
Correlation of mast cell in gastric cancer, insight 

study of HRH4 receptor by NGS technologies 

A Major Project dissertation submitted 

in partial fulfilment of the requirement for the degree of 

Master of Technology 

In  

Bioinformatics 

Submitted by 

Aniket Shrotriya 

(2k12/BIO/02) 

Delhi Technological University, Delhi, India 

Under the supervision of  

Dr. Asmita Das 

 

Department of Biotechnology 

Delhi Technological University  

(Formerly Delhi College of Engineering) 

Shahbad Daulatpur, Main Bawana Road,  

Delhi-110042, INDIA 

  



DECLARATION 
 

I, Aniket Shrotriya, hereby declare that the work entitled “Correlation of mast 

cell in gastric cancer, insight study of HRH4 receptor by NGS technologies.” 

has been carried out by me under the guidance of Dr. Asmita Das, in Delhi 

Technological University, Delhi. 

This dissertation is part of partial fulfillment of requirement for the degree of 

M.Tech in Bioinformatics. This is the original work and has not been submitted 

for any other degree in any other university. 

 

 

 

                                         

 

Aniket Shrotriya 

Roll No.: 2K12/BIO/02 

 

 

 

 

 

  



ACKNOWLEDGEMENT 

 

 I would like to acknowledge my deep sense of gratitude to Prof. B. D Malhotra, (Head 

of Department) Department of Biotechnology, Delhi Technological University, Delhi-

110042 for giving me an opportunity to study and work in this prestigious Institute. 

 I am extremely thankful to my mentor, Dr. Asmita Das, Assistant Professor, 

Department of Biotechnology, Delhi Technological University, Delhi-110042 for her 

exemplary guidance, monitoring and constant encouragement throughout the M. Tech course. 

I would also like to thank her for sparing the efforts in compiling the work presented here. 

 At last, I am extremely thankful to my parents, family members and friends specially 

Prateek, Prashant and Kunal whose blessings and support were always with me. 

 

 

 

 

 

ANIKET SHROTRIYA 

Roll No.: 2K12/BIO/02 

  



LIST OF FIGURES  

Figure 1: Phylogenetic tree represents the homology between the GPCRs family member 

(modified from Stark et al., 2003) 

Figure 2: Overview of the Methodology 

Figure 3: Fragments overlapped and connected in the graph 

Figure 4: Cufflinks methodology 

Figure 5: Comparison of expression of HRH4 between cancerous and normal conditions. 

Here blue colour pattern is of normal sample and cancerous sample represented by red colour 

which clearly shows significant decrease in the expression pattern than the previous one. 

Figure 6: Comparison of both the isoforms of HRH-001 and HRH-002 and their exons and 

their alignment with the contigs produced in the genome 

Figure 7: Difference in splice junctions of both the isoforms of HRH4; splice junctions can be 

easily detected by TopHat 

Figure 8: Bar plot showing comparison of both the isoforms (Q9H3N8 & Q96LD9) in normal 

and cancerous condition 

 

LIST of TABLE 

Table 1: Comparison of properties of HRH receptors 

 

 

  

  



CONTENTS 
S. No    Title  Page 

       

  LIST OF FIGURES   

  LIST OF TABLES  

1  ABSTRACT 1 

2  INTRODUCTION 2 

3  REVIEW OF LITERATURE 3 

  3.1 Gastric cancer  3 

  3.2 Histamine  4 

   3.2.1 Histamine H4 receptor 5 

       

  3.3 Copy no Variation  7 

  

3.4 
Next-generation 

sequencing 

technology 

 7 

   3.4.1 RNA- Sequencing 8 

       

  3.5 Transcriptomics and its significance  10 

  3.6 Technique adopted for transcriptome analysis 12 

  3.7 Advantages and Biases of RNA-seq  13 

  3.8 Steps of RNA-seq analysis 13 

   3.8.1 Mapping short RNA-seq reads  13 

   3.8.2 Transcriptome reconstruction  15 

   3.8.3 Genome-guided reconstruction 15 

      

  
3.9 

Differential analysis 

with Cuffdiff 
 17 

  

3.10 
Visualization with 

CummeRbund 
 

18 

4  METHODOLOGY 19 

5  RESULTS AND DISCUSSION 22 

6  CONCLUSION AND FUTURE PERSPECTIVE 30 

7  REFERENCES 31 

8  APPENDIX 34 

 



1 

 

Study of Correlation of HRH4 receptor in gastric 

cancer by using NGS technologies 

Aniket Shrotriya 

Delhi Technological University, Delhi, India 

 

 

1. ABSTRACT 

Gastric cancer is one of the most prevalent type of cancer and is the second most cancer 

to cause deaths annually. Although there is no perfect treatment of any type of cancer in the 

world, yet if diagnosed at early stage, can be controlled by surgery, chemotherapy, radiation 

therapy, or combinations of all which is known as multimodality therapy. 

We have used RNA seq (from dnanexus.com) of 10 gastric cancer patient and compare 

them to healthy individuals by keeping reference of already sequenced human genome from 

UCSC genome browser. We use softwares like BOWTIE, TopHat, Cufflink package and 

CummeRbund package in this pipeline to analyze the data. We have analyzed 10 RNA seq which 

are sequenced by Next Generation Sequencing by comparing them to normal data and find that 

the expression level of HRH4 is decreased by almost twice fold. 

Role of HRH4 in colorectal cancer, breast cancer and gastric cancer was also previously 

believed and is yet to be confirmed but our study is step finding towards the association. As 

previously reported HRH4 is linked to tumor progression in colorectal cancer but our results also 

clearly shows there is down-regulation of HRH4 in gastric malignancies by almost double fold in 

both the isoforms of HRH4. Although this work is yet to be validated, so that it can also use as 

marker in gastric cancer diagnosis. 
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2. Introduction 

Gastric cancer is one of the most prevalent cancer that causes numerous deaths around 

the world. Although there is no perfect treatment of any type of cancer in the world, yet if 

diagnosed at an early stage, can be controlled by surgery, chemotherapy, radiation therapy, or 

combinations of all which is known as multimodality therapy. But in Gastric cancer mostly 

symptoms occur at an advanced stage so it is not easy to diagnose it in early stages. Previous 

studies have reported that. Mast cell plays important role in various types of cancers via allergies 

or by mediators secreted by it.  

Histamine is most important mediator among all of them which is largely secreted by 

mast cells and is very well known growth factor for gastrointestinal malignancies. Its effect is 

largely determined locally by the histamine receptor expression pattern. Histamine receptor H4 

(HRH4), the newest member of the histamine receptor family, is positively expressed on the 

epithelium of the gastrointestinal tract, and its function remains to be elucidated.  

Recently, some evidence indicates that HRH4 also plays a role in cell proliferation, both in 

normal and malignant cells, including hematopoietic progenitor cells [12], breast cancer cells 

[13], and pancreatic carcinoma cells [14] It is well noted that the decreased expression of HRH4 

in colorectal cancers and its correlation with tumour proliferation. Next Generation Sequencing 

(NGS) is a high throughput technology to study NGS data may be present in many forms, usage 

depends on aim on the study. Here RNA seq is used for gene expression profiling. NGS data 

came from technologies like Roche 454, Illumina Genome Analyzer and Applied Biosystems 

SOLiD platforms. Sequencing technologies such as 454 or the classic capillary electrophoresis 

approach can be used for large-scale cDNA sequencing. Relating the expression pattern of 

HRH4 receptor in gastric cancer by comparing the data of cancerous and non-cancerous patients 

through several computational tools. 

Here we aimed to investigate the abnormalities of HRH4 gene in gastric carcinomas 

(GCs) in humans. We take RNA seq data of 10 samples of cancerous patients & normal sample 

and compare them with the reference genome. We analyse NGS data by using several softwares 

like BOWTIE, TopHat, Cufflink package and CummeRbund for visualization in Linux. In this 

study, we came to know that there is down-regulation of HRH4 receptor as the gastric 

malignancy proceeds so HRH receptor can be serve as a diagnostic marker in gastric cancer 

 

3. Review of Literature 

 

3.1 Gastric cancer 

 
Cancer which originates in any part of the stomach is known to be gastric cancer. After 

lung cancer, it is the second most cancers, leading to death and in occurrence, it is forth most 
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which leads to around millions of deaths across the globe (Kamangar, Dores, & Anderson, 

2006). The incidence of gastric cancer varies across the globe and doesn’t depend on gender and 

ethnicity. However the mortality rate declined in western countries, but still it is one of the most 

common problems in the eastern countries of Asia (Jemal et al., 2006). There are many 

conventional treatments for gastric cancer like chemotherapy, radiation therapy, but it would be 

best if they are used in combinations. To cure gastric cancer one needs to diagnosed it earliest, 

only then complete removal by surgical procedure takes place (Ferlay et al., 2010). Although it is 

very difficult to diagnose it in early stages as the most symptoms occur only in advanced stages. 

The survival rate of gastric patient is few years and it doesn’t improve significantly from past 4 

decades. There are several cases where patients develops another tumor even after surgical 

removal (Yamashita et al., 2011). One of the most prominent characteristic of gastric cancer is 

heterogeneity and every patient have a distinct genetic and molecular profile (Zheng, Wang, 

Ajani, & Xie, 2004). Tissues of most of the gastric malignancies  are adenocarcinomas which are 

differentiated into poorly( diffuse) or well differentiated(intestinal) and both have different 

epidemiological and genetic patterns (Resende, Thiel, Machado, & Ristimäki, 2011; Yasui et al., 

1999). Etiologically, association of gastric cancer came from genetic variation and 

environmental factors and also the accumulation of alterations of genetic and epigenetic 

profile(Resende et al., 2011). Diet and lifestyle are always an important factor in several cancers, 

tobacco and obesity sometime associated with(Compare, Rocco, & Nardone, 2010). Some of the 

common gastric cancer is associated with Helicobacter pylori (Bouvard et al., 2009), and 

increases the risk of gastric cancerup too 80%. H. pylori induces generalized mutations and 

genomic instability in the host DNA(Machado, Figueiredo, Seruca, & Rasmussen, 2010), and 

this increases diversity in oncogenic mechanisms. So this leads to different routes in the 

occurrence of malignancy so it is very much difficult to treat it with a particular drug. So therapy 

based on genetic and molecular profile of the patient is one of the best way for treatment, it 

basically involves studying the molecular biology of tumor and then target the specific 

mechanisms with anti-tumor. These therapies specifically inactivate the mechanisms which are 

crucial for survival of tumor cells rather than normal gastric cells, which increases its benefit and 

decreasing the side effects. Trastuzumab a monoclonal antibody produced in human which target 

the extracellular domain of HER2/neu receptor. It recently used in combination of chemotherapy 

for treating gastric cancer, which is ERBB2 positive and advanced metastatic. (Bang et al., 

2010). Up to 30% of gastric tumor responds to this treatment (Grabsch, Sivakumar, Gray, 

Gabbert, & Müller, 2010; Wainberg et al., 2010). (Arkenau, 2009; Ku & Ilson, 2010). All the 

therapies till date are based only little information we have regarding oncogenic genes, so their 

efficacies are under doubt. So better to develop new strategies for therapeutics which specifically 

targets gastric cancer by understanding all the molecular mechanisms which happens in the 

initiation and progression of the disease 

 



4 

 

3.2 Histamine 
Histamine is one of the major mediators of acute anaphylactic reactions. This biogenic 

amine has several other physiological functions. In the gastrointestinal tract, histamine has 3 

major functions:  

 

(1) Increase in gastric acid production (Tanaka S et.,al 2002) 

(2) Modulation of gastrointestinal motility (Bertaccini G, Coruzzi G 1995) and  

(3) Change in secretion of mucosal ion (Kelly S J et.,al 1995, Wang Y Zet.,al 1990) 

 

Most of these were only performed in animal models, whereas replicated these findings 

in the human had gained very limited success ((Hemedah, Loiacono, Coupar, & Mitchelson, 

2001). Decarboxylation of amino acid L-histidine (E.C. 4.1.1.22 or EC. 4.1.1.26) which is stored 

mostly in mast cells, and also in basophils, results in Histamine production. Previously 

Histamine, was known as compound which have potent vasoactive properties (Ring et.,al 1979). 

Also, it was mostly known for regulation in several processes. Histamine is synthesized in mast 

cell and stored in cytoplasmic granules and release in response to inflammation, gastric acid 

secretion and neurotransmission. It is synthesized in central nervous system in only a few 

neurons of the posterior hypothalamus and specifically its tuberomammillary nucleus. These 

neurons can diffuse to the cerebra and regulate several functions of the brain in mammals like 

sleep and hormonal secretion (Waldman et al., 1977), control in cardiovascular activities 

(Stasiewicz and Gabryelewicz, 1979), etc. 

The production of this compound is the result of decarboxylation L-histidine by using the 

pyridoxal-5' phosphate-dependent L-histidine decarboxylase enzyme (HDC) via a histidine-PLP 

Schiff base intermediate (Finch and Hicks, 1976). After its release from cytoplasmic granules, it 

maintains its level by two major metabolic pathways, i.e., Histamine-N-methyl transferase and 

diamine oxidase. For production of monoamine oxidase-B and diamine oxidase,methyl histamine 

act as substrate. Aldehyde dehydrogenase further oxidized it to methylimidazole acetic acid. 

Diamine oxidase convert histamine to imidazole in oxidative pathway, and then instantly 

converted into imidazole-4-acetic acid by aldehyde dehydrogenase (Yatsunami et al., 1994). It is 

still unclear out of 4 which histamine receptor is expressed in the human gastrointestinal tract. 

Particularly function and expression of H3R receptor is not confirmed. Its role in inhibition on 

releasing neurotransmitters from nerves in the intestine has been previously suggested 

(Lovenberg TW et.,al 2000) but not yet confirmed. Several studies had declared histamine as an 

effective modulator in many immune functions (Jutel M et.,al 200s2). As gastrointestinal tract 

represents one of the largest immune organ in the human body, which produced, regulate, 

possess several mucosal mast cells (Atkins FM 1987) histamine can be a key regulator for 

immune regulation which mainly depends on mast cells.  



5 

 

3.2.1 Histamine H4 receptor 

Histamine H4 receptor has up to 45% homology to H3 receptor and it varies from species to 

species and 55% in the transmembrane domain 

 

 

 

 

      H1 

 

                   H4 

 

                    H3 

 

                     M4 

                            M2   

                                 M5  M3  M1   H2 

 

Fig1 -Phylogenetic tree represents the homology between the GPCRs family member (modified from Stark et al., 

2003) 



6 

 

 

  

hRH1 

 

hRH2 

 

hRH3 

 

hRH4 

Chromosomal  

Gene location 

 

3p25 

 

5q35.2 

 

20q13.33 

 

18q11.2 

Amino acids  487 359 445 390 

Isoforms   + + 

G-protein coupling Gq/11 Gs Gi/Go Gi/Go 

Principal signal 

transduction 

PLC 

Ca2+ 

cAMP cAMP 

Ca2+ 

MAPK 

cAMP 

Ca2+ 

MAPK 

Tissue Lung, brain, 

vessels 

Heart, stomach, 

brain 

Neurones 

( CNS, PNS) 

Mast cells, 

eosinophils 

Physiological 

revealance 

Contraction of 

smooth 

muscles,food 

intake, sleep-

wake regulation 

Gastric acid 

secretion 

Sleep, food 

intake 

Chemotaxis 

Pathophysiological  Allergic reaction Gastric ulcer Cognitive 

impairment, 

seizure, 

metabolic 

syndrome. 

Inflammation, 

immune reaction 

 
Table 1. Comparison of properties of HRH receptors 
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3.3 Copy no Variation 
Genetic variation in the human genome takes many forms, ranging from large microscopically-

visible chromosome anomalies to single nucleotide changes. Several, multiple studies have 

discovered an abundance of sub-microscopic copy number variation of DNA segments ranging 

from kilobases (kb) to megabases (Mb) in size ((Iafrate et al., 2004), (Sharp et al., 2005)). 

Deletions, insertions, duplications, and complex multi-site variants ((Fredman et al., 2004)), 

collectively termed copy number variants (CNVs) or copy number polymorphisms (CNPs), are 

found in all humans and other mammals ((Feuk, Carson, & Scherer, 2006)) 

 

A CNV can be simple in structure, such as tandem duplication, or may involve complex gains or 

losses of homologous sequences at multiple sites in the genome. An early association of CNV 

with a phenotype was described 70 years ago, with the duplication of the Bar gene in Drosophila 

melanogaster being shown to cause the Bar eye phenotype ((Bridges, 1936)). CNVs influence 

gene expression, phenotypic variation and adaptation by disrupting genes and altering gene 

dosage (Buckland, 2003; Nguyen, Webber, & Ponting, 2006; Repping et al., 2006)13-15, and 

can cause disease, as in micro-deletion or micro-duplication disorders (Inoue & Lupski, 2002; 

Lupski & Stankiewicz, 2005; Shaw-Smith et al., 2004)16-18, or confer risk to complex disease 

traits such as HIV-1 infection and glomerulonephritis (Aitman et al., 2006; Gonzalez et al., 

2005)19,20. CNVs often represent an appreciable minority of causative alleles of genes at which 

other types of mutation are strongly associated with specific diseases: CHARGE syndrome, 

Parkinson and Alzheimer disease (Chartier-Harlin et al., 2004; Jongmans et al., 2006; Rovelet-

Lecrux et al., 2005)21 22,23. Furthermore, CNVs can influence gene expression indirectly 

through position effects, predispose to deleterious genetic changes, or provide substrates for 

chromosomal change in evolution,(Feuk, Marshall, Wintle, & Scherer, 2006) 

 

3.4 Next-generation sequencing technology 
It is a one of the most advanced technology in diagnosing/therapeutics of human cancer 

and identifying the potential targets (Guan et al., 2012). It  is also popularly known as 2nd -

generation sequencing, and has relation to capillary-based Sanger sequencing, which was the 

former and 1st -generation sequencing technology (Mardis, 2011). Cyclic-array sequencing and 

its various implementations are included in the NGS (Shendure & Ji, 2008). Most used NGS 

around the globe commercially the 454 Genome Sequencer (Roche Applied Science), Solexa 

technology (Illumina) and the SOLiD platform (Life Sciences). Despite some changes in 

technical process, the concept of all is very similar: Firstly the sample DNA fragments produced 

randomly, followed by in vitro ligation of common adaptor sequences, then a library is produced; 

after then PCR colonies which are spatially fixed produced; and then at last, by using enzyme 

biochemical reactions takes place and data processing is performed which is based on imaging in 

parallel. So for a sample NGS produced millions of reads very efficiently. In the downstream 

analysis, several short reads mapped to the genome of source which results in reads distribution 

at nucleotide resolution level and from it we can know about several biological features of the 
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molecules., The NGS applications are of mainly DNA sequencing (DNA-seq), RNA sequencing 

(RNAseq) and chromatin immunoprecipitation sequencing (ChIP-seq) and it solely depends on 

the material which is used as input. Previously NGS is used in sequencing genomes of 

species/individuals people or various tissues and their transcriptome but recently the trends shifts 

towards studying oncology (Meyerson, Gabriel, & Getz, 2010) and changed it in many ways. 

Mainly NGS has ability to produce unbiased, comprehensive and, very limited catalogs of 

various aberrations genomes of the cancer patients. Like, pre-NGS sequencing studies will focus 

on cancer somatic mutations for few know about genes which are already well known, such as 

TP53, EFGR and KRAS; and so this study is not easily able to discover novel genes (Meyerson 

et al., 2010). And also, there are ‘‘analog’’ signals in previous sequencing technology, while 

count of the short reads is the basis of this signaling. This digitalization of signal is can be used 

for quantification (Z. Wang, Gerstein, & Snyder, 2009). Thus, it's very beneficial to detect 

biological signals due to high sequence coverage and gather sufficient information in cancer 

tissues due to heterogeneity. And also, when NGS platforms becomes commercialized, the DNA 

sequencing cost decreased severely, and reach almost $1,000 per personal genome (Schloss, 

2008). Due to this cheap cost clinical applications increased by using information about personal 

genome. However, in the last 2 years there are very few NGS studies in gastric cancer have been 

published.  

3.4.1 RNA- Sequencing 

NGS has several applications in studies which studies of whole genome involved, like 

single-nucleotide polymorphisms (Auer & Doerge, 2010), epigenetic events (Park 2009), copy 

number variants (Alkan et al. 2009), differential expression (Bloom et al. 2009), and alternative 

splicing (Sultan et al. 2008).  By use of NGS RNA-Seq can be used to sequence, map and 

quantify the transcript population. (Mortazavi et al. 2008; Morozova et al. 2009). Although it is a 

relatively new, yet it can tell about all the transcriptional complexities of an organism 

(Nagalakshmi et al. 2008), mice (Mortazavi et al. 2008), Arabidopsis (Eveland et al. 2008), and 

humans (Sultan et al. 2008). There are 3 NGS devices which can be used commercially 

[Illumina’s Genome Analyzer, Applied Biosystems’ (Foster City, CA) SOLiD, and the 454 

Genome Sequencer FLX] for RNA-Seq (Cloonan et al. 2008; Eveland et al. 2008;Marioni et al. 

2008). Different platform has same RNA-Seq methodology. Several steps, including RNA 

isolations, then fragmented randomly, and convert in complementary DNA (cDNA). PCR 

amplification performed on fragments of specific size like 200–300 bases long. Then by using 

NGS cDNA is sequenced; then a mapping of the genome of reference, and the reads for 

particular gene are recorded. These gene counts in the form of digital gene expression (DGE) 

recorded and can be used to find out the differential gene expression (Morozova et al. 2009). 

Although there are some loopholes in this process which can lead to an error or bias, yet it is 

believed to be the future of transcriptome research (Shendure 2008) as it produces an almost 

unlimited dynamic range so have greater sensitivity than microarray so closely homologous 

region can be discriminated, and do not require our prior knowledge about the expressed regions 

(Cloonan et al. 2009; Morozova et al. 2009). As the use of microarrays come in mainstream 

(Schena et al. 1995), many researchers sought use of proper experimental designed experiments 
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(Kerr et al. 2000; Lee et al. 2000; Kerr and Churchill 2001a, b; Churchill 2002).  

Although In-depth knowledge of molecular biology of gastric cancer and identification of 

novel therapeutic targets provided by NGS but they have some limitations too. As they are 

performed on small sample sizes, 30 samples at most, as cost and resources become the 

limitations. As we know heterogeneity of gastric cancer due to distinct genetic and molecular 

profile of every cancer patient, so statistics have very limited power to accurately determine the 

targets of the small sample cohort. As previously, only two candidate driver mutated genes 

(TP53 and ARID1A) were only simultaneously identified in both studies of sequencing of (Hahn 

& Weinberg, 2002; K. Wang et al., 2011). Only DNA-seq or RNA-seq based studies used to find 

out the alterations in the genome 

The complexity of gastric cancer involves interactions of different layers of aberrations. 

By integrating several multi-dimensional profiles of genomes, one can easily understand the 

effect of the alteration in driver gene function in context of tumor. High throughput functional 

assays are able to find out the genetic aberrations and its functional consequences (Liang et 

al.).Size of datasets results from NGS is huge and it is not easy to access. These issues are 

largely solved by 2 consortium projects. One project is The Cancer Genome Atlas (TCGA), 

which is funded by the U.S. National Cancer Institute and the National Human Genome 

Research Institute. They systematically characterize the large sample size almost 500 patients by 

use of several profiling techniques like miRNA expression profiling, DNA methylation profiling, 

copy number variation profiling, exome sequencing, SNP arrays and mRNA-seq and RPPA 

based protein expression. And the access for TCGA generated datasets is user oriented. 

Glioblastoma is the first cancer to be evaluated by data released from TCGA  (McLendon et al., 

2008)and ovarian cancer (Network, 2011). In the second phase gastric cancer is done. Another 

consortium which is doing similar type of work is International Cancer Genome Consortium 

(ICGC), which have the aim to target at least 50 types of cancer and systematically studying 

almost 25k cancer genomes at transcriptomic, epigenomic and genomic level. Unlike TCGA, 

ICGC involves ethnicity as it includes samples from different country. In every selected cancer 

type the sample of gastric cancer comes from USA and China. It is expected these consortium-

based cancer genomic projects can prove themselves as valuable resources in finding several 

novel targets for gastric cancer in therapeutics over a few years. It is interesting to find out some 

important points in the application of the NGS to gastric cancer samples. Firstly, it would be 

interesting to find out the effect of ethnicity on the gastric cancer; thus, it is interesting to 

determine up to what extent to which the molecular basis of gastric cancer depends on the 

ethnicity of the individual (e.g. East Asian vs. Caucasian). This topic can be better dealt with the 

use of data sets obtained from ICGC. Also, not only inter-tumoral heterogeneity between gastric 

cancers also the intra tumoral heterogeneity which is in single gastric tumor is an important 

consideration in effective treatment and it can impose drug resistance. NGS can answer it by 

following these approaches: 

 

 (i) In detection of rare clones ultra-deep sequencing of primary tumor;  
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 (ii) In identification of dominate clones by low depth characterization (Network, 2011).  

(iii) It is interesting to find out the role of aberrant splicing in gastric tumor as RNA-seq allows 

the detection of splicing variants 

(iv) By using NGS we are able to discovering novel targets by identifying gene fusion 

With the accelerated progress in sequencing technologies, the availability of microbial genome 

data has grown in an accelerated manner. This easy availability has made it easier to elucidate 

relevant biological processes. But only the nucleotide sequence information does not provide 

direct information about these processes. To obtain information about these pathways, a need to 

study the post-genomic process such as transcriptomics was felt. The information about the role 

and function of factors that are participating in the process can be identified by the transcriptome 

analysis.  

 

3.5 Transcriptomics and its significance  
 

The genome of an organism contains of all the information that is needed for the 

metabolic and regulatory processes taking place within a cell. The genome is only a source of 

information. In order to function, the genome must be expressed. The first step of gene 

expression is transcription. Transcription is a process by which the genome is transcribed into a 

complete set of RNA transcripts.  

Full set of transcripts produced in a cell and their expression at specific condition. For 

specific and complete interpretation of the genome and its function and also for understanding 

disease and its progression understanding transcriptome is very important ((Z. Wang et al., 

2009).  

 

The aims to study transcriptomics are  

 

• Find out all transcripts, which includes all types of RNAs 

• Identification of gene structure, of their start sites, at both 5′ and 3′ ends, post-transcriptional 

modifications and other splicing patterns.  

 

• To quantitate the change in expression levels of all transcripts during the development stage 

and under different conditions.  

 

Unlike the genome, the transcriptome is extremely dynamic. Most of our cells contain the same 

genome irrespective of the type of cell, its stage of development or environmental conditions. 

Conversely, the transcriptome also varies considerably in differing circumstances due to different 

patterns of gene expression. Transcriptomics is the study of the transcriptome and is therefore a 

global way of looking at gene expression patterns.  
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Out of all the transcripts produced in the cell some code for proteins involved in the cellular 

functions and some are non-coding which are involved in regulatory processes. Non-coding 

RNAs are predicted to be involved in differential response in stress environment.  
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3.6 Technique adopted for transcriptome analysis.  
 

To define a precise map of all genes as well as their alternative isoforms and expression in a 

species is critical to understand the genomics of that species. But to carry out such mapping and 

analyses is very expensive and experimentally arduous.  

 

Until now, the major methods for annotation of transcriptome included cloning of cDNAs or 

expressed sequence tag (EST) libraries. Cloning was followed by sequencing, which lead to high 

cost and limited data yield. It contributes to the high complexity of this method. Sophisticated 

computational tools are required for the analysis of these data, which can provide the basis for 

the programs used today for high-throughput RNA sequencing (RNA-seq) data. (Adams et al., 

1991)Adams, M.D. et al.,1991, Wu et al., 2005)  

Some alternative strategies are present such as genome-wide tiling arrays which allows the 

identification of transcribed regions at a larger scale. It is cost-efficient scale, but has limited 

resolution. Splicing arrays with probes across exon- exon junctions enabled researchers to 

analyze predefined splicing events, but could not be used to identify previously uncharacterized 

events. Expression quantification required hybridization of RNA for gene-expression 

microarrays, a process that is limited to studying the expression of known genes for defining 

isoforms.  

High-throughput RNA sequencing (RNA-seq) is used to get a comprehensive picture of the 

transcriptome. It allows for the complete annotated and quantification of all genes and their 

isoforms across samples. It requires increasingly complex computational methods. These 

computational challenges fall into three main categories:  

 

 Read mapping.  

 

 Transcriptome reconstruction.  

 

 Expression quantification.  

 

RNA-seq is a technique which is used to represent the transcriptome revealed by sequencing 

cDNA through Next Generation Sequencing technologies. With the introduction of such 

revolutionary method, researchers are now equipped with techniques which are highly sensitive 

and are able to identify and characterize the organisms’ transcriptome. This technique is 

employed in finding out novel transcripts, mutation identification, INDELS characterization. 

Excellent coverage provided so a single run is able to generate >600 million reads. (Sorek & 

Cossart, 2009)  
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3.7 Advantages and Biases of RNA-seq  
 

The pros of RNA- seq are:-  

1. No noise at all.  

2. It allows unequivocal mapping of the sequences in a single region of the genome.  

3. High coverage of the genome.  

4. Large range transcripts can be detected as it can find out many copies of RNA in a single cell.  

5. It is relatively cheaper rather than other previously employed methods.  

6. With the help of NGS technology, RNA seq not only reduced the errors but also simplified the 

method of sample preparation and the cloning step is eliminated also this method is very precise 

in quantifying the results so it replace the use of quantitative PCR(qpcr). 

Transcriptome analysis should be free from bias like abundance, their size, these things 

are basically followed in new generation sequencers. Also, it is the first technology which 

revolutionizes the research by allowing precise examination of whole the transcriptome in 

qualitative manner not only rapid but also at very low cost than the previous methods of Sanger 

sequencing of ESTs 

Research shows that RNA sequencing produce highly reproducible data used for 

Illumina’s same library, thus, it is necessary to sequence only once. (Roberts, Trapnell, 

Donaghey, Rinn, & Pachter, 2011; Z. Wang et al., 2009) 

  

In detecting the differential expression without bias in the samples one has to be careful 

in choosing the correct statistical test before analysis so we can get the exact amount of the gene. 

The results of the analysis of some bacterial transcriptome studies are beginning to re-shape the 

previous understanding of the complexity of the bacterial transcriptome. This also describes 

ways in which whole- transcriptome studies are providing insights into functional genomic 

elements and their regulatory roles in bacteria.  

 

3.8 Steps of RNA-seq analysis 
 

3.8.1 Mapping short RNA-seq reads  
One of the most basic and preliminary tasks in RNA-seq analysis is the alignment of reads. The 

reads are either aligned to either a reference transcriptome or genome. Alignment of reads is a 

classic problem in Bioinformatics with several solutions specifically for EST mapping(Kent, 

2002) (Kent et al.,2002, Wu et al.,2005). RNA-seq reads, however, pose particular challenges 

because they are short (~36–125 bases), error rates are considerable and many reads span exon-

exon junctions.  

 



14 

 

Additionally, the number of reads per experiment is increasingly large, currently as many as 

hundreds of millions. There are two major algorithmic approaches to map RNA-seq reads to a 

reference transcriptome. The first, to which we collectively refer as ‘unspliced read aligners’, 

align reads to a reference without allowing any large gaps. The unspliced read aligners fall into 

two main categories, ‘seed methods’ and ‘Burrows-Wheeler transform methods’(Homer, 

Merriman, & Nelson, 2009). Seed methods find matches for short sub-sequences, termed ‘seeds’, 

assuming that at least one seed in a read will perfectly match the reference. Each seed is used to 

narrow candidate regions where more sensitive methods (such as Smith-Waterman) can be 

applied to extend seeds to full alignments.(Lunter & Goodson, 2011)  

 In contrast, the second approach includes Burrows-Wheeler transform methods such as 

Burrows -Wheeler alignment (BWA) and Bowtie, which compact the genome into a data 

structure that is very efficient when searching for perfect matches. When allowing mismatches, 

the performance of Burrows-Wheeler transform methods decreases exponentially with the 

number of mismatches as they iteratively perform perfect searches 

 

3.8.1.1 TopHat for Mapping Reads  
 

We used TopHat for mapping RNA-seq reads onto reference genome. This is a Genome-guided 

approach. It works by finding splice junctions. Firstly, it map RNA seq reads to the genome, then 

it find out the regions which are potentially exons in total all the regions which align to the 

genome. After this initial step, a probable splice site junctions’ database formed and then these 

reads are mapped 

.(Kim & Salzberg, 2011; Trapnell et al., 2012)  

 

3.8.1.2 Basis of Tophat Algorithm  
 

 More than one source of evidence is used in generating the probable splice sites by TopHat. 

One of the most important evidence for splice junction is if 2 segments of the same read are 

mapped at a certain distance on the same genomic sequence. With this approach, "GT-AG", 

"GC-AG" and "AT-AC" introns will be found ab initio. The second source is pairings of 

"coverage islands", which are distinct regions of piled up reads in the initial mapping. 

Neighboring islands are often spliced together in the transcriptome, so TopHat looks for ways to 

join these with an intron. We only suggest users use this second option (--coverage-search) for 

short reads (< 45bp) and with a small number of reads (<= 10 million). This latter option will 

only report alignments across "GT-AG" introns. (http://tophat.cbcb.umd.edu/manual.shtml)  
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3.8.1.3 Drawback of Tophat  
 

Along with the advantages of Tophat aligner , there is one major drawback that we encountered 

during our project. The drawback is that only those reads can be used for mapping which are 

produced by the Illumina Genome Analyzer.  

 

3.8.2 Transcriptome reconstruction  
 

The process of defining a precise map of all transcripts and isoforms that are expressed in a 

particular sample which requires the assembly of these reads or read alignments into 

transcription units is collectively referred as transcriptome reconstruction. Transcriptome 

reconstruction is a difficult computational task for three main reasons.  

First, gene expression spans several orders of magnitude, with some genes represented by only a 

few reads.  

Second, reads originate from the mature mRNA (exons only) as well as from the incompletely 

spliced precursor mRNA (containing intron sequences), making it difficult to identify the mature 

transcripts. 

Third, reads are short and genes can have many isoforms, making it difficult to identify which 

isoforms produced each read.  

Several methods are present for reconstruction of the transcriptome, and they fall into two main 

categories:  

1. Genome-guided  

2. Genome Independent  

The genome guided methods rely on a reference genome to first map all the reads to the genome 

and assemble overlapping reads into transcripts genome-independent methods assemble the reads 

directly into transcripts without using a reference genome.  

 

3.8.3 Genome-guided reconstruction 

 

Existing genome-guided methods can be classified into two main categories: ‘exon 

identification’ and ‘genome-guided assembly' approaches. Exon identification methods were 

developed early when reads were short (~36 bases) and few aligned to exon-exon junctions. 

They first define putative exons as coverage islands, and then use spliced reads that span across 

these coverage islands to define exon boundaries and to establish connections between exons. 

Exon identification methods provided a first approach to solve the transcript reconstruction 

problem best suitable for short reads, but they are underpowered to identify full-length structures 

of lowly expressed, long and alternatively spliced genes.  
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To take advantage of longer read lengths, genome-guided assembly methods such as 

Cufflinks and Scripture were developed. These methods use spliced reads directly to reconstruct 

the transcriptome. Scripture initially transforms the genome into a graph topology, which 

represents all possible connections of bases in the transcriptome either when they occur 

consecutively or when they are connected by a spliced read. Scripture uses this graph topology to 

reduce the transcript reconstruction problem to a statistical segmentation problem of identifying 

significant transcript paths across the graph. Scripture provides increased sensitivity to identify 

transcripts expressed at low levels by working with significant paths, rather than significant 

exons. Cufflinks utilizes an approach originally developed for EST assembly, by connecting 

fragments into a graph if the overlapping fragments agree on their spliced alignment locations. 

(Gottesman, 2005; Trapnell et al., 2012)  

Cufflinks reports the minimal number of compatible isoforms (maximum precision). 

Cufflinks finds the set of all incompatible assemblies of reads, splice sites does not overlap. 

These sets of incompatible assemblies represent the minimum possible number of reconstructed 

isoforms. Since this minimal transcript set is not guaranteed to be unique, coverage level 

compatibility across the graph is used to decide between minimal sets of transcripts.  

Cufflinks constructs a parsimonious set of transcripts that "explain" then reads observed in an 

RNA-Seq experiment. It does so by reducing the comparative assembly problem to a problem in 

maximum matching in bipartite graphs. In essence, Cufflinks implements a constructive proof of 

Dilworth’s Theorem, which states that “the number of mutually incompatible reads is the same 

as the minimum number of transcripts needed to ‘explain’ all the fragments” by constructing a 

covering relation on the read alignments, and finding a minimum path cover on the directed 

acyclic graph of the relation. 

The algorithm of cufflinks takes input of cDNA sequences which have been aligned to 

the genome by TopHat which can produce spliced alignment. Cufflink treats each pair of 

fragment reads as a single alignment. Overlapped fragments are aligned separately by this 

algorithm as every bundle contains few genes. It then finds out the frequency of assembled 

transcripts  

The first task is to identify the pairs of fragment which are incompatible and are from 

different spliced mRNA pairs. These are overlapped and connected to each other when they are 

compatible and in the whole genome their alignments overlap each other 

Between every pair of compatible fragments every fragment placed which is usually had 

one node in the graph, and an edge, directed from left to right in the genome. (Kim & Salzberg, 

2011; Trapnell et al., 2012)  

The cufflinks produces following output files:-  

 

Transcripts. gtf 

 

Cufflinks' isoforms are assembled in the form of GTF file as output. The first 7 columns are 

standard GTF, and the last column contains attributes, some of which are also standardized 
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("gene_id", & "transcript_id"). There one GTF record per row, and each record represents either 

a transcript or an exon within a transcript.  

isoforms.fpkm_tracking 

  

This file contains the estimated isoform-level expression values in the generic FPKM Tracking 

Format.  

genes.fpkm_tracking  

 

This file contains the estimated gene-level expression values in the generic FPKM Tracking 

Format. We got transcripts. gtf containing the final transcripts which are needed in the next step. 

(http://cufflinks.cbcb.umd.edu/manual.html)  

 

Analysis of the transcripts  

The transcripts are combined from all the files and unique transcripts are taken into a single file. 

The transcripts are combined in parallel with the help of Cuffmerge and Cuffcompare. Both of 

these methods use different basis for merging of transcripts and removes transcripts which are 

present in more than one file. From the output of these methods, we obtained unique transcripts. 

Cuffcompare takes Cufflinks' GTF output as input, and optionally can take a "reference" 

annotation. 

 

3.9 Differential analysis with Cuffdiff 
 

Cuffdiff, which is also included in Cufflinks is used in calculating expression in samples 

and find out statistical significance of every change in expression between them. Changes are 

evaluated by the statistical model which assumes that abundance of every transcript is the basis 

of  the number of reads production, but it can be varied due to some bias which are introduced 

during Despite its exceptional overall accuracy, RNA-seq, like all other assays for gene 

expression, has sources of bias. These biases have been shown to depend greatly on library 

preparation protocol. Cufflinks and Cuffdiff can automatically model and subtract a large 

fraction of the bias in RNA-seq read distribution across each transcript, thereby improving 

abundance estimates. Although RNA-seq is often noted to have substantially less technical 

variability than other gene expression assays (e.g., micro-arrays), biological variability will 

persist. Cuffdiff allows you to supply multiple technical or biological replicate sequencing 

libraries per condition. With multiple replicates, Cuffdiff learns how read counts vary for each 

gene across the replicates and uses these variance estimates to calculate the significance of 

observed changes in expression. We strongly recommend that RNA-seq experiments be designed 

in replicate to control for batch effects such as variation in culture conditions. 

 

http://cufflinks.cbcb.umd.edu/manual.html
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Advances in multiplexing techniques during sequencing now make it possible to divide 

sequencing output among replicates without increasing total sequencing depth (and thus cost 

of sequencing). 

 

Cuffdiff reports numerous output files containing the results of its differential analysis of the 

samples. Gene and transcript expression level changes are reported in simple tabular output files 

that can be viewed with any spreadsheet application (such as Microsoft Excel). These files 

contain familiar statistics such as fold change (in log2 scale), P values (both raw and corrected 

for multiple testing) and gene- and transcript-related attributes such as a common name and 

location in the genome. 

 

Cuffdiff also reports additional differential analysis results beyond simple changes in gene 

expression. The program can identify genes that are differentially spliced or differentially 

regulated via promoter switching. The software groups together isoforms of a gene that have the 

same TSS. These TSS groups represent isoforms that are all derived from the same premRNA; 

accordingly, changes in abundance relative to one another reflect differential splicing of their 

common pre-mRNA. Cuffdiff also calculates the total expression level of a TSS group by adding 

up the expression levels of the isoforms within it. When a gene has multiple TSSs, Cuffdiff looks 

for changes in relative abundance between them, which reflect changes in TSS (and thus 

promoter) preference between conditions. The statistics used to evaluate significance of changes 

within and between TSS groupings are somewhat different from those used to assess simple 

expression level changes of a given transcript or gene. 

 

3.10 Visualization with CummeRbund 
 

Regulation and differential expression of a gene or transcript are analyzed by the 

Cuffdiff. These results can be opened and viewed in a spreadsheet. These files-formats made in a 

way so that its use is simplified in downstream. Still, these files are not viewable with eye and 

working with the multiple files across the platform is very difficult, like finding out the genes 

which are differentially expressed across the sample, but finding out the relative expression level 

of the different isoforms and plot them is not as easy task 

CummeRbund is user-friendly tool, which can manage, visualize and can integrate the 

output data produced from Cuffdiff analysis. It can drastically 
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4. Methodology  
 

We needed RNA-seq reads of our organism and reference genetic sequence of the same 

organism to proceed our analysis.  

 

1) The Sequence Read Archive (SRA) stores raw sequencing data from next-generation 

sequencing platforms, including Applied Biosystems SOLiD® System, Complete Genomics®, 

Helicos Heliscope®, llumina Genome Analyzer®, Pacific Biosciences SMRT®, and Roche 454 

GS System®. The SRA is the single best resource for useful data from initiatives such as the 

1,000 Genomes Project and institutions like the Broad Institute,Washington University, and the 

Wellcome Trust Sanger Institute. We obtained sequence reads from http://sra.dnanexus.com for 

our species.  

 

2) Reference genome data can be downloaded from any genome browser like NCBI, UCSC etc. 

The file should be in .fasta format.  

 

3) Index files were created for the reference genome by using bowtie- build binaries of Bowtie 

aligner packages which can be obtained from  

http://sourceforge.net/projects /bowtie-bio/files/bowtie2/  

 

4) All sra files were converted into a readable fastq file format using fastqdump obtained from 

Sra toolkit downloaded from  

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi\?cmd=show&f=software&m=software&s=softw

are  

These files are to be used as input in Tophat aligner in the next step.  

 

5) The alignment was done with the help of Tophat aligner. Tophat was run for each RNA-seq 

file using.fastq files and reference genome index files as input. From this we obtained output in 

bam file format with filename acceptedhits.bam which contains map reads against reference 

genome.  

 

6) Converted output .bam file format or binary format into .sam file format which is Sequence 

Alignment Map for using it as input in cufflinks which is the next step.  

This was done using samtools package downloaded from  

http://sourceforge.net/projects/samtools/files/samtools/  

As well as installing this package from the Ubuntu software repository from the local machine 

terminal.  

 

http://sourceforge.net/projects%20/bowtie-bio/files/bowtie2/
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7). Now acceptedhits.sam is taken as input in cufflinks which is a program that assembles 

aligned RNA-Seq reads into transcripts, estimates their abundances, and tests for differential 

expression and regulation transcriptome-wide. Cufflinks runs on Linux and OS X.  

 

8). Then we proceed to Cuffmerge for assembling all the output files of cufflinks. Cuffmerge 

many GTF (Gene transfer format) files which are output of Cufflinks'. Input GTF files are 

specified in a "manifest" file listing full paths to the files. Cuffmerge produces a GTF file that 

contains an assembly that merges together the input assemblies. 

 

9). Transcriptome assembly merged and Cuffdiff run along with BAM files for the output of 

TopHat of every replicate 

 

10). Open the R and download the CummeRbund 

 

11). A CummeRbund database formed by using the output from Cuffdiff 

 

12). The distribution of expression levels for each sample is plotted 
 

13). Each gene expression is compared in different conditions in a scattered plot  

 

14). A volcano plot can be created to inspect the genes which are differentially expressed. 

 

15). Bar plots of expression of interested genes are plotted 
 

16). Expression levels of every isoform of the gene of interest with bar created 
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Fig2.Overview of the Methodology 
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4. RESULTS AND DISCUSSIONS  
 

We have chosen the pipeline which can able to handle the huge RNA seq data efficiently, 

these include the TopHat pipeline mapped the RNA-Seq reads against the whole reference 

genome, and those reads that do not map are set aside. Sequences flanking potential 

donor/acceptor splice sites within neighbouring regions are joined to form potential splice 

junctions. The Initial Unmapped (IUM) reads are indexed and aligned to these splice junction 

sequences. TopHat captured around 80% of splice junctions in more actively transcribed genes. 

CummeRbund package produces bar plot and sequence coverage in 2 different 

conditions. We have taken FPKM value in consideration in comparing the differential 

expression. FPKM is fragments per kilobase of transcript per million mapped fragments, using it 

Bar graph are plotted. A linear statistical model which find out the abundance of every transcript 

is used by both Cufflinks and Cuffdiff and it also defines the reads with most probable 

likelihood. 

Cufflinks count the reads to find out the exact expression for every transcript, the reads 

were counted by Cufflinks which are map to every transcript and then there was normalization of 

this number to the length. In the same manner same library can produce different amount of 

sequencing reads in two sequencing runs. FPKM is the method of normalizing the total yield 

developed for comparing the expression of the transcripts between different runs. 
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Fig 3. Fragments overlapped and connected in the graph 

 

 

The algorithm takes as input cDNA fragment sequences that have been aligned to the genome by 

software capable of producing spliced alignments, such as TopHat. With paired-end RNA-Seq, 

Cufflinks treats each pair of fragment reads as a single alignment. The algorithm assembles 

overlapping 'bundles' of fragment alignments separately, which reduces running time and 

memory use, because each bundle typically contains the fragments from no more than a few 

genes. Cufflinks then estimates the abundances of the assembled transcripts .The first step in 

fragment assembly is to identify pairs of 'incompatible' fragments that must have originated from 

distinct spliced mRNA isoforms. Fragments are connected in an 'overlap graph' when they are 

compatible and their alignments overlap in the genome. 
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Fig 4. Cufflinks methodology 

 

Fig 4 shows the method by which cufflinks produces transcripts. Each fragment has one node in 

the graph, and an edge, directed from left to right along the genome, is placed between each pair 

of compatible fragments. In this figure, the orange, blue and red fragments must have originated 

from separate isoforms, but any other fragment could have come from the same transcript as one 

of these three. Isoforms are then assembled from the overlap graph. Paths through the graph 

correspond to sets of mutually compatible fragments that could be merged into complete 

isoforms. The overlap graph here can be minimally 'covered' by three paths, each representing a 

different isoform. Dilworth's Theorem states that the number of mutually incompatible reads is 

the same as the minimum number of transcripts needed to 'explain' all the fragments. Cufflinks 

implements a proof of Dilworth's Theorem that produces a minimal set of paths that cover all the 

fragments in the overlap graph by finding the largest set of reads with the property that no two 

fragments could have originated from the same isoform 
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Fig 5. Comparison of expression of HRH4 between cancerous and normal conditions. Here blue colour pattern is of 

normal sample and cancerous sample represented by red colour which clearly shows significant decrease in the 

expression pattern than the previous one. 

 

 

 

Fig 6. Comparison of both the isoforms of HRH-001 and HRH-002 and their exons and their alignment with the 

contigs produced in the genome 

Chemotactic property of histamine binding to H4R, enhancing leucocyte migration and 

recruitment from bone marrow. This observation could tempt speculation that H4R are down 

regulated after migration of leucocytes from the blood stream into the tissue. 

Here healthy normal count are represented as condition C1 and Gastric cancerous patients 

are C2. We have compared the two isoforms of the gene in two different conditions. Expression 

of a transcript is proportional to the number of reads sequenced from that transcript after 

normalizing for that transcript's length. Each gene and transcript expression value is annotated 
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with error bars that capture both cross-replicate variability and measurement uncertainty as 

estimated by Cuffdiff's statistical model of RNA-seq. Changes in HRH4 expression are 

attributable to a large decrease in the expression of one of two alternative isoforms. The read 

coverage, can also be viewed through the genome browsing application IGV.  

 Isoforms of a gene are compared between the healthy individual and the gastric cancer 

patient. Comparison of isoforms are done as changes in structure may lead to behavioural 

changes towards the gastric cancer. Although we didn’t find remarkable changes in both the 

isoforms of HRH4 but it is proposed that a study relating these isoforms should be done with 

large sample size to come on definite conclusion. 

 HRH4 possess 2 isoforms which are quite similar but many gene may have several 

isoforms which can show quite distinct behaviour 
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Fig 7.Difference in splice junctions of both the isoforms of HRH4; splice junctions can be easily detected by TopHat 
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Fig.8 Bar plot showing comparison of both the isoforms (Q9H3N8 & Q96LD9) in normal and cancerous condition 
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Also there is a copy number variation between the healthy individuals and the cancerous 

patients. Till now little is known about the how the expression of HRH4 is regulated. Role of 

DNA methylation is not important in the progress as we do not detect CpG island in the proximal 

region HRH4 promoter. DNA deletion at chromosome position 18q11, also the chromosome 

locus that HRH4 gene resides, is frequent in gastrointestinal cancers. We wondered if copy 

number variations (CNVs) of HRH4 gene might play a role in the regulation of gene expression. 
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6. Conclusion  
 

Out of all the receptors present on mast cell HRH4 is the newest and the most significant 

one of them. Mast cell can regulate growth of cell cycle through different mediators in cell cycle 

and also through inflammation which either may serve to cancer cells or immune system. 

Attenuated expression levels of the HRH4 protein were mainly observed in advanced Gastric 

cancer samples compared to adjacent normal tissues (ANTs). Gastric cancers suggested that 

deletion and down-regulation of HRH4 might mainly take place in the progression. 

mRNA level in the group with deleted copies of HRH4 was significantly lower than those 

with unaltered copies. Thus, the copy number loss of HRH4 at least plays a down-regulation of 

HRH4 expression in gastric cancer. On the other hand, the reduced HRH4 expression was also 

observed in the Gastric cancer samples with unaltered copies, which indicated that there are 

other mechanisms involved as well. 

So it can be concluded that expression of HRH4 influence the proliferation ability of the 

Gastric cancer cells upon exposure to histamine. In future more studies needed to be done in 

finding out how mast cells are related to gastric cancer 
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Appendix 
 

Downloading and installing software—Create a directory to store all of the executable 

programs used in this protocol (if none already exists): 

$ mkdir $HOME/bin 

Add the above directory to your PATH environment variable: 

$ export PATH = $HOME/bin:$PATH 

To install the SAM tools, download the SAM tools (http://samtools.sourceforge.net/) and 

unpack the SAM tools tarball and cd to the SAM tools source directory: 

$ tar jxvf samtools-0.1.17.tar.bz2 $ 

cd samtools-0.1.17 

Copy the samtools binary to some directory in your PATH: 

$ cp samtools $HOME/bin 

To install Bowtie, download the latest binary package for Bowtie 

(http://bowtie-bio.sourceforge.net/index.shtml) and unpack the Bowtie zip archive and cd to 

the unpacked directory: 

$ unzip bowtie-0.12.7-macos-10.5-x86_64.zip 

$ cd bowtie-0.12.7 

Copy the Bowtie executables to a directory in your PATH: 

$ cp bowtie $HOME/bin 

$ cp bowtie-build $HOME/bin 

$ cp bowtie-inspect $HOME/bin 

To install TopHat, download the binary package for version 1.3.2 of TopHat 

(http://tophat.cbcb.umd.edu/) and unpack the TopHat tarball and cd to the unpacked 

directory: 

$ tar zxvf tophat-1.3.2.OSX_x86_64.tar.gz 

$ cd tophat-1.3.2.OSX_x86_64 

Copy the TopHat package executable files to some directory in your PATH: 

cp * $HOME/bin 

To install Cufflinks, download the binary package of version 1.2.1 for Cufflinks 

(http://cufflinks.cbcb.umd.edu/) and unpack the Cufflinks tarball and cd to the unpacked 

directory: 

$ tar zxvf cufflinks-1.2.1.OSX_x86_64.tar.gz 

$ cd cufflinks-1.2.1.OSX_x86_64 

Copy the Cufflinks package executuble files to some directory in your PATH: 

$ cp * $HOME/bin 

To Install CummeRbund, start an R session: 

$ R 
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R version 2.13.0 (2011-04-13) 

Copyright (C) 2011 The R Foundation for Statistical Computing 

ISBN 3-900051-07-0 

Platform: x86_64-apple-darwin10.6.0/x86_64 (64-bit) 

R is free software and comes with ABSOLUTELY NO WARRANTY. 

You are welcome to redistribute it under certain conditions. 

Type ‘license()’ or ‘licence()’ for distribution details. 

R is a collaborative project with many contributors. 

Type ‘contributors()’ for more information and ‘citation()’ on how to cite R 

or R packages in publications. 

Type ‘demo()’ for some demos, ‘help()’ for online help, or 

‘help.start()’ for an HTML browser interface to help. 

Type ‘q()’ to quit R. 

Install the CummeRbund package: 

> source(‘http://www.bioconductor.org/biocLite.R’) 

> biocLite(‘cummeRbund’) 

 

1| Map the reads for each sample to the reference genome: 

$ tophat -p 8 -G genes.gtf -o C1_R1_thout genome C1_R1_1.fq C1_R1_2.fq 

$ tophat -p 8 -G genes.gtf -o C1_R2_thout genome C1_R2_1.fq C1_R2_2.fq 

$ tophat -p 8 -G genes.gtf -o C1_R3_thout genome C1_R3_1.fq C1_R3_2.fq 

$ tophat -p 8 -G genes.gtf -o C2_R1_thout genome C2_R1_1.fq C1_R1_2.fq 

$ tophat -p 8 -G genes.gtf -o C2_R2_thout genome C2_R2_1.fq C1_R2_2.fq 

$ tophat -p 8 -G genes.gtf -o C2_R3_thout genome C2_R3_1.fq C1_R3_2.fq 

 

2| Assemble transcripts for each sample: 

$ cufflinks -p 8 -o C1_R1_clout C1_R1_thout/accepted_hits.bam 

$ cufflinks -p 8 -o C1_R2_clout C1_R2_thout/accepted_hits.bam 

$ cufflinks -p 8 -o C1_R3_clout C1_R3_thout/accepted_hits.bam 

$ cufflinks -p 8 -o C2_R1_clout C2_R1_thout/accepted_hits.bam 

$ cufflinks -p 8 -o C2_R2_clout C2_R2_thout/accepted_hits.bam 

$ cufflinks -p 8 -o C2_R3_clout C2_R3_thout/accepted_hits.bam 

 

3| Create a file called assemblies.txt that lists the assembly file for each sample. The file 

should contain the following lines: 

./C1_R1_clout/transcripts.gtf 

./C2_R2_clout/transcripts.gtf 

./C1_R2_clout/transcripts.gtf 

./C2_R1_clout/transcripts.gtf 
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./C1_R3_clout/transcripts.gtf 

./C2_R3_clout/transcripts.gtf 

 

4| Run Cuffmerge on all your assemblies to create a single merged transcriptome annotation: 

cuffmerge -g genes.gtf -s genome.fa -p 8 assemblies.txt 

 

5| Run Cuffdiff by using the merged transcriptome assembly along with the BAM files from 

TopHat for each replicate: 

$ cuffdiff -o diff_out -b genome.fa -p 8 –L C1,C2 -u merged_asm/merged.gtf \ 

./C1_R1_thout/accepted_hits.bam,./C1_R2_thout/accepted_hits.bam,./ 

C1_R3_thout/ accepted_hits.bam \ 

./C2_R1_thout/accepted_hits.bam,./C2_R3_thout/accepted_hits.bam,./ 

C2_R2_thout/ accepted_hits.bam 

6| Open a new plotting script file in the editor of your choice, or use the R interactive shell: 

$ R 

R version 2.13.0 (2011-04-13) 

Copyright (C) 2011 The R Foundation for Statistical Computing 

ISBN 3-900051-07-0 

Platform: x86_64-apple-darwin10.6.0/x86_64 (64-bit) 

R is free software and comes with ABSOLUTELY NO WARRANTY. 

You are welcome to redistribute it under certain conditions. 

Type ‘license()’ or ‘licence()’ for distribution details. 

R is a collaborative project with many contributors. 

Type ‘contributors()’ for more information and 

‘citation()’ on how to cite R or R packages in publications. 

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or 

‘help.start()’ for an HTML browser interface to help. 

Type ‘q()’ to quit R. 

 

7| Load the CummeRbund package into the R environment: 

> library(cummeRbund) 

 

8| Create a CummeRbund database from the Cuffdiff output: 

> cuff_data < - readCufflinks(‘diff_out’) 

 

9| Plot the distribution of expression levels for each sample 

> csDensity(genes(cuff_data)) 

10| Compare the expression of each gene in two conditions with a scatter plot  
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> csScatter(genes(cuff_data), ‘C1’, ‘C2’) 

 

11| Create a volcano plot to inspect differentially expressed genes  

> csVolcano(genes(cuff_data), ‘C1’, ‘C2’) 

 

12| Plot expression levels for genes of interest with bar plots  

> mygene < - getGene(cuff_data, ‘regucalcin’) 

> expressionBarplot (mygene) 

 

13| Plot individual isoform expression levels of selected genes of interest with bar plots 

> expressionBarplot(isoforms (mygene)) 

14| Inspect the map files to count the number of reads that map to each chromosome 

(optional). From your working directory, enter the following at the command line: 

$ for i in *thout/accepted_hits.bam; do 

echo $i; samtools index $i ; done; 

$ for i in *thout/accepted_hits.bam; do 

echo $i; samtools idxstats $i ; done; 

The first command creates a searchable index for each map file so that you can quickly 

extract the alignments for a particular region of the genome or collect statistics on the entire 

alignment file. The second command reports the number of fragments that map to each 

chromosome. 

Compare transcriptome assembly to the reference transcriptome (optional) 

15| You can use a utility program included in the Cufflinks suite called Cuffcompare to compare 

assemblies against a reference transcriptome. Cuffcompare makes it possible to separate new 

genes from known ones, and new isoforms of known genes from known splice variants. Run 

Cuffcompare on each of the replicate assemblies as well as the merged 

transcriptome file: 

$ find . -name transcripts.gtf > gtf_out_list.txt 

$ cuffcompare -i gtf_out_list.txt -r genes.gtf 

$ for i in ‘find . -name *.tmap’; do echo 

$i; awk ‘NR > 1 { s[$3] + + } END { \ for (j in s) { print j, s[j] }} ’ $i; 

done; 

The first command creates a file called gtf_out_list.txt that lists all of the GTF files in the 

working directory (or its subdirectories). The second command runs Cuffcompare, which, 

compares each assembly GTF in the list to the reference annotation file genes.gtf. 

Cuffcompare produces a number of output files and statistics, and a full description of its 

behaviour and functionality is out of the scope of this protocol. Please see the Cufflinks manual 

(http://cufflinks.cbcb.umd.edu/manual.html) for more details on Cuffcompare's output files and 

their formats. The third command prints a simple table for each assembly that lists how many 
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transcripts in each assembly are complete matches to known transcripts, how many are partial 

matches and so on. 

Record differentially expressed genes and transcripts to files for use in downstream 

analysis (optional)  

16| You can use CummeRbund to quickly inspect the number of genes and transcripts that 

are differentially expressed between two samples. The R code below loads the results of 

Cuffdiff's analysis and reports the number of differentially expressed genes: 

> library(cummeRbund) 

> cuff_data < - readCufflinks(‘diff_out’) 

> 

> cuff_data 

CuffSet instance with: 

2 samples 

14353 genes 

26464 isoforms 

17442 TSS 

13727 CDS 

14353 promoters 

17442 splicing 

11372 relCDS 

> gene_diff_data < - diffData(genes(cuff_data)) 

> sig_gene_data < - subset(gene_diff_data, (significant = = ‘yes’)) 

> nrow(sig_gene_data) 

 

17| Similar snippets can be used to extract differentially expressed transcripts or 

differentially spliced and regulated genes: 

> isoform_diff_data < - diffData(isoforms(cuff_data), ‘C1’, ‘C2’) 

> sig_isoform_data < - subset(isoform_diff_data, (significant = = ‘yes’)) 

> nrow(sig_isoform_data) 

> tss_diff_data < - diffData(TSS(cuff_data), ‘C1’, ‘C2’) 

> sig_tss_data < - subset(tss_diff_data, (significant = = ‘yes’)) 

> nrow(sig_tss_data) 

> cds_diff_data < - diffData(CDS(cuff_data), ‘C1’, ‘C2’) 

> sig_cds_data < - subset(cds_diff_data, (significant = = ‘yes’)) 

> nrow(sig_cds_data) 

> promoter_diff_data < - distValues(promoters(cuff_data)) 

> sig_promoter_data < - subset(promoter_diff_data, (significant = = ‘yes’)) 

> nrow(sig_promoter_data) 

> splicing_diff_data < - distValues(splicing(cuff_data)) 
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