
I

A COMPARATIVE STUDY OF ECONOMIC LOAD

DISPATCH PROBLEM USING DIFFERENT

INERTIA WEIGHTS OF PSO

DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN

POWER SYSTEMS
 (Electrical Engineering)

 Submitted by:

 NITIN ARORA

 (2K12/PSY/13)

Under the supervision of

 Prof. N K Jain & Prof. Uma Nangia

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

2014

II

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

CERTIFICATE

I, NITIN ARORA, Roll No. 2K12/PSY/13 student of M. Tech. (Power

System), hereby declare that the dissertation titled ― “A COMPARATIVE STUDY OF

ECONOMIC LOAD DISPATCH PROBLEM USING DIFFERENT INERTIA

WEIGHTS OF PSO” under the supervision of Prof. N.K. Jain & Prof. Uma Nangia of

Electrical Engineering Department, Delhi Technological University in partial fulfillment

of the requirement for the award of the degree of Master of Technology has not been

submitted elsewhere for the award of any Degree.

Place: Delhi NITIN ARORA
Date: 29.07.2014 2K12/PSY/13

 M.Tech (PS)

Prof. N.K. Jain
Professor

EE Dept., DTU

Prof. Uma Nangia
Professor

EE Dept., DTU

III

ACKNOWLEDGEMENT

Any project is a team work, successful completion of which is possible only through

cooperation and sincere efforts of the team mates. This is of great pleasure for me to

avail the opportunity of expressing my gratefulness to all those who were of immense

help to me in completing this Major Project.

Firstly I want to show my sincere and profound thanks to Prof.N K JAIN & Prof.UMA

NANGIA (project guide). She has been a constant source of inspiration throughout the

development of this Major Project and provided me with all the requisite guidance and

information from time to time .I also thank Almighty for the entire blessings he has

bestowed upon me. LastHbut not least I express my sincere thanksGto my family

members, colleagues, friends, college staff and all those who have contributed directly

and indirectly through suggestions , thoughts, support, and presence for the completion

of the Major Project ,they have remained a source of encouragement and inspiration for

me.

NITIN ARORA
2K12/PSY/13

M.TECH. (PSY)

IV

ABSTRACT

In this thesis, comparison of different inertia weights is taken into account to analyse the

performance of PARTICLEUSWARM OPTIMIZATION on Economic load

dispatchHconsidering the cost of the generation. Equality constraints of the problem have been

considered with the inclusion of a new parameter ‘k’. Comparative analysis suggests that the

use of simulated annealing procedure for the variation in inertia weight in the algorithm of PSO

significantly improves the performance with lesser number of iterations. The data sets being

used have been generated for IEEE 5 , 14 and 30 busHsystem using Particle swarm

optimization method. An attempt has been made to reach the target point in lesser number of

iterations and with minimum cost of generation.

A MATLAB program has been developed for ParticleKSwarm Optimization (PSO) method to

solve economicKload dispatch problem considering cost of generation. All different inertia

weight functions have been implemented on ECONOMIC LOAD DISPATCH problem to get

the optimum value of cost of generation with lesser number of iterations.

V

VI

VII

VIII

IX

List of Symbols & abbreviations

Cp Acceleration coefficient for Cognitive component

Cg Acceleration coefficient for Social component

ᵡ Constriction Factor

w Inertia Weight

Itmax Maximum no. of iteration

nop Number of particles

K Penalty coefficient

ɛ Tolerance Limit

r1 & r2 Uniformly distributed Random Numbers (0,1)

CF Constriction Factor

ELD Economic Load Dispatch

PSO Particle Swarm Optimization

X

CHAPTER-1

INTRODUCTION

1.1 OVERVIEW

TheSsize of our electrical power systemGis increasing energy demands. To accomplish

this, a number ofKpower plants are connectedKin parallel to supply the system load by

interconnection of systems. In grid system, it is very essential to operate plant units

most economically.

The economic scheduling aims to guarantee at all times the optimum combination of

generators connected to the system to supply the load demand.

 Economic Load Dispatch (ELD) is a very important function in the planning and

operation of power system. It involves two separate steps namely the unit commitment

and on-line economic dispatch considering all constraints (equality constraints and

inequality constraints). The complexity of ELD depends on the factors like size of the

system, generator characteristics and system constraints.

 By ELD we mean to find the generations made by different generators or plants so that

the total cost of the fuel is minimum. The generation in ELD is not fixed but they lie

under certainLlimits so as to meet aKparticular load demand with minimum

consumption of fuel and hence we can say ELD is basically the solution to a large

number of load flow problems.

 In this work the cost of generation is taken as the objective which is needed to be

minimised. For this IEEE 5 bus,K14 bus and 30 bus systems have been considered.

Our objective is accomplished in the order as given below:

 Exploring PSO and coding the programs in MATLAB 2012a.

 Application of PSO to various benchmark functions.

 Application of PSO to Economic load dispatch problem considering cost of

generation for IEEE 5 , 14 and 30 bus systems using.

XI

1.2 AIM AND APPROACH

Our main aim in this thesis is to solve economic load dispatch (ELD) problem with

minimum number of iterations considering the cost of generation for which IEEE 5, 14,

& 30 bus system have been considered.

The work has been carried out in the following manner:

a. Knowing about particle Swarm Optimization and coding its algorithm in

MATLAB R2012a.

b. Solution of different mathematical benchmark functions using PSO.

c. Formulation of Economic Load Dispatch (ELD) considering the cost of generation

for IEEE 5,O14, & 30 Bus System.

d. Generation of non-inferior sets of IEEE 5,K14 and 30 bus systems.

Achievement of solution for IEEE 5,O14 and 30 bus system with lesser no of iterations

considering the cost of generation.

1.3 LITERATURE REVIEW

We do not have a single optimizationOmethod available to solve all the optimization

problems. Various optimization methods have been developed to solve many types of

optimizationKproblems recently. Latest methods of optimization (few times referred to

non-traditional methods of optimization) are popular and powerful methods for solving

many complicated engineering problems. The methods consists of particle swarm

optimization algorithm, artificial immune systems, genetic algorithms, neural networks,

ant colony optimization and fuzzy optimization.

The consumption level of the electric power is increasing exponentially in the modern

world. Since the electric power network is the most complex as well as huge in size,

which needs proper control and decision making algorithms to get economical

operation from the available resources and their best utilization by generation,

transmission and distribution utilities.

In power systems the continuous unpredictable change in load demand leads to the

necessity in adjusting the power generation outputs. The scheduling of the generator

XII

output is taken care by Economic Load Dispatch (ELD) problem. Economic load

dispatch is one of the major optimization issue in power system. Its objective is to

allocate the demand among committed generators in the most economical manner,

while all physical & operational constraints are satisfied. Many conventional &

nonconventional optimization techniques available in literature are applied to solve

such problems. Conventional methods have simple mathematical model and high

search speed but they are failed to solve such problem because they have the drawbacks

of multiple local minimum points in the cost function. Algorithms require the

characteristics to be approximated; however, such approximations are not desirable as

they may lead to suboptimal operation and hence huge revenue loss over time,

restrictions on the shape of the fuel-cost curves. Other methods based on artificial

intelligence have been proposed to solve the economic dispatch problem, these are

genetic algorithm, Tabu search, particle swarm optimization etc [1].

A concept for the optimization of nonlinear functions using particle swarm

methodology is introduced first time by James Kennedy and Russell Eberhart.The

evolution of several paradigms is outlined, and an implementation of one of the

paradigms is discussed. Benchmark testing of the paradigm is described, and

applications, including nonlinear function optimization and neural network training, are

proposed. The relationships between particle swarm optimization and both artificial life

and genetic algorithms are described in [2].

The optimization of nonlinear functions using particle swarm methodology is

described. Implementations of two paradigms are discussed and compared [3].

In paper Wei-Bing Liu and Xian-JiaWangr presented a new particle swarm optimizer

based on evolutionary game (EGPSO).We map particles’ finding optimal solution in

PSO algorithm to players’ pursuing maximum utility by choosing strategies in

evolutionary games, using replicator dynamics to model the behavior of particles. And

in order to overcome premature convergence a multi-start technique was introduced.

Experimental results show that EGPSO can overcome premature convergence and has

great performance of convergence property over traditional PSO[4].

XIII

Tao Gong and Andrew L. Tuson_presented the working mechanism of PSO in a

principled manner with formal analysis and investigates the applicability of pso on the

quadratic assignment problem (qap). Particularly, the derived pso operator for qap is

empirically studied against a genetic algorithm (ga)[5].

In this paper, Ying-Ping Chen and Wen-Chih Peng, gave suggestion to improve the

performance of the particle swarm optimizer by incorporating the linkage concept,

which is an essential mechanism in genetic algorithms,and design a new linkage

identification technique called dynamic linkage discovery to address the linkage

problem in real-parameter optimization problems[6].

Keisuke KAMEYAMA investigsted the dynamics of PSO research and numerous

variants for improvement of performance of PSO[7].

Hardiansyah et al. suggested application of PSO for Economic load dispatch problem

.The results have been demonstrated for 3 and 6 generator systems with and without

consideration of losses[9].

Jaya Sharma et al. presented review of PSO application in ELD problems[10].

The intensified research on environmental safety guided to create public awareness

about the emission. The passage of the clean air amendments in 1990 has forced the

utilities to reduce their SO2,CO2,NOX emission by 40% from 1980 levels.Therefore

apart from cost, emission objective must also be taken into account .The multi-

objective Environmental/ economic dispatch is having two conflicting objectives, as

the minimisation of cost maximizes the pollution, leads to the necessity of trade –off

analysis to define admissible dispatch policies for any demand level.There has been

much research pertaining to MOEED problem. M.A. Abido has compared three

multiobjective evolutionary algorithms and the same has been successfully applied to

environmental/economic power dispatch problem. Strength Pareto Evolutionary

Algorithm (SPEA) has better diversity characteristics and is more efficient when

compared to other Muti Objective Evolutionary Algorithms (MOEAs)[11].

J. C. Bansal et al proposedja large number of variations ofgInertia Weight strategy[12].

This papergstudies 15 relatively recent andgpopular Inertia Weight strategies and

XIV

compares their performance on 05 optimization test problems.RussellgEberhart et al

proposed two Paradigmskof PSOjnamely globally goriented (GBEST), and locally

oriented (LBEST) and compared for the extremelygnonlinear Schaffer f6

function.Thegauthour propose both the paradigm for training ofgneural network &

learning of robot[13]. Ajith Abraham et al implemented Particle Swarm Optimization

(PSO) and Ant Colony Optimization (ACO) algorithms on some mathematical function

(Griewank function,gSchwefel function, Quadric function), realgworld applications

asgtravelling sales men problem & data mining[14].

Singh and Dhillon converted a multiobjetcive economic emission dispatch problem into

a scalar problem. This scalar set optimization problem is then solved for many types of

different set of weights pattern to generate non- inferior solution along with trade-off

functions. Between conflicting objectives. The optimal solution is calculated by

considering real and reactive power losses, which are calculated by performing fast

decoupled load flow analysis[31].

Airashidi and El- Harwary presented a PSO algorithm as an effective tool for solving

constrained multiobjetcive optimization problems like Economic Dispatch(EED).

Results showed that PSO was successfully capable of capturing the shape of Pareto

solution sets[32].

1.4 PLAN OF THESIS

This thesis has been arranged in six chapters. The contents of the chapters are briefly

outlined as indicated below:

Chapter 1: Introduction to economic load dispatch problem and research aim of the

thesis. Literature survey for the covered topics has also been shown.

Chapter 2: Introduces the Particle Swarm Optimization

Chapter 3: Discusses about the applications of PSO in various fields.

Chapter 4: Explores the concepts of Particle Swarm Optimization algorithm in

MATLAB R2011b and its application on various mathematical benchmark functions.

Analysis of various parameters in PSO algorithm has also been carried out.

XV

Chapter 5: Discusses the solution of Economic Load Dispatch for IEEE 5, 14 and 30

bus systems.

Chapter 6: Conclusion and the future work directions have been discussed.

Appendix and references are at the end of the thesis.

XVI

CHAPTER-2

PARTICLE SWARM OPTIMIZATION

2.1 INTRODUCTION

The ParticlepSwarm Optimizationp(abbreviated aspPSO) algorithm ispa stochastic

search algorithm basedpon population andlan alternate solutionoto complicated

optimization problem which are non-linear in nature. PSOpalgorithm was firstly

introduced bypDr. Eberhart andpDr. Kennedy in 1995 and the basicLidea of PSO was

initiallyPinspired by simulationpof the social behaviour ofpanimals such as

birdpflocking, fish schooling andlso on. PSO can be easily implemented and is

computationally inexpensive, since its memory and CPU speed requirements are low

(Eberhart et al.,1996). PSOois based on the naturalptechnique of the group

communicationpto share individualoknowledge when aggroup of birdspor

insectsisearch food or migratepand so forth in a searchingpspace, although all birds or

insectspdo not know where the bestoposition is and from thelnature of the

socialpbehaviour, if any memberpcan find out apdesirable path to go, the restpof the

members will followpquickly.

The particle swarmioptimization (PSO) is aiparallel evolutionary

computationitechnique developed byjKennedy and Eberhart based on the

socialibehaviour metaphor.iThe PSO algorithm isiinitialized with aipopulation of

random candidateisolutions, conceptualized as particles.iEach particle is assignedia

randomizedivelocity and isiiteratively movedithrough the problemkspace. It is

attracteditowards theilocation of the bestifitness achievediso far by the particleiitself

and by theilocation of theibest fitness achieved soifar acrossithe whole

populationi(global version of the algorithm).

The PSO algorithm includes some tuning parameters that greatly influence the

algorithm performance, oftenpstated as the exploration–exploitationptradeoff:

Explorationpis the ability to test variouspregions in the problem space in order to locate

a goodpoptimum, hopefully the globalpone. Exploitationpis the ability topconcentrate

the search around alpromising candidate solution in order to locate the

XVII

optimumoprecisely. Despiteorecent research efforts, the selection of the

algorithmpparameters remains empirical to a largepextent. Apcomplete theoretical

analysis of the algorithmphas been given by Clerc andoKennedy. Basedpon this

analysis, the authors derived aoreasonable set of tuningoparameters, asiconfirmed by.

The referenceicontains a good deal of mathematicalocomplexity, however,

andideriving from it simpleouser-oriented guidelines for theoparameter selection in a

specificiproblem isonot straightforward.

Theopresent work gives some additionaloinsight into the PSO parameteroselection

topic. Itpis established that some of theoparameters add nopflexibility to the

algorithmoand can be discardedowithout loss ofpgenerality. Resultspfrom the

dynamicpsystem theory are used for a relatively simpleptheoretical analysis of

theoalgorithm which results in graphicaloguidelines for parameterpselection. Thepuser

can thus takepwell-informed decisionsiaccording to the desiredpexploration–

exploitationitrade off: either favourpexploration by a thoroughisampling of the

solutionpspace for a robustilocation of the globalpoptimum at the expense of a large

number of objectivepfunction evaluationsior, on the contrary, favourpexploitation

resulting in a quickoconvergence but to a possiblypnon-optimal solution. Non-

surprisinglyp, the best choice appearsito depend on the form of the objectivepfunction.

The newlypestablished parameter selectionpguidelines are applied to

standardpbenchmarkpfunctions.

2.2 THE BASIC MODEL OF PSO

Particle swarmioptimization (PSO) is an optimization approach in which a swarm of

candidate solutions are used which are referred to particles. Particles are made to ‘‘fly’’

into a searchpspace, with eachpparticle getting attractedptowards the globalpbest

solution found by thepparticle’s neighbourhoodland the personal bestisolution found by

theoparticle. The velocitypvi is used topmodify the position xi, of thepith particle and

this velocity depends on the distance of the particle from its personal best solution and

from the global best solution. For the original PSO,

vij(t+1i) = w * vij(t) + cp * rp* (yij(t) –oxij(t)) + cg * rg * (oy^ ij(t) –oxij (t)) (2.1)

xijo(t+1) = x ij(t)o+ovij(t+1) (2.2)

XVIII

for i =p1, . . . ,nop pand pj =p1, . . . ,n,

where,

φp = cp * rp and φg = cg * rg, (2.3)

nop prepresents the total numberpof particlespin the swarm,

n representspthe dimensions in the givenoproblem, i.e. the totalpnumber of

parameterspof the function gettingpoptimized

cp and cg are accelerationpcoefficients,

rp, rg o~ pU(0, 1),

xi(t)orepresents the positionpof particle ith atotime t,

vi(t)orepresents the velocityiof particle ith atotime t,

yi(t)irepresents the personalibest solution ofpparticle i at time t,

y^ij(t)irepresents the bestoposition found by theoneighbourhood of particle i atotime t.

FromoEq. (2.1), the velocityoof a particle is obtainedoby threepfactors:

vi(t), whichobehaves as a momentumpterm to avoid excessiveposcillations in the

directionpof search.

yi(t), each particle remembers its own coordinates in the solution space which are

linked with the best solution (fitness) which has been obtained so far by that particle.

Thisivalue is known as personal best (pbest). Inithe pbest swarm, only a limitedinumber

of particles (neighbour count) can modify theivelocity of a given particle. The

swarmiwill converge taking more time but can locateithe global optimum with a greater

chance.

y^ij(t), anotherAbestAvalue that is obtained bySthe PSO is the bestHvalue achieved so

far by any of the particle in theineighbourhood of that particle. Thisivalue is known as

global best (gbest).All the particles in the gbest swarm, are neighbours of one other;

thus, the best particle’s position in theiswarm has been used in the social termiin the

velocity update equation. It is supposed that gbest swarmsiconverge in lesser time, as all

the particles are attracted simultaneouslyito the best part of theisearch space. However,

XIX

ifithe global optimum is not so near as comparedito the bestiparticle, it might be

impossibleifor the swarm to explore different areas; this means thatithe swarm could be

trappediin the local optima.

cp * r1 * (yi(t)p- xi(t)), known as thepcognitivepcomponent. This componentpshows

that the distance a particlepis from the bestisolution, yi(t), found bypitself. The

cognitiveocomponent shows the naturalitendency ofoindividuals to go back to

environmentsowhere they obtained their bestoperformance.

cg * r2 * (y^ij(t) – xij (t)) represents the social component. This component shows the

distance of a particle from the best position found by its neighbourhood. It shows the

behaviour of the individuals to follow the success of the other individuals.

In the social component, y^ij(t) shows the best solution found by the neighbourhood of

particle ith. Neighbourhood topologies are used to constrict the information exchanged

between particles.

Particles modify their positions according to the ``Psychosocial compromise’’ with

which an individual is comfortable and what the society reckons.

Fig 2.1 Initialization of the positions of all particles of x1 and x2

XX

Fig 2.2 Initialization of velocities in random directions of al particles of x1 and x2

Fig 2.1 shows the random distribution of particles for two variables lets say for x1 and

x2 in a given limit or boundary.whereas Fig 2.2 tells us about the random distribution

of velocities for all the particles of x1 and x2.

Fig 2.3 Movement of a particle on the basis of pbest and gbest

Fig2.3 shows the movement of a particle is influenced by two factors i.e. one factor is

the personal best position and the second factor is related to the global best position.

Both these factors contributes in deciding the new position of the different particles.

2.3 PSO ALGORITHM PARAMETERS

There are some parameters in PSO algorithm that may affect its performance. For any

given optimization problem, some of these parameter’s values and choices have large

XXI

impact on the efficiency of the PSO method, and other parameters have small or no

effect. The different PSO parameters are number of particles or swarm size, velocity

components, acceleration coefficients and number of iterations illustrated below.

2.3.1 Swarm size

Population size or swarm size isothe number of particles ‘s’ in the swarm. Aplarge

number of swarmosize generatesplarger parts of the search space to bepcovered

peroiteration. A large number of particles may reduce the number of iterations need to

obtain a better optimization result. In contrast, large amounts of particles improve the

computational complexity per iteration, and more time consuming. From a large

number of empirical studies, it has been shown that most of the implementations in

PSO use an interval of s ε [10,60] for the size of swarm.

2.3.2 Velocityoclamping

InitialpPSO studies used cp = cgp= 2.0. Althoughogood results have beenoachieved, it

was seen that velocitiespfastly exploded to largepvalues, especially foroparticles at a

large distance from their global best (^y) andppersonal best (yi)

positions.pConsequently, particles have large no. of position updates,pwith particles

leaving behind thepboundaries of their searchospace. Velocitiespare clamped to control

the increaseoin velocity.

vij(t+1i) = iv'ij(t+1) if v'ij(t+1) < V max (2.4)

V maxii ifi v'ij(t+1)i >=V max

Velocitypclamping does not avoid apparticle from leaving thepboundaries of itspsearch

space, it limitspthe particle steposizes, thereby divergentibehaviour isirestricted.

2.3.3 Iterationonumbers

The numberoof iterations to obtain aogood resultpdepends on theoproblem.

Apverytlow number ofpiterations may halt the searchoprocess prematurely,pwhile a

veryplarge no. of iterationsohave the consequence of unnecessarypadded

computationalpcomplexity and make the convergencepslow.

XXII

2.3.4 Accelerationocoefficients

The accelerationocoefficients cp and cg,pcombined with theprandom valuesorp andprg,

maintain the stochasticpinfluence on the cognitive andpsocial components of

theoparticle’s velocityorespectively. Theoconstant cp shows how much confidence a

particle has on itself, while cg expresses how much confidence a particle has on its

neighbors. There are some properties of cp and cg:

cp = cg = 0 represents all particles continue flying atotheir present speedpuntil theyphit

the boundary of theosearchpspace. Therefore, thepupdate equation forpvelocity

ispcalculatedpas

vij(t+1)p= vij(t)

cp > 0 and cg = 0 represents that all particles are independent. The velocity;update

equation for this condition will be

vij(t+1) = w * vij(t) + cp * rp (yij(t) – xij(t)) (2.5)

On the contrary, cp > 0 and cg = 0 represents that all particles are attracted towards a

single point in the entire swarm and the update in the velocity will be as under:

vij(t+1)i= vij(t) + cg * rg * (ŷij(t) –ixij (t)) (2.6)

cp = cg represents that all the particles are attracted towards the average of Pbest and

Gbest .

cp>>cg represents that each particle is strongly influenced by its own best position,

resulting in an increased wandering. In contrast, when cg>>cp then all of the particles

are much more influenced by the global best position, which causes all particles to

converge prematurely to the optima.

Normally, cp and cg are static, with empirically finding the optimized values.

Wrongpinitialization of cp andpcg mayiresult in cyclic or divergent behaviour. From the

different empirical researches, this has been proposed that the two acceleration

constants must be cp= cg =2.

XXIII

2.3.5 Inertia weight

Shi and Eberhart introduced the inertia weight to eliminate the need for velocity

clamping and to still restrict the divergent behaviour. The momentum of the particles is

controlled by the inertia weight (w) by weighing the contribution of the previous

velocities–basically it is used to control howpmuch memory of the lastpflight direction

will affectpthe new velocity. Thepvelocity equation modifiedpto

vij(t+1)i = w * vij(t)i+ cp * r1 p* (yij(t) – xij(t))i+ cg * r2 *i(ŷij(t)i– xij (t)) o((2.7)(2((

Shi and Eberhart introduced the concept of inertia weight in 1999 to reduce the

velocities over time (or iterations), to control the exploitation and exploration abilities

of the swarm and to converge the swarm more efficiently and accurately.

If w≥ 1 then the velocities increase with time and particles can hardly divert their

directions to return towards optimum, and the swarm diverges. If w ≤ 1 then little

momentum is only saved from the initial step and quick changes to directions are set in

the process. If w =0 particles velocity disappears and all particles move without

knowledge of the last velocity in each step.

The inertia weight might be implemented either as dynamically changing values or a

fixed value. Initial implementations of used a fixed value for the whole process for all

particles, but now dynamically changing inertia values is used because this parameter

controls the exploration and exploitation of the search space. Various strategies were

suggested time to time were studied in detail.

The inertia value is usually high initially, which allows all particles to freely move in

the search space in the initial steps and decreases with time. Therefore, the process

shifts from the exploratory mode to the exploitative mode. This decrease in inertia

weight has produced good results in most of optimization problems. To control the

balance between local and global exploration and to obtain quick convergence and to

reach an optimum, the inertia weight whose value decreases linearly with the increase

in iteration number is set accordingly by the following equation

w (t+1) = wmax – (((wmax - wmin) * it) / (itmax)) , wmax > wmin (2.8)

XXIV

where, wmin and wmax are the final and initial values of the inertia weight respectively,

itmax is the maximum iteration number, ‘it’ is the current iteration number.

Commonly, the inertia weight decreases linearly from 0.9 to 0.4 over the full run.

Trelea have defined a condition that (w < ((cp+cg) / 2)-1) guarantees the

convergence. Cyclic or Divergent behavior can occur in the process if this condition is

not satisfied.

The technique of inertia weight is quite useful to ensure convergence. However there is

a disadvantage of the inertia weight method that once the inertia weight is decreased,

it cannot increase even if the swarm needs to search new areas. This method is not able

to recover its exploration mode.

2.3.6 Constriction Coefficient

When the algorithm of particle swarm is allowed run without restraining the velocity in

some way, the system simply explodes after some iterations. In the initial stage,

researchers used V max but the reason for this was not understood fully. Kennedy

(Kennedy, 1998) noted that the trajectories of one-dimensional, non-stochastic particles

contained interesting regularities when sum of the acceleration constants φ1 and φ2

were in the range of 0.0 and 4.0.

The re- attempt to analyze the trajectories was conducted by Ozcan and Mohan (Ozcan

and Mohan, 1999).They reported that the particles were “surfing the waves” of

underlying sinusoidal curves. However, Clerc's analysis of the iterative system

demonstrated that the behavior discovered by Ozcan and Mohan was in fact the

signature of a five-dimensional attractor (Clerc and Kennedy, 2002).

The simplest constriction described by Clerc (Clerc and Kennedy, 2002) as type 1″

constriction is the simplifed system:

vij(t+1) =iχ [(vij(t) + U[0, φ1]i* ((yij(t) – xij(t)) + U[0, φ2] * (y^ ij(t) – xij (t))] (2.9)

xij (t+1) = x ij(t)i+ ivij(t+1) (2.10)

XXV

The following formula is used to compute the constriction coeffcient:

 2k

 χ = ──────── where k ε [0,1] , φ = φ1 + φ2, φ >4 (2.11)

 │2- φ-√ φ 2 -4 φ │

Most researchers using the constriction method use ' set to 4.1 (thus having φ1 = φ2 =

2.05) and k = 1 which determines that χ~~ 0.729.

This is algebraically equivalent to using the inertial model χ~~ 0.729.

And φ1 = φ2 ~~1.49445.

The constriction method results in convergence over time; the amplitude of the

trajectory's oscillations decreases over time. When k = 1 convergence is slow enough to

allow thorough exploration before the search converges.

The advantage of using constriction is that there is no need to use Vmax nor to guess the

values for any parameters governing convergence and preventing explosion.

Subsequent experiments (Eberhart and Shi, 2000) concluded that it was prudent to set

Vmax to Xmax, the dynamic range of each variable in each dimension. The result is a

particle swarm algorithm with no problem-specific parameters, considered the

canonical particle swarm algorithm.

2.3.7 Neighbourhood Topologies

A neighbourhood must be defined for each particle. This neighbourhood determines the

extent of social interaction within the swarm and influences a particular particle’s

movement. Less interaction occurs when the neighbourhoods in the swarm are small.

For small neighbourhood, the convergence will be slower but it may improve the

quality of solutions. For larger neighbourhood, the convergence will be faster but the

risk that sometimes convergence occurs earlier. To solve this problem, the search

process starts with small neighbourhoods size and then the small neighbourhoods size

is increased over time. Thisptechnique ensures an initially highpdiversity with

fasterpconvergence as the particles move towards appromising searchpregion.

XXVI

The PSOpalgorithm is social interactionpamong the particles in the entirepswarm.

Particles communicatepwith one another bypexchanging information about the success

of eachpparticle in thepswarm. When a particle in the whole swarm finds a better

position, all particles move towards this particle. This performance of the particles is

determined by the particles’ neighborhood. Researchers have worked on developing

this performance by designing different types of neighborhood structures. Some

neighborhood structures or topologies are discussed below:

Fig 2.4 Star or gbest

Fig 2.5 Ring or lbest

Fig 2.6 Wheel

XXVII

Fig 2.7 Four Clusters

Figure 2.4 explains the star topology, where each particle is connected with every other

particle. This topology basically leads to convergence at a faster rate than other

topologies, but there is a chance to be trapped in local minima. Because all particles are

aware about each other, this topology is known as the gbest PSO.

Figure 2.5 represents the ring topology, where each particle is associated to its

immediate neighbours. In this particular process, when better result is found by one

particle then this particle gives it to its immediate neighbours and these immediate

neighbours gives it to their individual immediate neighbours, until it gained by the last

particle. Thus the best result found is spreaded very slowly in a ring made by all

particles. Convergence is slow, but a great part of the search space is covered than with

the star topology. It is known as the lbest PSO.

Figure 2.6 shows the wheel topology, in this only one of the particle (a focal particle)

associates to the others, and all informations are communicated through this particular

particle. Thispfocal particle compares thepbest performance of all thepparticles in the

swarm and adjusts its ownpposition towards the best performance particle analyse by

itself and finally the new position of the focal particle is shared with all the particles.

Figure 2.7 represents a four clusters topology, where four cliques (or clusters) are

connected with one edge between opposite clusters and two edges between neighboring

clusters. There are more different topologies or neighborhood structures (for instance,

Von Neumann topology, the pyramid topology and so on), but there is no single best

topology still known to find the required optimum for all varities of optimization

problems.

XXVIII

2.4 APPLICATIONS OF PSO

The different application areas of PSO are discussed in this chapter. Kennedy and

Eberhart in 1995 made the first practical application of Particle Swarm Optimization.

They worked in the field of neural network training and finally reported the algorithm

jointly. PSO has been successfully used over a great range of applications, for example,

system control, combinatorial optimization , data mining, telecommunications power

systems design, , network training, signal processing and many other areas. In present

days, PSO algorithms have also been introduced to solve the multi-objective

optimization problems , constrained problems, problems related to dynamically

changing landscapes, and to find multiple solutions, while the initial PSO algorithm

was mainly used to solve single-objective optimization, unconstrained problems.

Different areas where PSO is nowadays applied are listed in Table2.1.

Table 2.1 Application areas of Particle Swarm Optimization

Antenna Design Theidesign of phased arrays and optimal

control, reflector antennas, design of Yagi-

Uda arrays, broadbandiantenna design and

modeling, synthesis of antenna arrays,

adaptive array antennas, optimization of a

reflect array antenna,ifar-field radiation

pattern reconstruction,iantenna modeling,

array failure correction, designoof planar

antennas,oconformal antenna arrayodesign,

,pdesign of a periodicpantenna arrays, near-

fieldpantenna measurements, design of patch

antennas optimization of profiled corrugated

horn antennas, design of implantable

antennas.

Signal Processing

Designpof IIRpfilters, Patternkrecognition of

flatness signal,ospeech coding, 2DpIIR filters

,analoguepfilter tuning,pnonlinear adaptive

XXIX

filters, Costasparrays, particle

filterpoptimization wavelets, blindddetection,

blind sourcepseparation, localizationpof

acoustic sources, distributed odour

sourceplocalization, and so on.

Networking Bluetoothpnetworks Radarpnetworks,

autoptuning for universal

mobileptelecommunication system networks,

TCP networkpcontrol, optimal

equipmentpplacement in

mobilepcommunication, routing, peer-to-

peerpnetworks , wavelengthodivision-

multiplexedpnetwork,oooWDM

telecommunicationonetworks, wireless

networks, grouped and delayed broadcasting,

bandwidth and channel allocation, bandwidth

reservation, voltage regulation,

transmissioninetwork planning, network

reconfiguration andiexpansion, economic

dispatch problem, distributed generation,

microgrids, cellular neural networks, design

ofiradial basis function networks, feed forward

neural network training, product unit networks,

congestion management, neural gas networks,

design of recurrent neural networks, neuron

controllers, wireless sensor network design,

wavelet neural networkspestimation of

targetpposition inpwireless sensor

networks,pwireless video sensor

XXX

networkspoptimization.

Biomedical Humanitremor analysis for theidiagnosis of

Parkinson’s disease,iinference of gene regulatory

networks, human movement biomechanics

optimization, RNA secondary structure

determination, phylogeneticptree reconstruction,

cancerpclassification, and survivalpprediction,

DNA motifpdetection, biomarkerpselection,

proteinpstructure prediction andpdocking, drug

design,pradiotherapy planning, analysis of

brainpmagneto encephalography data,

electroencephalogram analysis,lbiometrics

andlso on.

Electronics and

electromagnetic

On-chippinductors, configurationpof FPGAs and

parallel processor arrays, fuel cells,pcircuit

synthesis,pFPGA-based temperaturepcontrol,

ACptransmission system control electromagnetic

pshape design,p microwave filters, generic

lelectromagnetic design and optimization

papplications,pCMOS RF wideband amplifier

design,oolinear array antennaoosynthesis,

conductors, pRF IC design and poptimization,

semiconductorooooptimization,phigh-

speedoooCMOS, frequency selective osurface

and absorber design, voltage flicker

measurement,pshielding, digital circuit design.

Robotics Controloof robotic manipulatorspand arms,

 Motion planning andpcontrol, odour source

XXXI

 localization, soccerpplaying, robotorunning,

 robotpvision, collective robotic search,

 transport robots, voicepcontrol of robots,

 unsupervisedoprobotic learning, path

 planning, obstacle avoidance, swarm

 robotics, unmanned vehiclepnavigation,

 environment mapping andpso forth.

Design and

Modelling

Conceptualpdesign, electromagnetics

case,pinduction heating cooker design,

VLSIpdesign, power systems, RF

circuitosynthesis, worst casepelectronic

design,pmotor design, filterodesign,

antennapdesign, CMOSpwideband amplifier

design, logic circuitspdesign, transmission lines,

mechanicalodesign, library osearch, inversion

of underwater acoustic models, modeling

MIDI imusic, customer satisfaction models,

thermal process isystem identification,

frictionimodels, model selection,

ultrawideband channel modeling, identifying

ARMAX models, power plants and systems,

chaotic time series modeling, model order

reduction.

Image and

Graphics

Imageoosegmentation,ooautocroppingoofor

digital photographs, syntheticpaperture radar

imaging,olocating treatment planning landmarks

pin orthodontic ox-ray images,

imagepclassification, ppinversion of ocean

XXXII

color reflectancepmeasurements, image fusion,

photo time-stamp recognition, traffic p stop-sign

detection, defect detection, p

imagepregistration, pmicrowave imaging,

pixel p classification detection pof objects,

pedestrian detectionp and tracking texture

psynthesis, scene matching, contrast

enhancement, 3Dp recovery with structuredo

beam matrix, pcharacter recognition, image

noise cancellation.

Power generation

and Controlling

Automatic o generation p control, power p

transformer protection, ppower loss

minimization, pload forecasting, STATCOM

power psystem, pfault-tolerant control of

compensators, hybrid opower generation

systems, optimal powerpdispatch, power

systempperformance optimization, secondary

voltagepcontrol, power control and optimization

designpof power systempstabilizers, operational

planning forpcogeneration systems, control

ofiphotovoltaicisystems,plarge-scale

powerpplant control, analysis ofipower

qualitypsignals, generation planning

andirestructuring, poptimal strategies for

electricity production, pproduction costing

poperation planning.

Fuzzy systems,

Clustering, data

mining

Design of neurofuzzy networks, fuzzyprule

extraction, fuzzy control, membership

pfunctions optimization, fuzzy modeling,

fuzzypclassification, designpof hierarchical

XXXIII

fuzzy systems, fuzzy queuepmanagement,

clustering, clustering in large kspatial

databases, document and pinformation

clustering, dynamic clustering, ocascading

classifiers classification of hierarchical

biologicalodata, dimensionalitypreduction,

genetic-programming-

basedooooclassification,pfuzzy

clustering,oclassification threshold optimization,

electrical wader sort classification,pdata mining,

feature selection.

Optimization

Electrical motors poptimization, optimization

of internal combustion engines, optimization

of nuclear electric propulsion psystems, floor

planning, ptravelling-sales man problems, n-

queens pproblem, packing and knapsack,

minimum spanning ptrees, satisfiability,

knights cover problem, llayout optimization,

path optimization, urbanoplanning, FPGA

placementpand routing.

Prediction and

forecasting

Water pquality prediction and

classification,pprediction of chaotic systems,

streamflow forecast, pecological models

meteorological predictions, predictionpof the

floe stress in steel, time series pprediction,

electric load forecasting, battery pack pstate of

charge estimation, predictions of

elephantpmigrations, prediction ofpsurface

roughness in end milling, urbanptraffic

flowpforecasting, and sopon.

XXXIV

2.4 ADVANTAGES AND DISADVANTAGES OF PSO

PSO algorithm is said to be one of the most useful and powerful methods for solving

the non-smooth optimization problems but there are few disadvantages associated to

the PSO algorithm. The advantages and disadvantages of the PSO technique are

discussed below:

2.4.1 Advantages of the PSO algorithm:

1 PSO technique includes a derivative-free algorithm.

2 It is easily implemented, so it can be applied both in engineering problems and

scientific research.

3 Number of parameters is limited and these parameters accounts for a lesser impact

to the solutions as compared to other techniques of optimization.

4 Its algorithm includes a very simple calculation algorithm.

5 Few modifications ensures the rapid convergence i.e. the optimum value of the

problem gets calculated easily within a short time.

6 PSO is less dependent on a set of initial points as compared to other optimization

techniques.

7 Conceptually PSO is very easy.

2.4.2 Disadvantages of the PSO algorithm:

1 PSO algorithm suffers from the partial optimism, which degrades the regulation of

its speed and direction.

2 Problems with non-coordinate system (for instance, in the energy field) exists.

XXXV

2.5 FLOW CHART

XXXVI

2.5.1Steps involved in particle swarm optimization in MATLAB

1 Using the zero command of MATLAB initialize all the variable matrices.

2 Set the values of the random no.s ‘r1’ & ‘r2’ assigned to the personal and global

best expressions respectively.

3 Set the values of acceleration constants ‘cp’ & ‘cg’ assigned to the personal and

global best expressions respectively.

4 Set the tolerance value.

5 Generate the random position values of particles for all the variables (eg. x1,x2)

and also generate the random velocities values of particles (eg. v1,v2) for all the

variable.

6 Calculate the fitness for the assumed values of the positions of the particles.

7 Using the above fitness personal best and global best values for all variables are

deduced.

8 Using the previous iteration values of personal best, global best and velocity

vectors new velocities are generated in the current iteration using the equation:

 vij(t+1) = w * vij(t) + cp * r1 * (yij(t) – xij(t)) + cg * r2 * (ŷij(t) – xij (t))

9 Using the new velocity vector and the old position vector , a new position vector is

generated for all the variables.

10 Calculate fitness using the new positions in the current iteration.

11 Using the new fitness values the personal and global best values are updated.

12 The difference between the previous and the current fitness is calculated and check

 against the tolerance value, if within the tolerance iteration stops and global best

 value is the solution else iteration flow goes back to previous step for further

 updation.

XXXVII

CHAPTER-3

APPLICATION OF PSO TO MATHEMATICAL

BENCHMARK TEST FUNCTIONS

3.1 BENCHMARK FUNCTIONS

Artificial landscapes the second name given to the Test functions, are very useful to

evaluate characteristics of optimization algorithms. In this case of application of

Particle Swarm Optimization to the mathematical benchmark functions, the PSO

algorithm can be applied directly to the particular mathematical function, i.e. without

any modification. As the mathematical functions are single objective functions and no

equality criteria on the fitness functions values, no further formulation for objective

function is required and the inequality constraints on the variables, if present, are taken

care of in the PSO algorithm itself.

Using particle swarm optimization the basic steps for solving the optimization problem

is same as discussed before but if some modifications are provided then we can use it

for any type of objective function. Here, we have used PSO for the optimization of

some mathematical benchmark functions, which are as follows:

 De jong’s function

 n

 f(x) = ∑ xi
2
 (3.1)

 i=1

 Booth’s function

 f(x1,x2) = (x1 + 2 * x2 – 7)
2
 + (2 * x1 + x2 – 5)

2
 (3.2)

 Beale function

f(x1,x2) =(1.5-x1+x1*x2)^2+(2.25-x1+x1*x2^2)^2+(2.625-x1+x1*x2^3)^2

 (3.3)

XXXVIII

 Axis parallel hyper-ellipsoid function

 n

 f(x) = ∑ (i * xi
2
) (3.4)

 i=1

 Rosenbrock function(2D)

 f(x1,x2) = 100(x2-x1)
2
 +(x1-1)

2
 (3.5)

 Rosenbrock function(3D)

 f(x1,x2)=100*((x2-x1^2)^2)+ (x1-1)^2 + 100*((x3-x2).^2).^2) + (x2-1).^2;

 Hyper-ellipsoid function

 f(x1,x2)= x1^2 + 2 * x2^2 ; (3.7)

 Rastrigin’s function

 f(x1,x2) = 10 + (x1^2) - (10 * cos(2*pi*x1)); (3.8)

3.2 THE DIFFERENT PARAMETERS USED IN PARTICLE

SWARM OPTIMIZATION

The various parameters of particle swarm optimization are as follows:

1. No. of particles in the swarm, p.

2. Max. no. of iteration, it.

3. Random no. for personal and global factors rp and rg .

4. Acceleration constant for the personal and global factors, cp and cg.

5. Tolerance value, T.

The values of these parameters for optimizing various mathematical benchmark

functions were chosen as:

1. P= 30

2. it= 1000

3. rp=0.5 and rg=0.6

4. cp=2 and cg=2

XXXIX

5. T= 10^(-7)

3.3 MATHEMATICAL RESULTS AND DISCUSSION

Various benchmark functions and results obtained after application of PSO has been

discussed as follows:

3.3.1 Axisiparallel HYPER-Ellipsoidifunction

 n

 f(x) = ∑ (i * xi
2
)

 i=1

Minimum value and range for the function are as follows:

 Min. Value: f(x1,x2)=0

 Range : -5.12 =< x1,x2 <= 5.12

TABLE 3.1 Application of different inertia weights to Axisiparallel HYPER-Ellipsoid

Function

 No. of

particles

No. of

iterations

Function

value

X1 X2 X3

Linearly

decreasing
30 185 1.052977e-13 -2.90284e-07 -9.719746e-08 -2.009151e-09

Simulated

annealing

30 37 7.542848e-12 -5.24452e-07 -1.847722e-06 -3.82684e-07

Constant IW

 0.4

 0.6

 0.8

30

30

30

42

98

162

8.61517e-13

1.19253e-18

3.41920e-14

-7.1316e-08
-4.54225e-10

-1.3987e-07

2.6742e-07

-5.3095e-10

6.07023e-08

-2.4103e-07

4.81666e-11

-8.5200e-09

Table 3.1 shows the application of PSO on the Axisiparallel HYPER-Ellipsoid function

with different inertia weights. Simulated annealing method and constant inertia weight

of 0.4 both provides the desired results in less time and with more accuracy as

compared to linearly decreasing inertia weight and constant inertia weight with values

XL

of 0.6 and 0.8 while constant inertia weight of 0.4 is more accurate as compared to

simulated annealing.

Fig 3.1 Movement of particle 1 of x1,x2 and x3

Fig 3.1 shows the 3D view of change in the position values of paricle 1 of x1, x2 and

x3 with the increase in number of iterations. It shows that as the iterations increases

particle 1 tries to attain co-ordinates (0,0,0) i.e. x1=0, x2=0 and x3=0, for which

function approaches it minimum value.

3.3.2 Booth’s Function

y(x1,x2) = (x1i+ 2*x2i– 7)^ 2 + (2*x1i+ x2 – 5)^ 2 ;

Minimum value and range for the function are as follows:

 Min. Value: y(x1,x2)=0

 Range : -10 =< x1,x2 <= 10

Table 3.2 Application of different inertia weights to Booth’s Function

 No. of particles No. of

iterations

Function value X1 X2

Linearly

decreasing
30 134 5.341514e-10 1.000000e+00 3.000000e+00

XLI

Simulated

annealing

30 52 3.408260e-10 1.000002e+00 2.999998e+00

Constant IW

 0.4

 0.6

 0.8

30

30

30

30
66

119

1.57313e-10

3.465076e-15

1.224909e-11

9.999918e-01

1.000000e+00

1.000003e+00

3.000009e+00

3.000000e+00

3.000000e+00

Table 3.2 shows the application of PSO on the BOOTH’S function with different

inertia weights. Simulated annealing method and constant inertia weight of 0.4 both

provides the desired results in less time and with more accuracy as compared to linearly

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while

constant inertia weight of 0.4 is more accurate as compared to simulated annealing.

Fig 3.2 Shows the variation of the function value with the increase in iterations and it

can be seen that the function approaches its minimum value that is zero in this case as

the iterations count increases.

Fig 3.2 variation of function values with iterations

XLII

Fig 3.3 Movement of particle 1 of x1 and x2

Fig 3.3 shows the change in the position values of paricle 1 of x1 and x2. It shows that

as the iterations increases particle 1 tries to attain co-ordinates (1,3) i.e. x1=1 and x2=3,

for which function approaches it minimum value.

 3.3.3 Beale Function

 f(x1,x2) = (i1.5-x1+ix1*x2)^2+(2.25i-x1+x1*x2^2)^2+(2.625i-

x1+x1*x2^3)^2;

Minimum value and range for the function are as follows:

 Min. Value: f(x1,x2)=0

 Range : -4.5 =< x1,x2 <= 4.5

Table 3.3 Application of different inertia weights to Beale’s Function

 No. of particles No. of

iterations

Function value X1 X2

Linearly

decreasing
30 132 4.044835e-10 -7.305251e-06 2.031228e-06

Simulated

annealing

30 22 4.42063e-12 -1.257050e-06 1.585567e-07

XLIII

Constant IW

 0.4

 0.6

 0.8

30

30

30

31

76

119

1.847590e-10

4.059354e-17

1.904880e-11

-1.311315e-05

3.925190e-09

3.950240e-06

-2.530239e-06

-2.802216e-09

1.233997e-06

Table 3.3 shows the application of PSO on the Beale’s function with different inertia

weights. Simulated annealing method and constant inertia weight of 0.4 both provides

the desired results in less time and with more accuracy as compared to linearly

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while

simulated annealing is more accurate and takes lesser computational time as compared

to constant inertia weight of 0.4.

Fig 3.4 Movement of particle 1 for x1 and x2 with iterations (3D view)

Fig 3.4 shows the 3D view of change in the position values of paricle 1 of x1 and x2

with the increase in number of iterations. It shows that as the iterations increases

particle 1 tries to attain co-ordinates (0,0) i.e. x1=1 and x2=3, for which function

approaches it minimum value.

XLIV

3.3.4 Sphere’s Function

 n

f(x) = ∑ xi
2

 i=1

Minimum value and range for the function are as follows:

 Min. Value: f(x1,x2)=0

 Range : -5.12 =< x1,x2 <= 5.12

TABLE 3.4 Application of different inertia weights to Sphere’s Function

 No. of

particles

No. of

iterations

Function

value

x1 X2 X3

Linearly

decreasing
30 204 6.297194e-04 1.210595e-02 -1.267901e-02 -1.795573e-02

Simulated

annealing

30 59 2.161785e-04 3.343558e-03 7.272390e-03 1.233335e-02

Constant IW

 0.4

 0.6

 0.8

30

30

30

45

68

149

4.179781e-

04

2.503011e-

03

1.790865e-

03

1.484689e-

02

3.182450e-

02

=2.765392e-

02

5.736923e-

03

-3.464515e-

02

1.995319e-

02

-1.283104e-

02

-1.702719e-

02

-2.505984e-

02

Table 3.4 shows the application of PSO on the SPHERE’S function with different

inertia weights. Simulated annealing method and constant inertia weight of 0.4 both

provides the desired results in less time and with more accuracy as compared to linearly

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while

simulated annealing is more accurate as compared to constant inertia weight of 0.4.

XLV

3.3.5Rastrigin’s Function

 n

 f(x) = ∑ (xi
2
 – 10 *cos(2* pi *xi))

 i=1

Minimum value and range for the function are as follows:

 Min. Value: f(x1,x2)=0

 Range : -5.12 =< x1,x2 <= 5.12

Table 3.5 shows the application of PSO on the Rastrigin function with different inertia

weights. Simulated annealing method and constant inertia weight of 0.4 both provides

the desired results in less time and with more accuracy as compared to linearly

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while

constant inertia weight of 0.4 is more accurate as compared to simulated annealing.

Table 3.5 Application of different inertia weights to Rastrigin’s Function

 No. of particles No. of

iterations

Function value X1

Linearly

decreasing
30 159 9.84107e-13 -3.109719e-09

Simulated

annealing

30 70 0 -1.640973e-09

Constant IW

 0.4

 0.6

 0.8

30

30

30

52

89

185

0

0

0

2.480308e-09
-1.092749e-09

3.838570e-10

XLVI

Fig 3.5 Movement of position of particle 1 of x1 with iterations

Fig 3.5 shows the variation of the position of particle 1 of x1 and it gives us the desired

result of obtaining the zero value as the number of iterations increases.

3.3.6 Dejong’s Function

f(x1,x2)= x1(j,1)^2 + x2(j,1)^2 + x3(j,1)^2;

Minimum value and range for the function are as follows:

 Min. Value: f(x1,x2)=0

 Range : -1 =< x1,x2 <= 1

Table 3.6 Application of different inertia weights to Dejong’s Function

 No. of

particles

No. of

iterations

Function

value

X1 X2 X3

Linearly

decreasing
30 206 1.118761e-04 -6.825449e-03 5.561369e-03 5.861784e-03

Simulated

annealing

30 60 8.930197e-05 -6.624732e-03 6.090060e-03 -2.885491e-03

Constant IW

 0.4

 0.6

 0.8

30

30

30

43

70

153

7.9667e-04

2.1869e-03

8.8508e-04

1.545415e-02

1.276701e-02

-1.47405e-02

2.148686e-02

4.051782e-02

-1.65747e-02

-9.80591e-03

-1.95503e-02

1.982660e-02

0 10 20 30 40 50 60 70
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

iteration

p
o
s
it
io

n
 o

f
p
a
rt

ic
le

 1
 o

f
x
1

XLVII

Table 3.6 shows the application of PSO on the Rastrigin function with different inertia

weights. Simulated annealing method and constant inertia weight of 0.4 both provides

the desired results in less time and with more accuracy as compared to linearly

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while

constant inertia weight of 0.4 is more accurate as compared to simulated annealing.

3.3.7 Rosenbrock Function

 n-1

f(x) = ∑ [100(xi+1 - xi
2
)

2
 + (1 -xi)

2
]

 i=1

 where , -2.048 < xi < 2.048, i =

1,2,3....,n;

3.3.7.1 Rosenbrock Function (2d)

f(x1,x2)=100*((x2-(x1.^2)).^2)+(x1(1,j)-1).^2;

Minimum value and range for the function are as follows:

 Min. Value: f(x1,x2)=0

 Range : -2.048 =< x1,x2 <= 2.048

Table 3.7 Application of different inertia weights to Rosenbrock’s Function

 No. of

particles

No. of

iterations

Function

value

X1 X2

Linearly

decreasing
30 188 2.967168e-22 1.000000e+00 1.000000e+00

Simulated

annealing

30 44 7.344731e-15 1.000000e+00 1.000000e+00

Constant IW

 0.4

 0.6

 0.8

30

30

30

45

53

55

2.35023e-13

2.434551e-0

4.85839e-04

9.999997e-01

1.048215e+00

1.022022e+00

999993e-01

1.099803e+00

1.044437e+00

XLVIII

Table 3.7 shows the application of PSO on the Rosenbrock function with different

inertia weights. Simulated annealing method and constant inertia weight of 0.4 both

provides the desired results in less time and with more accuracy as compared to linearly

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while

constant inertia weight of 0.4 is more accurate as compared to simulated annealing.

3.3.7.2 Rosenbrock Function (3d)

f(x1,x2,x3)=100*((x2-(x1.^2).^2)+(x1-1).^2+100*((x3-(x2).^2).^2)+(x2-1).^2;

Minimum value and range for the function are as follows:

 Min. Value: f(x1,x2,x3)=0

 Range : -2.048 =< x1,x2 <= 2.048

Table3.8 Application of different inertia weights to Rosenbrock’s Function

 No. of

particles

No. of

iterations

Function

value

X1 X2 X3

Linearly

decreasing
30 188 2.967168e-22 1.000000e+00 1.000000e+00 1.000000e+00

Simulated

annealing

30 44 7.344731e-15 1.000000e+00 1.000000e+00 1.000000e+00

Constant IW

 0.4

 0.6

 0.8

30

30

30

45

53

55

2.3502e-13

2.43451e-0

4.8589e-04

9.999997e-01

1.048215e+00

1.022022e+00

9.99993e-01

1.099803e+00

1.044437e+00

9999959e-01

1.059603e+00

1.034837e+00

Table 3.8 shows the application of PSO on the Rosenbrock function with different

inertia weights. Simulated annealing method and constant inertia weight of 0.4 both

provides the desired results in less time and with more accuracy as compared to linearly

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while

constant inertia weight of 0.4 is more accurate as compared to simulated annealing.

XLIX

Fig 3.6 Position vs iteration for particle 1 of x1

Fig 3.6 shows the variation in the position of particle 1 i.e. x1 of particle 1. It shows the

desired result of approaching zero value with the increase in number of iterations where

function approaches its minimum value.

Fig 3.7 Function value vs iteration on log scale

Fig 3.7 Shows the variation of the function value with the increase in iterations and it

can be seen that the function approaches its minimum value that is zero in this case as

L

the iterationscount increases.Log scale helps us to have a closer look on the initial

movement of theparticle.

Fig 3.8 Convergence of particles with iterations

Fig 3.8 Shows the convergence of all the particles at the optimum value with increase

in the no. of iterations. Initially all the particles were located randomly in the search

space but as iterations increases all particles move closer and closer and finally

converge at a single point. The figure shows the initial position i.e. the position after 1
st

iteration, position after 20
th

 iteration, position after 40
th

 iteration, position after 60
th

iteration and final (global) position of the 30 particles of the swarm for solving

rosenbrock‘s function of two variables. The figure also shows the location of global

best position represented by the purple coloured circle.

LI

Fig 3.9 All position co-ordinates of particle 1 vs iterations

Fig3.9 shows the variation of the all the position co-ordinates of particle 1 with the

increase in no. of iterations.Initially the variation is quite large and to have a beter view

of initial movement of particles log scale is used and it is seen that with increase in the

number of iterations all the particles converge at a point giving the desired result

corresponding to the optimum value of x1=x2=x3=1.

3.4 DISCUSSION

The results obtained when PSO algorithm is applied on mathematically benchmark

functions show that the optimum values are obtained successfuly for all the benchmark

functions taken into account namely Axis Hyper-Ellipsoid, Beale‘s, Dejong’s, Booth‘s,

Rosenbrock‘s, Sphere and Rastrigin’s function. The values for random numbers r1=0.5

and r2=0.6 and constriction factors cp=2 and cg =2 are used in the velocity

modification equation. It is observed that while keeping constriction factors and

random numbers of constant values and varying the inertia weight(simulated annealing

method, constant inertia weight method or linearly decreasing method) gives different

computational time. The simulated annealing method was found to be most accurate

and in all the cases it took lesser number of iterations as compared to linearly

decreasing method and constant inertia weight except in some cases where constant

inertia weight of 0.4 provided the least computational time(rastigin’s function, dejong’s

function, sphere function).

LII

CHAPTER 4:

ECONOMIC LOAD DISPATCH

4.1 PROBLEM FORMULATION IN 2-D SPACE WITH EQUALITY

CONSTRAINTS

Ojective function being used to minimizeitheicost of generation is given as :

 (4.1)

Where:

Ci Pgi = aiPgi
2 +biPgi+ci

 G
i=1 (4.2)

Where:

Pgi isithe active powerigeneration at the i
th

 generator.

Ci is the costiof generationifor i
th

 generator.

NG is the totalinumber ofigeneratorsiin the system.

ai, bi, ci are fuel cost coefficients of i
th

 generator.

The objective function used to find the systemitransmission losses is given as:

 = PgmBmnPgn
 G
n=1

 G
m=1 + BomPgm

 G
m=1 +Boo (4.3)

Where

Pgm, Pgn is the activeipower at the m
th

 and n
th

 generator.

NG is the totalinumber of generators in the system.

Bmn, Bom, Boo are loss coefficients.

The cost and loss coefficients of various generators are given in Table 4.1 and 4.2.

LIII

TABLE 4.1Values of Cost Coefficients

 Coefficient G1 G2 G3

5-BUS A 0.0050 0.0050 ……

B 3.510 3.889 ……

C 44.40 40.60 ……

14-BUS A 0.005 0.005 0.005

B 3.510 3.890 2.450

C 44.40 40.60 105

30-BUS A 0.005 0.005 0.005

B 3.510 3.890 2.450

C 44.40 40.6 105

 TABLE 4.2Values of Loss Coefficients

The

method used in this thesis, has been developed by Kron and adopted by Kirchmayer,

which is the loss coefficient method.

Mathematically, the problem is to minimize

F= [FC (Pg1, Pg2, Pg3... PgNG)

Where

B11 0.0003489 0.0003489 0.0003069

B12 0.000086 0.000068 0.0001289

B13 --- -0.0000389 0.000002

B22 0.000371 0.0001570 0.0001520

B23 --- 0.000015 0.0000110

B33 --- 0.000274 0.000189

B01 --- 0.000044 ---

B02 --- 0.000024 ---

B03 --- 0.000000 ---

B00 --- 0.000254 ---

LIV

F = WCFC (4.4)

Subject to the constraints:

Equality constraint

 Pgi
 G
i=1 =PD+P (4.5)

Inequality constraint

Pgimin ≤ Pgi ≤ Pgimaxi = 1, 2... NG (4.6)

Power outputs from the generators are taken as the independent decision variables of

the problem.

Where:

F objective function to be optimized

FC cost of the generation

FL system transmission losses

Pg1, Pg2... PgNG are the generations at the generators.

PD is the total load demand.

PL is the system transmission losses.

NG is the no. of generators.

Pgi generation from i
th

 generator

Pgimin minimum generation possible from i
th
generator

Pgimax maximum generation possible from i
th

 generator

LV

4.2COMPUTATIONAL PROCEDURE FOR APPLICATION OF PSO IN

 ECONOMIC LOAD DISPATCH

Particle Swarm Optimization (PSO) has been used to perform the optimization of ELD

function. To consider the equality constraint of the problem, the function has been

modified by inclusion of a parameter K. The objective function becomes as follows:

F=WCFC+K (PD+PL-PG) (4.7)

Where:

Parameter K is fixed at 100 for all three IEEE 5, 14 and 30 bus systems. Different

values of K were considered and it was observed that ELD problem converged

when it was fixed to 100 for all the systems.

Inequality constraints have been considered in the PSO programming which is done in

the MATLAB. The program checks the power output of each particle for each

generator in each iterations and the power is tied to the corresponding limit violated.

Logic to implement the inequality constraint is as shown below:

for i=1: NG

for m=1: p

 if Pgi< Pgimin

 Pgi = Pgimin

 end

 if Pgi> Pgimax

 Pgi = Pgimax

 end

 end

 end

LVI

The optimum solution is obtained when the

i. Change in the value of Economic Load Dispatch function during

successive iterations is less than the limit specified which is ε=10
-7

 and

ii. The equality constraint is satisfied such that the absolute value of

difference between generation, demand and losses is less than ε=10
-7

.

Population sizeiof the swarm and the maximum number of iteration can be selected by

the user of the program in run time. We have chosen 30 particles in the swarm and

1000 as the maximum number of iterations.

With the help of MATLAB, we generate randomly the initial position and velocity of

particles. To increase the convergence rate, limits are imposed on position of particles.

Here positions i.e. the generations are decision variables. The maximum and minimum

limits on the velocity have been assigned as Vmin = –Pgimin/2 and Vmax = Pgimax/2

respectively. The velocities are fixed to the values of corresponding limits if violated

during the iterations. Initial values of personal best and global best have been taken as

the initial value randomly generated by MATLAB.

LVII

Flowchart of solution of Economic Load Dispatch problem using PSO is shown in Fig.

4.1.

LVIII

Fig. 4.1 Flow chart of implementation of PSO on ELD

The sequence for the solution of Economic Load Dispatch problem using Particle

Swarm Optimization technique is explained as follows:

1. ix the no. of particles ‘p’ in swarm and set the no. of maximum iterations itmax.

2. Fix the cost coefficients, loss coefficients, and load demand and generator limits of

all the generators.

3. Generate Xij
k
 and Vij

k
, the initial random positions (i.e. generations) and velocity

(i.e. updation factor) respectively.

4. Set iteration count K = 0.

5. Calculate the losses for each particle, using the eq. (4.3).

6. Calculate the value of ELD function using eq. (4.7).

LIX

7. At 0
th
 iteration the personal and global best positions (i.e. generations) are same as

the initial random positions (i.e. generations).

8. Increase the iteration count k by 1 using k=k+1.

9. Calculate the velocity (i.e. positions updation factor) of each particle using eq. (2.1).

10.Check if velocity is within the limits. Fix the velocity to the limit violated.

11.Calculate the new positions (i.e. generations) of the particles by evaluating eq. (2.2).

12.Check if generations (i.e. positions) of each particle are within the generator limits,

if not fix the generation to the limit violated.

13.Calculate ELD function for the new positions (i.e. generations) generated.

14.Update Xpbest and Xgbest values by comparing ELD function values.

15.Check if both the stopping criteria are satisfied, if not then go to step 9, else stop.

16.Output the values of cost of generation and system transmission losses.

4.3 COMPUTATIONAL RESULTS IN 2D SPACE

Three standard test systems have been taken into account in the economic load dispatch

function in order to examine the cost of generation aspects and detailed studies have

been carried out in table 4.3 to 4.6.

TABLE 4.1 Variation of no of iteration required with different IPSO

for IEEE 5bus system

 No. of

particles

No. of

iterations

Fc($/h) P1 P2

Linearly

decreasing
30 208 762.44 87.56 77.55

Simulated

annealing

30 65 761.19 95.40 69.78

Constant IW

 0.4

 0.6

30

30

51

74

761.4

761.84

92.93

90.19

72.22

74.93

LX

 0.8

30

162

761.27

94.25

70.92

TABLE 4.2 Variation of no of iteration required with different IPSO for IEEE

14bus system

 No. of

particles

No. of

iterations

Fc($/h) P1 P2 P3

Linearly

decreasing
30 176 1149.7 160.07 46.71 62.91

Simulated

annealing

30 58 1145.502 155.73 58.829 54.961

Constant IW

 0.4

 0.6

 0.8

30

30

30

52

67

196

1146.43

1146.54

1146.58

132.86

135.98

139.08

78.05

70.02

65.63

57.05

62.04

63.50

TABLE 4.3 Variation of no of iteration required with different IPSO for IEEE

30bus system

 No. of

particles

No. of

iterations

Fc($/h) P1 P2 P3

Linearly

decreasing
30 222 1259.70 149.67 98.2 47.95

Simulated

annealing

30 71 1256.057 154.72 81.15 59.63

Constant IW

 0.4

 0.6

 0.8

30

30

30

58

80

202

1256.21

1256.307

1277.97

157.2

155.79

114.19

77.8

77.34

79.54

60.61

62.32

98.60

LXI

For IEEE 5 bus system simulated annealing inertia weight varying technique gives the

lowest cost of production while linearly decreasing gives the worst result along with

the largest computational time.

For IEEE 14 bus system simulated annealing inertia weight varying technique again

gives the lowest cost of production while worst result is given by linearly decreasing

function and largest computational time is taken by constant inertia weight of 0.8.

For IEEE 30 bus system simulated annealing inertia weight varying technique gives

the lowest cost of production again while constant inertia weight of 0.8 gives the worst

result.

Overall it can be concluded that for all the three IEEE bus systems invoved in this work

simulated annealing inertia weight varying technique provides the best computational

results.

LXII

LXIII

LXIV

CHAPTER 5:

CONCLUSION AND FUTURE DIRECTIONS

5.1CONCLUSIONS

The Particle Swarm Optimization technique hasibeen applied to various benchmark

functions and optimu values are obtained in each case. It has been experimentally

found that simulated annealing inertia weight varying technique gives out the best

results.

In this thesis ELD problem has been solved for IEEE 5,i14 and 30 bus systems taking

cost of generation as an objective to be minimised. Inequality constraints of the

problem have been handled by the PSO programming whereas equality constraint of

ELD problem has been considered using penalty parameter k. The results show that the

computational time and the number of iterations are considerably reduced while using

simulated annealing inertia weight varying technique. This work shows that simulated

annealing inertia weight varying technique provides better results when comaperd to

constant inertia weight of 06 and 0.8 and linearly decreasing inertia weight function

taking computational time and optimum values as the basis of comparision and

constant inertia weight of 0.4 also provide as good results as that provided by simulated

annealing inertia weight varying technique but constant inertia weight has the

disadvantage of getting trapped in the local minima so in multi-objective functions the

performance of constant inertia weight will always remain under consideration but no

such risk is involved with simulated annealing inertia weight varying technique.

5.2 FUTURE DIRECTION

In this work one of the parameter in the PSO algorithm is varied i.e. inertia weight

while keeping other parameters constant.So, there is a lot of scope available in the area

of PSO, as one can consider different selection criterias for varying different constant

parameters such as random no.s (rp & rg) and acceleration coefficients (cp & cg). In

this work for soving the ELD problem only cost of fuel is taken into account while one

can work while considering different objectives of power system as loses in the system,

security, environmental degradation due to pollution etc.

LXV

APPENDIX- I

1) IEEE 5 BUS SYSTEM

Fig. I-A: BUS-CODE DIAGRAM OF 5 BUS SYSTEM

TABLE I-A: LINE DATA or IMPEDANCE DATA (5 BUS SYSTEM)

LINE DESIGNATION *R(p.u.) *X(p.u.) LINE CHARGING

1-2 0.10 0.4 0.0

1-4 0.15 0.6 0.0

1-5 0.05 0.2 0.0

2-3 0.05 0.2 0.0

2-4 0.10 0.4 0.0

3-5 0.05 0.2 0.0

*The impedance are based on MVA as 100

TABLE I-B: BUS DATA or OPERATING CONDITIONS (5 BUS SYSTEM)

 GENERATION LOAD

BUS NO. MW VOLTAGE MAGNITUDE MW MVAR

1* - - - 1.02 - - - - - -

2 - - - - - - 60 30

3 100 1.04 - - - - - -

4 - - - - - - 40 10

5 - - - - - - 60 20

*Slack Bus

LXVI

TABLE I-C: REGULATED BUS DATA (5 BUS SYSTEM)

BUS VOLTAGE MVAR CAPACITY MW CAPACITY

NO. MAGNITUDE MINIMUM MAXIMUM MINIMUM MAXIMUM

1 1.02 0.0 60 30 120

3 1.04 0.0 60 30 120

The nodal load voltage inequality constraints are 0.9≤Vi≤1.05

Cost characteristics of IEEE 5 bus system

The cost characteristics of the IEEE 5 Bus System are as

follows: C1=50p1
2
+351p1+44.4 $/hr.

C3=50p3
2
+389p3+40.6 $/hr.

Here, the total load demand of the system is 160 MW. Maximum and minimum

active power constraint on the generator bus for the given system is 120 MW and 30

MW respectively. Voltage magnitude constraint for generator at bus 3 is 1.04 pu.

M-file For Calculating B- Coefficients:

Clear
basemva=100
accuracy=0.0001
maxiter=10
busdata=[1 1 1.02 0 0 0 0 0 0 60 0;2 0 1 0 60 30 0 0 0 0 0;3 2 1.04 0 0 0 82 0 0 60
0;4 0 1 0 40 10 0 0 0 0 0;5 0 1 0 60 20 0 0 0 0 0];
Linedata=[1 2 0.10 0.4 0 1;1 4 0.15 0.6 0 1; 1 5 0.05 0.2 0 1;2 3 0.05 0.2 0 1;2 4 0.10
0.4 0 1;3 5 0.05 0.2 0 1];
disp(busdata)

disp(linedata)
mwlimit=[30 120;30
120]; Ifybus
Ifnewton
busout
bloss

B-Coefficient Calculated is as:

B11 = 0.00035336 B12 = 0.0000103196

B21 = 0.0000103196 B22 = 0.000368992

LXVII

2) IEEE 14 BUS SYSTEM

Fig. I-B: BUS-CODE DIAGRAM OF 14 BUS SYSTEM

TABLE I-D: IMPEDANCE & LINE-CHARGING DATA (14 BUS SYSTEM)

Line Resistance Reactance Line Tap Setting
Designation p.u. * p.u. * Charging

1-2 0.019379 0.059170 0.0264 1

1-5 0.054029 0.223040 0.0264 1

2-3 0.046980 0.197970 0.0219 1

2-4 0.058110 0.176320 0.0187 1

2-5 0.056950 0.173880 0.0170 1

3-4 0.067010 0.171030 0.0173 1

4-5 0.013350 0.042110 0.0064 1

4-7 0 0.20912 0 1

4-9 0 0.55618 0 1

5-6 0 0.25202 0 1

6-11 0.09498 0.19890 0 1

6-12 0.12291 0.25581 0 1

6-13 0.06615 0.13027 0 1

7-8 0 0.17615 0 1

7-9 0 0.11001 0 1

9-10 0.03181 0.08450 0 1

9-14 0.12711 0.27038 0 1

10-11 0.08205 0.19207 0 1

12-13 0.22092 0.19988 0 1

13-14 0.17093 0.34802 0 1

* Impedance and line-charging susceptance in p.u. on a 100 MVA base.

LXVIII

TABLE I-E: BUS DATA or OPERATING CONDITIONS (14 BUSSYSTEM)

Bus Voltage Generation Load

No. Magnitude Phase angle MW MVAR MW MVAR

 (in pu) (deg.)

1* 1.06 0 0 0 0 0

2 1 0 40 0 21.7 12.7

3 1 0 0 0 94.2 19.0

4 1 0 0 0 47.8 -3.9

5 1 0 0 0 7.6 1.6

6 1 0 0 0 11.2 7.5

7 1 0 0 0 0 0

8 1 0 0 0 0 0

9 1 0 0 0 29.5 16.6

10 1 0 0 0 9.0 5.8

11 1 0 0 0 3.5 1.8

12 1 0 0 0 6.1 1.6

13 1 0 0 0 13.5 5.8

14 1 0 0 0 14.9 5.0

*Slack Bus

TABLE I-F: REGULATED BUS DATA (14 BUS SYSTEM)

Bus no. Voltage magnitude Minimum MVAR Maximum MVAR

 (in pu) capability capability

2 1.05 -40 50

3 1.010 0 40

6 1.070 -6 24

8 1.090 -6 24

Cost characteristics of IEEE 14 bus system

The cost characteristics of the IEEE 14 Bus System are as

follows: C1 = 50p1
2
+245p1+105 $/hr.

C2 = 50p2
2
+351p2+44.4 $/hr.

C6 = 50p6
2
+389p6+40.6 $/hr.

Here, the total load demand of the system is 259 MW. The maximum active

power constraint is 200 MW, 100MW and 100 MW for the generators of bus no. 1, 2

and 6 respectively. The minimum active power constraint is 50 MW, 20MW and 20

MW for the generators of bus no. 1, 2 and 6 respectively. Voltage magnitude

LXIX

constraint for generator at bus 2 is 1.045, for bus no. 6 is 1.070, for bus no. 3 is 1.010

& for bus no. 8 is 1.090.

M-file For Calculating B- Coefficients:

Clear
basemva=100
accuracy=0.0001
maxiter=10
busdata=[1 1 1.06 0 0 150 0 0 0 0 0;2 2 1.045 0 21.7 12.7 63.11 0 -40 50 0;3 0 1.01 0
94.2 19 0 0 0 40 0;4 0 1 0 47.8 -3.9 0 0 0 0 0;5 0 1 0 7.6 1.6 0 0 0 0 0;6 2 1.07 0 11.2
7.5 77.12 0 -6 24 0;7 0 1 0 0 0 0 0 0 0 0;8 0 1.09 0 0 0 0 0 -6 24 0 ;9 0 1 0 29.5 16.6 0
0 0 0 0; 10 0 1 0 9 5.8 0 0 0 0 0;11 0 1 0 3.5 1.8 0 0 0 0 0;12 0 1 0 6.1 1.6 0 0 0 0
0;13 0 1 0 13.5 5.8 0 0 0 0 0;14 0 1 0 14.9 5 0 0 0 0 0];

linedata=[1 2 0.01938 0.05917 0.0264 1;1 5 0.05403 0.22304 0.0246 1; 2 3 0.04699
0.19797 0.0219 1; 2 4 0.05811 0.17632 0.0170 1; 2 5 0.05695 0.17388 0.0173 1; 3 4
0.06701 0.17103 0.0064 1; 4 5 0.01335 0.04211 0.0 1; 4 7 0.0 0.20912 0.0 0.978; 4 9
0.0 0.55618 0.0 0.969;5 6 0.0 0.25202 0.0 0.932; 6 11 0.09498 0.19890 0.0 1;6 12
0.12291 0.25581 0.0 1;6 13 0.06615 0.13027 0.0 1;7 8 0.0 0.17615 0.0 1; 7 9 0.0
0.11001 0.0 1; 9 10 0.03181 0.08450 0.0 1;9 14 0.12711 0.27038 0.0 1; 10 11
0.08205 0.19207 0.0 1;12 13 0.22092 0.19988 0.0 1;13 14 0.17093 0.34802 0.0 1];
disp(busdata)
disp(linedata)
mwlimit=[50 200;20 100;20
100] Ifybus
Ifnewton
busout
bloss

B-Coefficient Calculated is as:

B11 = 0.0231 B12 = 0.0078 B13 = -0.0007

B21 = 0.0078 B22=0.0182 B23= 0.0022

B31=-0.0007 B32= 0.0022 B33= 0.0329

LXX

C) IEEE 30 BUS SYSTEM

Fig. I-C: BUS-CODE DIAGRAM OF 30 BUS SYSTEM

TABLE I-G: IMPEDANCE & LINE-CHARGING DATA (30 BUS SYSTEM)

Line Resistance Reactance Line Tap Setting
Designation p.u.* p.u.* Charging

1-2 0.0192 0.0575 0.0264 1

1-3 0.0452 0.1852 0.0204 1

2-4 0.0570 0.1737 0.0184 1

3-4 0.0132 0.0379 0.0042 1

2-5 0.0472 0.1983 0.0209 1

2-6 0.0581 0.1763 0.0187 1

4-6 0.0119 0.0414 0.0045 1

5-7 0.0460 0.1160 0.0102 1

6-7 0.0267 0.0820 0.0085 1

6-8 0.0120 0.0420 0.0045 1

6-9 0 0.2080 0 0.978

6-10 0 0.5560 0 0.969

9-11 0 0.2080 0 1

9-10 0 0.1100 0 1

4-12 0 0.2560 0 0.932

12-13 0 0.1400 0 1

12-14 0.1231 0.2559 0 1

12-15 0.0662 0.1304 0 1

LXXI

12-16 0.0945 0.1987 0 1

14-15 0.2210 0.1997 0 1

16-17 0.0824 0.1923 0 1

15-18 0.1070 0.2185 0 1

18-19 0.0639 0.1292 0 1

19-20 0.0340 0.0680 0 1

10-20 0.0936 0.2090 0 1

10-17 0.0324 0.0845 0 1

10-21 0.0348 0.0749 0 1

10-22 0.0727 0.1499 0 1

21-22 0.0116 0.0236 0 1

15-23 0.1000 0.2020 0 1

22-24 0.1150 0.1790 0 1

23-24 0.1320 0.2700 0 1

24-25 0.1885 0.3292 0 1

25-26 0.2544 0.3800 0 1

25-27 0.1093 0.2087 0 1

27-28 0 0.3960 0 0.968

27-29 0.2198 0.4153 0 1

27-30 0.3202 0.6027 0 1

29-30 0.2399 0.4533 0 1

8-28 0.0636 0.2000 0.0214 1

6-28 0.0169 0.0599 0.0065 1

*Impedance and line-charging susceptance in p.u. on a 100 MVA base.

TABLE I-H: BUS DATA or OPERATING CONDITIONS (30 BUS SYSTEM)

Bus Voltage Generation Load

No. Magnitude Phase angle MW MVAR MW MVAR

 (in pu) (deg.)

1* 1.06 0 0 0 0 0

2 1 0 40 0 21.7 12.7

3 1 0 0 0 2.4

4 1 0 0 0 7.6

5 1 0 0 0 94.2

6 1 0 0 0 0 0

7 1 0 0 0 22.8 10.9

8 1 0 0 0 30.0 30.0

9 1 0 0 0 0 0

10 1 0 0 0 5.8 2.0

11 1 0 0 0 0 0

12 1 0 0 0 11.2 7.5

13 1 0 0 0 0 0

14 1 0 0 0 6.2 1.6

15 1 0 0 0 8.2 2.5

16 1 0 0 0 3.5 1.8

17 1 0 0 0 9.0 5.8

18 1 0 0 0 3.2 0.9

LXXII

19 1 0 0 0 9.5 3.4

20 1 0 0 0 2.2 0.7

21 1 0 0 0 17.5 11.2

22 1 0 0 0 0 0

23 1 0 0 0 3.2 1.6

24 1 0 0 0 8.7 6.7

25 1 0 0 0 0 0

26 1 0 0 0 3.5 2.3

27 1 0 0 0 0 0

28 1 0 0 0 0 0

29 1 0 0 0 2.4 0.9

30 1 0 0 0 10.6 1.9

*Slack Bus

TABLE I-I: REGULATED BUS DATA (30 BUS SYSTEM)

Bus no. Voltage magnitude Minimum MVAR Maximum MVAR
 (in pu) capability capability

2 1.045 -40 50

5 1.01 -40 40

8 1.01 -10 40

11 1.082 -6 24

13 1.071 -6 24

TABLE I-J: TRANSFORMER DATA (30 BUS SYSTEM)

Transformer designation Tap setting*

4-12 0.932

6-9 0.978

6-10 0.969

28-27 0.968
*Off nominal turns ratio, as determined by the actual transformer-tap position and the
voltage bases. In the case of nominal turns ratio, this would equal to 1.

TABLE I-K: STATIC CAPACITOR DATA (30 BUS SYSTEM)

Bus no Susceptance*p.u.

10 0.19

24 0.043

*Susceptance in p.u. on 100 MVA base.

Cost characteristics of IEEE 30 bus system:

The cost characteristics of the IEEE 30 Bus System are as follows:

C1 = 50p1
2
+245p1+105 $/hr

C2 = 50p2
2
+351p2+44.4 $/hr

C8 = 50p8
2
+389p8+40.6 $/hr

73

The total load demand of the IEEE 30 bus system is 283.4 MW. The maximum

active power constraint is 250 MW, 100MW and 100 MW for the generators of bus no.

1, 2 and 8 respectively. The minimum active power constraint is 50 MW, 30MW and 30

MW for the generators of bus no. 1, 2 and 8 respectively. Voltage magnitude constraint

for generator at bus 2 is 1.045, for bus no. 5 is 1.01, for bus no. 8 is 1.010, for bus no. 11

is 1.082 &for bus no. 13 is 1.071.

M-file For Calculating B- Coefficients:

Clear basemva=100
accuracy=0.0001
maxiter=10
busdata=[1 1 1.06 0 0 0 0 0 0 0 0;2 2 1.045 0 21.7 12.7 90 0 -40 50 0; 3 0 1 0 2.4 1.2 0 0 0 0
0;4 0 1 0 7.6 1.6 0 0 0 0 0;5 0 1.01 0 94.2 19 0 0 -40 40 0; 6 0 1 0 0 0 0 0 0 0 0; 7 0 1 0 22.8

10.9 0 0 0 0 0;8 2 1.010 30 30150 0 -10 40 0; 9 0 1 0 0 0 0 0 0 0 0; 10 0 1 0 5.8 2 0 0 0 0
0.19; 11 0 1.082 0 0 0 0 0 -6 24 0; 12 0 1 0 11.2 7.5 0 0 0 0 0; 13 0 1.071 0 0 0 0 0 -6 24 0; 14

0 1 0 6.2 1.6 0 0 0 0 0;15 0 1 0 8.2 2.5 0 0 0 0 0;16 0 1 0 3.5 1.8 0 0 0 0 0; 17 0 1 0 9 5.8 0 0 0

0 0; 18 0 1 0 3.2 0.9 0 0 0 0 0; 19 0 1 0 9.5 3.4 0 0 0 0 0; 20 0 1 0 2.2 0.7 0 0 0 0 0;21 0 1 0
17.5 11.2 0 0 0 0 0;22 0 1 0 0 0 0 0 0 0 0;23 1 0 3.2 1.6 0 0 0 0 0; 24 0 1 0 8.7 6.7 0 0 0 0

0.043; 25 0 1 0 0 0 0 0 0 0 0;26 0 1 0 3.5 2.3 0 0 0 0 0; 27 0 1 0 0 0 0 0 0 0 0; 28 0 1 0 0 0 0 0
0 0 0;29 0 1 0 2.4 0.9 0 0 0 0 0; 30 0 1 0 10.6 1.9 0 0 0 0 0]; linedata=[1 2 0.0192 0.0575

0.0264 1;1 3 0.0452 0.1852 0.0204 1; 2 4 0.0570 0.19797 0.0219 1; 2 4 0.05811 0.17632
0.0170 1; 2 5 0.05695 0.17388 0.0173 1; 3 4 0.06701 0.17103 0.0064 1; 4 5 0.01335 0.04211

0.0 1; 4 7 0.0 0.20912 0.0 0.978; 4 9 0.0 0.55618 0.0 0.969;5 6 0.0 0.25202 0.0 0.932; 6 11
0.09498 0.19890 0.0 1;6 12 0.12291 0.25581 0.0 1;6 13 0.06615 0.13027 0.0 1;7 8 0.0

0.17615 0.0 1; 7 9 0.0 0.11001 0.0 1; 9 10 0.03181 0.08450 0.0 1;9 14 0.12711 0.27038 0.0
1; 10 11 0.08205 0.19207 0.0 1;12 13 0.22092 0.19988 0.0 1;13 14 0.17093 0.34802 0.0 1];
disp(busdata)

disp(linedata)
mwlimit=[50 150;50 150;50 150]
Ifybus
Ifnewton
busout bloss

B-Coefficient Calculated is as:

B11 = 0.0307 B12 = 0.0129 B13 = 0.0002

B21 = 0.0129 B22=0.0152 B23= - 0.0011

B31=0.0002 B32=- 0.0011 B33= 0.0190

74

APPENDIX II

MATLAB Program for optimization of benchmark functions using PSO.

HYPER-ELLIPSOID FUNCTION

clear all
clc
nop=input('enter value for no. of particles=');
%itermax=input('enter value of itermax=');
itermax=1000;
x1=zeros(itermax,nop);
x2=zeros(itermax,nop);
v1=zeros(itermax,nop);
v2=zeros(itermax,nop);
x1(1,:)=unifrnd(-5.12,5.12,1,nop);
x2(1,:)=unifrnd(-5.12,5.12,1,nop);
v1(1,:)=rand(1,nop);
v2(1,:)=rand(1,nop);
for j=1:nop
 pbest(1,j)=x1(1,j);
 pbest(2,j)=x2(1,j);
 y(1,j)=(x1(1,j)).^2 + 2 * (x2(1,j)).^2;
end
%wmax=input('enter value of wmax=');
%wmin=input('enter value of wmin=');
%c1=input('enter value of c1=');
%c2=input('enter value of c2=');
%r1=input('enter value of r1=');
%r2=input('enter value of r2=');
c1=2;
c2=2;
r1=0.5;
r2=0.6;
min=y(1,1);
 b=1;
 for j=2:nop
 if y(1,j)<min
 min=y(1,j);
 b=j;
 end
 end
 q=b;
 gbest(1,1)=x1(1,b);
 gbest(1,2)=x2(1,b);

 gbes(1,1)=gbest(1,1);
 gbes(1,2)=gbest(1,2);

 for j=1:nop
 prevfn(1,j)=y(1,j);
 end
 t=1;
 for i=2:itermax
 for j=1:nop
 %for inertia weight W
 % wmax=0.9;
 % wmin=0.4;

75

w(1,1)=0.8;
%w(i,1)= wmin+ (wmax-wmin)* (0.95)^ (i-2);
 %w(i,1)= (wmax-(((wmax-wmin)/itermax)*(i-1)));
 v1(i,j)= w(1,1)*v1(i-1,j)+c1*r1*(pbest(1,j)-(x1(i-1,j)))+c2*r2*(gbest(1,1)-(x1(i-1,j)));
 v2(i,j)= w(1,1)*v2(i-1,j)+c1*r1*(pbest(2,j)-(x2(i-1,j)))+c2*r2*(gbest(1,2)-(x2(i-1,j)));

 x1(i,j)=v1(i,j)+x1(i-1,j);
 x2(i,j)=v2(i,j)+x2(i-1,j);

 newfn(i,j)=(x1(i,j)).^2 + 2 * (x2(i,j)).^2;
 if newfn(i,j)<prevfn(1,j)
 prevfn(1,j)=newfn(i,j);
 pbest(1,j)=x1(i,j);
 pbest(2,j)=x2(i,j);

 end
 y(i,j)=newfn(i,j);
 end
 min=y(i,1);
 p=1;
 for j=2:nop
 if y(i,j)<min
 min=y(i,j);
 p=j;
 end
 end
 gbes(i,1)=x1(i,p);
 gbes(i,2)=x2(i,p);

 if y(i,p)<y(t,q)
 gbest(1,1)=gbes(i,1);
 gbest(1,2)=gbes(i,2);

 t=i;
 q=p;
 end
 for j=1:nop
 df(i,j)= abs(y(i,j)-y((i-1),j)) ;
 end

 ki=0;
 for j=1:nop
 if (df(i,j)<=10^(-7))
 ki=ki+1;
 end
 end
 if ki >= nop
 break
 end
 end
 disp(sprintf('min value of function is %d and at values of x1=%d and x2=%d ',min,gbest(1,1),gbest(1,2)))

76

DEJO G’S U CTIO

clc
disp(' we have to minimize f = 100(x1^2-x2)^2+(1-x1)^2 i.e. rosenbrock function')
p=input('Enter the no. of particles in a swarm'); %no. of particles
it=input('Enter the no. of iterations');
x1=zeros(p,it); %no. of iterations are pre decided that is it will be maximum 50
x2=zeros(p,it);
x3=zeros(p,it);
v1=zeros(p,it);
v2=zeros(p,it);
v3=zeros(p,it);
f=zeros(p,it);
x1g=zeros(p);
x2g=zeros(p);
x3g=zeros(p);
fp=zeros(1,p);
df=zeros(1,(it-1));
rp=0.5;
rg=0.6;
cp=2;
cg=2;
T=input('Enter the tolerance value');
% Initial values i.e. 0th iteration
% x1(:,1)=[1.5605 0.7795 0.4834 0.8078 0.1929 0.2639 1.8841 1.9123 1.1504 0.1196 0.4696 0.7063 1.6424

0.0308 0.0860 0.3380 1.2982 1.4634 1.2955 0.9018];
% x2(:,1)=[1.0940 0.5926 1.4894 0.3779 1.3736 0.3670 0.7370 1.2512 1.5605 0.1623 1.8588 1.5514 0.9736

0.8717 0.8936 0.6127 1.0170 1.0215 1.6353 1.5897];
% v1(:,1)=[0.0326 0.5612 0.8819 0.6692 0.1904 0.3689 0.4607 0.9816 0.1564 0.8555 0.6448 0.3763 0.1909

0.4283 0.4820 0.1206 0.5895 0.2262 0.3846 0.5830];
% v2(:,1)=[0.2518 0.2904 0.6171 0.2653 0.8244 0.9827 0.7302 0.3439 0.5841 0.1078 0.9063 0.8797 0.8178

0.2607 0.5944 0.0225 0.4253 0.3127 0.1615 0.1788];
x1(:,1)=unifrnd(-1,1,1,p);
x2(:,1)=unifrnd(-1,1,1,p);
x3(:,1)=unifrnd(-1,1,1,p);
v1(:,1)=rand(1,p);
v2(:,1)=rand(1,p);
v3(:,1)=rand(1,p);
% i=0;
% disp (sprintf('enter the values of %dth iteration positions of %d particles for variable x1',i,p))
% for j=1:p
% x1(j,1)=input(sprintf('enter the value of x1(%d,%d)',j,i));
% end
% disp (sprintf('enter the values of 0th iteration positions of %d particles for variable x2',p))
% for j=1:p
% x2(j,1)=input(sprintf('enter the value of x2(%d,%d)',j,i));
% end
% disp (sprintf('enter the values of 0th iteration positions of %d particles for variable v1',p))
% for j=1:p
% v1(j,1)=input(sprintf('enter the value of v1(%d,%d)',j,i));
% end
% disp (sprintf('enter the values of 0th iteration positions of %d particles for variable v2',p))
% for j=1:p
% v2(j,1)=input(sprintf('enter the value of v2(%d,%d)',j,i));
% end
for j=1:p

77

 f(j,1)= x1(j,1)^2 + x2(j,1)^2 + x3(j,1)^2;
end

%Initial personal besst values
x1p=x1(:,1);
x2p=x2(:,1);
x3p=x2(:,1);

%for Initial Global best values updation
fmin=min(f(:,1));
forik=1:p
 ifif(k,1)==fmin
 gb=k;
 else
 end
end
%Initial global best value
for k=1:p
x1g(k) = x1(gb,1);
x2g(k) = x2(gb,1);
x3g(k) = x3(gb,1);
end
fgm = min(f(:,1));

% fig=zeros(1,485);
% t=zeros(1,485);

for i=1:it
 disp(sprintf('This is %d no. of iteration',i))

%for inertia weight W
%w=0.8;
wmax=0.9;
wmin=0.4;
 w = wmax-i*((wmax-wmin)/it);
 % w= wmin+ (wmax-wmin)* (0.95)^ (i-2);
 for j=1:p
 v1(j,(i+1)) = w*v1(j,i) + rp*cp*(x1p(j)-x1(j,i)) + rg*cg*(x1g(j)-x1(j,i));
 v2(j,(i+1)) = w*v2(j,i) + rp*cp*(x2p(j)-x2(j,i)) + rg*cg*(x2g(j)-x2(j,i));
 v3(j,(i+1)) = w*v3(j,i) + rp*cp*(x3p(j)-x3(j,i)) + rg*cg*(x3(j)-x3(j,i));
 x1(j,(i+1)) = x1(j,i) + v1(j,(i+1));
 x2(j,(i+1)) = x2(j,i) + v2(j,(i+1));
 x3(j,(i+1)) = x3(j,i) + v3(j,(i+1));
 f(j,(i+1))= x1(j,(i+1))^2 + x2(j,(i+1))^2 + x3(j,(i+1))^2;
 end

%To find change in the values of f
 for j=1:p
 df(j,i)= abs(f(j,(i+1))-f(j,i)) ;
 end

%personal best values updation
 for j=1:p
 fp(j)= x1p(j)^2 + x2p(j)^2;
 end
 for k=1:p

78

 if f(k,i)< fp(k)
 x1p(k)=x1(k,i);
 x2p(k)=x2(k,i);
 x3p(k)=x3(k,i);
 else
 end
 end

%for Global best values updation
 if min(f(:,(i+1)))<fgm
 fgm=min(f(:,(i+1)));
 else
 end

 for j=1:i
 for k=1:p
 if f(k,i)==fgm
 for l=1:p
 x1g(l) = x1(k,i); %global best values
 x2g(l) = x2(k,i);
 x3g(l) = x3(k,i);
 end
 else
 end
 end
 end

 print = [x1(:,i) x2(:,i) x3(:,i) v1(:,i) v2(:,i) f(:,i)];
 disp(' x1 x2 x3 v1 v2 f')
 disp(print)

% fig(i) = figure('Position', [100 100 500 350]);
% t(i) = uitable('Parent', fig(i), 'Position', [25 25 450 200]);
% print = [x1(:,i) x2(:,i) v1(:,i) v2(:,i) f(:,i)];
% set(t(i), 'Data', print);
% set(t(i), 'ColumnName', {'x1', 'x2', 'v1', 'v2', 'f'});

%Stoping criterion
 ki=0;
 for j=1:p
 if (df(j,i)<=10^(-T))
 ki=ki+1;
 end
 end
 if ki >= p
 break
 end

end
[r,c]=find(f==fgm);
disp(sprintf('min value of function is %d and at values of x1=%d, x2=%d and x3=%d
',fgm,x1g(1),x2g(1),x3g(1)))

79

MATLAB Program for the solution of IEEE 30-bus system using PSO
clear all
clc
disp(' we have to minimize the cost function of a 3 machine system')
p=input('Enter the no. of particles in a swarm'); %no. of

particles
it=input('Enter the no. of iterations');
a=10^(-4)*[50 50 50];
b=10^(-2)*[245 351 389];
c=[105 44.4 40.6];
B=10^(-2)*[0.0307 0.0129 -0.0002; 0.0129 0.0152 -0.0011; -0.0002 -0.0011

0.0190];
p1=zeros(p,it);
p2=zeros(p,it);
p3=zeros(p,it);
v1=zeros(p,it);
v2=zeros(p,it);
v3=zeros(p,it);
f=zeros(p,it);
df=zeros(p,it);
sp=zeros(p,it);
csp=zeros(p,it);
pl=zeros(p,it);
c1=zeros(p,it);
c2=zeros(p,it);
c3=zeros(p,it);
C=zeros(p,it);
rp=0.4;
rg=0.5;
cp=2;
cg=2;
pd=283.4;
 p1g=zeros(p);
 p2g=zeros(p);
 p3g=zeros(p);
 fp=zeros(1,p);
 plp=zeros(1,p);

k=100;
w1=1;
w2=0;
% Initial values i.e. 0th iteration
% p1(:,1)=[0.2356 0.5478 1.2453 1.5897];
% p2(:,1)=[1.1254 1.3658 1.9875 1.5632];
n=1;
while n==1
 for j=1:p
 p1(j,1)=unifrnd(50,250,1);
 p2(j,1)=unifrnd(30,100,1);
 p3(j,1)=283.4-p1(j,1)-p2(j,1);
 if p3(j,1)<30&&p3(j,1)>100
 n=1;
 break;
 else
 n=0;
 end
 end
end
% % % v1(:,1)=[-0.2 -0.1 -0.2 -0.2 -0.1 -0.1 -0.2 -0.1 -0.3 -0.2];
% % % v2(:,1)=[-0.2 -0.1 -0.3 -0.1 -0.2 -0.1 -0.3 -0.1 -0.2 -0.1];
v1(:,1)=rand(1,p);

80

v2(:,1)=rand(1,p);
v3(:,1)=rand(1,p);

%Total cost calculation
 for j=1:p
 c1(j,1) = a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1);
 c2(j,1) = a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2);
 c3(j,1) = a(3)*(p3(j,1))^2 + b(3)*p3(j,1) + c(3);
 C(j,1) = c1(j,1) + c2(j,1) + c3(j,1);
 end
%To calculate initial value of cost function we need PL
for j=1:p
 pl(j,1)= [p1(j,1) p2(j,1) p3(j,1)]*B*[p1(j,1) p2(j,1) p3(j,1)]';
end
%To calculate initial value of cost function
for j=1:p
 f(j,1)= w1*((a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1)) +

(a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2)) ...
 + (a(3)*(p3(j,1))^2 + b(3)*p3(j,1) + c(3))) + w2*pl(j,1) +

k*abs(pd+pl(j,1)-p1(j,1)-p2(j,1)-p3(j,1));
end
%0th iteration data display
 disp('this is the 0th iteration')
 print0 = [p1(:,1) p2(:,1) p3(:,1) v1(:,1) v2(:,1) v3(:,1) f(:,1)

c1(:,1) c2(:,1) c3(:,1) C(:,1)];
 disp(' P1 P2 P3 V1 v2 V3

f c1 c2 c3 C ')
 disp(print0)

%Initial personal besst values
p1p=p1(:,1);
p2p=p2(:,1);
p3p=p3(:,1);

%for Initial Global best values updation
fmin=min(f(:,1));
for m=1:p
 if f(m,1)==fmin
 gb=m;
 else
 end
end
%Initial global best value
for m=1:p
p1g(m) = p1(gb,1);
p2g(m) = p2(gb,1);
p3g(m) = p3(gb,1);
end
fgm = min(f(:,1));

%Main iterations starts from here
for i=1:it
 disp(sprintf('This is iteration no.= %d',i))

%for inertia weight W
 % wmax=0.9;
 % wmin=0.4;
 % w = wmax-(i-1)*((wmax-wmin)/it);
%w= wmin+ (wmax-wmin)* (0.95)^ (i-2);
w=0.4;

81

%For calculatiing velocities for updation
 for j=1:p
 v1(j,(i+1)) = w*v1(j,i) + rp*cp*(p1p(j)-p1(j,i)) + rg*cg*(p1g(j)-

p1(j,i));
 v2(j,(i+1)) = w*v2(j,i) + rp*cp*(p2p(j)-p2(j,i)) + rg*cg*(p2g(j)-

p2(j,i));
 v3(j,(i+1)) = w*v3(j,i) + rp*cp*(p3p(j)-p3(j,i)) + rg*cg*(p3g(j)-

p3(j,i));
 end

 %V(min) and V(max) constraint
 for j=1:p
 if v1(j,(i+1))< -15
 v1(j,(i+1))= -15;
 end
 if v2(j,(i+1))< -15
 v2(j,(i+1))= -15;
 end
 if v3(j,(i+1))< -15
 v3(j,(i+1))= -15;
 end
 if v1(j,(i+1))> 60
 v1(j,(i+1))= 60;
 end
 if v2(j,(i+1))> 60
 v2(j,(i+1))= 60;
 end
 if v3(j,(i+1))> 60
 v3(j,(i+1))= 60;
 end
 end

%Updation of p values
 for j=1:p
 p1(j,(i+1)) = p1(j,i) + v1(j,(i+1));
 p2(j,(i+1)) = p2(j,i) + v2(j,(i+1));
 p3(j,(i+1)) = p3(j,i) + v3(j,(i+1));
 end
 %Pmin and Pmax constraint
 for j=1:p
 if p1(j,(i+1))< 50
 p1(j,(i+1))= 50;
 end
 if p2(j,(i+1))< 30
 p2(j,(i+1))= 30;
 end
 if p3(j,(i+1))< 30
 p3(j,(i+1))= 30;
 end
 if p1(j,(i+1))> 250
 p1(j,(i+1))= 250;
 end
 if p2(j,(i+1))> 100
 p2(j,(i+1))= 100;
 end
 if p3(j,(i+1))> 100
 p3(j,(i+1))= 100;
 end
 end

 %For losses formulation (PL)

82

 for j=1:p
 pl(j,(i+1))= [p1(j,(i+1)) p2(j,(i+1)) p3(j,(i+1))]*B*[p1(j,(i+1))

p2(j,(i+1)) p3(j,(i+1))]';
 end

 %Main objective function
 for j=1:p
 f(j,(i+1))= w1*((a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) + c(1))

+...
 (a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2))+...
 (a(3)*(p3(j,(i+1)))^2 + b(3)*p3(j,(i+1)) + c(3))) +...
 w2*pl(j,(i+1)) + k*abs(pd+pl(j,(i+1))-p1(j,(i+1))-

p2(j,(i+1))-p3(j,(i+1)));
 end

%personal best values updation
 %For losses formulation (PL)
 for j=1:p
 plp(j)= [p1p(j) p2p(j) p3p(j)]*B*[p1p(j) p2p(j) p3p(j)]';
 end

 for j=1:p
 fp(j)= w1*((a(1)*(p1p(j))^2 + b(1)*p1p(j) + c(1)) +

(a(2)*(p2p(j))^2 + b(2)*p2p(j) + c(2)) ...
 + (a(3)*(p3p(j))^2 + b(3)*p3p(j) + c(3))) + w2*plp(j) +

k*abs(pd+plp(j)-p1p(j)-p2p(j)-p3p(j));
 end
 for m=1:p
 if f(m,i)< fp(m)
 p1p(m)=p1(m,(i+1));
 p2p(m)=p2(m,(i+1));
 p3p(m)=p3(m,(i+1));
 else
 end
 end

%for Global best values updation
 if min(f(:,(i+1)))<fgm
 fgm=min(f(:,(i+1)));
 else
 end

 for j=1:(i+1)
 for m=1:p
 if f(m,j)==fgm
 for l=1:p
 p1g(l) = p1(m,j); %global best values
 p2g(l) = p2(m,j);
 p3g(l) = p3(m,j);
 end
 else
 end
 end
 end

 %For cost calculation
 for j=1:p
 c1(j,(i+1)) = a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) + c(1);
 c2(j,(i+1)) = a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2);
 c3(j,(i+1)) = a(3)*(p3(j,(i+1)))^2 + b(3)*p3(j,(i+1)) + c(3);

83

 C(j,(i+1)) = c1(j,(i+1)) + c2(j,(i+1)) + c3(j,(i+1));
 end

%To find change in the values of f, equality constraint and change in cost
 for j=1:p
 df(j,i)= abs(f(j,(i+1))-f(j,i)) ;
 sp(j,i)= abs(pd+pl(j,(i+1))-p1(j,(i+1))-p2(j,(i+1))-p3(j,(i+1)));
 csp(j,i)= abs(C(j,(i+1))-C(j,i));
 end

 print = [p1(:,(i+1)) p2(:,(i+1)) p3(:,(i+1)) v1(:,(i+1)) v2(:,(i+1))

v3(:,(i+1)) f(:,(i+1)) c1(:,(i+1)) c2(:,(i+1)) c3(:,(i+1)) C(:,(i+1))];
 disp(' P1 P2 P3 V1 v2 V3

f c1 c2 c3 C ')
 disp(print)

%Stoping criterion &&(csp(j,i)<=10^(-6))
 ki=0;
 for j=1:p
 if ((df(j,i)<=10^(-6))&&(sp(j,i)<=10^(-6)))
 ki=ki+1;
 end
 end
 if ki >= p
 break
 end

end

disp(' we have to minimize the cost function of a 3 machine 30 Bus System')
disp(sprintf('No. of particles used in a swarm = %d',p))
disp(sprintf('Max. no. of iterations entered = %d\n',it))

disp(sprintf('Total demand of power Pd = %d \n',pd))

disp('Initial values of generations of 3 generators')
initial=[p1(:,1) p2(:,1) p3(:,1)];
disp(' P1 P2 P3 ')
disp(initial)

disp(sprintf('\nPD+Pl = %d',pd+pl(1,i)))
disp(sprintf('\nP1+P2+P3=%d\n',p1(1,i)+p2(1,i)+p3(1,i)))

disp(sprintf('No. of total Iterations took place = %d \n',i))
disp(sprintf('Total loses in the lines Pl = %d \n',pl(1,i)))
disp(sprintf('Minimum cost incured = %d \n',C(1,i)))
disp('Final values of generations of the three generators')
disp(sprintf('P1=%d',p1(1,i)))
disp(sprintf('P2=%d',p2(1,i)))
disp(sprintf('P3=%d',p3(1,i)))

disp('About this run')
disp('1. The Constraints has been included as absolute value.')
disp('2. Random values between the limits of generation have been taken for

each generator as the different starting point.')
disp('3. Correct values of B coefficients have been fed.')
disp(sprintf('4. K taken = %d',k))
disp(sprintf('5. w1 and w2 taken = %d and %d',w1,w2))

84

REFERENCES

[1] J. Kennedy, R.C.iEberhart, et al., “Particle swarm optimization”, In Proceedings of

IEEE international conference on neural networks,ivolume 4, pages 1942–1948.

Perth, Australia, 1995

[2] El-Ghazali Talbi,iMetaheuristics-From Design toiImplementation.: John Wiley and Sons,

2009.

[3] R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of

the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan,

1995, pp. 39–43.

[4] Andries P. Engelbrecht, Computational Intelligence: An Introduction.: John Wiley and Sons,

2007, ch. 16, pp. 289-358.

[5] R.C. Eberhart, Y.IShi, Particle swarm optimization: Developments, applications and

resources, in: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE Press,

Seoul, Korea, 2001.

[6] ` Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Proceedings of the IEEE

Congress on Evolutionary Computation, Piscataway, USA, 1998, pp. 69–73.

[7] Anthony Carlisle and Gerry Dozier, "An Off-The-Shelf PSO," in Workshop Particle Swarm

Optimization, Indianapolis, 2001.

[8] Y. Shi andiR. Eberhart., “Aimodifiediparticleiswarmioptimizer”, In Evolutionary

Computation Proceedings,i1998.IIEEEiWorld Congress on ComputationaliIntelligence., The

1998 IEEE InternationalIConferenceion, pages 69–73. IEEE, 2002.

[9] R.C. Eberhartiand Y. Shi., “Trackingiand optimizing dynamic systems with particle

swarms”, In EvolutionaryiComputation, 2001.iProceedings ofithe 2001 Congress on,

volume 1, pages 94–100. IEEE, 2002.

 [10] A. ikabadi, M.Ebadzadeh , “Particle swarm optimization algorithms with adaptive Inertia

Weight : A survey of the state of the art and a ovel method”, IEEEijournaliof evolutionary
computation , 2008

[11] R.F.iMalik, T.A.iRahman, S.Z.M. Hashim, and R. Ngah, “ ew Particle Swarm Optimizer
with Sigmoid Increasing Inertia Weight”, InternationaliJournal ofiComputer Science and

Security (IJCSS), 1(2):35, 2007.

[12] J.J. Jamian, M.W. Mustafa, H. Mokhlis, M. . Abdullah” Comparative Studyion Distributed

 Generator Sizing Using Three Types of Particle Swarm Optimization” 978-0-7695-4668-1/12

 $26.00 © 2012 IEEE

[13] Chien-Ching Chiu,iChi-Hsien Sun&Chun- u i “Comparison of Dynamic Differential

 Evolution and Asynchronous Particle Swarm Optimization for Inverse Scattering” ICCIT

 2012.

85

[14] J. Xin, iG. Chen,iandiY. Hai., “A Particle Swarm Optimizer with Multistage inearly-

Decreasing Inertia Weight”, IniComputational Sciences and Optimization, 2009. CSO 2009.

International Joint Conference on, volume 1, pages 505–508. IEEE, 2009.

[15] Y. Feng,iG. . Teng, A.X. Wang, and Y.M. Yao., “Chaotic Inertia Weight in Particle Swarm

Optimization”, IniInnovative Computing,iInformation and Control, 2007. ICICIC’07. Second

InternationaliConference on, page 475. IEEE, 2008.

[16] K. Kentzoglanakis and iM. Poole., “Particle swarm optimization with an oscillating Inertia

Weight”, IniProceedings ofithe 11thiAnnual conference on Genetic and evolutionary
computation, pages 1749– 1750. ACM, 2009.

[17] M.S. Arumugamiand MVC Rao., “On the performance of the particle swarm optimization

algorithm with various Inertia Weight variants for computing optimal control of a class of
hybrid systems”, Discrete Dynamicsiin Nature and Society, 2006, 2006.

[18] Y. Shi and R.C. Eberhart., “Empirical study of particle swarm optimization”, In Evolutionary
Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, volume 3. IEEE, 2002.

[21] H.R. Li and Y.L. Gao., “Particle Swarm Optimization Algorithm with Exponent Decreasing
Inertia Weight and Stochastic Mutation”, In —2009 Second International Conference on

Information and Computing Science, pages 66–69. IEEE, 2009.

[22] Y. Gao, X. An, and J. iu., “A Particle Swarm Optimization Algorithm with Logarithm
Decreasing Inertia Weight and Chaos Mutation”, In Computational Intelligence and Security,

2008. CIS’08. International Conference on, volume 1, pages 61–65. IEEE, 2008.

[23] James Kennedyiand TimiBlackwell Riccardo Poli, "Particle swarm optimization An
 overview," SwarmiIntelligence, vol. 1, no. 1, pp. 33–57, 2007.

[24] Dr. N.K. Jain, Ms.IUma angia, Dr. C. . Wadhwa “Investigaion on Multiobjective Optimal

 Load Flow Study by Sequential Goal Programming” IE(I) Journal-EL iVol 77, August 1996.

[25] Dr. .K. Jain, Ms. Uma angia, Dr. C. . Wadhwa “MultiobjectiveiOptimal Load Flow

 Based on Ideal Distance MinimizationuIn 3D Space” Electrical Power and Energy Systems

 23(2001) 847-855 (ELSEVIER)

[26] SingiresuuS. Rao “Engineering Optimization Theory and Practice (Third Enlarged Edition)”

 New Age International PublishersiISBN:978-81-224-2723-3.

 [28] M.A.uAbido “Environmental/Economic Power Dispatch Using Multiobjective Evolutionary

 Algorithms” IEEE Transactions on Power Systems Vol. 18. o.4 , ovember 2003.

 [29] Nangia, U., N.K. Jaini, C.L. Wadhwa, ‘MultiobjectiveIoptimalIloadIflow based on ideal

 distance minimization in 3D space’, Electricalipower and energy systems (23), 2001,pp. 847-

 855

[30] Nangia, Uma, Jain, N.K., Wadhwa, C. ., ‘Comprehensive IComparison Iof Various

 Multiobjective ITechniques’, EngineeringiIntelligent Systems Journal, Vol. 11, No. 3,

 Sept.,2003, pp. 123-132.

86

