can observe 

from the images final contour obtained by other methods is affected by some extent by 

the noise, by our method the effect is very less.  

 

 

           

            

            

Fig. 4.5: Results of Proposed Method applied on natural and synthetic images with 

added Gaussian noise of 0.02   
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The method is also verified on images other than MRI images. Some natural and synthetic 

images are considered in Fig. 5. They are added with a Gaussian noise of 2%. The results 

are satisfactory even in the presence of noise. The final contour is at the boundary of the 

required region by avoiding noise. 
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CHAPTER 5 

CONCLUSION 

 

The method proposed in this report is a region based active contour approach 

to segment the images corrupted by intensity inhomogeneity and noise. This was 

implemented using level set method. We have derived a fuzzy based energy function 

which will consider the region information multiplied by a weight factor. This gives it an 

additional information. The intensity of image is assumed to be modelled by original 

intensity multiplied by a bias filed. The estimation of the bias field is carried out parallel 

to the evolution of level set, it will be helpful to deal with inhomogeneity. In the same 

way an improvement to the membership updating function is done by considering the 

spatial information. It is done by including a second update for membership values by 

using a spatial term.  

The proposed method can be utilized for medical applications where there is 

requirement for high quality and precise segmentation. This method can be 

computationally complex. The complexity can be reduced by careful implementation 

since multiple similar convolutions are used repeatedly. As a future work we suggest, to 

try different types of level set methods which can be used for implementation of active 

contours and energy functions can be developed using different FCM variations.  
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