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ABSTRACT

In this thesis, comparison of different inertia weights is taken into account to analyse the
performance of PARTICLE SWARM  OPTIMIZATION on Economic load
dispatch considering the cost of the generation. Equality constraints of the problem have been
considered with the inclusion of a new parameter ‘k’. Comparative analysis suggests that the
use of simulated annealing procedure for the variation in inertia weight in the algorithm of PSO
significantly improves the performance with lesser number of iterations. The data sets being
used have been generated for IEEE 5 , 14 and 30 bus system using Particle swarm
optimization method. An attempt has been made to reach the target point in lesser number of

iterations and with minimum cost of generation.

A MATLAB program has been developed for Particle Swarm Optimization (PSO) method to
solve economic load dispatch problem considering cost of generation. All different inertia
weight functions have been implemented on ECONOMIC LOAD DISPATCH problem to get

the optimum value of cost of generation with lesser number of iterations.
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CHAPTER-1

INTRODUCTION

1.1 OVERVIEW

The size of our electrical power system is increasing energy demands. To accomplish
this, a number of power plants are connected in parallel to supply the system load by
interconnection of systems. In grid system, it is very essential to operate plant units

most economically.

The economic scheduling aims to guarantee at all times the optimum combination of

generators connected to the system to supply the load demand.

Economic Load Dispatch (ELD) is a very important function in the planning and
operation of power system. It involves two separate steps namely the unit commitment
and on-line economic dispatch considering all constraints (equality constraints and
inequality constraints). The complexity of ELD depends on the factors like size of the

system, generator characteristics and system constraints.

By ELD we mean to find the generations made by different generators or plants so that
the total cost of the fuel is minimum. The generation in ELD is not fixed but they lie
under certain limits so as to meet a particular load demand with minimum
consumption of fuel and hence we can say ELD is basically the solution to a large

number of load flow problems.

In this work the cost of generation is taken as the objective which is needed to be

minimised. For this IEEE 5 bus, 14 bus and 30 bus systems have been considered.
Our objective is accomplished in the order as given below:

e Exploring PSO and coding the programs in MATLAB 2012a.
e Application of PSO to various benchmark functions.
e Application of PSO to Economic load dispatch problem considering cost of

generation for IEEE 5, 14 and 30 bus systems using.
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1.2 AIM AND APPROACH

Our main aim in this thesis is to solve economic load dispatch (ELD) problem with
minimum number of iterations considering the cost of generation for which IEEE 5, 14,
& 30 bus system have been considered.

The work has been carried out in the following manner:

a. Knowing about particle Swarm Optimization and coding its algorithm in
MATLAB R2012a.

b. Solution of different mathematical benchmark functions using PSO.

c. Formulation of Economic Load Dispatch (ELD) considering the cost of generation
for IEEE 5, 14, & 30 Bus System.

d. Generation of non-inferior sets of IEEE 5, 14 and 30 bus systems.

Achievement of solution for IEEE 5, 14 and 30 bus system with lesser no of iterations

considering the cost of generation.

1.3 LITERATURE REVIEW

We do not have a single optimization method available to solve all the optimization
problems. Various optimization methods have been developed to solve many types of
optimization problems recently. Latest methods of optimization (few times referred to
non-traditional methods of optimization) are popular and powerful methods for solving
many complicated engineering problems. The methods consists of particle swarm
optimization algorithm, artificial immune systems, genetic algorithms, neural networks,

ant colony optimization and fuzzy optimization.

The consumption level of the electric power is increasing exponentially in the modern
world. Since the electric power network is the most complex as well as huge in size,
which needs proper control and decision making algorithms to get economical
operation from the available resources and their best utilization by generation,

transmission and distribution utilities.

In power systems the continuous unpredictable change in load demand leads to the

necessity in adjusting the power generation outputs. The scheduling of the generator
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output is taken care by Economic Load Dispatch (ELD) problem. Economic load
dispatch is one of the major optimization issue in power system. Its objective is to
allocate the demand among committed generators in the most economical manner,
while all physical & operational constraints are satisfied. Many conventional &
nonconventional optimization techniques available in literature are applied to solve
such problems. Conventional methods have simple mathematical model and high
search speed but they are failed to solve such problem because they have the drawbacks
of multiple local minimum points in the cost function. Algorithms require the
characteristics to be approximated; however, such approximations are not desirable as
they may lead to suboptimal operation and hence huge revenue loss over time,
restrictions on the shape of the fuel-cost curves. Other methods based on artificial
intelligence have been proposed to solve the economic dispatch problem, these are
genetic algorithm, Tabu search, particle swarm optimization etc [1].

A concept for the optimization of nonlinear functions using particle swarm
methodology is introduced first time by James Kennedy and Russell Eberhart.The
evolution of several paradigms is outlined, and an implementation of one of the
paradigms is discussed. Benchmark testing of the paradigm is described, and
applications, including nonlinear function optimization and neural network training, are
proposed. The relationships between particle swarm optimization and both artificial life

and genetic algorithms are described in [2].

The optimization of nonlinear functions using particle swarm methodology is

described. Implementations of two paradigms are discussed and compared [3].

In paper Wei-Bing Liu and Xian-JiaWangr presented a new particle swarm optimizer
based on evolutionary game (EGPSO).We map particles’ finding optimal solution in
PSO algorithm to players’ pursuing maximum utility by choosing strategies in
evolutionary games, using replicator dynamics to model the behavior of particles. And
in order to overcome premature convergence a multi-start technique was introduced.
Experimental results show that EGPSO can overcome premature convergence and has

great performance of convergence property over traditional PSO[4].
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Tao Gong and Andrew L. Tuson_presented the working mechanism of PSO in a
principled manner with formal analysis and investigates the applicability of pso on the
quadratic assignment problem (gap). Particularly, the derived pso operator for gap is

empirically studied against a genetic algorithm (ga)[5].

In this paper, Ying-Ping Chen and Wen-Chih Peng, gave suggestion to improve the
performance of the particle swarm optimizer by incorporating the linkage concept,
which is an essential mechanism in genetic algorithms,and design a new linkage
identification technique called dynamic linkage discovery to address the linkage
problem in real-parameter optimization problems|[6].

Keisuke KAMEYAMA investigsted the dynamics of PSO research and numerous
variants for improvement of performance of PSO[7].

Hardiansyah et al. suggested application of PSO for Economic load dispatch problem
.The results have been demonstrated for 3 and 6 generator systems with and without

consideration of losses[9].
Jaya Sharma et al. presented review of PSO application in ELD problems[10].

The intensified research on environmental safety guided to create public awareness
about the emission. The passage of the clean air amendments in 1990 has forced the
utilities to reduce their SO,,CO,,NOx emission by 40% from 1980 levels.Therefore
apart from cost, emission objective must also be taken into account .The multi-
objective Environmental/ economic dispatch is having two conflicting objectives, as
the minimisation of cost maximizes the pollution, leads to the necessity of trade —off
analysis to define admissible dispatch policies for any demand level. There has been
much research pertaining to MOEED problem. M.A. Abido has compared three
multiobjective evolutionary algorithms and the same has been successfully applied to
environmental/economic power dispatch problem. Strength Pareto Evolutionary
Algorithm (SPEA) has better diversity characteristics and is more efficient when
compared to other Muti Objective Evolutionary Algorithms (MOEAS)[11].

J. C. Bansal et al proposed a large number of variations of Inertia Weight strategy[12].

This paper studies 15 relatively recent and popular Inertia Weight strategies and
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compares their performance on 05 optimization test problems.Russell Eberhart et al
proposed two Paradigms of PSO namely globally oriented (GBEST), and locally
oriented (LBEST) and compared for the extremely nonlinear Schaffer f6
function.The authour propose both the paradigm for training of neural network &
learning of robot[13]. Ajit Abraham et al implemented Particle Swarm Optimization
(PSO) and Ant Colony Optimization (ACO) algorithms on some mathematical function
(Griewank function, Schwefel function, Quadric function), real world applications
as travelling sales men problem & data mining[14].

Singh and Dhillon converted a multiobjetcive economic emission dispatch problem into
a scalar problem. This scalar set optimization problem is then solved for many types of
different set of weights pattern to generate non- inferior solution along with trade-off
functions. Between conflicting objectives. The optimal solution is calculated by
considering real and reactive power losses, which are calculated by performing fast
decoupled load flow analysis[31].

Airashidi and EI- Harwary presented a PSO algorithm as an effective tool for solving
constrained multiobjetcive optimization problems like Economic Dispatch(EED).
Results showed that PSO was successfully capable of capturing the shape of Pareto

solution sets[32].

1.4 PLAN OF THESIS

This thesis has been arranged in six chapters. The contents of the chapters are briefly

outlined as indicated below:

Chapter 1: Introduction to economic load dispatch problem and research aim of the

thesis. Literature survey for the covered topics has also been shown.
Chapter 2: Introduces the Particle Swarm Optimization
Chapter 3: Discusses about the applications of PSO in various fields.

Chapter 4: Explores the concepts of Particle Swarm Optimization algorithm in
MATLAB R2011b and its application on various mathematical benchmark functions.

Analysis of various parameters in PSO algorithm has also been carried out.
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Chapter 5: Discusses the solution of Economic Load Dispatch for IEEE 5, 14 and 30
bus systems.

Chapter 6: Conclusion and the future work directions have been discussed.

Appendix and references are at the end of the thesis.
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CHAPTER-2

PARTICLE SWARM OPTIMIZATION

2.1 INTRODUCTION

The Particle Swarm Optimization (abbreviated as PSO) algorithm is a stochastic
search algorithm based on population and an alternate solution to complicated
optimization problem which are non-linear in nature. PSO algorithm was firstly
introduced by Dr. Eberhart and Dr. Kennedy in 1995 and the basic idea of PSO was
initially inspired by simulation of the social behaviour of animals such as
bird flocking, fish schooling and so on. PSO can be easily implemented and is
computationally inexpensive, since its memory and CPU speed requirements are low
(Eberhart et al.,1996). PSO is based on the natural technique of the group
communication to share individual knowledge when a group of birds or
insects search food or migrate and so forth in a searching space, although all birds or
insects do not know where the best position is and from the nature of the
social behaviour, if any member can find out a desirable path to go, the rest of the

members will follow quickly.

The  particle  swarm optimization  (PSO) is aparallel evolutionary
computation technique developed by Kennedy and Eberhart based on the
social behaviour metaphor. The PSO algorithm is initialized with a population of
random candidate solutions, conceptualized as particles. Each particle is assigned a
randomized velocity and is iteratively moved through the problem space. It is
attracted towards the location of the best fitness achieved so far by the particle itself
and by the location of the best fitness achieved so far acrossthe whole

population (global version of the algorithm).

The PSO algorithm includes some tuning parameters that greatly influence the
algorithm performance, often stated as the exploration-exploitation tradeoff:
Exploration is the ability to test various regions in the problem space in order to locate
a good optimum, hopefully the global one. Exploitation is the ability to concentrate

the search around apromising candidate solution in order to locate the
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optimum precisely. Despite recent research efforts, the selection of the
algorithm parameters remains empirical to a large extent. A complete theoretical
analysis of the algorithm has been given by Clerc and Kennedy. Based on this
analysis, the authors derived a reasonable set of tuning parameters, as confirmed by.
The reference contains a good deal of mathematical complexity, however,
and deriving from it simple user-oriented guidelines for the parameter selection in a

specific problem is not straightforward.

The present work gives some additional insight into the PSO parameter selection
topic. It is established that some of the parameters add no flexibility to the
algorithm and can be discarded without loss of generality. Results from the
dynamic system theory are used for a relatively simple theoretical analysis of
the algorithm which results in graphical guidelines for parameter selection. The user
can thus take well-informed decisions according to the desired exploration—
exploitation trade off: either favour exploration by a thorough sampling of the
solution space for a robust location of the global optimum at the expense of a large
number of objective function evaluations or, on the contrary, favour exploitation
resulting in a quick convergence but to a possibly non-optimal solution. Non-
surprisingly , the best choice appears to depend on the form of the objective function.
The  newly established  parameter  selection guidelines are applied to

standard benchmark functions.

2.2 THE BASIC MODEL OF PSO

Particle swarm optimization (PSO) is an optimization approach in which a swarm of
candidate solutions are used which are referred to particles. Particles are made to ““fly”’
into a search space, with each particle getting attracted towards the global best
solution found by the particle’s neighbourhood and the personal best solution found by
the particle. The velocity v; is used to modify the position x;, of the iy, particle and
this velocity depends on the distance of the particle from its personal best solution and

from the global best solution. For the original PSO,
Vii(t+1) = w * vii(t) + cpx rp* (Yii(t) — Xij(t)) + coxrg* ( YNi(t) — i (1) (2.1)

Xj (t+1) = x(t) + vi(t+1) (2.2)
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fori=1,...,nop and j=1,...,n,
where,
Qp = Cp=Tpand @g = Cq * Iy, (2.3)

nop represents the total number of particles in the swarm,
n represents the dimensions in the given problem, ie. the total number of
parameters of the function getting optimized

Cp and cq are acceleration coefficients,

g ~ U0, 1),

xi(t) represents the position of particle iy, at time t,

vi(t) represents the velocity of particle iy, at time t,

yi(t) represents the personal best solution of particle i at time t,

y”ij(t) represents the best position found by the neighbourhood of particle i at time t.

From Eg. (2.1), the velocity of a particle is obtained by three factors:

vi(t), which behaves as a momentum term to avoid excessive oscillations in the

direction of search.

yi(t), each particle remembers its own coordinates in the solution space which are
linked with the best solution (fitness) which has been obtained so far by that particle.
This value is known as personal best (Ppest). In the ppest SWarm, only a limited number
of particles (neighbour count) can modify the velocity of a given particle. The
swarm will converge taking more time but can locate the global optimum with a greater

chance.

y”~ij(t), another best value that is obtained by the PSO is the best value achieved so
far by any of the particle in the neighbourhood of that particle. This value is known as
global best (gnest).All the particles in the ghest Swarm, are neighbours of one other;
thus, the best particle’s position in the Swarm has been used in the social term in the
velocity update equation. It is supposed that gpest SWarms converge in lesser time, as all

the particles are attracted simultaneously to the best part of the search space. However,
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if the global optimum is not so near as compared to the best particle, it might be
impossible for the swarm to explore different areas; this means that the swarm could be
trapped in the local optima.

cp~ ri * (yi(t) - xi(t)), known as the cognitive component. This component shows
that the distance a particle is from the best solution, yi(t), found by itself. The
cognitive component shows the natural tendency of individuals to go back to
environments where they obtained their best performance.

cg * ro * (y7ij(t) — xi (t)) represents the social component. This component shows the
distance of a particle from the best position found by its neighbourhood. It shows the
behaviour of the individuals to follow the success of the other individuals.

In the social component, y”i;(t) shows the best solution found by the neighbourhood of
particle iy Neighbourhood topologies are used to constrict the information exchanged
between particles.

Particles modify their positions according to the "“Psychosocial compromise’” with

which an individual is comfortable and what the society reckons.

Fig 2.1 Initialization of the positions of all particles of x1 and x2
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Fig 2.2 Initialization of velocities in random directions of al particles of x1 and x2

Fig 2.1 shows the random distribution of particles for two variables lets say for x1 and
X2 in a given limit or boundary.whereas Fig 2.2 tells us about the random distribution

of velocities for all the particles of x1 and x2.

My best performanc

WP .
Herelam! ..* . The global best
A o performance

Fig 2.3 Movement of a particle on the basis of pbest and gbest

Fig2.3 shows the movement of a particle is influenced by two factors i.e. one factor is
the personal best position and the second factor is related to the global best position.

Both these factors contributes in deciding the new position of the different particles.
2.3 PSO ALGORITHM PARAMETERS

There are some parameters in PSO algorithm that may affect its performance. For any

given optimization problem, some of these parameter’s values and choices have large
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impact on the efficiency of the PSO method, and other parameters have small or no
effect. The different PSO parameters are number of particles or swarm size, velocity

components, acceleration coefficients and number of iterations illustrated below.

2.3.1 Swarm size

Population size or swarm size is the number of particles ‘s’ in the swarm. A large
number of swarm size generates larger parts of the search space to be covered
per iteration. A large number of particles may reduce the number of iterations need to
obtain a better optimization result. In contrast, large amounts of particles improve the
computational complexity per iteration, and more time consuming. From a large
number of empirical studies, it has been shown that most of the implementations in

PSO use an interval of s € [10,60] for the size of swarm.
2.3.2 Velocity clamping

Initial PSO studies used cp = cg = 2.0. Although good results have been achieved, it
was seen that velocities fastly exploded to large values, especially for particles at a
large distance from their global best (“y) and personal best (yi)
positions. Consequently, particles have large no. of position updates, with particles
leaving behind the boundaries of their search space. Velocities are clamped to control

the increase in velocity.
Vit+l) = vi(t+l) i Vij(ttl) <V omax (2.4)
V max if VI|J(t+1) >:V max

Velocity clamping does not avoid a particle from leaving the boundaries of its search

space, it limits the particle step sizes, thereby divergent behaviour is restricted.

2.3.3 lteration numbers

The number of iterations to obtain a good result depends on the problem.
A very low number of iterations may halt the search process prematurely, while a
very large no. of iterations have the consequence of unnecessary added

computational complexity and make the convergence slow.
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2.3.4 Acceleration coefficients

The acceleration coefficients ¢, and ¢4, combined with the random values rp and ryg,
maintain the stochastic influence on the cognitive and social components of
the particle’s velocity respectively. The constant c, shows how much confidence a
particle has on itself, while cy expresses how much confidence a particle has on its
neighbors. There are some properties of ¢, and cg:

Cp = Cyg= 0 represents all particles continue flying at their present speed until they hit
the boundary of the search space. Therefore, the update equation for velocity
is calculated as

Vij(t+1) = vi(t)

Co > 0 and cq = O represents that all particles are independent. The velocity update
equation for this condition will be

Vij(t+1) = w > vii(t) + ¢ * rp (yi(t) — Xii(t)) (2.5)
On the contrary, ¢, > 0 and ¢y = O represents that all particles are attracted towards a

single point in the entire swarm and the update in the velocity will be as under:
Vij(t+1) = vii(t) + cg * rg=( Fij(t) — Xij (1)) (2.6)

Cp = Cy represents that all the particles are attracted towards the average of Ppest and
Gbest .

C>>Cy represents that each particle is strongly influenced by its own best position,
resulting in an increased wandering. In contrast, when cg>>c, then all of the particles
are much more influenced by the global best position, which causes all particles to

converge prematurely to the optima.

Normally, c, and cq are static, with empirically finding the optimized values.
Wrong initialization of c,and cg may result in cyclic or divergent behaviour. From the
different empirical researches, this has been proposed that the two acceleration

constants must be c,= cq =2.
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2.3.5 Inertia weight

Shi and Eberhart introduced the inertia weight to eliminate the need for velocity
clamping and to still restrict the divergent behaviour. The momentum of the particles is
controlled by the inertia weight (w) by weighing the contribution of the previous
velocities—basically it is used to control how much memory of the last flight direction
will affect the new velocity. The velocity equation modified to

vij(t+1) = w*vit) +cp *ro * (yi(t) — Xi(1) + g * r2 * (Fi(t) - Xij (1)) (2.7)

Shi and Eberhart introduced the concept of inertia weight in 1999 to reduce the
velocities over time (or iterations), to control the exploitation and exploration abilities

of the swarm and to converge the swarm more efficiently and accurately.

If w> 1 then the velocities increase with time and particles can hardly divert their
directions to return towards optimum, and the swarm diverges. If w < 1 then little
momentum is only saved from the initial step and quick changes to directions are set in
the process. If w =0 particles velocity disappears and all particles move without

knowledge of the last velocity in each step.

The inertia weight might be implemented either as dynamically changing values or a
fixed value. Initial implementations of used a fixed value for the whole process for all
particles, but now dynamically changing inertia values is used because this parameter
controls the exploration and exploitation of the search space. Various strategies were

suggested time to time were studied in detail.

The inertia value is usually high initially, which allows all particles to freely move in
the search space in the initial steps and decreases with time. Therefore, the process
shifts from the exploratory mode to the exploitative mode. This decrease in inertia
weight has produced good results in most of optimization problems. To control the
balance between local and global exploration and to obtain quick convergence and to
reach an optimum, the inertia weight whose value decreases linearly with the increase

in iteration number is set accordingly by the following equation

W (t+1) = Wiax — ( ( ( Wmax = Wmin) * 1t ) / (ltmax) ), Wmax > wmin (2.8)



XXIV

where, Wmin and Wmax are the final and initial values of the inertia weight respectively,
Itmax 1s the maximum iteration number, ‘i’ is the current iteration number.
Commonly, the inertia weight decreases linearly from 0.9 to 0.4 over the full run.
Trelea have defined a condition that ( w < ( ( cp+cg) / 2 )-1 ) guarantees the
convergence. Cyclic or Divergent behavior can occur in the process if this condition is

not satisfied.

The technique of inertia weight is quite useful to ensure convergence. However there is
a disadvantage of the inertia weight method that once the inertia weight is decreased,
it cannot increase even if the swarm needs to search new areas. This method is not able

to recover its exploration mode.

2.3.6 Constriction Coefficient

When the algorithm of particle swarm is allowed run without restraining the velocity in
some way, the system simply explodes after some iterations. In the initial stage,
researchers used V max but the reason for this was not understood fully. Kennedy
(Kennedy, 1998) noted that the trajectories of one-dimensional, non-stochastic particles
contained interesting regularities when sum of the acceleration constants @1 and ¢2

were in the range of 0.0 and 4.0.

The re- attempt to analyze the trajectories was conducted by Ozcan and Mohan (Ozcan
and Mohan, 1999).They reported that the particles were ‘“surfing the waves” of
underlying sinusoidal curves. However, Clerc's analysis of the iterative system
demonstrated that the behavior discovered by Ozcan and Mohan was in fact the

signature of a five-dimensional attractor (Clerc and Kennedy, 2002).

The simplest constriction described by Clerc (Clerc and Kennedy, 2002) as type 1”

constriction is the simplifed system:

Vij(t+1) = [ (vi(t) + U0, @1] * ((yii(t) — (1)) + U[0, @2] * ( Y () — x5 1) ]  (2.9)

Xij (t+1) = x(t) + vij(t+1) (2.10)
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The following formula is used to compute the constriction coeffcient:

2k
= —" where k € [0,1], o =1 + ¢2, ¢ >4 (2.11)
|2-9-Vop2-4¢ |

Most researchers using the constriction method use ' set to 4.1 (thus having ¢l = ¢2 =

2.05) and k = 1 which determines that y~~ 0.729.
This is algebraically equivalent to using the inertial model x~~ 0.729.
And o1 = @2 ~~1.49445.

The constriction method results in convergence over time; the amplitude of the
trajectory's oscillations decreases over time. When k = 1 convergence is slow enough to

allow thorough exploration before the search converges.

The advantage of using constriction is that there is no need to use Vmax nOr to guess the
values for any parameters governing convergence and preventing explosion.
Subsequent experiments (Eberhart and Shi, 2000) concluded that it was prudent to set
Vmax 10 Xmax, the dynamic range of each variable in each dimension. The result is a
particle swarm algorithm with no problem-specific parameters, considered the

canonical particle swarm algorithm.

2.3.7 Neighbourhood Topologies

A neighbourhood must be defined for each particle. This neighbourhood determines the
extent of social interaction within the swarm and influences a particular particle’s
movement. Less interaction occurs when the neighbourhoods in the swarm are small.
For small neighbourhood, the convergence will be slower but it may improve the
quality of solutions. For larger neighbourhood, the convergence will be faster but the
risk that sometimes convergence occurs earlier. To solve this problem, the search
process starts with small neighbourhoods size and then the small neighbourhoods size
is increased over time. This technique ensures an initially high diversity with

faster convergence as the particles move towards a promising search region.
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The PSO algorithm is social interaction among the particles in the entire swarm.
Particles communicate with one another by exchanging information about the success
of each particle in the swarm. When a particle in the whole swarm finds a better
position, all particles move towards this particle. This performance of the particles is
determined by the particles’ neighborhood. Researchers have worked on developing
this performance by designing different types of neighborhood structures. Some
neighborhood structures or topologies are discussed below:
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Fig 2.6 Wheel



XXVII

v

N S T

' ., 1 ,.,"
g

¥ » . IR
- ;‘“ "" PR
- [ | i X
» VAN ; V = ’{; & 3 4
AT Ve
\5 f“v‘ 4‘: e"

\
- oy -
\ g 7
| '. 0 7 “
‘{,;v; £
Fig 2.7 Four Clusters

Figure 2.4 explains the star topology, where each particle is connected with every other
particle. This topology basically leads to convergence at a faster rate than other
topologies, but there is a chance to be trapped in local minima. Because all particles are
aware about each other, this topology is known as the gpest PSO.

Figure 2.5 represents the ring topology, where each particle is associated to its
immediate neighbours. In this particular process, when better result is found by one
particle then this particle gives it to its immediate neighbours and these immediate
neighbours gives it to their individual immediate neighbours, until it gained by the last
particle. Thus the best result found is spreaded very slowly in a ring made by all
particles. Convergence is slow, but a great part of the search space is covered than with

the star topology. It is known as the lpest PSO.

Figure 2.6 shows the wheel topology, in this only one of the particle (a focal particle)
associates to the others, and all informations are communicated through this particular
particle. This focal particle compares the best performance of all the particles in the
swarm and adjusts its own position towards the best performance particle analyse by

itself and finally the new position of the focal particle is shared with all the particles.

Figure 2.7 represents a four clusters topology, where four cliques (or clusters) are
connected with one edge between opposite clusters and two edges between neighboring
clusters. There are more different topologies or neighborhood structures (for instance,
VVon Neumann topology, the pyramid topology and so on), but there is no single best
topology still known to find the required optimum for all varities of optimization

problems.
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2.4 APPLICATIONS OF PSO

The different application areas of PSO are discussed in this chapter. Kennedy and
Eberhart in 1995 made the first practical application of Particle Swarm Optimization.
They worked in the field of neural network training and finally reported the algorithm
jointly. PSO has been successfully used over a great range of applications, for example,
system control, combinatorial optimization , data mining, telecommunications power
systems design, , network training, signal processing and many other areas. In present
days, PSO algorithms have also been introduced to solve the multi-objective
optimization problems , constrained problems, problems related to dynamically
changing landscapes, and to find multiple solutions, while the initial PSO algorithm
was mainly used to solve single-objective optimization, unconstrained problems.

Different areas where PSO is nowadays applied are listed in Table2.1.

Table 2.1 Application areas of Particle Swarm Optimization

Antenna Design The design of phased arrays and optimal
control, reflector antennas, design of Yagi-
Uda arrays, broadband antenna design and
modeling, synthesis of antenna arrays,
adaptive array antennas, optimization of a
reflect array antenna, far-field radiation
pattern  reconstruction, antenna  modeling,
array failure correction, design of planar
antennas, conformal antenna array design,
, design of a periodic antenna arrays, near-
field antenna measurements, design of patch
antennas optimization of profiled corrugated
horn antennas, design of implantable

antennas.

Design of IIR filters, Pattern recognition of

Signal Processing flatness signal, speech coding, 2D IR filters

,analogue filter tuning, nonlinear adaptive
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filters, Costas arrays, particle
filter optimization wavelets, blind detection,
blind  source separation,  localization of
acoustic sources, distributed odour

source localization, and so on.

Networking

Bluetooth networks Radar networks,
auto tuning for universal
mobile telecommunication system networks,
TCP network control, optimal
equipment placement in
mobile communication, routing, peer-to-
peer networks , wavelength division-
multiplexed network, WDM

telecommunication networks, wireless
networks, grouped and delayed broadcasting,
bandwidth and channel allocation, bandwidth
reservation, voltage regulation,
transmission network planning, network
reconfiguration and expansion, economic
dispatch  problem, distributed generation,
microgrids, cellular neural networks, design
of radial basis function networks, feed forward
neural network training, product unit networks,
congestion management, neural gas networks,
design of recurrent neural networks, neuron
controllers, wireless sensor network design,
wavelet  neural  networks estimation  of
target position in wireless sensor

networks, wireless video sensor
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networks optimization.

Biomedical

Human tremor analysis for the diagnosis of
Parkinson’s disease, inference of gene regulatory
networks, human movement biomechanics
optimization, RNA  secondary  structure
determination, phylogenetic tree reconstruction,
cancer classification, and survival prediction,
DNA  motif detection, biomarker selection,
protein structure prediction and docking, drug
design, radiotherapy planning, analysis of

brain magneto encephalography data,
electroencephalogram analysis, biometrics
and so on.

Electronics and
electromagnetic

On-chip inductors, configuration of FPGAs and
parallel processor arrays, fuel cells, circuit
synthesis, FPGA-based  temperature control,
AC transmission system control electromagnetic
shape design, microwave filters, generic
electromagnetic  design and  optimization
applications, CMOS RF wideband amplifier
design, linear  array  antenna synthesis,
conductors, RF IC design and optimization,
semiconductor  optimization, high-

speed CMOS, frequency selective surface
and  absorber  design, voltage flicker

measurement, shielding, digital circuit design.

Robotics

Control of robotic manipulators and arms,

Motion planning and control, odour source
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localization, soccer playing, robot running,
robot vision, collective robotic search,
transport robots, voice control of robots,
unsupervised probotic learning, path
planning, obstacle avoidance, swarm
robotics, unmanned vehicle navigation,

environment mapping and so forth.

Design and
Modelling

Conceptual design, electromagnetics
case, induction  heating  cooker  design,
VLSI design, power systems, RF
circuit synthesis, worst case electronic
design, motor design, filter design,
antenna design, CMOS wideband amplifier
design, logic circuits design, transmission lines,
mechanical design, library search, inversion
of underwater acoustic models, modeling
MIDI music, customer satisfaction models,
thermal process  system identification,
friction models, model selection,
ultrawideband channel modeling, identifying
ARMAX models, power plants and systems,
chaotic time series modeling, model order

reduction.

Image and
Graphics

Image segmentation, autocropping for

digital photographs, synthetic aperture radar
imaging, locating treatment planning landmarks
in orthodontic X-ray images,

image classification, inversion of ocean
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color reflectance measurements, image fusion,
photo time-stamp recognition, traffic  stop-sign
detection, defect detection,

Image registration, microwave imaging,
pixel  classification detection of objects,
pedestrian  detection and tracking texture
synthesis, scene matching, contrast
enhancement, 3D recovery with structured
beam matrix, character recognition, image

noise cancellation.

Power generation
and Controlling

Automatic  generation  control,  power
transformer  protection, power loss
minimization, load forecasting, STATCOM
power system, fault-tolerant control of
compensators,  hybrid power  generation
systems, optimal power dispatch, power
system performance optimization, secondary
voltage control, power control and optimization
design of power system stabilizers, operational
planning for cogeneration systems, control
of photovoltaic systems, large-scale

power plant  control, analysis  of power
quality signals, generation planning
and restructuring,  optimal strategies for
electricity  production, production  costing

operation planning.

Fuzzy systems,
Clustering, data
mining

Design of neurofuzzy networks, fuzzy rule
extraction, fuzzy control, membership
functions  optimization,  fuzzy modeling,

fuzzy classification, design of hierarchical
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fuzzy systems, fuzzy queue management,
clustering, clustering in large spatial
databases, document and information
clustering, dynamic clustering, cascading
classifiers  classification  of  hierarchical
biological data, dimensionalit preduction,
genetic-programming-

based classification, fuzzy

clustering, classification threshold optimization,
electrical wader sort classification, data mining,

feature selection.

Optimization

Electrical motors optimization, optimization
of internal combustion engines, optimization
of nuclear electric propulsion systems, floor
planning, travelling-sales man problems, n-
queens problem, packing and knapsack,
minimum  spanning  trees,  satisfiability,
knights cover problem, layout optimization,
path  optimization, urban planning, FPGA

placement and routing.

Prediction and
forecasting

Water quality prediction and
classification, prediction of chaotic systems,
streamflow  forecast, ecological models
meteorological predictions, prediction of the
floe stress in steel, time series prediction,
electric load forecasting, battery pack state of
charge estimation, predictions of
elephant migrations,  prediction  of surface
roughness in end milling, urban traffic

flow forecasting, and so on.
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2.4 ADVANTAGES AND DISADVANTAGES OF PSO

PSO algorithm is said to be one of the most useful and powerful methods for solving

the non-smooth optimization problems but there are few disadvantages associated to

the PSO algorithm. The advantages and disadvantages of the PSO technique are

discussed bhelow:

2.4.1 Advantages of the PSO algorithm:

1
2

PSO technique includes a derivative-free algorithm.

It is easily implemented, so it can be applied both in engineering problems and
scientific research.

Number of parameters is limited and these parameters accounts for a lesser impact
to the solutions as compared to other techniques of optimization.

Its algorithm includes a very simple calculation algorithm.

Few modifications ensures the rapid convergence i.e. the optimum value of the
problem gets calculated easily within a short time.

PSO is less dependent on a set of initial points as compared to other optimization
techniques.

Conceptually PSO is very easy.

2.4.2 Disadvantages of the PSO algorithm:

1

2

PSO algorithm suffers from the partial optimism, which degrades the regulation of
its speed and direction.

Problems with non-coordinate system (for instance, in the energy field) exists.
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2.5.1Steps involved in particle swarm optimization in MATLAB

10

11

12

Using the zero command of MATLAB initialize all the variable matrices.

Set the values of the random no.s ‘rl” & ‘r2’ assigned to the personal and global
best expressions respectively.

Set the values of acceleration constants ‘cp’ & ‘cg’ assigned to the personal and
global best expressions respectively.

Set the tolerance value.

Generate the random position values of particles for all the variables (eg. x1,x2)
and also generate the random velocities values of particles (eg. v1,v2) for all the
variable.

Calculate the fitness for the assumed values of the positions of the particles.

Using the above fitness personal best and global best values for all variables are
deduced.

Using the previous iteration values of personal best, global best and velocity

vectors new velocities are generated in the current iteration using the equation:
Vi(t+l) = w*vi(t) +cp * e * (i) — xi(t)) +cg * r2 * (9i(t) — X (1)

Using the new velocity vector and the old position vector , a new position vector is
generated for all the variables.

Calculate fitness using the new positions in the current iteration.

Using the new fitness values the personal and global best values are updated.

The difference between the previous and the current fitness is calculated and check
against the tolerance value, if within the tolerance iteration stops and global best
value is the solution else iteration flow goes back to previous step for further

updation.
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CHAPTER-3

APPLICATION OF PSO TO MATHEMATICAL
BENCHMARK TEST FUNCTIONS

3.1 BENCHMARK FUNCTIONS

Artificial landscapes the second name given to the Test functions, are very useful to
evaluate characteristics of optimization algorithms. In this case of application of
Particle Swarm Optimization to the mathematical benchmark functions, the PSO
algorithm can be applied directly to the particular mathematical function, i.e. without
any modification. As the mathematical functions are single objective functions and no
equality criteria on the fitness functions values, no further formulation for objective
function is required and the inequality constraints on the variables, if present, are taken

care of in the PSO algorithm itself.

Using particle swarm optimization the basic steps for solving the optimization problem
is same as discussed before but if some modifications are provided then we can use it
for any type of objective function. Here, we have used PSO for the optimization of

some mathematical benchmark functions, which are as follows:

e De jong’s function

n
fx) = Y x° (3.1)
i=1
e Booth’s function
f(x1,x2) = (x1+ 2*x2 —7)* + (2*x1l +x2—-5)? (3.2)

e Beale function

f(x1,X2) =(1.5-X1+X1*X2)"2+(2.25-X1+X1*X22)A2+(2.625-X1+X1*X2"3)"2
(3.3)
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Axis parallel hyper-ellipsoid function

n
fx)= ¥ (i*x9) (3.4)
i=1

Rosenbrock function(2D)

f(X1,X2) = 100(X2-X1)* +(X1-1)? (3.5)

Rosenbrock function(3D)

f(x1,x2)=100*( (x2-x1"2)"2 )+ (x1-1)"2 + 100*( (x3-x2)."2)."2) + (x2-1)."2;

Hyper-ellipsoid function
f(x1,x2)= x1"2 + 2 * x2"2 ; (3.7)

Rastrigin’s function

f(x1,x2) = 10 + (x1°2) - (10 * cos(2*pi*x1) ); (3.8)

3.2 THE DIFFERENT PARAMETERS USED IN PARTICLE
SWARM OPTIMIZATION

The various parameters of particle swarm optimization are as follows:

No. of particles in the swarm, p.
Max. no. of iteration, it.
Random no. for personal and global factors r, and ry .

Acceleration constant for the personal and global factors, c, and cg.

o &M D P

Tolerance value, T.

The values of these parameters for optimizing various mathematical benchmark

functions were chosen as:

P=30
it= 1000
r,=0.5 and ry=0.6

Cp=2 and c4=2

> w0 D P



5. T=107(-7)

3.3 MATHEMATICAL RESULTS AND DISCUSSION

XXXIX

Various benchmark functions and results obtained after application of PSO has been

discussed as follows:

3.3.1 Axis parallel HYPER-Ellipsoid function

n

i=1

fog= (i*x?

Minimum value and range for the function are as follows:

e Min. Value: f(x1,x2)=0

e Range:

-5.12 =< x1,x2 <= 5.12

TABLE 3.1 Application of different inertia weights to Axis parallel HYPER-Ellipsoid

Function
No. of No. of Function X1 X2 X3
particles iterations value |
Linearly 30 185 1.052977e-13 -2.90284e-07 -9.719746e-08 -2.009151¢
decreasing
Simulated 30 37 7.542848e-12 -5.24452¢-07 -1.847722e-06 -3.82684e-
annealing
Constant IW
0.4 30 42 8.61517e-13 -7.1316e-08 2.6742e-07 -2.4103e
0.6 30 98 1.19253e-18 -4.54225¢e-10 -5.3095e-10 4.81666¢€
0.8 30 162 3.41920e-14 -1.3987e-07 6.07023e-08 -8.5200e

Table 3.1 shows the application of PSO on the Axis parallel HYPER-Ellipsoid function

with different inertia weights. Simulated annealing method and constant inertia weight

of 0.4 both provides the desired results in less time and with more accuracy as

compared to linearly decreasing inertia weight and constant inertia weight with values
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of 0.6 and 0.8 while constant inertia weight of 0.4 is more accurate as compared to

simulated annealing.

Fig 3.1 Movement of particle 1 of x1,x2 and x3

Fig 3.1 shows the 3D view of change in the position values of paricle 1 of x1, x2 and
x3 with the increase in number of iterations. It shows that as the iterations increases
particle 1 tries to attain co-ordinates (0,0,0) i.e. x1=0, x2=0 and x3=0, for which

function approaches it minimum value.

3.3.2 Booth’s Function

y(x1,x2) = (XL +2*x2 -7 )2 + (2*x1+x2-5)"2;

Minimum value and range for the function are as follows:
e Min. Value: y(x1,x2)=0

e Range: -10=<x1,x2<=10

Table 3.2 Application of different inertia weights to Booth’s Function

No. of particles | No. of Function value | X1 X2
iterations |
Linearly 30 134 5.341514e-10 1.000000e+00 3.000000e+(

decreasing
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Simulated 30 52 3.408260e-10 1.000002e+00 2.999998¢e+(

annealing

Constant IW
0.4 30 30 1.57313e-10 9.999918e-01 3.000009¢-
ﬁ 30 66 3.465076e-15 1.000000e+00 3.000000¢
08 30 119 1.224909e-11 1.000003e+00 3.000000¢

Table 3.2 shows the application of PSO on the BOOTH’S function with different

inertia weights. Simulated annealing method and constant inertia weight of 0.4 both

provides the desired results in less time and with more accuracy as compared to linearly

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while

constant inertia weight of 0.4 is more accurate as compared to simulated annealing.

Fig 3.2 Shows the variation of the function value with the increase in iterations and it

can be seen that the function approaches its minimum value that is zero in this case as

the iterations count increases.

«

[

o w

Fig 3.2 variation of function values with iterations
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Fig 3.3 Movement of particle 1 of x1 and x2

Fig 3.3 shows the change in the position values of paricle 1 of x1 and x2. It shows that
as the iterations increases particle 1 tries to attain co-ordinates (1,3) i.e. x1=1 and x2=3,

for which function approaches it minimum value.
3.3.3 Beale Function

f(x1,x2) = ( 1.5-x1+ x1*x2)"2+(2.25 -X1+x1*x2"2)"2+(2.625 -
X1+x1*x2"\3)"2;

Minimum value and range for the function are as follows:

e Min. Value: f(x1,x2)=0
e Range: -45=<x1x2<=45

Table 3.3 Application of different inertia weights to Beale’s Function

No. of particles | No. of Function value | X1 X2
iterations |
Linearly 30 132 4.044835e-10 -7.305251e-06 2.031228e-0
decreasing
Simulated 30 22 4.42063e-12 -1.257050e-06 1.585567e-0
annealing
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31

76

Constant IW
0.4 30
0.6 30
0.8 30

119

1.847590e-10 -1.311315e-05 -2.530239¢
4.059354e-17 3.925190e-09 -2.802216e
1.904880e-11 3.950240e-06 1.233997¢

Table 3.3 shows the application of PSO on the Beale’s function with different inertia

weights. Simulated annealing method and constant inertia weight of 0.4 both provides

the desired results in less time and with more accuracy as compared to linearly

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while

simulated annealing is more accurate and takes lesser computational time as compared

to constant inertia weight of 0.4.

Fig 3.4 Movement of particle 1 for x1 and x2 with iterations (3D view)

Fig 3.4 shows the 3D view of change in the position values of paricle 1 of x1 and x2

with the increase in number of iterations. It shows that as the iterations increases

particle 1 tries to attain co-ordinates (0,0) i.e. x1=1 and x2=3, for which function

approaches it minimum value.



3.3.4 Sphere’s Function

n

f)= ¥ x°

=1

Minimum value and range for the function are as follows:

Min. Value: f(x1,x2)=0

Range :

-5.12 =< x1,x2 <=5.12
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TABLE 3.4 Application of different inertia weights to Sphere’s Function

No. of No. of Function x1 X2 X3
particles iterations value |
Linearly 30 204 6.297194e-04 1.210595e-02 -1.267901e-02 | -1.795573e
decreasing
Simulated 30 59 2.161785e-04 3.343558e-03 7.272390e-03 1.233335e-
annealing
Constant IW
0.4 30 45 4.179781e- 1.484689¢- 5.736923e- -1.28310:
0.6 30 68 04 02 03 02
0.8 30 149 2.503011e- 3.182450e- -3.464515e- -1.70271¢
= 03 02 02 02
1.790865¢e- =2.765392¢- 1.995319e- -2.50598:
03 02 02 02

Table 3.4 shows the application of PSO on the SPHERE’S function with different
inertia weights. Simulated annealing method and constant inertia weight of 0.4 both
provides the desired results in less time and with more accuracy as compared to linearly

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while

simulated annealing is more accurate as compared to constant inertia weight of 0.4.
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3.3.5Rastrigin’s  Function

n
f(x) = ¥ (x°— 10 *cos( 2* pi *x;))
i=1

Minimum value and range for the function are as follows:

e Min. Value: f(x1,x2)=0

e Range: -5.12=<x1,x2<=5.12

Table 3.5 shows the application of PSO on the Rastrigin function with different inertia
weights. Simulated annealing method and constant inertia weight of 0.4 both provides
the desired results in less time and with more accuracy as compared to linearly
decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while

constant inertia weight of 0.4 is more accurate as compared to simulated annealing.

Table 3.5 Application of different inertia weights to Rastrigin’s Function

No. of particles | No. of Function value | X1
iterations

Linearly 30 159 9.84107e-13 -3.109719e-09
decreasing
Simulated 30 70 0 -1.640973e-09
annealing
Constant IW

0.4 30 52 0 2.480308e-09

0.6 30 89 0 -1.092749e-09

08 30 185 0 3.838570e-10
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Fig 3.5 Movement of position of particle 1 of x1 with iterations

Fig 3.5 shows the variation of the position of particle 1 of x1 and it gives us the desired

result of obtaining the zero value as the number of iterations increases.

3.3.6 Dejong’s Function

f(x1,x2)= x1(j,1)"2 + x2(j,)"2 + x3(j,1)"2;

Minimum value and range for the function are as follows:

e Min. Value: f(x1,x2)=0

e Range:

l=<x1x2<=1

Table 3.6 Application of different inertia weights to Dejong’s Function

No. of No. of Function X1 X2 X3
particles iterations value |
Linearly 30 206 1.118761e-04 -6.825449¢-03 5.561369¢e-03 5.861784e-(
decreasing
Simulated 30 60 8.930197e-05 -6.624732e-03 6.090060e-03 -2.885491e:
annealing
Constant IW
0.4 30 43 7.9667e-04 1.545415e-02 2.148686e-02 -9.80591¢
0.6 30 70 2.1869e-03 1.276701e-02 4.051782e-02 -1.95503¢
0.8 30 153 8.8508e-04 -1.47405e-02 -1.65747e-02 1.982660
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Table 3.6 shows the application of PSO on the Rastrigin function with different inertia

weights. Simulated annealing method and constant inertia weight of 0.4 both provides

the desired results in less time and with more accuracy as compared to linearly

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while

constant inertia weight of 0.4 is more accurate as compared to simulated annealing.

3.3.7 Rosenbrock Function

1,2,3...n;

n-1
fx)= Y [100(Xis1 - X D)2 + (1 -x)%]
i=1

3.3.7.1 Rosenbrock Function (2d)

where , -2.048 < x; < 2.048, i =

f(x1,x2)=100*((x2-(x1.72))."2)+(x1(1,j)-1)."2;

Minimum value and range for the function are as follows:

Table 3.7 Application of different inertia weights to Rosenbrock’s Function

Range :

Min. Value: f(x1,x2)=0
-2.048 =< x1,x2 <=2.048

No. of No. of Function X1 X2
particles iterations value
Linearly 30 188 2.967168e-22 1.000000e+00 1.000000e+00
decreasing
Simulated 30 44 7.344731e-15 1.000000e+00 1.000000e+00
annealing
Constant IW
0.4 30 45 2.35023e-13 9.999997e-01 999993e-01
0.6 30 53 2.434551e-0 1.048215e+00 1.099803e+00
0.8 30 55 4.85839e-04 1.022022e+00 1.044437e+00
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Table 3.7 shows the application of PSO on the Rosenbrock function with different

inertia weights. Simulated annealing method and constant inertia weight of 0.4 both

provides the desired results in less time and with more accuracy as compared to linearly

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while

constant inertia weight of 0.4 is more accurate as compared to simulated annealing.

3.3.7.2 Rosenbrock Function (3d)

f(x1,x2,X3)=100*((x2-(X1.A2).A2)+(x1-1).A2+100*((x3-(x2) /2) A2)+(x2-1)./2;

Minimum value and range for the function are as follows:

e Min. Value: f(x1,x2,x3)=0

e Range:

-2.048 =< x1,x2 <= 2.048

Table3.8 Application of different inertia weights to Rosenbrock’s Function

No. of No. of Function X1 X2 X3
particles iterations value |
Linearly 30 188 2.967168e-22 1.000000e+00 1.000000e+00 1.000000e
decreasing
Simulated 30 44 7.344731e-15 1.000000e+00 1.000000e+00 1.000000e
annealing
Constant IW
0.4 30 45 2.3502e-13 9.999997e-01 9.99993e-01 9999959
0.6 30 53 2.43451e-0 1.048215e+00 1.099803e+00 1.05960:
0.8 30 55 4.8589%-04 1.022022e+00 1.044437e+00 1.03483

Table 3.8 shows the application of PSO on the Rosenbrock function with different

inertia weights. Simulated annealing method and constant inertia weight of 0.4 both

provides the desired results in less time and with more accuracy as compared to linearly

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while

constant inertia weight of 0.4 is more accurate as compared to simulated annealing.
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Fig 3.6 Position vs iteration for particle 1 of x1

Fig 3.6 shows the variation in the position of particle 1 i.e. x1 of particle 1. It shows the
desired result of approaching zero value with the increase in number of iterations where

function approaches its minimum value.

fancion + o

A ne

Fig 3.7 Function value vs iteration on log scale

Fig 3.7 Shows the variation of the function value with the increase in iterations and it

can be seen that the function approaches its minimum value that is zero in this case as



the iterationscount increases.Log scale helps us to have a
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Fig 3.8 Shows the convergence of all the particles at the optimum value with increase

in the no. of iterations. Initially all the particles were located randomly in the search

space but as iterations increases all particles move closer and closer and finally

converge at a single point. The figure shows the initial position i.e. the position after 1St

iteration, position after 20th iteration, position after 40th iteration, position after 60th

iteration and final (global) position of the 30 particles of the swarm for solving

rosenbrock‘s function of two variables. The figure also shows the location of global

best position represented by the purple coloured circle.
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Fig 3.9 Al position co-ordinates of particle 1 vs iterations

Fig3.9 shows the variation of the all the position co-ordinates of particle 1 with the
increase in no. of iterations.Initially the variation is quite large and to have a beter view
of initial movement of particles log scale is used and it is seen that with increase in the
number of iterations all the particles converge at a point giving the desired result

corresponding to the optimum value of x1=x2=x3=1.

3.4 DISCUSSION

The results obtained when PSO algorithm is applied on mathematically benchmark
functions show that the optimum values are obtained successfuly for all the benchmark
functions taken into account namely Axis Hyper-Ellipsoid, Beale‘s, Dejong’s, Booth‘s,
Rosenbrock‘s, Sphere and Rastrigin’s function. The values for random numbers r1=0.5
and r2=0.6 and constriction factors cp=2 and cg =2 are used in the velocity
modification equation. It is observed that while keeping constriction factors and
random numbers of constant values and varying the inertia weight( simulated annealing
method, constant inertia weight method or linearly decreasing method) gives different
computational time. The simulated annealing method was found to be most accurate
and in all the cases it took lesser number of iterations as compared to linearly
decreasing method and constant inertia weight except in some cases where constant
inertia weight of 0.4 provided the least computational time(rastigin’s function, dejong’s

function, sphere function).
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CHAPTER 4:

ECONOMIC LOAD DISPATCH

4.1PROBLEM FORMULATION IN 2-D SPACE WITH EQUALITY
CONSTRAINTS

Ojective function being used to minimize the cost of generation is given as :

Fc = XS FIGi(Pg)] (4.1)
Where:

Ci(Py)=XN a;Pyi +b; Pyt (4.2)
Where:

Pgi is the active power generation at the i generator.

Ci is the cost of generation for i™ generator.

NG s the total number of generators in the system.

ai, by, ciare fuel cost coefficients of i generator.

The objective function used to find the system transmission losses is given as:
FL =201 205 PanBuunPen + 22t BomPem +Boo (4.3)
Where

Pgm, Pgn IS the active power at the m™ and n™ generator.

NG is the total number of generators in the system.

Bmn, Bom, Boo are loss coefficients.

The cost and loss coefficients of various generators are given in Table 4.1 and 4.2.



TABLE 4.1Values of Cost Coefficients

The

Coefficient Gl G2 G3
5-BUS A 0.0050 0.0050 | ......
B 3.510 3889 | ...
C 44.40 4060 | ......
14-BUS A 0.005 0.005 0.005
B 3.510 3.890 2.450
C 44.40 40.60 105
30-BUS A 0.005 0.005 0.005
B 3.510 3.890 2.450
C 44.40 40.6 105
TABLE 4.2Values of Loss Coefficients
B11 0.0003489 0.0003489 0.0003069
B2 0.000086 0.000068 0.0001289
Bis --- -0.0000389 0.000002
B2 0.000371 0.0001570 0.0001520
Bos --- 0.000015 0.0000110
Bss --- 0.000274 0.000189
Bo1 --- 0.000044
Bo2 --- 0.000024
Bos --- 0.000000
Boo --- 0.000254

LI

method used in this thesis, has been developed by Kron and adopted by Kirchmayer,

which is the loss coefficient method.

Mathematically, the problem is to minimize

F= [FC (Pgl, sz, ng... PgN(;)

Where
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F=W-cFc (4.4)
Subject to the constraints:
Equality constraint
YT Py =Pp+Pp (4.5)
Inequality constraint
Pgimin< Pgi < Pgimaxi = 1, 2... NG (4.6)

Power outputs from the generators are taken as the independent decision variables of

the problem.

Where:

F objective function to be optimized
Fc cost of the generation

FL system transmission losses

Pg1, Pga... Pgng are the generations at the generators.

Pp is the total load demand.

PL is the system transmission losses.

NG is the no. of generators.

Py generation from i"" generator

Pgimin minimum generation possible from i"generator

P gimax maximum generation possible from i generator
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4.2COMPUTATIONAL PROCEDURE FOR APPLICATION OF PSO IN

ECONOMIC LOAD DISPATCH

Particle Swarm Optimization (PSO) has been used to perform the optimization of ELD
function. To consider the equality constraint of the problem, the function has been
modified by inclusion of a parameter K. The objective function becomes as follows:

F=WcFc+K (Po+PL-Pg) (4.7)
Where:

Parameter K is fixed at 100 for all three IEEE 5, 14 and 30 bus systems. Different
values of K were considered and it was observed that ELD problem converged
when it was fixed to 100 for all the systems.

Inequality constraints have been considered in the PSO programming which is done in
the MATLAB. The program checks the power output of each particle for each
generator in each iterations and the power is tied to the corresponding limit violated.

Logic to implement the inequality constraint is as shown below:
for i=1: Ng
for m=1: p
if Pgi< Pgimin
Pgi = Pgimin
end
if Pgi> Pgimax
Pgi = Pgimax
end
end

end
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The optimum solution is obtained when the

I.  Change in the value of Economic Load Dispatch function during
successive iterations is less than the limit specified which is e=107 and
ii.  The equality constraint is satisfied such that the absolute value of
difference between generation, demand and losses is less than =107
Population size of the swarm and the maximum number of iteration can be selected by
the user of the program in run time. We have chosen 30 particles in the swarm and

1000 as the maximum number of iterations.

With the help of MATLAB, we generate randomly the initial position and velocity of
particles. To increase the convergence rate, limits are imposed on position of particles.
Here positions i.e. the generations are decision variables. The maximum and minimum
limits on the velocity have been assigned as Vmin = —Pgimin/2 and Vimax = Pgimax/2
respectively. The velocities are fixed to the values of corresponding limits if violated
during the iterations. Initial values of personal best and global best have been taken as

the initial value randomly generated by MATLAB.
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Flowchart of solution of Economic Load Dispatch problem using PSO is shown in Fig.
4.1.
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Fig. 4.1 Flow chart of implementation of PSO on ELD

The sequence for the solution of Economic Load Dispatch problem using Particle

Swarm Optimization technique is explained as follows:

1. Fix the no. of particles ‘p’ in swarm and set the no. of maximum iterations itmax.

2. Fix the cost coefficients, loss coefficients, and load demand and generator limits of
all the generators.

3. Generate Xi,-" and Vi,-k, the initial random positions (i.e. generations) and velocity
(i.e. updation factor) respectively.

4. Set iteration count K = 0.

5. Calculate the losses for each particle, using the eq. (4.3).

6. Calculate the value of ELD function using eq. (4.7).
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7. At 0" iteration the personal and global best positions (i.e. generations) are same as
the initial random positions (i.e. generations).

8. Increase the iteration count k by 1 using k=k+1.

9. Calculate the velocity (i.e. positions updation factor) of each particle using eq. (2.1).

10.Check if velocity is within the limits. Fix the velocity to the limit violated.

11.Calculate the new positions (i.e. generations) of the particles by evaluating eq. (2.2).

12.Check if generations (i.e. positions) of each particle are within the generator limits,
if not fix the generation to the limit violated.

13.Calculate ELD function for the new positions (i.e. generations) generated.
14.Update Xpbest and Xgbest values by comparing ELD function values.

15.Check if both the stopping criteria are satisfied, if not then go to step 9, else stop.
16.0utput the values of cost of generation and system transmission losses.

4.3 COMPUTATIONAL RESULTS IN 2D SPACE

Three standard test systems have been taken into account in the economic load dispatch
function in order to examine the cost of generation aspects and detailed studies have

been carried out in table 4.3 to 4.6.

TABLE 4.1 Variation of no of iteration required with different IPSO
for IEEE 5bus system

No. of No. of Fc( $/h) P1 P2
particles iterations
Linearly 30 208 762.44 87.56 77.55
decreasing
Simulated 30 65 761.19 95.40 69.78
annealing
Constant IW
0.4 30 51 761.4 92.93 72.22
0.6 30 74 761.84 90.19 74.93
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130

| 162

| 761.27

94.25

70.92

TABLE 4.2 Variation of no of iteration required with different IPSO for IEEE

14bus system
No. of No. of Fc( $/h) P1 P2 P3
particles iterations
Linearly 30 176 1149.7 160.07 46.71 62.91
decreasing
Simulated 30 58 1145.502 155.73 58.829 54.961
annealing
Constant IW
0.4 30 52 1146.43 132.86 78.05 57.05
0.6 30 67 1146.54 135.98 70.02 62.04
0.8 30 196 1146.58 139.08 65.63 63.50
TABLE 4.3 Variation of no of iteration required with different IPSO for IEEE
30bus system
No. of No. of Fc( $/h) P1 P2 P3
particles iterations
Linearly 30 222 1259.70 149.67 98.2 47.95
decreasing
Simulated 30 71 1256.057 154.72 81.15 59.63
annealing
Constant IW
0.4 30 58 1256.21 157.2 77.8 60.61
0.6 30 80 1256.307 155.79 77.34 62.32
0.8 30 202 1277.97 114.19 79.54 98.60
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For IEEE 5 bus system simulated annealing inertia weight varying technique gives the
lowest cost of production while linearly decreasing gives the worst result along with

the largest computational time.

For IEEE 14 bus system simulated annealing inertia weight varying technique again
gives the lowest cost of production while worst result is given by linearly decreasing
function and largest computational time is taken by constant inertia weight of 0.8.

For IEEE 30 bus system simulated annealing inertia weight varying technique gives
the lowest cost of production again while constant inertia weight of 0.8 gives the worst

result.

Overall it can be concluded that for all the three IEEE bus systems invoved in this work
simulated annealing inertia weight varying technique provides the best computational

results.
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CHAPTER 5:
CONCLUSION AND FUTURE DIRECTIONS

5.1CONCLUSIONS

The Particle Swarm Optimization technique has been applied to various benchmark
functions and optimu values are obtained in each case. It has been experimentally
found that simulated annealing inertia weight varying technique gives out the best

results.

In this thesis ELD problem has been solved for IEEE 5, 14 and 30 bus systems taking
cost of generation as an objective to be minimised. Inequality constraints of the
problem have been handled by the PSO programming whereas equality constraint of
ELD problem has been considered using penalty parameter k. The results show that the
computational time and the number of iterations are considerably reduced while using
simulated annealing inertia weight varying technique. This work shows that simulated
annealing inertia weight varying technique provides better results when comaperd to
constant inertia weight of 06 and 0.8 and linearly decreasing inertia weight function
taking computational time and optimum values as the basis of comparision and
constant inertia weight of 0.4 also provide as good results as that provided by simulated
annealing inertia weight varying technique but constant inertia weight has the
disadvantage of getting trapped in the local minima so in multi-objective functions the
performance of constant inertia weight will always remain under consideration but no

such risk is involved with simulated annealing inertia weight varying technique.
5.2 FUTURE DIRECTION

In this work one of the parameter in the PSO algorithm is varied i.e. inertia weight
while keeping other parameters constant.So, there is a lot of scope available in the area
of PSO, as one can consider different selection criterias for varying different constant
parameters such as random no.s (rp & rg) and acceleration coefficients (cp & cg). In
this work for soving the ELD problem only cost of fuel is taken into account while one
can work while considering different objectives of power system as loses in the system,

security, environmental degradation due to pollution etc.



LXV

APPENDIX- |
1) IEEE 5 BUS SYSTEM
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Fig. I-A: BUS-CODE DIAGRAM OF 5 BUS SYSTEM

TABLE I-A: LINE DATA or IMPEDANCE DATA (5 BUS SYSTEM)

LINE DESIGNATION | *R(p.u.) *X(p.u) | LINE CHARGING
1-2 0.10 0.4 0.0
14 0.15 0.6 0.0
15 0.05 0.2 0.0
2-3 0.05 0.2 0.0
2-4 0.10 0.4 0.0
35 0.05 0.2 0.0

*The impedance are based on MVA as 100

TABLE I-B: BUS DATA or OPERATING CONDITIONS (5 BUS SYSTEM)

GENERATION LOAD
BUS NO. MW VOLTAGE MAGNITUDE MW MVAR
1* 1.02
2 60 30
3 100 1.04
4 40 10
5 60 20

*Slack Bus




TABLE I-C: REGULATED BUS DATA (5 BUS SYSTEM)

LXVI

BUS | VOLTAGE MVAR CAPACITY MW CAPACITY

NO. | MAGNITUDE | MINIMUM MAXIMUM | MINIMUM | MAXIMUM
1 1.02 0.0 60 30 120
3 1.04 0.0 60 30 120

The nodal load voltage inequality constraints are 0.9<Vi<1.05

Cost characteristics of IEEE 5 bus system

The cost characteristics of the IEEE 5 Bus System are as
follows: C1=50p;°+351p1+44.4 $/hr.

Ca=50p3°+389p3+40.6 $/hr.

Here, the total load demand of the system is 160 MW. Maximum and minimum
active power constraint on the generator bus for the given system is 120 MW and 30
MW respectively. Voltage magnitude constraint for generator at bus 3 is 1.04 pu.

M-file For Calculating B- Coefficients:

Clear
basemva=100
accuracy=0.0001
maxiter=10

busdata=[111.02000000600;2010603000000;321.04000820060
0;4010401000000,5010602000000];

Linedata=[120.100401;140.150601;150.050.201;230.050.201;240.10
0.401;350.050.201];

disp(busdata)

disp(linedata)
mwlimit=[30 120;30
120]; Ifybus

Ifnewton

busout

bloss

B-Coefficient Calculated is as:

B11 = 0.00035336 B12 =0.0000103196

B21 =0.0000103196 B22 = 0.000368992
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2) IEEE 14 BUS SYSTEM
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Fig. 1-B: BUS-CODE DIAGRAM OF 14 BUS SYSTEM

TABLE I-D: IMPEDANCE & LINE-CHARGING DATA (14 BUS SYSTEM)

Line Resistance Reactance Line Tap Setting
Designation p.u. * p.u.* Charging
1-2 0.019379 0.059170 0.0264 1
1-5 0.054029 0.223040 0.0264 1
2-3 0.046980 0.197970 0.0219 1
2-4 0.058110 0.176320 0.0187 1
2-5 0.056950 0.173880 0.0170 1
3-4 0.067010 0.171030 0.0173 1
4-5 0.013350 0.042110 0.0064 1
4-7 0 0.20912 0 1
4-9 0 0.55618 0 1
5-6 0 0.25202 0 1
6-11 0.09498 0.19890 0 1
6-12 0.12291 0.25581 0 1
6-13 0.06615 0.13027 0 1
7-8 0 0.17615 0 1
7-9 0 0.11001 0 1
9-10 0.03181 0.08450 0 1
9-14 0.12711 0.27038 0 1
10-11 0.08205 0.19207 0 1
12-13 0.22092 0.19988 0 1
13-14 0.17093 0.34802 0 1

* Impedance and line-charging susceptance in p.u. on a 100 MVA base.
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TABLE I-E: BUS DATA or OPERATING CONDITIONS (14 BUSSYSTEM)

Bus Voltage Generation Load
No. Magnitude Phase angle MW MVAR MW MVAR
(in pu) (deg.)

1* 1.06 0 0 0 0 0
2 1 0 40 0 21.7 12.7
3 1 0 0 0 94.2 19.0
4 1 0 0 0 47.8 -3.9
5 1 0 0 0 7.6 1.6
6 1 0 0 0 11.2 7.5
7 1 0 0 0 0 0
8 1 0 0 0 0 0
9 1 0 0 0 29.5 16.6
10 1 0 0 0 9.0 5.8
11 1 0 0 0 3.5 1.8
12 1 0 0 0 6.1 1.6
13 1 0 0 0 13.5 5.8
14 1 0 0 0 14.9 5.0

*Slack Bus

TABLE I-F: REGULATED BUS DATA (14 BUS SYSTEM)

Bus no. | Voltage magnitude Minimum MVAR Maximum MVAR
(inpu) capability capability

2 1.05 -40 50

3 1.010 0 40

6 1.070 -6 24

8 1.090 -6 24

Cost characteristics of IEEE 14 bus system

The cost characteristics of the IEEE 14 Bus System are as

follows: C1 = 50p12+245p1+105 $/hr.

C, = 50p5°+351po+44.4 $/hr.
Ce = 50p6>+389pg+40.6 $/hr.

Here, the total load demand of the system is 259 MW. The maximum active

power constraint is 200 MW, 100MW and 100 MW for the generators of bus no. 1, 2
and 6 respectively. The minimum active power constraint is 50 MW, 20MW and 20
MW for the generators of bus no. 1, 2 and 6 respectively. Voltage magnitude
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constraint for generator at bus 2 is 1.045, for bus no. 6 is 1.070, for bus no. 3 is 1.010
& for bus no. 8 is 1.090.

M-file For Calculating B- Coefficients:

Clear
basemva=100
accuracy=0.0001
maxiter=10

busdata=[111.060015000000;221.045021.7 12.763.110-40500;301.01 0
942190004004010478-3900000,5010761600000;621.07011.2
7.577120-6240;70100000000;801.0900000-6240;901029.516.60
0000;1001095800000;11010351800000;120106.1160000
0;130101355800000;1401014.9500000];

linedata=[1 2 0.01938 0.05917 0.0264 1;1 5 0.05403 0.22304 0.0246 1; 2 3 0.04699
0.19797 0.0219 1; 2 4 0.05811 0.17632 0.0170 1; 2 5 0.05695 0.17388 0.0173 1; 3 4
0.06701 0.17103 0.0064 1; 4 50.013350.042110.01; 47 0.0 0.20912 0.0 0.978; 4 9
0.0 0.55618 0.0 0.969;5 6 0.0 0.25202 0.0 0.932; 6 11 0.09498 0.19890 0.0 1;6 12
0.12291 0.25581 0.0 1;6 13 0.06615 0.13027 0.0 1;7 8 0.00.176150.01; 790.0
0.110010.01;9100.03181 0.084500.01;9 14 0.12711 0.27038 0.0 1; 10 11
0.08205 0.19207 0.0 1;12 13 0.22092 0.19988 0.0 1;13 14 0.17093 0.34802 0.0 1];
disp(busdata)

disp(linedata)

mwlimit=[50 200;20 100;20

100] Ifybus

Ifnewton

busout

bloss

B-Coefficient Calculated is as:
B11=0.0231 B12=0.0078 B13=-0.0007

B21=0.0078 B22=0.0182 B23=0.0022
B31=-0.0007 B32=0.0022 B33=0.0329
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TABLE I-G: IMPEDANCE & LINE-CHARGING DATA (30 BUS SYSTEM)

Line Resistance Reactance Line Tap Setting
Designation p.u.* p.u.* Charging
1-2 0.0192 0.0575 0.0264 1
1-3 0.0452 0.1852 0.0204 1
2-4 0.0570 0.1737 0.0184 1
3-4 0.0132 0.0379 0.0042 1
2-5 0.0472 0.1983 0.0209 1
2-6 0.0581 0.1763 0.0187 1
4-6 0.0119 0.0414 0.0045 1
5-7 0.0460 0.1160 0.0102 1
6-7 0.0267 0.0820 0.0085 1
6-8 0.0120 0.0420 0.0045 1
6-9 0 0.2080 0 0.978
6-10 0 0.5560 0 0.969
9-11 0 0.2080 0 1
9-10 0 0.1100 0 1
4-12 0 0.2560 0 0.932
12-13 0 0.1400 0 1
12-14 0.1231 0.2559 0 1
12-15 0.0662 0.1304 0 1
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12-16 0.0945 0.1987 0 1
14-15 0.2210 0.1997 0 1
16-17 0.0824 0.1923 0 1
15-18 0.1070 0.2185 0 1
18-19 0.0639 0.1292 0 1
19-20 0.0340 0.0680 0 1
10-20 0.0936 0.2090 0 1
10-17 0.0324 0.0845 0 1
10-21 0.0348 0.0749 0 1
10-22 0.0727 0.1499 0 1
21-22 0.0116 0.0236 0 1
15-23 0.1000 0.2020 0 1
22-24 0.1150 0.1790 0 1
23-24 0.1320 0.2700 0 1
24-25 0.1885 0.3292 0 1
25-26 0.2544 0.3800 0 1
25-27 0.1093 0.2087 0 1
27-28 0 0.3960 0 0.968
27-29 0.2198 0.4153 0 1
27-30 0.3202 0.6027 0 1
29-30 0.2399 0.4533 0 1
8-28 0.0636 0.2000 0.0214 1
6-28 0.0169 0.0599 0.0065 1

*Impedance and line-charging susceptance in p.u. on a 100 MVA base.

TABLE I-H: BUS DATA or OPERATING CONDITIONS (30 BUS SYSTEM)

Bus Voltage Generation Load
No. Magnitude | Phase angle MW MVAR MW MVAR
(in pu) (deg.)
1* 1.06 0 0 0 0 0
2 1 0 40 0 21.7 12.7
3 1 0 0 0 2.4
4 1 0 0 0 7.6
5 1 0 0 0 94.2
6 1 0 0 0 0 0
7 1 0 0 0 22.8 10.9
8 1 0 0 0 30.0 30.0
9 1 0 0 0 0 0
10 1 0 0 0 5.8 2.0
11 1 0 0 0 0 0
12 1 0 0 0 11.2 7.5
13 1 0 0 0 0 0
14 1 0 0 0 6.2 1.6
15 1 0 0 0 8.2 2.5
16 1 0 0 0 3.5 1.8
17 1 0 0 0 9.0 5.8
18 1 0 0 0 3.2 0.9
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19 1 0 0 0 9.5 3.4
20 1 0 0 0 2.2 0.7
21 1 0 0 0 17.5 11.2
22 1 0 0 0 0 0
23 1 0 0 0 3.2 1.6
24 1 0 0 0 8.7 6.7
25 1 0 0 0 0 0
26 1 0 0 0 3.5 2.3
27 1 0 0 0 0 0
28 1 0 0 0 0 0
29 1 0 0 0 2.4 0.9
30 1 0 0 0 10.6 1.9
*Slack Bus
TABLE I-1: REGULATED BUS DATA (30 BUS SYSTEM)
Bus no. Voltage magnitude Minimum MVAR Maximum MVAR
(in pu) capability capability

2 1.045 -40 50

5 1.01 -40 40

8 1.01 -10 40

11 1.082 -6 24

13 1.071 -6 24

TABLE I-J: TRANSFORMER DATA (30 BUS SYSTEM)

Transformer designation Tap setting*
4-12 0.932
6-9 0.978
6-10 0.969
28-27 0.968

*Off nominal turns ratio, as determined by the actual transformer-tap position and the
voltage bases. In the case of nominal turns ratio, this would equal to 1.

TABLE I-K: STATIC CAPACITOR DATA (30 BUS SYSTEM

Bus no Susceptance*p.u.
10 0.19
24 0.043

*Susceptance in p.u. on 100 MVA base.

Cost characteristics of IEEE 30 bus system:
The cost characteristics of the IEEE 30 Bus System are as follows:

Cy = 50p1°+245p1+105 $/hr
Cy = 50p,°+351po+44.4 $/hr
Cg = 50pg-+389pg+40.6 $/hr
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The total load demand of the IEEE 30 bus system is 283.4 MW. The maximum
active power constraint is 250 MW, 100MW and 100 MW for the generators of bus no.
1, 2 and 8 respectively. The minimum active power constraint is 50 MW, 30MW and 30
MW for the generators of bus no. 1, 2 and 8 respectively. Voltage magnitude constraint
for generator at bus 2 is 1.045, for bus no. 5 is 1.01, for bus no. 8 is 1.010, for bus no. 11
is 1.082 &for bus no. 13 is 1.071.

M-file For Calculating B- Coefficients:

Clear basemva=100

accuracy=0.0001

maxiter=10
busdata=[111.0600000000;221.045021.712.7900-40500;3010241.20000
0/4010761600000501.01094.21900-40400;60100000000;701022.8
10.900000;821.01030301500-10400;90100000000;100105.820000
0.19;1101.08200000-6240;1201011.27500000;1301.07100000-6240; 14
0106.21600000;150108.22500000;16010351800000;1701095.8000
00;180103.20900000;19010953.400000;200102.20.700000;21010
17.511.200000;220100000000;23103.21.600000;240108.76.70000
0.043;250100000000;26010352300000;270100000000;280100000
000;29010240900000;3001010.61.900000]; linedata=[1 2 0.0192 0.0575
0.0264 1;1 30.0452 0.1852 0.0204 1; 2 4 0.0570 0.19797 0.0219 1; 2 4 0.05811 0.17632
0.01701;250.056950.17388 0.0173 1; 34 0.06701 0.17103 0.0064 1; 4 5 0.01335 0.04211
0.01;470.00.20912 0.0 0.978; 49 0.0 0.55618 0.0 0.969;5 6 0.0 0.25202 0.0 0.932; 6 11
0.09498 0.19890 0.0 1;6 12 0.12291 0.25581 0.0 1;6 13 0.06615 0.13027 0.0 1;7 8 0.0
0.176150.01;790.00.11001 0.0 1; 9 10 0.03181 0.08450 0.0 1;9 14 0.12711 0.27038 0.0
1;10 11 0.08205 0.19207 0.0 1;12 13 0.22092 0.19988 0.0 1;13 14 0.17093 0.34802 0.0 1];
disp(busdata)

disp(linedata)

mwlimit=[50 150;50 150;50 150]

Ifybus

Ifnewton

busout bloss

B-Coefficient Calculated is as:
B11=0.0307 B12=0.0129 B13=0.0002

B21=0.0129 B22=0.0152 B23=-0.0011
B31=0.0002  B32=-0.0011 B33=0.0190



APPENDIX 11

MATLAB Program for optimization of benchmark functions using PSO.

HYPER-ELLIPSOID FUNCTION

clear all
clc
nop=input(‘enter value for no. of particles=');
%itermax=input(‘enter value of itermax=");
itermax=1000;
x1=zeros(itermax,nop);
x2=zeros(itermax,nop);
v1=zeros(itermax,nop);
v2=zeros(itermax,nop);
x1(1,:)=unifrnd(-5.12,5.12,1,nop);
x2(1,:)=unifrnd(-5.12,5.12,1,nop);
v1(1,:)=rand(1,nop);
v2(1,:)=rand(1,nop);
for j=1:nop

pbest(1,))=x1(1.));

pbest(2,])=x2(1,j);

y(1)=(x1(1,))."2 + 2 * (x2(1,)))-"2;

end
Y%wmax=input(‘enter value of wmax=");
%wmin=input(‘enter value of wmin=");
%cl=input(‘enter value of c1=");
%c2=input(‘enter value of c2=");
%rl=input(‘enter value of r1=");
%r2=input(‘enter value of r2=");
cl1=2,
c2=2,
r1=0.5;
r2=0.6;
min=y(1,1);

b=1;

for j=2:nop

if y(1,j)<min
min=y(1,j);
b=j;

q=b;
gbest(1,1)=x1(1,b);
ghest(1,2)=x2(1,b);

gbes(1,1)=gbest(1,1);
gbes(1,2)=gbest(1,2);

for j=1:nop
previn(Lj)=y(1j);
end
t=1;
for i=2:itermax
for j=1:nop
%for inertia weight W
% wmax=0.9;
% wmin=0.4;



w(1,1)=0.8;
%w(i,1)= wmin+ (wmax-wmin)* (0.95)" (i-2);
%w(i,1)= (wmax-(((wmax-wmin)/itermax)*(i-1)));
vaA(i,J)= w(1,1)*va(i-1,j)+cl*r1*(pbest(1,j)-(x1(i-1,j)))+c2*r2*(gbest(1,1)-(x1(i-1,j)));
V2(i,J)= w(1,1)*v2(i-1,j)+cLl*r1*(pbest(2,j)-(x2(i-1,j)))+c2*r2*(ghest(1,2)-(x2(i-1,j)));

x1(i,j)=v1(i,j)+x1(i-1,));
x2(i,j)=v2(i,j)+x2(i-1,j);

newfn(i,j)=(x1(i,j)).2 + 2 * (x2(i,)))."2;

if newfn(i,j)<prevfn(l,j)
previn(1,j)=newfn(i,j);
pbest(1,j)=x1(i,));
pbest(2,j)=x2(i,});

end
y(i.j)=newfn(i.j);
end
min=y(i,1);
p=1;
for j=2:nop
if y(i,j)<min
min=y(i,j);
P=i;
end
end
gbes(i,1)=x1(i,p);
gbes(i,2)=x2(i,p);

if y(i,p)<y(t,q)
ghest(1,1)=gbes(i,1);
ghest(1,2)=gbes(i,2);

t=i;
a=p;
end
for j=1:nop
df(i,j)= abs(y(i,j)-y((i-1).J)) ;
end
ki=0;
for j=1:nop
if (df(i,j)<=10"(-7))
ki=ki+1;
end
end
if ki >=nop
break
end
end

disp(sprintf('min value of function is %d and at values of x1=%d and x2=%d ',min,gbest(1,1),gbest(1,2)))
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DEJONG’S FUNCTION

cle
disp(' we have to minimize f = 100(x1"2-x2)"2+(1-x1)"2 i.e. rosenbrock function’)
p=input('Enter the no. of particles in a swarm"); %no. of particles

it=input('Enter the no. of iterations');

x1=zeros(p,it); %no. of iterations are pre decided that is it will be maximum 50
x2=zeros(p,it);

x3=zeros(p,it);

vl=zeros(p,it);

v2=zeros(p,it);

v3=zeros(p,it);

f=zeros(p,it);

x1g=zeros(p);

x2g=zeros(p);

x3g=zeros(p);

fp=zeros(1,p);

df=zeros(1,(it-1));

rp=0.5;

rg=0.6;

cp=2;

cg=2;

T=input('Enter the tolerance value');

% Initial values i.e. Oth iteration

% x1(:,1)=[1.5605 0.7795 0.4834 0.8078 0.1929 0.2639 1.8841 1.9123 1.1504 0.1196 0.4696 0.7063 1.6424
0.0308 0.0860 0.3380 1.2982 1.4634 1.2955 0.9018];

% x2(:,1)=[1.0940 0.5926 1.4894 0.3779 1.3736 0.3670 0.7370 1.2512 1.5605 0.1623 1.8588 1.5514 0.9736
0.8717 0.8936 0.6127 1.0170 1.0215 1.6353 1.5897];

% v1(:,1)=[0.0326 0.5612 0.8819 0.6692 0.1904 0.3689 0.4607 0.9816 0.1564 0.8555 0.6448 0.3763 0.1909
0.4283 0.4820 0.1206 0.5895 0.2262 0.3846 0.5830];

% v2(:,1)=[0.2518 0.2904 0.6171 0.2653 0.8244 0.9827 0.7302 0.3439 0.5841 0.1078 0.9063 0.8797 0.8178
0.2607 0.5944 0.0225 0.4253 0.3127 0.1615 0.1788];

x1(:,1)=unifrnd(-1,1,1,p);

x2(:,1)=unifrnd(-1,1,1,p);

x3(:,1)=unifrnd(-1,1,1,p);

v1(:,1)=rand(1,p);

v2(:,1)=rand(1,p);

v3(:,1)=rand(1,p);

% i=0;

% disp (sprintf(‘enter the values of %dth iteration positions of %d particles for variable x1',i,p))
% for j=1:p

%  x1(j,1)=input(sprintf(‘enter the value of x1(%d,%d)",j,i));

% end

% disp (sprintf(‘enter the values of Oth iteration positions of %d particles for variable x2',p))
% for j=1:p

%  x2(j,1)=input(sprintf(‘enter the value of x2(%d,%d)"j,i));

% end

% disp (sprintf(‘enter the values of Oth iteration positions of %d particles for variable v1',p))
% for j=1:p

%  v1(j,1)=input(sprintf(‘enter the value of v1(%d,%d)"j,i));

% end

% disp (sprintf(‘enter the values of Oth iteration positions of %d particles for variable v2',p))
% for j=1:p

%  v2(j,1)=input(sprintf(‘enter the value of v2(%d,%d)',j,i));

% end

for j=1:p



f(j,1)= x1(j,1)"2 + x2(j,1)"2 + x3(j,1)"2;
end

%Initial personal besst values
x1p=x1(:,1);
x2p=x2(:,1);
x3p=x2(:,1);

%for Initial Global best values updation
fmin=min(f(:,1));
for k=1:p

if f(k,1)==fmin

gb=k;

else

end
end
%lnitial global best value
for k=1:p
x1g(k) = x1(gb,1);
x2g(k) = x2(gb,1);
x3g(k) = x3(gb,1);
end
fgm = min(f(:,1));

% fig=zeros(1,485);
% t=zeros(1,485);

for i=1:it
disp(sprintf('This is %d no. of iteration',i))

%for inertia weight W
%w=0.8;
wmax=0.9;
wmin=0.4;
w = wmax-i*((wmax-wmin)/it);
% w=wmin+ (wmax-wmin)* (0.95)" (i-2);
for j=1:p
V1(j,(i+1)) = w*v1(j,i) + rp*ep*(x1p()-x13.0)) + rg*cg*(x19()-x13.0));
v2(j,(i+1)) = w*v2(j,i) + rp*ep*(x2p(i)-x2(j.1)) + rg*cg*(x29()-x2(.i));
v3(j,(i+1)) = w*v3(j,i) + rp*cp*(x3p(i)-x3(j.1)) + rg*cg*(x3(j)-x3(.1));
x1(j,(i+1)) = x1(,i) + v1(j.(i+1));
x2(j,(i+1)) = x2(j,i) + v2(j.(i+1));
x3(j,(i+1)) = x3(j,i) + v3(j.(i+1));
f(j,(i+1))= x1(j,(i+1))*2 + x2(j,(i+1))"2 + x3(j,(i+1))"2;
end

%To find change in the values of f

for j=1:p
df(j,i)= abs(f(j,(i+1))-f(j,i)) ;
end

%personal best values updation
for j=1:p
fp(G)= x1p()"2 + x2p()"2;
end
for k=1:p
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if f(k,i)< fp(k)
x1p(k)=x1(k,i);
x2p(k)=x2(k,i);
x3p(k)=x3(k,i);
else
end
end

%for Global best values updation
if min(f(;,(i+1)))<fgm
fgm=min(f(:,(i+1)));
else
end

for j=1:i
for k=1:p
if f(k,i)==fgm
for I=1:p
x1g(l) = x1(k,i); %global best values
x29(1) = x2(k,i);
x3g(l) = x3(k,i);
end
else
end
end
end

print=[x1(,0)  x2(,0) x3(C,i) vi1(,i0)  v2(,i)  fCD];

disp(" x1 X2 X3 vl V2 )
disp(print)

% fig(i) = figure('Position’, [100 100 500 350]);

% t(i) = uitable('Parent’, fig(i), 'Position’, [25 25 450 200]);
%  print = [x1(:,1) X2(:,i) V1(;,i) v2(.,i) fG,)];

%  set(t(i), 'Data’, print);

% set(t(i), 'ColumnName', {'x1', 'x2', 'v1', 'v2', 'f'});

%Stoping criterion
ki=0;
for j=1:p
if (df(j,i)<=10"(-T))
ki=ki+1;
end
end
ifki>=p
break
end

end
[r,c]=find(f==fgm);

disp(sprintf('min value of function is %d and at values of x1=%d, x2=%d and x3=%d

fgm,x1g(1).x29(1).x39(1)))
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MATLAB Program for the solution of IEEE 30-bus system using PSO

clear all

clc

disp(' we have to minimize the cost function of a 3 machine system')
p=input ('Enter the no. of particles in a swarm'); %no. of
particles

it=input ('Enter the no. of iterations');

a=10"(-4)*[50 50 50];

b=10"(-2) *[245 351 389];

c=[105 44.4 40.6];

B=10"(-2)*[0.0307 0.0129 -0.0002; 0.0129 0.0152 -0.0011; -0.0002 -0.0011

0.019071;

pl=zeros (p,it)

p2=zeros (p,it);

p3=zeros (p,it);
( )
( )

)

’

vl=zeros (p,it);
v2=zeros (p,it
v3=zeros (p, it
f=zeros (p,it);
df=zeros (p,it);
sp=zeros (p,it);
csp=zeros (p, it);
pl=zeros(p,it);
cl=zeros (p,it);
)
)

’

’

c2=zeros (p,it) ;
c3=zeros (p, it
C=zeros (p,it);
rp=0.4;
rg=0.5;
cp=2;
cg=2;
pd=283.4;
plg=zeros (
p2g=zeros (
p3g=zeros (
1
(

’

I3

p)
pP);
p);
fp=zeros(1l,p);
plp=zeros(1l,p):
k=100;
wl=1;
w2=0;
% Initial values i.e. 0Oth iteration
pl(:,1)=[0.2356 0.5478 1.2453 1.5897];
% p2(:,1)=[1.1254 1.3658 1.9875 1.5632];
n=1;
while n==

for j=1:p

pl(j,l)=unifrnd(50,250,1);

p2(3j,1l)=unifrnd(30,100,1);

p3(j,1)=283.4-pl(j,1)-p2(3,1);

if p3(3,1)<30&&p3(j,1)>100

n=1;
break;
else

o\°

nd

o oe (D
—~ o° o°
. o° oe
- < g

<
[
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v2(:,1)=rand(1l,p);
v3(:,1)=rand(1l,p);

%$Total cost calculation

for j=1:p
cl(j,1) = a(1)*(pl(3,1))"2 + b(1)*pl(3,1) + c(1);
c2(j,1) = a(2)*(p2(3,1))"2 + b(2)*p2(3,1) + c(2);
c3(3,1) = a(3)*(p3(3,1))"2 + b(3)*pP3(3,1) + c(3);
C(j,1) =cl(3,1) + c2(3,1) + c3(3,1);
end
%$To calculate initial value of cost function we need PL
for j=1l:p

pl(3,1)= [pl(j,1) p2(j,1) p3(3,1)1*B*[pl(3,1) p2(3,1) p3(3,1)1";
end
%$To calculate initial value of cost function
for j=l:p

£, )= wl*((a(1)*(pl(3,1))"2 + b(1)*pl(3,1) + c(1)) +
(a(2)*(p2(3,1))"2 + b(2)*p2(j,1) + c(2))

+ (a3)*(pP3(3,1))"2 + b(3)*p3(J,1) + c(3))) + w2*pl(j,1) +

k*abs (pd+pl(j,1)-pl(j,1)-p2(j,1)-p3(3,1));
end
%0th iteration data display

disp('this is the Oth iteration')

print0 = [pl(:,1) p2(:,1) p3(:,1) v1(:,1) v2(:,1) v3(:,1) £(:,1)
cl(:,1) c2(:,1) c3(:,1) C(:,1)];

disp (' P1 P2 P3 V1 v2 V3
f cl c2 c3 c ")

disp (print0)

%$Initial personal besst values
plp=pl(:,1);
p2p=p2 (:,1);
p3p=p3(:,1);

$for Initial Global best values updation
fmin=min(£(:,1));

for m=1l:p

if f£f(m,1)==fmin

gb=m;

else

end
end
%$Initial global best value
for m=l:p
plg(m) = pl(gb,1);
p2g(m) = p2(gb,1);
p3g(m) = p3(gb,1);
end

fgm = min(f(:,1));

%$Main iterations starts from here
for i=1:it
disp (sprintf ('This is iteration no.= %d',i))

$for inertia weight W
% wmax=0.9;

% wmin=0.4;
$ w = wmax- (1-1)* ((wmax-wmin) /it) ;
Sw= wmin+ (wmax-wmin)* (0.95)" (1-2);

w=0.4;



%For calculatiing velocities for updation

for

j=1l:p

pl(3,1));

v2(J, (i+1))

p2(3,1))7

p3(J,1))7

end

vl(3, (i+1)) = w*vl(3,1) + rp*cp*(plp(3)-pl(j,1))
w*v2(j,1) + rp*cp*(p2p(j)-p2(j,1))

v3(J, (i+l)) = w*v3(j,1) + rp*cp* (p3p(J)-p3(J,1))

%V (min) and V(max) constraint

for

end

j=l:p

if v1(3, (i+1))< =15
vl(j, (i+l))= -15;

end

if v2 (3, (i+1))< -15
v2 (3, (i+l))= -15;

end

if v3(3, (i+1))< -15
v3(j, (i+l))= -15;

end

if v1(3, (i+1))> 60
v1(j, (i+1l))= 60;

end

if v2 (3, (i+1))> 60
v2 (3, (i+l))= 60;

end

if v3 (3, (i+1))> 60
v3(j, (i+1))= 60;

end

%Updation of p values

for

end

$Pmin and Pmax constraint

for

end

$For losses formulation

j=1:p

j=l:p
if pl(3, (i+1))< 50
pl (3, (i+1))= 50;
end
if p2(3, (i+1))< 30
P2 (3, (i+1))= 30;
end
if p3(3, (i+1))< 30
p3 (3, (i+1))= 30;
end
if pl (3, (i+1))> 250
pl(Jj, (i+1))= 250;
end
if p2(3, (i+1))> 100
p2(Jj, (i+1))= 100;
end
if p3(3, (i+1))> 100
p3 (3, (i+1))= 100;
end

+vl(3, (1+1));
+v2(3, (1+1));
+v3(3, (1+1));

(PL)

+ rg*cg* (plg(J) -
+ rg*cg* (p29(J) -

+ rg*cg* (p3g(J) -
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for j=1:p
pl(3, (i+1))= [pl(J, (i+1)) p2(3, (i+1l)) p3(J, (1+1))1*B*[pl (], (1+1))
p2(J, (i+l)) p3 (3, (i+1))]1";
end

$Main objective function
for j=1:p
£(3, (i+1))= wl*((a(1)*(pl(J, (i+1))) "2 + b(1)*pl(J, (i+1)) + c(1))

+.
(a(2)*(p2(J, (i+1))) "2 + b(2)*p2(J, (i+1)) + c(2))+.
(@a(3)*(p3(J, (1+1))) "2 + b(3)*pP3(J, (1+1)) + c(3))) +
w2*pl (3, (1+1)) + k*abs(pdtpl(J, (i+1))-pl(J, (i+1))-
p2(J, (i+1))-p3 (3, (1+1)));

end

$personal best values updation
$For losses formulation (PL)
for j=1:p
plp(J)= [plp(J) p2p(J) pP3p(J)1*B*[plp(J) p2p(J) pP3p(J)1';

end
for j=1:p
fp(3)= wl* ((a(1)*(plp(3))"2 + b(1)*plp(3) + c(1)) +
(a(2)* (p2p(3)) "2 + b(2)*p2p(3) + c(2))
+ (a(3)*(P3p(3)) "2 + b(3)*pP3p(J) + c(3))) + w2*plp(]j) +
k*abs (pd+plp () -plp () -p2p (J) -p3p(3)) ;
end
for m=l:p
if f(m,1)< fp(m)
plp (m)=pl (m, (i+1));
p2p (m) =p2 (m, (i+1));
p3p (m) =p3 (m, (1+1));
else
end
end

%$for Global best values updation
if min(£(:, (i+1)))<fgm
fgm=min (£ (:, (i+1)));
else
end

for j=1:(i+1)

for m=l:p
if f(m,j)==£f
for 1=1:p
plg(l) pl(m,J); %global best values
p2g(l) = p2(m ,j),
p3g(l) = p3(m,J);
end
else
end
end

end

$For cost calculation

for j=1:p
cl(j, (i+1)) = a(l)*(pl(j, (i+1)))"2 + b + c ;
C2(3, (i+1)) = a(2)*(p2(J, (i+1))) "2 + b(2)*p2(3, (i+1)) + c(2);
c3(j, (i+1)) = a(3)*(p3(j, (i+1)))"2 + b + c ;
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C(3, (i+1)) = cl(J, (i+1)) + c2(J, (i+1)) + c3(F, (i+1));
end

o
=
O

find change in the wvalues of f, equality constraint and change in cost
for j=1:p
df (§,1)= abs(£(3, (1+1))-£(3,1)) ;
sp(j,1)= abs (pd+pl (3, (1+1))-pl (3, (i+1))-p2 (3, (i+1))-p3(J, (i+1)));
csp(j,1i)= abs(C(J, (i+1))-C(J,1));
end

print = [pl(:, (i+1)) p2(:, (i+1)) p3(:, (i+1)) v1(:, (i+1)) v2(:, (i+1))
v3(:, (i+1)) £(:, (i+1)) cl(:, (i+1)) c2(:, (i+1)) c3(:, (i+1)) C(:, (i+1))1;

disp (' Pl P2 P3 V1 v2 V3
f cl c2 c3 c ")

disp (print)

%Stoping criterion &&(csp(j,1)<=10"(-6))
ki=0;
for j=1:p
if ((df(3,1)<=10"(-6))&&(sp(j,1)<=10"(-6)))
ki=ki+1;
end
end
if ki >=p
break
end

end

disp(' we have to minimize the cost function of a 3 machine 30 Bus System')
disp (sprintf ('No. of particles used in a swarm = %d',p))
disp (sprintf('Max. no. of iterations entered = %d\n',it))

disp (sprintf ('Total demand of power Pd = %d \n',pd))

disp('Initial values of generations of 3 generators')
initial=[pl(:,1) p2(:,1) p3(:,1)1;

disp (' P1 P2 P3 ")

disp(initial)

disp (sprintf ('\nPD+P1 = %d',pd+pl(1,1)))
disp (sprintf ('\nP1+P2+P3=%d\n"',pl(1,1)+p2(1,1i)+p3(1,1)))

disp (sprintf ('No. of total Iterations took place = %d \n',
disp(sprintf ('Total loses in the lines Pl = %d \n',pl(1l,1)
disp(sprintf ('Minimum cost incured = %d \n',C(1,1)))
disp('Final values of generations of the three generators')

(

(

(

i))
))

disp (sprintf ('P1=%d"',pl(1,1)))
disp (sprintf ('P2=%d"',p2(1,1)))
disp (sprintf ('P3=%d"',p3(1,1)))

disp ('About this run'")

disp('l. The Constraints has been included as absolute value.')

disp('2. Random values between the limits of generation have been taken for
each generator as the different starting point.')

disp('3. Correct values of B coefficients have been fed.')

disp (sprintf('4. K taken = %d', k))

disp (sprintf('5. wl and w2 taken = %d and %d',wl,w2))
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