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ABSTRACT 

In this thesis, comparison of different inertia weights is taken into account to analyse the 

performance of PARTICLEUSWARM OPTIMIZATION on Economic load 

dispatchHconsidering the cost of the generation. Equality constraints of the problem have been 

considered with the inclusion of a new parameter ‘k’. Comparative analysis suggests that the 

use of simulated annealing procedure for the variation in inertia weight in the algorithm of PSO 

significantly improves the performance with lesser number of iterations. The data sets being 

used have been generated for IEEE 5 , 14 and 30 busHsystem using Particle swarm 

optimization method. An attempt has been made to reach the target point in lesser number of 

iterations and with minimum cost of generation. 

A MATLAB program has been developed for ParticleKSwarm Optimization (PSO) method to 

solve economicKload dispatch problem considering cost of generation. All different inertia 

weight functions have been implemented on ECONOMIC LOAD DISPATCH problem to get 

the optimum value of cost of generation with lesser number of iterations. 
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List of Symbols & abbreviations 
 

 

Cp Acceleration coefficient for Cognitive component 

Cg Acceleration coefficient for Social component 

ᵡ Constriction Factor 

w Inertia Weight 

Itmax Maximum no. of iteration 

nop Number of particles 

K Penalty coefficient 

ɛ Tolerance Limit 

r1 & r2 Uniformly distributed Random Numbers (0,1) 

CF Constriction Factor 

ELD Economic Load Dispatch 

PSO Particle Swarm Optimization 
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CHAPTER-1 

INTRODUCTION 

1.1 OVERVIEW 

TheSsize of our electrical power systemGis increasing energy demands. To accomplish 

this, a number ofKpower plants are connectedKin parallel to supply the system load by 

interconnection of systems. In grid system, it is very essential to operate plant units 

most economically. 

The economic scheduling aims to guarantee at all times the optimum combination of 

generators connected to the system to supply the load demand. 

 Economic Load Dispatch (ELD) is a very important function in the planning and 

operation of power system. It involves two separate steps namely the unit commitment 

and on-line economic dispatch considering all constraints (equality constraints and 

inequality constraints). The complexity of ELD depends on the factors like size of the 

system, generator characteristics and system constraints. 

 By ELD we mean to find the generations made by different generators or plants so that 

the total cost of the fuel is minimum. The generation in ELD is not fixed but they lie 

under certainLlimits so as to meet aKparticular load demand with minimum 

consumption of fuel and hence we can say ELD is basically the solution to a large 

number of load flow problems. 

 In this work the cost of generation is taken as the objective which is needed to be 

minimised. For this IEEE 5 bus,K14 bus and 30 bus systems have been considered. 

Our objective is accomplished in the order as given below: 

 Exploring PSO and coding the programs in MATLAB 2012a. 

 Application of PSO to various benchmark functions. 

 Application of PSO to Economic load dispatch problem considering cost of 

generation for IEEE 5 , 14 and 30 bus systems using. 
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1.2 AIM AND APPROACH 

Our main aim in this thesis is to solve economic load dispatch (ELD) problem with 

minimum number of iterations considering the cost of generation for which IEEE 5, 14, 

& 30 bus system have been considered. 

The work has been carried out in the following manner: 

a. Knowing about particle Swarm Optimization and coding its algorithm in 

MATLAB R2012a. 

b. Solution of different mathematical benchmark functions using PSO. 

c. Formulation of Economic Load Dispatch (ELD) considering the cost of generation 

for IEEE 5,O14, & 30 Bus System. 

d. Generation of non-inferior sets of IEEE 5,K14 and 30 bus systems. 

Achievement of solution for IEEE 5,O14 and 30 bus system with lesser no of iterations 

considering the cost of generation. 

1.3 LITERATURE REVIEW 

We do not have a single optimizationOmethod available to solve all the optimization 

problems. Various optimization methods have been developed to solve many types of 

optimizationKproblems recently. Latest methods of optimization (few times referred to 

non-traditional methods of optimization) are popular and powerful methods for solving 

many complicated engineering problems. The methods consists of particle swarm 

optimization algorithm, artificial immune systems, genetic algorithms, neural networks, 

ant colony optimization and fuzzy optimization. 

The consumption level of the electric power is increasing exponentially in the modern 

world. Since the electric power network is the most complex as well as huge in size, 

which needs proper control and decision making algorithms to get economical 

operation from the available resources and their best utilization by generation, 

transmission and distribution utilities. 

In power systems the continuous unpredictable change in load demand leads to the 

necessity in adjusting the power generation outputs. The scheduling of the generator 
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output is taken care by Economic Load Dispatch (ELD) problem. Economic load 

dispatch is one of the major optimization issue in power system. Its objective is to 

allocate the demand among committed generators in the most economical manner, 

while all physical & operational constraints are satisfied. Many conventional & 

nonconventional optimization techniques available in literature are applied to solve 

such problems. Conventional methods have simple mathematical model and high 

search speed but they are failed to solve such problem because they have the drawbacks 

of multiple local minimum points in the cost function. Algorithms require the 

characteristics to be approximated; however, such approximations are not desirable as 

they may lead to suboptimal operation and hence huge revenue loss over time, 

restrictions on the shape of the fuel-cost curves. Other methods based on artificial 

intelligence have been proposed to solve the economic dispatch problem, these are 

genetic algorithm, Tabu search, particle swarm optimization etc [1]. 

A concept for the optimization of nonlinear functions using particle swarm 

methodology is introduced first time by James Kennedy and Russell Eberhart.The 

evolution of several paradigms is outlined, and an implementation of one of the 

paradigms is discussed. Benchmark testing of the paradigm is described, and 

applications, including nonlinear function optimization and neural network training, are 

proposed. The relationships between particle swarm optimization and both artificial life 

and genetic algorithms are described in [2].  

The optimization of nonlinear functions using particle swarm methodology is 

described. Implementations of two paradigms are discussed and compared [3]. 

In paper Wei-Bing Liu and Xian-JiaWangr presented a new particle swarm optimizer 

based on evolutionary game (EGPSO).We map particles’ finding optimal solution in 

PSO algorithm to players’ pursuing maximum utility by choosing strategies in 

evolutionary games, using replicator dynamics to model the behavior of particles. And 

in order to overcome premature convergence a multi-start technique was introduced. 

Experimental results show that EGPSO can overcome premature convergence and has 

great performance of convergence property over traditional PSO[4].  
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Tao Gong and Andrew L. Tuson_presented the working mechanism of PSO in a 

principled manner with formal analysis and investigates the applicability of pso on the 

quadratic assignment problem (qap). Particularly, the derived pso operator for qap is 

empirically studied against a genetic algorithm (ga)[5].  

In this paper, Ying-Ping Chen and Wen-Chih Peng, gave suggestion to improve the 

performance of the particle swarm optimizer by incorporating the linkage concept, 

which is an essential mechanism in genetic algorithms,and design a new linkage 

identification technique called dynamic  linkage discovery to address the linkage 

problem in real-parameter optimization problems[6]. 

Keisuke KAMEYAMA investigsted the dynamics of PSO research and numerous 

variants for improvement of performance of PSO[7]. 

Hardiansyah et al. suggested application of PSO for Economic load dispatch problem 

.The results have been demonstrated for 3 and 6 generator systems with and without  

consideration of losses[9]. 

Jaya Sharma et al. presented review of PSO application in ELD problems[10]. 

The intensified research on environmental safety guided to create public awareness  

about the emission. The passage of the clean air amendments in 1990 has forced the 

utilities to reduce their SO2,CO2,NOX emission by 40% from 1980 levels.Therefore 

apart from cost, emission objective must also be taken into account .The multi-

objective Environmental/  economic dispatch is having two conflicting objectives, as 

the minimisation of cost maximizes the pollution, leads to the necessity of trade –off 

analysis to define admissible dispatch policies for any demand level.There has been 

much research pertaining to MOEED problem. M.A. Abido has compared three 

multiobjective evolutionary algorithms and the same has been successfully applied to 

environmental/economic power dispatch problem. Strength Pareto Evolutionary 

Algorithm (SPEA) has better diversity characteristics and is more efficient when 

compared to other Muti Objective Evolutionary Algorithms (MOEAs)[11].  

J. C. Bansal et al proposedja large number of variations ofgInertia Weight strategy[12]. 

This papergstudies 15 relatively recent andgpopular Inertia Weight strategies and 



XIV 
 

compares their performance on 05 optimization test problems.RussellgEberhart et al  

proposed  two Paradigmskof PSOjnamely globally goriented  (GBEST),  and  locally  

oriented (LBEST) and compared for the extremelygnonlinear Schaffer f6 

function.Thegauthour propose both the paradigm for training ofgneural network & 

learning of robot[13]. Ajith Abraham et al implemented Particle Swarm Optimization 

(PSO) and Ant Colony Optimization (ACO) algorithms on some mathematical function 

(Griewank function,gSchwefel function, Quadric function), realgworld applications 

asgtravelling sales men problem & data mining[14]. 

Singh and Dhillon converted a multiobjetcive economic emission dispatch problem into 

a scalar problem. This scalar set optimization problem is then solved for many types of 

different set of weights pattern to generate non- inferior solution along with trade-off 

functions. Between conflicting objectives. The optimal solution is calculated by 

considering real and reactive power losses, which are calculated by performing fast 

decoupled load flow analysis[31]. 

Airashidi and El- Harwary presented a PSO algorithm as an effective tool for solving 

constrained multiobjetcive optimization problems like Economic Dispatch(EED). 

Results showed that PSO was successfully capable of capturing the shape of Pareto 

solution sets[32]. 

1.4    PLAN OF THESIS 

This thesis has been arranged in six chapters. The contents of the chapters are briefly 

outlined as indicated below: 

Chapter 1: Introduction to economic load dispatch problem and research aim of the 

thesis. Literature survey for the covered topics has also been shown. 

Chapter 2: Introduces the Particle Swarm Optimization 

Chapter 3: Discusses about the applications of PSO in various fields. 

Chapter 4: Explores the concepts of Particle Swarm Optimization algorithm in 

MATLAB R2011b and its application on various mathematical benchmark functions. 

Analysis of various parameters in PSO algorithm has also been carried out. 
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Chapter 5: Discusses the solution of Economic Load Dispatch for IEEE 5, 14 and 30 

bus systems. 

Chapter 6: Conclusion and the future work directions have been discussed.  

Appendix and references are at the end of the thesis. 
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CHAPTER-2 

PARTICLE SWARM OPTIMIZATION 

2.1 INTRODUCTION 

The ParticlepSwarm Optimizationp(abbreviated aspPSO) algorithm ispa stochastic 

search algorithm basedpon population andlan alternate solutionoto complicated 

optimization problem which are non-linear in nature. PSOpalgorithm was firstly 

introduced bypDr. Eberhart andpDr. Kennedy in 1995 and the basicLidea of PSO was 

initiallyPinspired by simulationpof the social behaviour ofpanimals such as 

birdpflocking, fish schooling andlso on. PSO can be easily implemented and is 

computationally inexpensive, since its memory and CPU speed requirements are low 

(Eberhart et al.,1996). PSOois based on the naturalptechnique of the group 

communicationpto share individualoknowledge when aggroup of birdspor 

insectsisearch food or migratepand so forth in a searchingpspace, although all birds or 

insectspdo not know where the bestoposition is and from thelnature of the 

socialpbehaviour, if any memberpcan find out apdesirable path to go, the restpof the 

members will followpquickly.  

The particle swarmioptimization (PSO) is aiparallel evolutionary 

computationitechnique developed byjKennedy and Eberhart based on the 

socialibehaviour metaphor.iThe PSO algorithm isiinitialized with aipopulation of 

random candidateisolutions, conceptualized as particles.iEach particle is assignedia 

randomizedivelocity and isiiteratively movedithrough the problemkspace. It is 

attracteditowards theilocation of the bestifitness achievediso far by the particleiitself 

and by theilocation of theibest fitness achieved soifar acrossithe whole 

populationi(global version of the algorithm).  

The PSO algorithm includes some tuning parameters that greatly influence the 

algorithm performance, oftenpstated as the exploration–exploitationptradeoff: 

Explorationpis the ability to test variouspregions in the problem space in order to locate 

a goodpoptimum, hopefully the globalpone. Exploitationpis the ability topconcentrate 

the search around alpromising candidate solution in order to locate the 
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optimumoprecisely. Despiteorecent research efforts, the selection of the 

algorithmpparameters remains empirical to a largepextent. Apcomplete theoretical 

analysis of the algorithmphas been given by Clerc andoKennedy. Basedpon this 

analysis, the authors derived aoreasonable set of tuningoparameters, asiconfirmed by. 

The referenceicontains a good deal of mathematicalocomplexity, however, 

andideriving from it simpleouser-oriented guidelines for theoparameter selection in a 

specificiproblem isonot straightforward.  

Theopresent work gives some additionaloinsight into the PSO parameteroselection 

topic. Itpis established that some of theoparameters add nopflexibility to the 

algorithmoand can be discardedowithout loss ofpgenerality. Resultspfrom the 

dynamicpsystem theory are used for a relatively simpleptheoretical analysis of 

theoalgorithm which results in graphicaloguidelines for parameterpselection. Thepuser 

can thus takepwell-informed decisionsiaccording to the desiredpexploration–

exploitationitrade off: either favourpexploration by a thoroughisampling of the 

solutionpspace for a robustilocation of the globalpoptimum at the expense of a large 

number of objectivepfunction evaluationsior, on the contrary, favourpexploitation 

resulting in a quickoconvergence but to a possiblypnon-optimal solution. Non-

surprisinglyp, the best choice appearsito depend on the form of the objectivepfunction. 

The newlypestablished parameter selectionpguidelines are applied to 

standardpbenchmarkpfunctions.  

2.2 THE BASIC MODEL OF PSO  

Particle swarmioptimization (PSO) is an optimization approach in which a swarm of 

candidate solutions are used which are referred to particles. Particles are made to ‘‘fly’’ 

into a searchpspace, with eachpparticle getting attractedptowards the globalpbest 

solution found by thepparticle’s neighbourhoodland the personal bestisolution found by 

theoparticle. The velocitypvi is used topmodify the position xi, of thepith particle and 

this velocity depends on the distance of the particle  from its personal  best solution and 

from the global best solution. For the original PSO, 

vij(t+1i)  = w * vij(t) + cp * rp* (yij(t) –oxij(t))  +  cg * rg * ( oy^ ij(t) –oxij (t))               (2.1) 

xijo(t+1)  =  x ij(t)o+ovij(t+1)                                                                           (2.2) 
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for  i =p1, . . . ,nop pand pj =p1, . . . ,n,  

where, 

φp = cp * rp and φg = cg * rg,                                                                                         (2.3) 

nop prepresents the total numberpof particlespin the swarm, 

n representspthe dimensions in the givenoproblem, i.e. the totalpnumber of 

parameterspof the function gettingpoptimized 

cp   and cg are accelerationpcoefficients, 

rp, rg o~ pU(0, 1), 

xi(t)orepresents the positionpof particle ith atotime t, 

vi(t)orepresents the velocityiof particle ith atotime  t, 

yi(t)irepresents the personalibest solution ofpparticle i at time t, 

y^ij(t)irepresents the bestoposition found by theoneighbourhood of particle i atotime t. 

FromoEq. (2.1), the velocityoof a particle is obtainedoby threepfactors: 

vi(t), whichobehaves as a momentumpterm to avoid excessiveposcillations in the 

directionpof search. 

yi(t),  each particle remembers  its own coordinates in the solution space which are 

linked with the best solution (fitness) which has been obtained so far by that particle. 

Thisivalue is known as personal best (pbest). Inithe pbest swarm, only a limitedinumber 

of particles (neighbour count) can modify theivelocity of a given particle. The 

swarmiwill converge taking more time but can locateithe global optimum with a greater 

chance. 

y^ij(t), anotherAbestAvalue that is obtained bySthe PSO is the bestHvalue achieved so 

far by any of the particle in theineighbourhood of that particle. Thisivalue is known as 

global best (gbest).All  the particles  in the gbest swarm, are neighbours of one other; 

thus, the best particle’s position in theiswarm has been used in the social termiin the 

velocity update equation. It is supposed that gbest swarmsiconverge in lesser time, as all 

the particles are attracted simultaneouslyito the best part of theisearch space. However, 
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ifithe global optimum is not so near as comparedito the bestiparticle, it might be 

impossibleifor the swarm to explore different areas; this means thatithe swarm could be 

trappediin the local optima. 

cp * r1 * (yi(t)p- xi(t)), known as thepcognitivepcomponent. This componentpshows 

that the distance  a particlepis from the bestisolution, yi(t), found bypitself. The 

cognitiveocomponent shows the naturalitendency ofoindividuals to go back to 

environmentsowhere they obtained their bestoperformance. 

cg * r2 * ( y^ij(t) – xij (t)) represents  the social component. This component shows the 

distance of a particle from the best position found by its neighbourhood. It shows the 

behaviour of the individuals to follow the success of the other individuals. 

In the social component, y^ij(t)  shows the best solution found by the neighbourhood of 

particle ith. Neighbourhood topologies are used to constrict the information exchanged 

between particles. 

Particles modify their positions according to the ``Psychosocial compromise’’ with 

which an individual is comfortable and what the society reckons. 

 
 

Fig 2.1 Initialization of the positions of  all particles of x1 and x2 
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Fig 2.2 Initialization of velocities in random directions of al particles of x1 and x2 

 

 

Fig 2.1 shows the random distribution of  particles for two variables lets say for x1 and 

x2 in a given limit or boundary.whereas Fig 2.2 tells us about the random distribution 

of velocities for all the particles of x1 and x2. 

 
Fig 2.3 Movement of a particle on the basis of pbest and gbest 

 

Fig2.3 shows the movement of a particle is influenced by two factors i.e. one factor is 

the personal best position and the second factor is related to the global best position. 

Both these factors contributes in deciding the new position of the different particles. 

2.3 PSO ALGORITHM  PARAMETERS 

There are some parameters in PSO algorithm that may affect its performance. For any 

given optimization problem, some of these parameter’s values and choices have large 
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impact on the efficiency of the PSO method, and other parameters have small or no 

effect. The different PSO parameters are number of particles or swarm size, velocity 

components, acceleration coefficients and number of iterations illustrated below.    

2.3.1 Swarm size  

Population size or swarm size isothe number of particles ‘s’ in the swarm. Aplarge 

number of  swarmosize generatesplarger parts of the search space to bepcovered 

peroiteration. A large number of particles may reduce the number of iterations need to 

obtain a better optimization result. In contrast, large amounts of particles improve the 

computational complexity per iteration, and more time consuming. From a large 

number of empirical studies, it has been shown that most of the implementations in 

PSO use an interval of s ε  [10,60]  for the size of swarm. 

2.3.2 Velocityoclamping 

InitialpPSO studies used cp = cgp= 2.0. Althoughogood results have beenoachieved, it 

was seen that velocitiespfastly exploded to largepvalues, especially foroparticles at a 

large distance from their global best (^y) andppersonal best (yi) 

positions.pConsequently, particles have large no. of position updates,pwith particles 

leaving behind thepboundaries of their searchospace. Velocitiespare clamped to control 

the increaseoin velocity. 

vij(t+1i) =  iv'ij(t+1)      if   v'ij(t+1)  < V max                                                                (2.4)                     

V maxii     ifi    v'ij(t+1)i >=V max     

Velocitypclamping does not avoid apparticle from leaving thepboundaries of itspsearch 

space, it  limitspthe particle steposizes, thereby divergentibehaviour isirestricted.  

2.3.3 Iterationonumbers  

The numberoof iterations to obtain aogood resultpdepends on theoproblem. 

Apverytlow number ofpiterations may halt the searchoprocess prematurely,pwhile a 

veryplarge no. of iterationsohave the consequence of unnecessarypadded 

computationalpcomplexity and make the convergencepslow. 
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2.3.4 Accelerationocoefficients  

The accelerationocoefficients cp and cg,pcombined with theprandom valuesorp andprg, 

maintain the stochasticpinfluence on the cognitive andpsocial components of 

theoparticle’s velocityorespectively. Theoconstant cp shows how much confidence a 

particle has on itself, while cg expresses how much confidence a particle has on its 

neighbors. There are some properties of  cp and cg: 

cp = cg = 0 represents  all particles continue flying atotheir present speedpuntil theyphit 

the boundary of theosearchpspace. Therefore, thepupdate equation forpvelocity 

ispcalculatedpas 

vij(t+1)p= vij(t)                                                                

cp > 0 and  cg = 0 represents that all particles are independent. The velocity;update 

equation for this condition will be                          

vij(t+1) = w * vij(t) + cp * rp (yij(t) – xij(t))                                                                  (2.5) 

On the contrary, cp > 0 and cg = 0 represents that all particles are attracted towards a 

single point in the entire swarm and the update in the velocity will be as under:  

vij(t+1)i= vij(t) +  cg * rg * ( ŷij(t) –ixij (t ))                                                                   (2.6) 

cp = cg  represents that all the particles are attracted towards the average of Pbest  and  

Gbest . 

cp>>cg  represents that each particle is strongly influenced by its own best position, 

resulting in an increased wandering. In contrast, when cg>>cp then all of the particles 

are much more influenced by the global best position, which causes all particles to 

converge prematurely to the optima. 

Normally, cp and cg are static, with empirically finding the optimized values. 

Wrongpinitialization of cp andpcg mayiresult in cyclic or divergent behaviour. From the 

different empirical researches, this has been proposed that the two acceleration 

constants must be  cp= cg =2. 
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2.3.5 Inertia weight 

Shi and Eberhart introduced the inertia weight to eliminate the need for velocity 

clamping and to still restrict the divergent behaviour. The momentum of the particles is 

controlled by the inertia weight (w) by weighing the contribution of the previous 

velocities–basically it is used to control howpmuch memory of the lastpflight direction 

will affectpthe new velocity. Thepvelocity equation modifiedpto 

vij(t+1)i =  w * vij(t)i+ cp * r1 p* (yij(t) – xij(t))i+ cg * r2 *i( ŷij(t)i– xij (t)) o(      (2.7)(2((                           

 

Shi and Eberhart introduced the concept of inertia weight in 1999 to reduce the 

velocities over time (or iterations), to control the exploitation and exploration abilities 

of the swarm  and to converge the swarm more efficiently and accurately.                                 

If  w≥ 1 then the velocities increase with time and particles can hardly divert their 

directions to return towards optimum, and the swarm diverges. If w ≤ 1 then little 

momentum is only saved from the initial step and quick changes to directions are set in 

the process. If w =0 particles velocity disappears and all particles move without 

knowledge of the last velocity in each step. 

The inertia weight might be implemented either as dynamically changing values or a 

fixed value. Initial implementations of used a fixed value for the whole process for all 

particles, but now dynamically changing inertia values is used because this parameter 

controls the exploration and exploitation of the search space. Various strategies were 

suggested time to time were studied in detail. 

The inertia value is usually high initially, which allows all particles to freely move in 

the search space in the initial steps and decreases with time. Therefore, the process 

shifts from the exploratory mode to the exploitative mode. This decrease in inertia 

weight has produced good results in most of optimization problems. To control the 

balance between local and global exploration and to obtain quick convergence and to 

reach an optimum, the inertia weight whose value decreases linearly with the increase 

in iteration number is set accordingly by the following equation  

 

w (t+1) = wmax – ( ( ( wmax - wmin) * it ) / ( itmax ) ) ,    wmax > wmin                         (2.8) 
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where, wmin and wmax are the final and initial values of the inertia weight respectively, 

itmax    is the maximum iteration number, ‘it’ is the current iteration number. 

Commonly, the inertia weight decreases linearly from 0.9 to 0.4 over the full run. 

Trelea have defined a condition that ( w < ( ( cp+cg) / 2 )-1 ) guarantees the 

convergence. Cyclic or Divergent behavior can occur in the process if this condition is 

not satisfied. 

The technique of inertia weight is quite useful to ensure convergence. However there is 

a disadvantage of the inertia weight  method  that once the inertia weight is decreased, 

it cannot increase even if the swarm needs to search new areas. This method is not able 

to recover its exploration mode. 

2.3.6 Constriction Coefficient 

 

When the algorithm of particle swarm is allowed run without restraining the velocity in 

some way, the system simply explodes after some iterations. In the initial stage, 

researchers used V max but the reason for this was not understood fully. Kennedy 

(Kennedy, 1998) noted that the trajectories of one-dimensional, non-stochastic particles 

contained interesting regularities when sum of the acceleration constants φ1 and φ2 

were in the range of 0.0 and 4.0. 

The re- attempt to analyze the trajectories was conducted by Ozcan and Mohan (Ozcan 

and Mohan, 1999).They reported that the particles were “surfing the waves” of 

underlying sinusoidal curves. However, Clerc's analysis of the iterative system 

demonstrated that the behavior discovered by Ozcan and Mohan was in fact the 

signature of a five-dimensional attractor (Clerc and Kennedy, 2002). 

The simplest constriction  described by Clerc (Clerc and Kennedy, 2002) as type 1″ 

constriction is the simplifed system: 

vij(t+1) =iχ [ (vij(t) + U[0, φ1]i* ( (yij(t) – xij(t)) + U[0, φ2] * (  y^ ij(t) – xij (t)) ]       (2.9) 

                                   

xij (t+1) =  x ij(t)i+ ivij(t+1)                                                                                        (2.10) 
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The following formula is used to compute the constriction coeffcient:                               

   2k 

               χ  =       ────────           where k ε [0,1] , φ = φ1 + φ2, φ >4             (2.11)          

                           │2- φ-√ φ 2 -4 φ │  

 

Most researchers using the constriction method use ' set to 4.1 (thus having φ1 = φ2 = 

2.05) and k = 1 which determines that χ~~ 0.729. 

This is algebraically equivalent to using the inertial model χ~~ 0.729.  

And φ1 = φ2 ~~1.49445. 

The constriction method results in convergence over time; the amplitude of the 

trajectory's oscillations decreases over time. When k = 1 convergence is slow enough to 

allow thorough exploration before the search converges. 

The advantage of using constriction is that there is no need to use Vmax nor to guess the 

values for any parameters governing convergence and preventing explosion. 

Subsequent experiments (Eberhart and Shi, 2000) concluded that it was prudent to set 

Vmax  to Xmax, the dynamic range of each variable in each dimension. The result is a 

particle swarm algorithm with no problem-specific parameters, considered the 

canonical particle swarm algorithm.  

2.3.7 Neighbourhood Topologies  

 

A neighbourhood must be defined for each particle. This neighbourhood determines the 

extent of social interaction within the swarm and influences a particular particle’s 

movement. Less interaction occurs when the neighbourhoods in the swarm are small. 

For small neighbourhood, the convergence will be slower but it may improve the 

quality of solutions. For larger neighbourhood, the convergence will be faster but the 

risk that sometimes convergence occurs earlier. To solve this problem, the search 

process starts with small neighbourhoods size and then the small neighbourhoods size 

is increased over time. Thisptechnique ensures an initially highpdiversity with 

fasterpconvergence as the particles move towards appromising searchpregion.  
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The PSOpalgorithm is social interactionpamong the particles in the entirepswarm. 

Particles communicatepwith one another bypexchanging information about the success 

of eachpparticle in thepswarm. When a particle in the whole swarm finds a better 

position, all particles move towards this particle. This performance of the particles is 

determined by the particles’ neighborhood. Researchers have worked on developing 

this performance by designing different types of neighborhood structures. Some 

neighborhood structures or topologies are discussed below:      

 

 

 

 

 

 

 

 

 
Fig 2.4 Star or gbest 

 

 

 

  
 

 
 

 

 
 

 

 

Fig 2.5 Ring or lbest 
 

 

 

     
 

 
 

 

 
 

 

 

 

Fig 2.6 Wheel 
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Fig 2.7  Four Clusters 

Figure 2.4 explains the star topology, where each particle is connected with every other 

particle. This topology basically leads to convergence at a faster rate than other 

topologies, but there is a chance to be trapped in local minima. Because all particles are 

aware about each other, this topology is known as the gbest PSO.  

Figure 2.5 represents the ring topology, where each particle is associated to its 

immediate neighbours. In this particular process, when better result is found by one 

particle then this particle gives it to its immediate neighbours and these  immediate 

neighbours gives it to their individual immediate neighbours, until it gained by the last 

particle. Thus the best result found is spreaded very slowly in a ring made by all 

particles. Convergence is slow, but a great part of the search space is covered than with 

the star topology. It is known as the lbest PSO.  

Figure 2.6 shows the wheel topology, in this only one of the particle (a focal particle) 

associates to the others, and all informations are communicated through this particular 

particle. Thispfocal particle compares thepbest performance of all thepparticles in the 

swarm and adjusts its ownpposition towards the best performance particle analyse by 

itself and finally the new position of the focal particle is shared with all the particles.  

Figure 2.7 represents a four clusters topology, where four cliques (or clusters) are 

connected with one edge between opposite clusters and two edges between neighboring 

clusters. There are more different topologies or neighborhood structures (for instance, 

Von Neumann topology, the pyramid  topology and so on), but there is no single best 

topology still known to find the required optimum for all varities of optimization 

problems. 
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2.4 APPLICATIONS OF PSO 

The different application areas of PSO are discussed in this chapter. Kennedy and 

Eberhart in 1995 made the first practical application of Particle Swarm Optimization. 

They worked in the field of neural network training and finally reported the algorithm 

jointly. PSO has been successfully used over a great range of applications, for example, 

system control, combinatorial optimization  , data mining, telecommunications power 

systems design, , network training, signal processing and many other areas. In present 

days, PSO algorithms have also been introduced to solve the multi-objective 

optimization problems , constrained problems, problems related to dynamically 

changing landscapes, and to find multiple solutions, while the initial PSO algorithm 

was mainly used  to solve  single-objective optimization, unconstrained problems. 

Different areas where PSO is nowadays  applied are listed in Table2.1. 

Table 2.1 Application areas of Particle Swarm Optimization 

 
Antenna Design Theidesign of phased arrays and optimal 

control, reflector antennas, design of Yagi-

Uda arrays, broadbandiantenna design and 

modeling, synthesis of antenna arrays, 

adaptive array antennas, optimization of a 

reflect array antenna,ifar-field radiation 

pattern reconstruction,iantenna modeling, 

array failure correction, designoof planar 

antennas,oconformal antenna arrayodesign, 

,pdesign of a periodicpantenna arrays, near-

fieldpantenna measurements, design of patch 

antennas optimization of profiled corrugated 

horn antennas, design of implantable 

antennas. 

 

 
Signal Processing 

Designpof IIRpfilters, Patternkrecognition of 

flatness signal,ospeech coding, 2DpIIR filters 

,analoguepfilter tuning,pnonlinear adaptive 
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filters, Costasparrays, particle 

filterpoptimization wavelets, blindddetection, 

blind sourcepseparation, localizationpof 

acoustic sources, distributed odour 

sourceplocalization, and so on. 

 

 
Networking Bluetoothpnetworks Radarpnetworks,  

autoptuning for universal 

mobileptelecommunication system networks, 

TCP networkpcontrol, optimal 

equipmentpplacement in 

mobilepcommunication, routing, peer-to-

peerpnetworks , wavelengthodivision-

multiplexedpnetwork,oooWDM 

telecommunicationonetworks, wireless 

networks, grouped and delayed broadcasting, 

bandwidth and channel allocation, bandwidth 

reservation, voltage regulation, 

transmissioninetwork planning, network 

reconfiguration andiexpansion, economic 

dispatch problem, distributed generation, 

microgrids, cellular neural networks, design 

ofiradial basis function networks, feed forward 

neural network training, product unit networks, 

congestion management, neural gas networks, 

design of recurrent neural networks, neuron 

controllers, wireless sensor network design, 

wavelet neural networkspestimation of 

targetpposition inpwireless sensor 

networks,pwireless video sensor 
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networkspoptimization. 

Biomedical  Humanitremor analysis for theidiagnosis of 

Parkinson’s disease,iinference of gene regulatory 

networks, human movement biomechanics 

optimization, RNA secondary structure 

determination, phylogeneticptree reconstruction, 

cancerpclassification, and survivalpprediction, 

DNA motifpdetection, biomarkerpselection, 

proteinpstructure prediction andpdocking, drug 

design,pradiotherapy planning, analysis of 

brainpmagneto encephalography data, 

electroencephalogram analysis,lbiometrics 

andlso on. 

 
Electronics and 

electromagnetic 

On-chippinductors, configurationpof FPGAs and 

parallel processor arrays, fuel cells,pcircuit 

synthesis,pFPGA-based temperaturepcontrol, 

ACptransmission system control electromagnetic 

pshape  design,p microwave  filters,  generic  

lelectromagnetic   design  and   optimization 

papplications,pCMOS RF wideband amplifier 

design,oolinear array antennaoosynthesis,  

conductors, pRF  IC  design  and poptimization, 

semiconductorooooptimization,phigh-

speedoooCMOS, frequency selective osurface  

and  absorber  design,  voltage  flicker 

measurement,pshielding, digital circuit design. 

 
Robotics                            Controloof robotic manipulatorspand arms,             

                           Motion planning andpcontrol, odour source   
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                           localization, soccerpplaying, robotorunning, 

                           robotpvision, collective robotic search,                

                           transport robots, voicepcontrol of robots,                    

                           unsupervisedoprobotic  learning,  path      

                           planning,  obstacle  avoidance,  swarm 

                           robotics, unmanned  vehiclepnavigation,                                           

                           environment mapping andpso  forth. 

                                                   

 

Design and 

Modelling     

Conceptualpdesign, electromagnetics 

case,pinduction heating cooker design, 

VLSIpdesign, power systems, RF 

circuitosynthesis, worst casepelectronic 

design,pmotor design, filterodesign, 

antennapdesign, CMOSpwideband amplifier 

design, logic circuitspdesign, transmission lines, 

mechanicalodesign,  library osearch,  inversion  

of  underwater  acoustic  models, modeling  

MIDI imusic,  customer  satisfaction  models, 

thermal  process isystem  identification,  

frictionimodels, model   selection,   

ultrawideband   channel   modeling, identifying  

ARMAX  models,  power  plants  and  systems, 

chaotic time series modeling, model order 

reduction. 

 
Image and 

Graphics 

Imageoosegmentation,ooautocroppingoofor 

digital photographs, syntheticpaperture radar 

imaging,olocating treatment planning  landmarks 

pin  orthodontic ox-ray  images,  

imagepclassification, ppinversion   of   ocean   
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color   reflectancepmeasurements, image fusion, 

photo time-stamp recognition, traffic p stop-sign   

detection,   defect   detection, p 

imagepregistration,  pmicrowave   imaging,   

pixel p classification detection pof  objects,  

pedestrian  detectionp and  tracking texture  

psynthesis,  scene  matching,  contrast  

enhancement, 3Dp recovery  with  structuredo 

beam  matrix, pcharacter recognition, image 

noise cancellation. 

 

Power generation 

and Controlling  

Automatic  o generation  p control,    power p 

transformer protection, ppower  loss  

minimization, pload  forecasting, STATCOM   

power  psystem,  pfault-tolerant   control   of 

compensators,  hybrid opower  generation  

systems,  optimal powerpdispatch, power 

systempperformance optimization, secondary 

voltagepcontrol, power control and optimization 

designpof power systempstabilizers, operational 

planning forpcogeneration  systems,  control  

ofiphotovoltaicisystems,plarge-scale 

powerpplant control, analysis ofipower 

qualitypsignals,  generation  planning  

andirestructuring, poptimal strategies  for  

electricity  production, pproduction  costing 

poperation planning. 

Fuzzy systems, 

Clustering, data 

mining 

Design of neurofuzzy networks, fuzzyprule 

extraction, fuzzy control,   membership  

pfunctions   optimization,   fuzzy modeling, 

fuzzypclassification, designpof hierarchical 
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fuzzy systems, fuzzy queuepmanagement, 

clustering, clustering in large  kspatial   

databases,   document   and  pinformation 

clustering,   dynamic   clustering,  ocascading   

classifiers classification of hierarchical 

biologicalodata, dimensionalitypreduction, 

genetic-programming-

basedooooclassification,pfuzzy 

clustering,oclassification threshold optimization, 

electrical wader sort classification,pdata mining, 

feature selection. 

Optimization 

Electrical  motors poptimization,  optimization 

of  internal combustion  engines,  optimization 

of  nuclear  electric propulsion psystems,  floor  

planning, ptravelling-sales  man problems,  n-

queens pproblem,  packing  and  knapsack, 

minimum  spanning ptrees,  satisfiability,  

knights  cover problem, llayout  optimization,  

path  optimization,  urbanoplanning, FPGA 

placementpand routing. 

Prediction and 

forecasting 

Water pquality prediction and  

classification,pprediction  of chaotic  systems,  

streamflow  forecast, pecological  models 

meteorological predictions, predictionpof the 

floe stress in steel,  time  series pprediction,  

electric  load  forecasting, battery  pack pstate  of  

charge  estimation,  predictions  of 

elephantpmigrations, prediction ofpsurface 

roughness in end milling, urbanptraffic 

flowpforecasting, and sopon. 
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2.4 ADVANTAGES AND DISADVANTAGES OF PSO  

PSO algorithm is said to be one of the most useful and powerful methods for solving 

the non-smooth optimization problems but there are few disadvantages associated to 

the PSO algorithm. The advantages and disadvantages of the PSO technique are 

discussed below:  

2.4.1 Advantages of the PSO algorithm: 

1 PSO technique includes a derivative-free algorithm.  

2 It is easily implemented, so it can be applied both in engineering problems and 

scientific research.  

3 Number of parameters is limited and these parameters accounts for a lesser impact 

to the solutions as compared to other techniques of optimization.  

4 Its algorithm includes a very simple calculation algorithm.  

5 Few modifications ensures the rapid convergence i.e. the optimum value of the 

problem gets calculated easily within a short time.  

6 PSO is less dependent on a set of initial points as compared to other optimization 

techniques.  

7 Conceptually PSO is very easy.  

 

2.4.2 Disadvantages of the PSO algorithm:  
 

1 PSO algorithm suffers from the partial optimism, which degrades the regulation of 

its speed and direction.  

2 Problems with non-coordinate system (for instance, in the energy field) exists. 
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2.5 FLOW CHART 
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2.5.1Steps involved in particle swarm optimization in MATLAB 

 
1       Using the zero command of MATLAB initialize all the variable matrices. 

2 Set the values of the random no.s ‘r1’ & ‘r2’ assigned to the personal and global 

best expressions respectively. 

3 Set the values of acceleration constants ‘cp’ & ‘cg’ assigned to the personal and 

global best expressions respectively. 

4 Set the tolerance value. 

5 Generate the random position values of particles for all the variables (eg. x1,x2) 

and also generate the random velocities values of particles (eg. v1,v2) for all the 

variable. 

6 Calculate the fitness for the assumed values of the positions of the particles. 

7 Using the above fitness personal best and global best values for all variables are 

deduced. 

8 Using the previous iteration values of personal best, global best and velocity 

vectors new velocities are generated in the current iteration using the equation: 

        vij(t+1)  =  w * vij(t) + cp * r1  * (yij(t) – xij(t)) + cg * r2 * ( ŷij(t) – xij (t))   

   

9 Using the new velocity vector and the old position vector , a new position vector is 

generated for all the variables.  

10 Calculate fitness using the new positions in the current iteration. 

11  Using the new fitness values the personal and global best values are updated. 

12   The difference between the previous and the current fitness is calculated and check    

       against the tolerance value, if within the tolerance iteration stops and global best     

       value is the solution else iteration flow goes back to previous step for further    

       updation. 
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CHAPTER-3 

APPLICATION OF  PSO TO MATHEMATICAL 

BENCHMARK TEST FUNCTIONS 

3.1 BENCHMARK FUNCTIONS 

Artificial landscapes the second name given to the Test functions, are very useful to 

evaluate characteristics of optimization algorithms. In this case of application of 

Particle Swarm Optimization to the mathematical benchmark functions, the PSO 

algorithm can be applied directly to the particular mathematical function, i.e. without 

any modification. As the mathematical functions are single objective functions and no 

equality criteria on the fitness functions values, no further formulation for objective 

function is required and the inequality constraints on the variables, if present, are taken 

care of in the PSO algorithm itself. 

Using particle swarm optimization the basic steps for solving the optimization problem 

is same as discussed before but if some modifications are provided then we can use it 

for any type of objective function. Here, we have used PSO for the optimization of 

some mathematical benchmark functions, which are as follows: 

 De jong’s function 

                                           n 

                            f(x)  =    ∑  xi
2
                                                                     (3.1) 

                                          i=1 

 

 Booth’s function 

                    f(x1,x2) = (x1 +  2 * x2  – 7 )
2
  +  ( 2 * x1  + x2 – 5 )

2
                       (3.2) 

 Beale function 

f(x1,x2) =(1.5-x1+x1*x2)^2+(2.25-x1+x1*x2^2)^2+(2.625-x1+x1*x2^3)^2 

                                                                                                                               (3.3) 
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 Axis parallel hyper-ellipsoid function 

     n 

                                                  f(x) =   ∑  (i * xi
2
)                                    (3.4) 

                                                              i=1 

 

 Rosenbrock function(2D) 

            f(x1,x2) = 100(x2-x1)
2
 +(x1-1)

2
                                                      (3.5) 

 Rosenbrock function(3D) 

                f(x1,x2)=100*( (x2-x1^2)^2 )+ (x1-1)^2 + 100*( (x3-x2).^2).^2) + (x2-1).^2; 

 Hyper-ellipsoid function    

      f(x1,x2)= x1^2 + 2 * x2^2 ;                                                         (3.7) 

 

 Rastrigin’s function 

             f(x1,x2) = 10 + (x1^2) - (10 * cos(2*pi*x1) );                            (3.8) 

3.2 THE DIFFERENT PARAMETERS USED IN PARTICLE 

SWARM OPTIMIZATION 

The various parameters of particle swarm optimization are as follows: 

1. No. of particles in the swarm, p. 

2. Max. no. of iteration, it. 

3. Random no. for personal and global factors rp and rg . 

4. Acceleration constant for the personal and global factors, cp and cg. 

5. Tolerance value, T. 

The values of these parameters for optimizing various mathematical benchmark 

functions were chosen as: 

1. P= 30 

2. it= 1000 

3. rp=0.5 and rg=0.6 

4. cp=2 and cg=2 
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5. T= 10^(-7) 

3.3 MATHEMATICAL RESULTS AND DISCUSSION 

Various benchmark functions and results obtained after application of PSO has been 

discussed as follows: 

3.3.1 Axisiparallel HYPER-Ellipsoidifunction 

    n 

       f(x) =   ∑  (i * xi
2
) 

                                                                           i=1 

Minimum value and range for the function are as follows: 

 Min. Value:   f(x1,x2)=0 

 Range :     -5.12 =< x1,x2 <= 5.12 

TABLE 3.1 Application of different inertia weights to Axisiparallel HYPER-Ellipsoid 

Function 

 No. of 

particles 

No. of 

iterations 

Function 

value 

X1 X2 X3 

Linearly 

decreasing 
30 185 1.052977e-13 -2.90284e-07 -9.719746e-08 -2.009151e-09 

       
Simulated 

annealing  

30 37 7.542848e-12 -5.24452e-07 -1.847722e-06 -3.82684e-07 

       
Constant IW 

 

        0.4 

        0.6 

        0.8 
 

 

 

30 

30 

30 

 

 

 
 

42 

98 

162 
 

 
 

8.61517e-13 

1.19253e-18 

3.41920e-14 
 

 
 

-7.1316e-08 
-4.54225e-10 

-1.3987e-07 
 

 
 

2.6742e-07 

-5.3095e-10 

6.07023e-08 
 

 
 

-2.4103e-07 

4.81666e-11 

-8.5200e-09 
 

 

Table 3.1 shows the application of PSO on the Axisiparallel HYPER-Ellipsoid function 

with different inertia weights. Simulated annealing method and constant inertia weight 

of 0.4 both provides the desired results in less time and with more accuracy as 

compared to linearly decreasing inertia weight and constant inertia weight with values 
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of 0.6 and 0.8 while constant inertia weight of 0.4 is more accurate as compared to 

simulated annealing. 

 

 

Fig 3.1 Movement of particle 1 of x1,x2 and x3 

Fig 3.1  shows the 3D view of change in the position values of paricle 1 of x1, x2 and 

x3 with the increase in number of iterations. It shows that as the iterations increases 

particle 1 tries to attain co-ordinates (0,0,0) i.e. x1=0, x2=0 and x3=0, for which 

function approaches it minimum value. 

3.3.2 Booth’s Function 
  

y(x1,x2) = (x1i+ 2*x2i– 7 )^ 2  +  ( 2*x1i+ x2 – 5 )^ 2 ; 

Minimum value and range for the function are as follows: 

 Min. Value:   y(x1,x2)=0 

 Range :     -10 =< x1,x2 <= 10 

 

Table 3.2 Application of different inertia weights to Booth’s Function 

 No. of particles No. of 

iterations 

Function value X1 X2 

Linearly 

decreasing 
30 134 5.341514e-10 1.000000e+00 3.000000e+00 
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Simulated 

annealing  

30 52 3.408260e-10 1.000002e+00 2.999998e+00 

 

 
     

Constant IW 

 

        0.4 

        0.6 

        0.8 
 

 

 
30 

30 

30 

 

 

 

 

30 
66 

119 
 

 

 

1.57313e-10 

3.465076e-15 

1.224909e-11 
 

 

 

9.999918e-01 

1.000000e+00 

1.000003e+00 
 

 

 

3.000009e+00 

3.000000e+00 

3.000000e+00 
 

 

Table 3.2 shows the application of PSO on the BOOTH’S function with different 

inertia weights. Simulated annealing method and constant inertia weight of 0.4 both 

provides the desired results in less time and with more accuracy as compared to linearly 

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while 

constant inertia weight of 0.4 is more accurate as compared to simulated annealing. 

Fig 3.2 Shows the variation of the function value with the increase in iterations and it 

can be seen that the function approaches its minimum value that is zero in this case as 

the iterations count increases. 

 
Fig 3.2 variation of function values with iterations 
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Fig 3.3 Movement of particle 1 of x1 and x2 

 

Fig 3.3 shows the change in the position values of paricle 1 of x1 and x2. It shows that 

as the iterations increases particle 1 tries to attain co-ordinates (1,3) i.e. x1=1 and x2=3, 

for which function approaches it minimum value. 

 3.3.3 Beale Function 

                   f(x1,x2) = (i1.5-x1+ix1*x2)^2+(2.25i-x1+x1*x2^2)^2+(2.625i-

x1+x1*x2^3)^2; 

Minimum value and range for the function are as follows: 

 Min. Value:   f(x1,x2)=0 

 Range :     -4.5 =< x1,x2 <= 4.5 

 

 

Table 3.3 Application of different inertia weights to Beale’s Function 

 No. of particles No. of 

iterations 

Function value X1 X2 

Linearly 

decreasing 
30 132 4.044835e-10 -7.305251e-06 2.031228e-06 

      
Simulated 

annealing  

30 22 4.42063e-12 -1.257050e-06 1.585567e-07 
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Constant IW 

 

        0.4 

        0.6 

        0.8 
 

 

 

30 

30 

30 

 

 

 

 

31 

76 

119 
 

 

 

1.847590e-10 

4.059354e-17 

1.904880e-11 
 

 

 

-1.311315e-05 

3.925190e-09 

3.950240e-06 
 

 

 

-2.530239e-06 

-2.802216e-09 

1.233997e-06 
 

 

Table 3.3 shows the application of PSO on the Beale’s function with different inertia 

weights. Simulated annealing method and constant inertia weight of 0.4 both provides 

the desired results in less time and with more accuracy as compared to linearly 

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while 

simulated annealing is more accurate and takes lesser computational time as compared 

to constant inertia weight of 0.4. 

 
Fig 3.4 Movement of particle 1 for x1 and x2 with iterations (3D view) 

 

Fig 3.4 shows the 3D view of change in the position values of paricle 1 of x1 and x2 

with the increase in number of iterations. It shows that as the iterations increases 

particle 1 tries to attain co-ordinates (0,0) i.e. x1=1 and x2=3, for which function 

approaches it minimum value. 
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3.3.4 Sphere’s Function 

      n 

f(x) =    ∑  xi
2
 

        i=1 

                                                                                                                 

                                                                                                         

Minimum value and range for the function are as follows: 

 Min. Value:   f(x1,x2)=0 

 Range :     -5.12 =< x1,x2 <= 5.12 

 

TABLE 3.4 Application of different inertia weights to Sphere’s Function 

 No. of 

particles 

No. of 

iterations 

Function 

value 

x1 X2 X3 

Linearly 

decreasing 
30 204 6.297194e-04 1.210595e-02 -1.267901e-02 -1.795573e-02 

       
Simulated 

annealing  

30 59 2.161785e-04 3.343558e-03 7.272390e-03 1.233335e-02 

       
Constant IW 

 

        0.4 

        0.6 

        0.8 
 

 

 

30 

30 

30 

 

 

 

 

45 

68 

149 
 

 

 

4.179781e-

04 

2.503011e-

03 

1.790865e-

03 
 

 

 

1.484689e-

02 

3.182450e-

02 

=2.765392e-

02 
 

 

 

5.736923e-

03 

-3.464515e-

02 

1.995319e-

02 
 

 

 

-1.283104e-

02 

-1.702719e-

02 

-2.505984e-

02 
 

 

 

Table 3.4 shows the application of PSO on the SPHERE’S function with different 

inertia weights. Simulated annealing method and constant inertia weight of 0.4 both 

provides the desired results in less time and with more accuracy as compared to linearly 

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while 

simulated annealing is more accurate as compared to constant inertia weight of 0.4. 
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3.3.5Rastrigin’s     Function                                                                                                                                                                   

                                                                      n 

                  f(x) =   ∑  ( xi
2
 – 10 *cos( 2* pi *xi)) 

                                                     i=1 

Minimum value and range for the function are as follows: 

 Min. Value:   f(x1,x2)=0 

 Range :     -5.12 =< x1,x2 <= 5.12 

Table 3.5 shows the application of PSO on the Rastrigin function with different inertia 

weights. Simulated annealing method and constant inertia weight of 0.4 both provides 

the desired results in less time and with more accuracy as compared to linearly 

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while 

constant inertia weight of 0.4 is more accurate as compared to simulated annealing. 

Table 3.5 Application of different inertia weights to Rastrigin’s Function 

 

 

 No. of particles No. of 

iterations 

Function value X1 

Linearly 

decreasing 
30 159 9.84107e-13 -3.109719e-09 

     
Simulated 

annealing  

30 70 0 -1.640973e-09 

     
Constant IW 

 

        0.4 

        0.6 

        0.8 
 

 

 

30 

30 

30 

 

 

 
 

52 

89 

185 
 

 
 

0 

0 

0 
 

 
 

2.480308e-09 
-1.092749e-09 

3.838570e-10 
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Fig 3.5  Movement of position of particle 1 of x1 with  iterations 

Fig 3.5  shows the variation of the position of particle 1 of x1 and it gives us the desired 

result of obtaining the zero value as the number of iterations increases. 

3.3.6 Dejong’s Function 

f(x1,x2)= x1(j,1)^2 + x2(j,1)^2 + x3(j,1)^2; 

Minimum value and range for the function are as follows: 

 Min. Value:   f(x1,x2)=0 

 Range :     -1 =< x1,x2 <= 1 

Table 3.6 Application of different inertia weights to Dejong’s Function 

 No. of 

particles 

No. of 

iterations 

Function 

value 

X1 X2 X3 

Linearly 

decreasing 
30 206 1.118761e-04 -6.825449e-03 5.561369e-03 5.861784e-03 

       
Simulated 

annealing  

30 60 8.930197e-05 -6.624732e-03 6.090060e-03 -2.885491e-03 

       
Constant IW 

 

        0.4 

        0.6 

        0.8 
 

 

 

30 

30 

30 

 

 

 
 

43 

70 

153 
 

 
 

7.9667e-04 

2.1869e-03 

8.8508e-04 
 

 
 

1.545415e-02 

1.276701e-02 

-1.47405e-02 
 

 
 

2.148686e-02 

4.051782e-02 

-1.65747e-02 
 

 
 

-9.80591e-03 

-1.95503e-02 

1.982660e-02 
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Table 3.6 shows the application of PSO on the Rastrigin function with different inertia 

weights. Simulated annealing method and constant inertia weight of 0.4 both provides 

the desired results in less time and with more accuracy as compared to linearly 

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while 

constant inertia weight of 0.4 is more accurate as compared to simulated annealing. 

3.3.7 Rosenbrock Function 

                                                              n-1 

f(x) =    ∑    [100(xi+1 - xi 
2
)

2
 + (1 -xi)

2
] 

                                                              i=1 

                                                              where , -2.048 < xi < 2.048, i = 

1,2,3....,n; 

3.3.7.1 Rosenbrock Function (2d) 

f(x1,x2)=100*((x2-(x1.^2)).^2)+(x1(1,j)-1).^2; 

 
Minimum value and range for the function are as follows: 

 Min. Value:   f(x1,x2)=0 

 Range :     -2.048 =< x1,x2 <= 2.048 

Table 3.7 Application of different inertia weights to Rosenbrock’s Function 

 No. of 

particles 

No. of 

iterations 

Function 

value 

X1 X2 

Linearly 

decreasing 
30 188 2.967168e-22 1.000000e+00 1.000000e+00 

      
Simulated 

annealing  

30 44 7.344731e-15 1.000000e+00 1.000000e+00 

      
Constant IW 

 

        0.4 

        0.6 

        0.8 
 

 

 

30 

30 

30 

 

 

 

 

45 

53 

55 
 

 

 

2.35023e-13 

2.434551e-0 

4.85839e-04 
 

 

 

9.999997e-01 

1.048215e+00 

1.022022e+00 
 

 

 

999993e-01 

1.099803e+00 

1.044437e+00 
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Table 3.7 shows the application of PSO on the Rosenbrock function with different 

inertia weights. Simulated annealing method and constant inertia weight of 0.4 both 

provides the desired results in less time and with more accuracy as compared to linearly 

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while 

constant inertia weight of 0.4 is more accurate as compared to simulated annealing. 

3.3.7.2 Rosenbrock Function (3d) 

f(x1,x2,x3)=100*((x2-(x1.^2).^2)+(x1-1).^2+100*((x3-(x2).^2).^2)+(x2-1).^2; 

Minimum value and range for the function are as follows: 

 Min. Value:   f(x1,x2,x3)=0 

 Range :     -2.048 =< x1,x2 <= 2.048 

Table3.8 Application of different inertia weights to Rosenbrock’s Function 

 No. of 

particles 

No. of 

iterations 

Function 

value 

X1 X2 X3 

Linearly 

decreasing 
30 188 2.967168e-22 1.000000e+00 1.000000e+00 1.000000e+00 

       
Simulated 

annealing  

30 44 7.344731e-15 1.000000e+00 1.000000e+00 1.000000e+00 

       
Constant IW 

 

        0.4 

        0.6 

        0.8 
 

 

 

30 

30 

30 

 

 

 
 

45 

53 

55 
 

 
 

2.3502e-13 

2.43451e-0 

4.8589e-04 
 

 
 

9.999997e-01 

1.048215e+00 

1.022022e+00 
 

 
 

9.99993e-01 

1.099803e+00 

1.044437e+00 
 

 
 

9999959e-01 

1.059603e+00 

1.034837e+00 
 

 

Table 3.8 shows the application of PSO on the Rosenbrock function with different 

inertia weights. Simulated annealing method and constant inertia weight of 0.4 both 

provides the desired results in less time and with more accuracy as compared to linearly 

decreasing inertia weight and constant inertia weight with values of 0.6 and 0.8 while 

constant inertia weight of 0.4 is more accurate as compared to simulated annealing. 
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Fig 3.6 Position vs iteration for particle 1 of x1 

Fig 3.6 shows the variation in the position of particle 1 i.e. x1 of particle 1. It shows the 

desired result of approaching zero value with the increase in number of iterations where 

function approaches its minimum value. 

              

Fig 3.7 Function value vs iteration on log scale 

Fig 3.7 Shows the variation of the function value with the increase in iterations and it 

can be seen that the function approaches its minimum value that is zero in this case as  



L 
 

the iterationscount increases.Log scale helps us to have a closer look on the initial 

movement of theparticle.

 

Fig 3.8 Convergence of particles with iterations 

Fig 3.8  Shows the convergence of all the particles at the optimum value with increase 

in the no. of iterations. Initially all the particles were located randomly in the search 

space but as iterations increases all particles move closer and closer and finally 

converge at a single point. The figure shows the initial position i.e. the position after 1
st

 

iteration, position after 20
th

 iteration, position after 40
th

 iteration, position after 60
th

 

iteration and final (global) position of the 30 particles of the swarm for solving 

rosenbrock‘s function of two variables. The figure also shows the location of global 

best position represented by the purple coloured circle.  
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Fig 3.9 All position co-ordinates of particle 1 vs iterations 

Fig3.9 shows the variation of the all the position co-ordinates of particle 1 with the 

increase in no. of iterations.Initially the variation is quite large and to have a beter view 

of initial movement of particles log scale is used and it is seen that with increase in the 

number of  iterations all the particles converge at a point giving the desired result 

corresponding to the optimum value of x1=x2=x3=1. 

3.4 DISCUSSION 

The results obtained when PSO algorithm is applied on mathematically benchmark 

functions show that the optimum values are obtained successfuly for all the benchmark 

functions taken into account namely Axis Hyper-Ellipsoid, Beale‘s, Dejong’s, Booth‘s, 

Rosenbrock‘s, Sphere and Rastrigin’s function. The values for random numbers r1=0.5 

and r2=0.6 and constriction factors cp=2 and cg =2 are used in the velocity 

modification equation. It is observed that while keeping constriction factors and 

random numbers of constant values and varying the inertia weight( simulated annealing 

method, constant inertia weight method or linearly decreasing method) gives different 

computational time. The simulated annealing method was found to be most accurate 

and in all the cases it took lesser number of iterations as compared to linearly 

decreasing method and constant inertia weight except in some cases where constant 

inertia weight of 0.4 provided the least computational time(rastigin’s function, dejong’s 

function, sphere function).  
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CHAPTER 4: 

ECONOMIC LOAD DISPATCH 

4.1 PROBLEM FORMULATION IN 2-D SPACE WITH EQUALITY 

CONSTRAINTS 

Ojective function being used to minimizeitheicost of generation is given as : 

               
  
                                                                                          (4.1) 

Where: 

Ci Pgi = aiPgi
2 +biPgi+ci

 G
i=1                                                                               (4.2) 

Where: 

Pgi isithe active powerigeneration at the i
th

 generator. 

Ci is the costiof generationifor i
th

 generator. 

NG is the totalinumber ofigeneratorsiin the system. 

ai, bi, ci are fuel cost coefficients of i
th

 generator. 

The objective function used to find the systemitransmission losses is given as: 

  =  PgmBmnPgn
 G
n=1

 G
m=1 + BomPgm

 G
m=1 +Boo                                                 (4.3) 

Where 

Pgm, Pgn   is the activeipower at the m
th

 and n
th

 generator. 

NG     is the totalinumber of generators in the system. 

Bmn, Bom, Boo    are loss coefficients.  

The cost and loss coefficients of various generators are given in Table 4.1 and 4.2. 
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TABLE 4.1Values of Cost Coefficients 

 Coefficient G1 G2 G3 

5-BUS A 0.0050 0.0050 …… 

B 3.510 3.889 …… 

C 44.40 40.60 …… 

14-BUS A 0.005 0.005 0.005 

B 3.510 3.890 2.450 

C 44.40 40.60 105 

30-BUS A 0.005 0.005 0.005 

B 3.510 3.890 2.450 

C 44.40 40.6 105 

 
 TABLE 4.2Values of Loss Coefficients 

 
 

 

 

 

 

 

The 

method used in this thesis, has been developed by Kron and adopted by Kirchmayer, 

which is the loss coefficient method. 

Mathematically, the problem is to minimize 

F= [FC (Pg1, Pg2, Pg3... PgNG) 

Where  

B11 0.0003489 0.0003489 0.0003069 

B12 0.000086 0.000068 0.0001289 

B13 --- -0.0000389 0.000002 

B22 0.000371 0.0001570 0.0001520 

B23 --- 0.000015 0.0000110 

B33 --- 0.000274 0.000189 

B01 --- 0.000044 --- 

B02 --- 0.000024 --- 

B03 --- 0.000000 --- 

B00 --- 0.000254 --- 
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F = WCFC                                                                                                       (4.4) 

Subject to the constraints: 

Equality constraint 

 Pgi
 G
i=1 =PD+P                                                                                           (4.5) 

Inequality constraint 

Pgimin ≤ Pgi ≤ Pgimaxi = 1, 2... NG                                                                    (4.6) 

Power outputs from the generators are taken as the independent decision variables of 

the problem. 

Where: 

F  objective function to be optimized 

FC  cost of the generation 

FL  system transmission losses 

Pg1, Pg2... PgNG are the generations at the generators. 

PD  is the total load demand. 

PL  is the system transmission losses. 

NG  is the no. of generators. 

Pgi  generation from i
th

 generator 

Pgimin  minimum generation possible from i
th
generator 

Pgimax  maximum generation possible from i
th

 generator 
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4.2COMPUTATIONAL PROCEDURE FOR APPLICATION OF PSO IN    

       ECONOMIC LOAD DISPATCH 
 

Particle Swarm Optimization (PSO) has been used to perform the optimization of ELD 

function. To consider the equality constraint of the problem, the function has been 

modified by inclusion of a parameter K. The objective function becomes as follows: 

F=WCFC+K (PD+PL-PG)                                                                                 (4.7) 

Where: 

Parameter K is fixed at 100 for all three IEEE 5, 14 and 30 bus systems. Different  

values of K were considered and it was observed that ELD problem converged  

when it was fixed to 100 for all the systems. 

Inequality constraints have been considered in the PSO programming which is done in 

the MATLAB. The program checks the power output of each particle for each 

generator in each iterations and the power is tied to the corresponding limit violated. 

Logic to implement the inequality constraint is as shown below: 

for i=1: NG 

for m=1: p 

 if Pgi< Pgimin 

 Pgi = Pgimin 

  end 

  if Pgi> Pgimax 

  Pgi = Pgimax 

  end 

  end 

  end 
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The optimum solution is obtained when the 

i. Change in the value of Economic Load Dispatch function during 

successive iterations is less than the limit specified which is ε=10
-7

 and 

ii. The equality constraint is satisfied such that the absolute value of 

difference between generation, demand and losses is less than ε=10
-7

.  

Population sizeiof the swarm and the maximum number of iteration can be selected by 

the user of the program in run time. We have chosen 30 particles in the swarm and 

1000 as the maximum number of iterations. 

With the help of MATLAB, we generate randomly the initial position and velocity of 

particles. To increase the convergence rate, limits are imposed on position of particles. 

Here positions i.e. the generations are decision variables. The maximum and minimum 

limits on the velocity have been assigned as Vmin = –Pgimin/2 and Vmax = Pgimax/2 

respectively. The velocities are fixed to the values of corresponding limits if violated 

during the iterations. Initial values of personal best and global best have been taken as 

the initial value randomly generated by MATLAB. 
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Flowchart of solution of Economic Load Dispatch problem using PSO is shown in Fig. 

4.1. 
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Fig. 4.1 Flow chart of implementation of PSO on ELD 

The sequence for the solution of Economic Load Dispatch problem using Particle 

Swarm Optimization technique is explained as follows: 

1.  ix the no. of particles ‘p’ in swarm and set the no. of maximum iterations itmax. 

2. Fix the cost coefficients, loss coefficients, and load demand and generator limits of 

all the generators. 

3. Generate Xij
k
 and Vij

k
, the initial random positions (i.e. generations) and velocity 

(i.e. updation factor) respectively. 

4. Set iteration count K = 0. 

5. Calculate the losses for each particle, using the eq. (4.3). 

6. Calculate the value of ELD function using eq. (4.7). 
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7. At 0
th
 iteration the personal and global best positions (i.e. generations) are same as 

the initial random positions (i.e. generations). 

8. Increase the iteration count k by 1 using k=k+1. 

9. Calculate the velocity (i.e. positions updation factor) of each particle using eq. (2.1). 

10.Check if velocity is within the limits. Fix the velocity to the limit violated. 

11.Calculate the new positions (i.e. generations) of the particles by evaluating eq. (2.2). 

12.Check if generations (i.e. positions) of each particle are within the generator limits, 

if not fix the generation to the limit violated. 

13.Calculate ELD function for the new positions (i.e. generations) generated. 

14.Update Xpbest and Xgbest values by comparing ELD function values. 

15.Check if both the stopping criteria are satisfied, if not then go to step 9, else stop. 

16.Output the values of cost of generation and system transmission losses. 

4.3 COMPUTATIONAL RESULTS IN 2D SPACE 
 

Three standard test systems have been taken into account in the economic load dispatch 

function in order to examine the cost of generation aspects and detailed studies have 

been carried out in table 4.3 to 4.6. 

TABLE  4.1 Variation of no of iteration required with different IPSO  

for IEEE 5bus system 
 

 

 No. of 

particles 

No. of 

iterations 

Fc( $/h) P1 P2 

Linearly 

decreasing 
30 208 762.44 87.56 77.55 

      
Simulated 

annealing  

30 65 761.19 95.40 69.78 

      
Constant IW 

 

        0.4 

        0.6 

 

 

30 

30 

 

 

51 

74 

 

 

761.4 

761.84 

 

 

92.93 

90.19 

 

 

72.22 

74.93 
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        0.8 
 

30 

 

 

162 
 

761.27 
 

94.25 
 

70.92 
 

 

TABLE 4.2 Variation of no of iteration required with different IPSO for IEEE 

14bus system 
 

 No. of 

particles 

No. of 

iterations 

Fc( $/h) P1 P2 P3 

Linearly 

decreasing 
30 176 1149.7 160.07 46.71 62.91 

       
Simulated 

annealing  

30 58 1145.502 155.73 58.829 54.961 

       
Constant IW 

 

        0.4 

        0.6 

        0.8 
 

 

 

30 

30 

30 

 

 

 

 

52 

67 

196 
 

 

 

1146.43 

1146.54 

1146.58 
 

 

 

132.86 

135.98 

139.08 
 

 

 

78.05 

70.02 

65.63 
 

 

 

57.05 

62.04 

63.50 
 

 

TABLE 4.3 Variation of no of iteration required with different IPSO for IEEE 

30bus system 

 No. of 

particles 

No. of 

iterations 

Fc( $/h) P1 P2 P3 

Linearly 

decreasing 
30 222 1259.70 149.67 98.2 47.95 

       
Simulated 

annealing  

30 71 1256.057 154.72 81.15 59.63 

       
Constant IW 

 

        0.4 

        0.6 

        0.8 
 

 

 

30 

30 

30 

 

 

 

 

58 

80 

202 
 

 

 

1256.21 

1256.307 

1277.97 
 

 

 

157.2 

155.79 

114.19 
 

 

 

77.8 

77.34 

79.54 
 

 

 

60.61 

62.32 

98.60 
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For IEEE 5 bus system simulated annealing inertia weight varying technique gives the 

lowest cost of production while linearly decreasing gives the worst result along with 

the largest computational time. 

For IEEE 14 bus system simulated annealing inertia weight varying technique again 

gives the lowest cost of production while worst result is given by linearly decreasing 

function and largest computational time is taken by constant inertia weight of 0.8. 

For IEEE 30 bus system  simulated annealing inertia weight varying technique gives 

the lowest cost of production again while constant inertia weight of 0.8 gives the worst 

result. 

Overall it can be concluded that for all the three IEEE bus systems invoved in this work 

simulated annealing inertia weight varying technique provides the best computational 

results. 
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CHAPTER 5: 

CONCLUSION AND FUTURE DIRECTIONS 

5.1CONCLUSIONS 

The Particle Swarm Optimization technique hasibeen applied to various benchmark 

functions and optimu values are obtained in each case. It has been experimentally 

found that simulated annealing inertia weight varying technique gives out the best 

results. 

In this thesis ELD problem has been solved for IEEE 5,i14 and 30 bus systems taking 

cost of generation as an objective to be minimised. Inequality constraints of the 

problem have been handled by the PSO programming whereas equality constraint of 

ELD problem has been considered using penalty parameter k. The results show that the 

computational time and the number of iterations are considerably reduced while using 

simulated annealing inertia weight varying technique. This work shows that simulated 

annealing inertia weight varying technique provides better results when comaperd to 

constant inertia weight of 06 and 0.8 and linearly decreasing inertia weight function 

taking computational time and optimum values as the basis of comparision and 

constant inertia weight of 0.4 also provide as good results as that provided by simulated 

annealing inertia weight varying technique but constant inertia weight has the 

disadvantage of getting trapped in the local minima so in multi-objective functions the 

performance of constant inertia weight will always remain under consideration but no 

such risk is involved with simulated annealing inertia weight varying technique. 

5.2 FUTURE DIRECTION                                                                                         

In this work one of the parameter in the PSO algorithm is varied i.e. inertia weight 

while keeping other  parameters constant.So, there is a lot of scope available in the area 

of PSO,  as one can consider different selection criterias for varying different constant 

parameters such as random no.s (rp & rg) and acceleration coefficients (cp & cg). In 

this work for soving the ELD problem only cost of fuel is taken into account while one 

can work while considering different objectives of power system as loses in the system, 

security, environmental degradation due to pollution etc.      
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APPENDIX- I 

 

1) IEEE 5 BUS SYSTEM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. I-A: BUS-CODE DIAGRAM OF 5 BUS SYSTEM 
 
 
 

TABLE I-A: LINE DATA or IMPEDANCE DATA (5 BUS SYSTEM) 
 

LINE DESIGNATION *R(p.u.) *X(p.u.) LINE CHARGING 

1-2 0.10 0.4 0.0 

1-4 0.15 0.6 0.0 

1-5 0.05 0.2 0.0 

2-3 0.05 0.2 0.0 

2-4 0.10 0.4 0.0 

3-5 0.05 0.2 0.0 
    

*The impedance are based on MVA as 100 
 

 

TABLE I-B: BUS DATA or OPERATING CONDITIONS (5 BUS SYSTEM) 

  GENERATION  LOAD 

BUS NO. MW VOLTAGE MAGNITUDE MW  MVAR 

1* - - - 1.02 - - -  - - - 

2 - - - - - - 60  30 

3 100 1.04 - - -  - - - 

4 - - - - - - 40  10 

5 - - - - - - 60  20 

*Slack Bus      



LXVI 
 

TABLE I-C: REGULATED BUS DATA (5 BUS SYSTEM) 

BUS VOLTAGE MVAR CAPACITY MW CAPACITY 

NO. MAGNITUDE MINIMUM MAXIMUM MINIMUM MAXIMUM 

1 1.02 0.0 60 30 120 
      

3 1.04 0.0 60 30 120 
      

 

The nodal load voltage inequality constraints are 0.9≤Vi≤1.05 

 

Cost characteristics of IEEE 5 bus system 
 
The cost characteristics of the IEEE 5 Bus System are as 

follows: C1=50p1
2
+351p1+44.4 $/hr. 

 

C3=50p3
2
+389p3+40.6 $/hr. 

 
Here, the total load demand of the system is 160 MW. Maximum and minimum 

 
active power constraint on the generator bus for the given system is 120 MW and 30 

 
MW respectively. Voltage magnitude constraint for generator at bus 3 is 1.04 pu. 

 
 
 

M-file For Calculating B- Coefficients: 
 
Clear 
basemva=100 
accuracy=0.0001 
maxiter=10  
busdata=[1 1 1.02 0 0 0 0 0 0 60 0;2 0 1 0 60 30 0 0 0 0 0;3 2 1.04 0 0 0 82 0 0 60 
0;4 0 1 0 40 10 0 0 0 0 0;5 0 1 0 60 20 0 0 0 0 0];  
Linedata=[1 2 0.10 0.4 0 1;1 4 0.15 0.6 0 1; 1 5 0.05 0.2 0 1;2 3 0.05 0.2 0 1;2 4 0.10 
0.4 0 1;3 5 0.05 0.2 0 1];  
disp(busdata) 

 
disp(linedata) 
mwlimit=[30 120;30 
120]; Ifybus  
Ifnewton 
busout 
bloss 

 

B-Coefficient Calculated is as: 
 
B11 = 0.00035336 B12 = 0.0000103196 

B21 = 0.0000103196 B22 = 0.000368992 
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2) IEEE 14 BUS SYSTEM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. I-B: BUS-CODE DIAGRAM OF 14 BUS SYSTEM 
 
 

TABLE I-D: IMPEDANCE & LINE-CHARGING DATA (14 BUS SYSTEM) 

Line Resistance Reactance Line Tap Setting 
Designation p.u. * p.u. * Charging  

1-2 0.019379 0.059170 0.0264 1 

1-5 0.054029 0.223040 0.0264 1 

2-3 0.046980 0.197970 0.0219 1 

2-4 0.058110 0.176320 0.0187 1 

2-5 0.056950 0.173880 0.0170 1 

3-4 0.067010 0.171030 0.0173 1 

4-5 0.013350 0.042110 0.0064 1 

4-7 0 0.20912 0 1 

4-9 0 0.55618 0 1 

5-6 0 0.25202 0 1 

6-11 0.09498 0.19890 0 1 

6-12 0.12291 0.25581 0 1 

6-13 0.06615 0.13027 0 1 

7-8 0 0.17615 0 1 

7-9 0 0.11001 0 1 

9-10 0.03181 0.08450 0 1 

9-14 0.12711 0.27038 0 1 

10-11 0.08205 0.19207 0 1 

12-13 0.22092 0.19988 0 1 

13-14 0.17093 0.34802 0 1 

* Impedance and line-charging susceptance in p.u. on a 100 MVA base. 
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TABLE I-E: BUS DATA or OPERATING CONDITIONS (14 BUSSYSTEM) 

 

Bus   Voltage Generation  Load 

No.  Magnitude Phase angle MW MVAR MW  MVAR 

   (in pu) (deg.)       

1*  1.06 0 0 0 0  0  

2  1 0 40 0 21.7  12.7  

3  1 0 0 0 94.2  19.0  

4  1 0 0 0 47.8  -3.9  

5  1 0 0 0 7.6  1.6  

6  1 0 0 0 11.2  7.5  

7  1 0 0 0 0  0  

8  1 0 0 0 0  0  

9  1 0 0 0 29.5  16.6  

10  1 0 0 0 9.0  5.8  

11  1 0 0 0 3.5  1.8  

12  1 0 0 0 6.1  1.6  

13  1 0 0 0 13.5  5.8  

14  1 0 0 0 14.9  5.0  

*Slack Bus        

TABLE I-F: REGULATED BUS DATA (14 BUS SYSTEM)    

      

Bus no.  Voltage magnitude Minimum MVAR Maximum MVAR  

   ( in pu)  capability  capability  
           

2   1.05  -40  50    

3   1.010  0  40    
           

6   1.070  -6  24    
           

8   1.090  -6  24    
           

 

 

Cost characteristics of IEEE 14 bus system 

 

The cost characteristics of the IEEE 14 Bus System are as 

follows: C1 = 50p1
2
+245p1+105 $/hr. 

 

C2 = 50p2
2
+351p2+44.4 $/hr. 

 

C6 = 50p6
2
+389p6+40.6 $/hr. 

 
Here, the total load demand of the system is 259 MW. The maximum active 

power constraint is 200 MW, 100MW and 100 MW for the generators of bus no. 1, 2 

and 6 respectively. The minimum active power constraint is 50 MW, 20MW and 20 

MW for the generators of bus no. 1, 2 and 6 respectively. Voltage magnitude 
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constraint for generator at bus 2 is 1.045, for bus no. 6 is 1.070, for bus no. 3 is 1.010 
 
& for bus no. 8 is 1.090. 

M-file For Calculating B- Coefficients: 

Clear 
basemva=100 
accuracy=0.0001 
maxiter=10  
busdata=[1 1 1.06 0 0 150 0 0 0 0 0;2 2 1.045 0 21.7 12.7 63.11 0 -40 50 0;3 0 1.01 0 
94.2 19 0 0 0 40 0;4 0 1 0 47.8 -3.9 0 0 0 0 0;5 0 1 0 7.6 1.6 0 0 0 0 0;6 2 1.07 0 11.2 
7.5 77.12 0 -6 24 0;7 0 1 0 0 0 0 0 0 0 0;8 0 1.09 0 0 0 0 0 -6 24 0 ;9 0 1 0 29.5 16.6 0 
0 0 0 0; 10 0 1 0 9 5.8 0 0 0 0 0;11 0 1 0 3.5 1.8 0 0 0 0 0;12 0 1 0 6.1 1.6 0 0 0 0 
0;13 0 1 0 13.5 5.8 0 0 0 0 0;14 0 1 0 14.9 5 0 0 0 0 0]; 
 
linedata=[1 2 0.01938 0.05917 0.0264 1;1 5 0.05403 0.22304 0.0246 1; 2 3 0.04699 
0.19797 0.0219 1; 2 4 0.05811 0.17632 0.0170 1; 2 5 0.05695 0.17388 0.0173 1; 3 4 
0.06701 0.17103 0.0064 1; 4 5 0.01335 0.04211 0.0 1; 4 7 0.0 0.20912 0.0 0.978; 4 9 
0.0 0.55618 0.0 0.969;5 6 0.0 0.25202 0.0 0.932; 6 11 0.09498 0.19890 0.0 1;6 12 
0.12291 0.25581 0.0 1;6 13 0.06615 0.13027 0.0 1;7 8 0.0 0.17615 0.0 1; 7 9 0.0 
0.11001 0.0 1; 9 10 0.03181 0.08450 0.0 1;9 14 0.12711 0.27038 0.0 1; 10 11 
0.08205 0.19207 0.0 1;12 13 0.22092 0.19988 0.0 1;13 14 0.17093 0.34802 0.0 1]; 
disp(busdata)  
disp(linedata)  
mwlimit=[50 200;20 100;20 
100] Ifybus  
Ifnewton 
busout 
bloss 

 

B-Coefficient Calculated is as: 
 
B11 = 0.0231 B12 = 0.0078 B13 = -0.0007 

B21 = 0.0078 B22=0.0182 B23= 0.0022 

B31=-0.0007 B32= 0.0022 B33= 0.0329 
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C) IEEE 30 BUS SYSTEM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. I-C: BUS-CODE DIAGRAM OF 30 BUS SYSTEM 
 
TABLE I-G: IMPEDANCE & LINE-CHARGING DATA (30 BUS SYSTEM) 

Line Resistance Reactance Line Tap Setting 
Designation p.u.* p.u.* Charging  

1-2 0.0192 0.0575 0.0264 1 

1-3 0.0452 0.1852 0.0204 1 

2-4 0.0570 0.1737 0.0184 1 

3-4 0.0132 0.0379 0.0042 1 

2-5 0.0472 0.1983 0.0209 1 

2-6 0.0581 0.1763 0.0187 1 

4-6 0.0119 0.0414 0.0045 1 

5-7 0.0460 0.1160 0.0102 1 

6-7 0.0267 0.0820 0.0085 1 

6-8 0.0120 0.0420 0.0045 1 

6-9 0 0.2080 0 0.978 

6-10 0 0.5560 0 0.969 

9-11 0 0.2080 0 1 

9-10 0 0.1100 0 1 

4-12 0 0.2560 0 0.932 

12-13 0 0.1400 0 1 

12-14 0.1231 0.2559 0 1 

12-15 0.0662 0.1304 0 1 
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12-16 0.0945 0.1987 0 1 

14-15 0.2210 0.1997 0 1 

16-17 0.0824 0.1923 0 1 

15-18 0.1070 0.2185 0 1 

18-19 0.0639 0.1292 0 1 

19-20 0.0340 0.0680 0 1 

10-20 0.0936 0.2090 0 1 

10-17 0.0324 0.0845 0 1 

10-21 0.0348 0.0749 0 1 

10-22 0.0727 0.1499 0 1 

21-22 0.0116 0.0236 0 1 

15-23 0.1000 0.2020 0 1 

22-24 0.1150 0.1790 0 1 

23-24 0.1320 0.2700 0 1 

24-25 0.1885 0.3292 0 1 

25-26 0.2544 0.3800 0 1 

25-27 0.1093 0.2087 0 1 

27-28 0 0.3960 0 0.968 

27-29 0.2198 0.4153 0 1 

27-30 0.3202 0.6027 0 1 

29-30 0.2399 0.4533 0 1 

8-28 0.0636 0.2000 0.0214 1 

6-28 0.0169 0.0599 0.0065 1 

*Impedance and line-charging susceptance in p.u. on a 100 MVA base. 

 

TABLE I-H: BUS DATA or OPERATING CONDITIONS (30 BUS SYSTEM) 

Bus Voltage Generation  Load 

No. Magnitude Phase angle MW MVAR MW  MVAR 

 (in pu) (deg.)      

1* 1.06 0 0 0 0  0 

2 1 0 40 0 21.7  12.7 

3 1 0 0 0 2.4   

4 1 0 0 0 7.6   

5 1 0 0 0 94.2   

6 1 0 0 0 0  0 

7 1 0 0 0 22.8  10.9 

8 1 0 0 0 30.0  30.0 

9 1 0 0 0 0  0 

10 1 0 0 0 5.8  2.0 

11 1 0 0 0 0  0 

12 1 0 0 0 11.2  7.5 

13 1 0 0 0 0  0 

14 1 0 0 0 6.2  1.6 

15 1 0 0 0 8.2  2.5 

16 1 0 0 0 3.5  1.8 

17 1 0 0 0 9.0  5.8 

18 1 0 0 0 3.2  0.9 
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19 1 0 0 0 9.5 3.4 

20 1 0 0 0 2.2 0.7 

21 1 0 0 0 17.5 11.2 

22 1 0 0 0 0 0 

23 1 0 0 0 3.2 1.6 

24 1 0 0 0 8.7 6.7 

25 1 0 0 0 0 0 

26 1 0 0 0 3.5 2.3 

27 1 0 0 0 0 0 

28 1 0 0 0 0 0 

29 1 0 0 0 2.4 0.9 

30 1 0 0 0 10.6 1.9 

*Slack Bus 

 

TABLE I-I: REGULATED BUS DATA (30 BUS SYSTEM) 

Bus no. Voltage magnitude Minimum MVAR Maximum MVAR 
 ( in pu) capability capability 

2 1.045 -40 50 

5 1.01 -40 40 

8 1.01 -10 40 

11 1.082 -6 24 

13 1.071 -6 24 

 

TABLE I-J: TRANSFORMER DATA (30 BUS SYSTEM) 

Transformer designation Tap setting* 

4-12 0.932 

6-9 0.978 

6-10 0.969 

28-27 0.968  
*Off nominal turns ratio, as determined by the actual transformer-tap position and the 
voltage bases. In the case of nominal turns ratio, this would equal to 1. 

 

TABLE I-K: STATIC CAPACITOR DATA (30 BUS SYSTEM) 

Bus no Susceptance*p.u. 

10 0.19 

24 0.043 

*Susceptance in p.u. on 100 MVA base. 
 
 

Cost characteristics of IEEE 30 bus system: 
 
The cost characteristics of the IEEE 30 Bus System are as follows: 

C1 = 50p1
2
+245p1+105 $/hr 

 

C2 = 50p2
2
+351p2+44.4 $/hr 

 

C8 = 50p8
2
+389p8+40.6 $/hr 
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The total load demand of the IEEE 30 bus system is 283.4 MW. The maximum 
 
active power constraint is 250 MW, 100MW and 100 MW for the generators of bus no. 
 
1, 2 and 8 respectively. The minimum active power constraint is 50 MW, 30MW and 30 
 
MW for the generators of bus no. 1, 2 and 8 respectively. Voltage magnitude constraint 
 
for generator at bus 2 is 1.045, for bus no. 5 is 1.01, for bus no. 8 is 1.010, for bus no. 11 
 
is 1.082 &for bus no. 13 is 1.071. 
 

 

M-file For Calculating B- Coefficients: 

 
Clear basemva=100 
accuracy=0.0001 
maxiter=10  
busdata=[1 1 1.06 0 0 0 0 0 0 0 0;2 2 1.045 0 21.7 12.7 90 0 -40 50 0; 3 0 1 0 2.4 1.2 0 0 0 0 
0;4 0 1 0 7.6 1.6 0 0 0 0 0;5 0 1.01 0 94.2 19 0 0 -40 40 0; 6 0 1 0 0 0 0 0 0 0 0; 7 0 1 0 22.8 

10.9 0 0 0 0 0;8 2 1.010 30 30150 0 -10 40 0; 9 0 1 0 0 0 0 0 0 0 0; 10 0 1 0 5.8 2 0 0 0 0 
0.19; 11 0 1.082 0 0 0 0 0 -6 24 0; 12 0 1 0 11.2 7.5 0 0 0 0 0; 13 0 1.071 0 0 0 0 0 -6 24 0; 14 

0 1 0 6.2 1.6 0 0 0 0 0;15 0 1 0 8.2 2.5 0 0 0 0 0;16 0 1 0 3.5 1.8 0 0 0 0 0; 17 0 1 0 9 5.8 0 0 0 

0 0; 18 0 1 0 3.2 0.9 0 0 0 0 0; 19 0 1 0 9.5 3.4 0 0 0 0 0; 20 0 1 0 2.2 0.7 0 0 0 0 0;21 0 1 0 
17.5 11.2 0 0 0 0 0;22 0 1 0 0 0 0 0 0 0 0;23 1 0 3.2 1.6 0 0 0 0 0; 24 0 1 0 8.7 6.7 0 0 0 0 

0.043; 25 0 1 0 0 0 0 0 0 0 0;26 0 1 0 3.5 2.3 0 0 0 0 0; 27 0 1 0 0 0 0 0 0 0 0; 28 0 1 0 0 0 0 0 
0 0 0;29 0 1 0 2.4 0.9 0 0 0 0 0; 30 0 1 0 10.6 1.9 0 0 0 0 0]; linedata=[1 2 0.0192 0.0575 

0.0264 1;1 3 0.0452 0.1852 0.0204 1; 2 4 0.0570 0.19797 0.0219 1; 2 4 0.05811 0.17632 
0.0170 1; 2 5 0.05695 0.17388 0.0173 1; 3 4 0.06701 0.17103 0.0064 1; 4 5 0.01335 0.04211 

0.0 1; 4 7 0.0 0.20912 0.0 0.978; 4 9 0.0 0.55618 0.0 0.969;5 6 0.0 0.25202 0.0 0.932; 6 11 
0.09498 0.19890 0.0 1;6 12 0.12291 0.25581 0.0 1;6 13 0.06615 0.13027 0.0 1;7 8 0.0 

0.17615 0.0 1; 7 9 0.0 0.11001 0.0 1; 9 10 0.03181 0.08450 0.0 1;9 14 0.12711 0.27038 0.0 
1; 10 11 0.08205 0.19207 0.0 1;12 13 0.22092 0.19988 0.0 1;13 14 0.17093 0.34802 0.0 1];  
disp(busdata) 

disp(linedata)  
mwlimit=[50 150;50 150;50 150] 
Ifybus  
Ifnewton 
busout bloss 

 

B-Coefficient Calculated is as: 
 
B11 = 0.0307 B12 = 0.0129 B13 = 0.0002 

B21 = 0.0129 B22=0.0152 B23= - 0.0011 

B31=0.0002 B32=- 0.0011 B33= 0.0190 
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APPENDIX II 

MATLAB Program for optimization of benchmark functions using PSO. 
 

HYPER-ELLIPSOID FUNCTION 

clear all 
clc 
nop=input('enter value for no. of particles='); 
%itermax=input('enter value of itermax='); 
itermax=1000; 
x1=zeros(itermax,nop);  
x2=zeros(itermax,nop); 
v1=zeros(itermax,nop); 
v2=zeros(itermax,nop); 
x1(1,:)=unifrnd(-5.12,5.12,1,nop); 
x2(1,:)=unifrnd(-5.12,5.12,1,nop); 
v1(1,:)=rand(1,nop); 
v2(1,:)=rand(1,nop); 
for j=1:nop 
    pbest(1,j)=x1(1,j); 
    pbest(2,j)=x2(1,j); 
       y(1,j)=(x1(1,j)).^2 + 2 * (x2(1,j)).^2; 
end 
%wmax=input('enter value of wmax='); 
%wmin=input('enter value of wmin='); 
%c1=input('enter value of c1='); 
%c2=input('enter value of c2='); 
%r1=input('enter value of r1='); 
%r2=input('enter value of r2='); 
c1=2; 
c2=2; 
r1=0.5; 
r2=0.6; 
min=y(1,1); 
    b=1; 
    for j=2:nop 
        if y(1,j)<min 
            min=y(1,j); 
            b=j; 
        end 
    end 
    q=b; 
    gbest(1,1)=x1(1,b); 
    gbest(1,2)=x2(1,b); 
     
    gbes(1,1)=gbest(1,1); 
    gbes(1,2)=gbest(1,2); 
     
    for j=1:nop 
    prevfn(1,j)=y(1,j); 
    end 
   t=1; 
    for i=2:itermax 
    for j=1:nop 
    %for inertia weight W 
  % wmax=0.9; 
   % wmin=0.4; 
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w(1,1)=0.8; 
%w(i,1)= wmin+ (wmax-wmin)* (0.95)^ (i-2); 
        %w(i,1)= (wmax-(((wmax-wmin)/itermax)*(i-1))); 
        v1(i,j)= w(1,1)*v1(i-1,j)+c1*r1*(pbest(1,j)-(x1(i-1,j)))+c2*r2*(gbest(1,1)-(x1(i-1,j))); 
    v2(i,j)= w(1,1)*v2(i-1,j)+c1*r1*(pbest(2,j)-(x2(i-1,j)))+c2*r2*(gbest(1,2)-(x2(i-1,j))); 
     
    x1(i,j)=v1(i,j)+x1(i-1,j); 
    x2(i,j)=v2(i,j)+x2(i-1,j); 
     
    newfn(i,j)=(x1(i,j)).^2 + 2 * (x2(i,j)).^2; 
    if newfn(i,j)<prevfn(1,j) 
            prevfn(1,j)=newfn(i,j); 
            pbest(1,j)=x1(i,j); 
            pbest(2,j)=x2(i,j); 
             
        end 
        y(i,j)=newfn(i,j); 
    end 
    min=y(i,1); 
    p=1; 
    for j=2:nop 
        if y(i,j)<min 
            min=y(i,j); 
            p=j; 
        end 
    end 
    gbes(i,1)=x1(i,p); 
        gbes(i,2)=x2(i,p); 
         
        if y(i,p)<y(t,q)     
            gbest(1,1)=gbes(i,1); 
            gbest(1,2)=gbes(i,2); 
             
            t=i; 
            q=p; 
        end 
        for j=1:nop 
        df(i,j)= abs(y(i,j)-y((i-1),j)) ; 
    end 
         
        ki=0; 
    for j=1:nop 
        if (df(i,j)<=10^(-7)) 
            ki=ki+1; 
        end 
    end 
    if ki >= nop 
       break 
    end 
    end 
    disp(sprintf('min value of function is %d and at values of x1=%d and x2=%d ',min,gbest(1,1),gbest(1,2))) 
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DEJO G’S  U CTIO  

 

clc 
disp(' we have to minimize f = 100(x1^2-x2)^2+(1-x1)^2 i.e. rosenbrock function') 
p=input('Enter the no. of particles in a swarm');           %no. of particles 
it=input('Enter the no. of iterations'); 
x1=zeros(p,it); %no. of iterations are pre decided that is it will be maximum 50 
x2=zeros(p,it); 
x3=zeros(p,it); 
v1=zeros(p,it); 
v2=zeros(p,it); 
v3=zeros(p,it); 
f=zeros(p,it); 
x1g=zeros(p); 
x2g=zeros(p); 
x3g=zeros(p); 
fp=zeros(1,p); 
df=zeros(1,(it-1)); 
rp=0.5; 
rg=0.6; 
cp=2; 
cg=2; 
T=input('Enter the tolerance value'); 
% Initial values i.e. 0th iteration 
% x1(:,1)=[1.5605 0.7795 0.4834 0.8078 0.1929 0.2639 1.8841 1.9123 1.1504 0.1196 0.4696 0.7063 1.6424 

0.0308 0.0860 0.3380 1.2982 1.4634 1.2955 0.9018];    
% x2(:,1)=[1.0940 0.5926 1.4894 0.3779 1.3736 0.3670 0.7370 1.2512 1.5605 0.1623 1.8588 1.5514 0.9736 

0.8717 0.8936 0.6127 1.0170 1.0215 1.6353 1.5897];    
% v1(:,1)=[0.0326 0.5612 0.8819 0.6692 0.1904 0.3689 0.4607 0.9816 0.1564 0.8555 0.6448 0.3763 0.1909 

0.4283 0.4820 0.1206 0.5895 0.2262 0.3846 0.5830];    
% v2(:,1)=[0.2518 0.2904 0.6171 0.2653 0.8244 0.9827 0.7302 0.3439 0.5841 0.1078 0.9063 0.8797 0.8178 

0.2607 0.5944 0.0225 0.4253 0.3127 0.1615 0.1788];    
x1(:,1)=unifrnd(-1,1,1,p); 
x2(:,1)=unifrnd(-1,1,1,p); 
x3(:,1)=unifrnd(-1,1,1,p); 
v1(:,1)=rand(1,p); 
v2(:,1)=rand(1,p); 
v3(:,1)=rand(1,p); 
% i=0; 
% disp (sprintf('enter the values of %dth iteration positions of %d particles for variable x1',i,p)) 
% for j=1:p 
%     x1(j,1)=input(sprintf('enter the value of x1(%d,%d)',j,i)); 
% end 
% disp (sprintf('enter the values of 0th iteration positions of %d particles for variable x2',p)) 
% for j=1:p 
%     x2(j,1)=input(sprintf('enter the value of x2(%d,%d)',j,i)); 
% end     
% disp (sprintf('enter the values of 0th iteration positions of %d particles for variable v1',p)) 
% for j=1:p 
%     v1(j,1)=input(sprintf('enter the value of v1(%d,%d)',j,i)); 
% end 
% disp (sprintf('enter the values of 0th iteration positions of %d particles for variable v2',p)) 
% for j=1:p 
%     v2(j,1)=input(sprintf('enter the value of v2(%d,%d)',j,i)); 
% end 
for j=1:p 
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      f(j,1)= x1(j,1)^2 + x2(j,1)^2 + x3(j,1)^2; 
end 
  

  
%Initial personal besst values 
x1p=x1(:,1); 
x2p=x2(:,1); 
x3p=x2(:,1); 
  
%for Initial Global best values updation 
fmin=min(f(:,1)); 
forik=1:p 
    ifif(k,1)==fmin 
        gb=k; 
    else 
    end 
end 
%Initial global best value 
for k=1:p 
x1g(k) = x1(gb,1); 
x2g(k) = x2(gb,1); 
x3g(k) = x3(gb,1); 
end 
fgm = min(f(:,1)); 
  
% fig=zeros(1,485); 
% t=zeros(1,485); 
  

  
for i=1:it 
    disp(sprintf('This is %d no. of iteration',i)) 
  
%for inertia weight W 
%w=0.8;     
wmax=0.9; 
wmin=0.4; 
   w = wmax-i*((wmax-wmin)/it);  
  %   w= wmin+ (wmax-wmin)* (0.95)^ (i-2);  
    for j=1:p 
        v1(j,(i+1)) = w*v1(j,i) + rp*cp*(x1p(j)-x1(j,i)) + rg*cg*(x1g(j)-x1(j,i)); 
        v2(j,(i+1)) = w*v2(j,i) + rp*cp*(x2p(j)-x2(j,i)) + rg*cg*(x2g(j)-x2(j,i)); 
        v3(j,(i+1)) = w*v3(j,i) + rp*cp*(x3p(j)-x3(j,i)) + rg*cg*(x3(j)-x3(j,i)); 
        x1(j,(i+1)) = x1(j,i) + v1(j,(i+1)); 
        x2(j,(i+1)) = x2(j,i) + v2(j,(i+1)); 
        x3(j,(i+1)) = x3(j,i) + v3(j,(i+1)); 
        f(j,(i+1))= x1(j,(i+1))^2 + x2(j,(i+1))^2 + x3(j,(i+1))^2; 
    end 
  
%To find change in the values of f 
    for j=1:p 
        df(j,i)= abs(f(j,(i+1))-f(j,i)) ; 
    end 
    
%personal best values updation 
    for j=1:p 
    fp(j)= x1p(j)^2 + x2p(j)^2; 
    end 
    for k=1:p 
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        if f(k,i)< fp(k) 
            x1p(k)=x1(k,i); 
            x2p(k)=x2(k,i); 
            x3p(k)=x3(k,i); 
        else 
        end 
    end 
     
%for Global best values updation 
    if min(f(:,(i+1)))<fgm 
        fgm=min(f(:,(i+1))); 
    else 
    end 
     
    for j=1:i 
        for k=1:p 
        if f(k,i)==fgm 
            for l=1:p 
                x1g(l) = x1(k,i);     %global best values 
                x2g(l) = x2(k,i); 
                x3g(l) = x3(k,i);                 
            end 
        else 
        end 
        end 
    end 
     
    print = [x1(:,i)      x2(:,i)     x3(:,i)     v1(:,i)     v2(:,i)     f(:,i)]; 
    disp('     x1           x2        x3        v1        v2         f') 
    disp(print) 
     
%     fig(i) = figure('Position', [100 100 500 350]); 
%     t(i) = uitable('Parent', fig(i), 'Position', [25 25 450 200]); 
%     print = [x1(:,i) x2(:,i) v1(:,i) v2(:,i) f(:,i)]; 
%     set(t(i), 'Data', print); 
%     set(t(i), 'ColumnName', {'x1', 'x2', 'v1', 'v2', 'f'}); 
     
%Stoping criterion 
    ki=0; 
    for j=1:p 
        if (df(j,i)<=10^(-T)) 
            ki=ki+1; 
        end 
    end 
    if ki >= p 
        break 
    end 
  
end 
[r,c]=find(f==fgm); 
disp(sprintf('min value of function is %d and at values of x1=%d, x2=%d and x3=%d 
',fgm,x1g(1),x2g(1),x3g(1))) 
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MATLAB Program for the solution of IEEE 30-bus system using PSO 
clear all 
clc 
disp(' we have to minimize the cost function of a 3 machine system') 
p=input('Enter the no. of particles in a swarm');           %no. of 

particles 
it=input('Enter the no. of iterations'); 
a=10^(-4)*[50 50 50]; 
b=10^(-2)*[245 351 389]; 
c=[105 44.4 40.6]; 
B=10^(-2)*[0.0307 0.0129 -0.0002; 0.0129 0.0152 -0.0011; -0.0002 -0.0011 

0.0190]; 
p1=zeros(p,it);  
p2=zeros(p,it); 
p3=zeros(p,it); 
v1=zeros(p,it); 
v2=zeros(p,it); 
v3=zeros(p,it); 
f=zeros(p,it); 
df=zeros(p,it); 
sp=zeros(p,it); 
csp=zeros(p,it); 
pl=zeros(p,it); 
c1=zeros(p,it); 
c2=zeros(p,it); 
c3=zeros(p,it); 
C=zeros(p,it); 
rp=0.4; 
rg=0.5; 
cp=2; 
cg=2; 
pd=283.4; 
    p1g=zeros(p); 
    p2g=zeros(p); 
    p3g=zeros(p); 
    fp=zeros(1,p); 
    plp=zeros(1,p); 

  
k=100; 
w1=1; 
w2=0; 
% Initial values i.e. 0th iteration 
% p1(:,1)=[0.2356 0.5478 1.2453 1.5897]; 
% p2(:,1)=[1.1254 1.3658 1.9875 1.5632]; 
n=1; 
while n==1 
    for j=1:p 
    p1(j,1)=unifrnd(50,250,1); 
    p2(j,1)=unifrnd(30,100,1); 
    p3(j,1)=283.4-p1(j,1)-p2(j,1); 
    if p3(j,1)<30&&p3(j,1)>100 
        n=1; 
        break; 
    else 
        n=0; 
    end 
    end 
end 
% % % v1(:,1)=[-0.2 -0.1 -0.2 -0.2 -0.1 -0.1 -0.2 -0.1 -0.3 -0.2]; 
% % % v2(:,1)=[-0.2 -0.1 -0.3 -0.1 -0.2 -0.1 -0.3 -0.1 -0.2 -0.1]; 
v1(:,1)=rand(1,p); 
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v2(:,1)=rand(1,p); 
v3(:,1)=rand(1,p); 

  
%Total cost calculation 
    for j=1:p 
         c1(j,1) = a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1); 
         c2(j,1) = a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2); 
         c3(j,1) = a(3)*(p3(j,1))^2 + b(3)*p3(j,1) + c(3); 
         C(j,1) = c1(j,1) + c2(j,1) + c3(j,1); 
    end 
%To calculate initial value of cost function we need PL 
for j=1:p 
    pl(j,1)= [p1(j,1) p2(j,1) p3(j,1)]*B*[p1(j,1) p2(j,1) p3(j,1)]'; 
end 
%To calculate initial value of cost function 
for j=1:p 
    f(j,1)= w1*((a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1)) + 

(a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2)) ... 
             + (a(3)*(p3(j,1))^2 + b(3)*p3(j,1) + c(3))) + w2*pl(j,1) + 

k*abs(pd+pl(j,1)-p1(j,1)-p2(j,1)-p3(j,1)); 
end 
%0th iteration data display 
    disp('this is the 0th iteration') 
    print0 = [p1(:,1) p2(:,1) p3(:,1) v1(:,1) v2(:,1) v3(:,1) f(:,1) 

c1(:,1) c2(:,1) c3(:,1) C(:,1)]; 
    disp('      P1         P2        P3        V1         v2        V3       

f        c1        c2        c3        C ') 
    disp(print0) 

  
%Initial personal besst values 
p1p=p1(:,1); 
p2p=p2(:,1); 
p3p=p3(:,1); 

  

%for Initial Global best values updation 
fmin=min(f(:,1)); 
for m=1:p 
    if f(m,1)==fmin 
        gb=m; 
    else 
    end 
end 
%Initial global best value 
for m=1:p 
p1g(m) = p1(gb,1); 
p2g(m) = p2(gb,1); 
p3g(m) = p3(gb,1); 
end 
fgm = min(f(:,1)); 

  
%Main iterations starts from here 
for i=1:it 
    disp(sprintf('This is iteration no.= %d',i)) 

  
%for inertia weight W 
 %  wmax=0.9; 
  %  wmin=0.4; 
   % w = wmax-(i-1)*((wmax-wmin)/it);  
%w= wmin+ (wmax-wmin)* (0.95)^ (i-2); 
w=0.4; 
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%For calculatiing velocities for updation       
    for j=1:p 
        v1(j,(i+1)) = w*v1(j,i) + rp*cp*(p1p(j)-p1(j,i)) + rg*cg*(p1g(j)-

p1(j,i)); 
        v2(j,(i+1)) = w*v2(j,i) + rp*cp*(p2p(j)-p2(j,i)) + rg*cg*(p2g(j)-

p2(j,i)); 
        v3(j,(i+1)) = w*v3(j,i) + rp*cp*(p3p(j)-p3(j,i)) + rg*cg*(p3g(j)-

p3(j,i)); 
    end 

     
    %V(min) and V(max) constraint 
    for j=1:p 
        if v1(j,(i+1))< -15 
            v1(j,(i+1))= -15; 
        end 
        if v2(j,(i+1))< -15 
            v2(j,(i+1))= -15; 
        end 
        if v3(j,(i+1))< -15 
            v3(j,(i+1))= -15; 
        end 
        if v1(j,(i+1))> 60 
            v1(j,(i+1))= 60; 
        end 
        if v2(j,(i+1))> 60 
            v2(j,(i+1))= 60; 
        end 
        if v3(j,(i+1))> 60 
            v3(j,(i+1))= 60; 
        end 
    end 

  
%Updation of p values 
    for j=1:p 
        p1(j,(i+1)) = p1(j,i) + v1(j,(i+1)); 
        p2(j,(i+1)) = p2(j,i) + v2(j,(i+1)); 
        p3(j,(i+1)) = p3(j,i) + v3(j,(i+1)); 
    end 
    %Pmin and Pmax constraint 
    for j=1:p 
        if p1(j,(i+1))< 50 
            p1(j,(i+1))= 50; 
        end 
        if p2(j,(i+1))< 30 
            p2(j,(i+1))= 30; 
        end 
        if p3(j,(i+1))< 30 
            p3(j,(i+1))= 30; 
        end 
        if p1(j,(i+1))> 250 
            p1(j,(i+1))= 250; 
        end 
        if p2(j,(i+1))> 100 
            p2(j,(i+1))= 100; 
        end 
        if p3(j,(i+1))> 100 
            p3(j,(i+1))= 100; 
        end 
    end 

     
    %For losses formulation (PL) 
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    for j=1:p 
        pl(j,(i+1))= [p1(j,(i+1)) p2(j,(i+1)) p3(j,(i+1))]*B*[p1(j,(i+1)) 

p2(j,(i+1)) p3(j,(i+1))]'; 
    end 

  

    %Main objective function 
    for j=1:p 
        f(j,(i+1))= w1*((a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) + c(1)) 

+... 
                     (a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2))+... 
                     (a(3)*(p3(j,(i+1)))^2 + b(3)*p3(j,(i+1)) + c(3))) +... 
                     w2*pl(j,(i+1)) + k*abs(pd+pl(j,(i+1))-p1(j,(i+1))-

p2(j,(i+1))-p3(j,(i+1))); 
    end 

  
%personal best values updation 
    %For losses formulation (PL) 
    for j=1:p 
        plp(j)= [p1p(j) p2p(j) p3p(j)]*B*[p1p(j) p2p(j) p3p(j)]'; 
    end 

  
    for j=1:p 
        fp(j)= w1*((a(1)*(p1p(j))^2 + b(1)*p1p(j) + c(1)) + 

(a(2)*(p2p(j))^2 + b(2)*p2p(j) + c(2)) ... 
             + (a(3)*(p3p(j))^2 + b(3)*p3p(j) + c(3))) + w2*plp(j) +  

k*abs(pd+plp(j)-p1p(j)-p2p(j)-p3p(j));         
    end 
    for m=1:p 
        if f(m,i)< fp(m) 
            p1p(m)=p1(m,(i+1)); 
            p2p(m)=p2(m,(i+1)); 
            p3p(m)=p3(m,(i+1)); 
        else 
        end 
    end 

  
%for Global best values updation 
    if min(f(:,(i+1)))<fgm 
        fgm=min(f(:,(i+1))); 
    else 
    end 

                 
    for j=1:(i+1) 
        for m=1:p 
        if f(m,j)==fgm 
            for l=1:p 
                p1g(l) = p1(m,j);     %global best values 
                p2g(l) = p2(m,j); 
                p3g(l) = p3(m,j); 
            end 
        else 
        end 
        end 
    end 

     
    %For cost calculation 
    for j=1:p 
         c1(j,(i+1)) = a(1)*(p1(j,(i+1)))^2 + b(1)*p1(j,(i+1)) + c(1); 
         c2(j,(i+1)) = a(2)*(p2(j,(i+1)))^2 + b(2)*p2(j,(i+1)) + c(2); 
         c3(j,(i+1)) = a(3)*(p3(j,(i+1)))^2 + b(3)*p3(j,(i+1)) + c(3); 
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         C(j,(i+1)) = c1(j,(i+1)) + c2(j,(i+1)) + c3(j,(i+1)); 
    end 

     
%To find change in the values of f, equality constraint and change in cost 
    for j=1:p 
        df(j,i)= abs(f(j,(i+1))-f(j,i)) ; 
        sp(j,i)= abs(pd+pl(j,(i+1))-p1(j,(i+1))-p2(j,(i+1))-p3(j,(i+1))); 
        csp(j,i)= abs(C(j,(i+1))-C(j,i)); 
    end 

     
    print = [p1(:,(i+1)) p2(:,(i+1)) p3(:,(i+1)) v1(:,(i+1)) v2(:,(i+1)) 

v3(:,(i+1)) f(:,(i+1)) c1(:,(i+1)) c2(:,(i+1)) c3(:,(i+1)) C(:,(i+1))]; 
    disp('      P1         P2        P3        V1         v2        V3       

f        c1        c2        c3        C ') 
    disp(print) 

        
%Stoping criterion  &&(csp(j,i)<=10^(-6)) 
    ki=0; 
    for j=1:p 
        if ((df(j,i)<=10^(-6))&&(sp(j,i)<=10^(-6))) 
            ki=ki+1; 
        end 
    end 
    if ki >= p 
        break 
    end 

  
end 

  
disp(' we have to minimize the cost function of a 3 machine 30 Bus System') 
disp(sprintf('No. of particles used in a swarm = %d',p)) 
disp(sprintf('Max. no. of iterations entered = %d\n',it)) 

  
disp(sprintf('Total demand of power Pd = %d \n',pd)) 

  

  
disp('Initial values of generations of 3 generators') 
initial=[p1(:,1) p2(:,1) p3(:,1)]; 
disp('    P1        P2        P3   ') 
disp(initial) 

  
disp(sprintf('\nPD+Pl = %d',pd+pl(1,i))) 
disp(sprintf('\nP1+P2+P3=%d\n',p1(1,i)+p2(1,i)+p3(1,i))) 

  
disp(sprintf('No. of total Iterations took place = %d \n',i)) 
disp(sprintf('Total loses in the lines Pl = %d \n',pl(1,i))) 
disp(sprintf('Minimum cost incured = %d \n',C(1,i))) 
disp('Final values of generations of the three generators') 
disp(sprintf('P1=%d',p1(1,i))) 
disp(sprintf('P2=%d',p2(1,i))) 
disp(sprintf('P3=%d',p3(1,i))) 

  
disp('About this run') 
disp('1. The Constraints has been included as absolute value.') 
disp('2. Random values between the limits of generation have been taken for 

each generator as the different starting point.') 
disp('3. Correct values of B coefficients have been fed.') 
disp(sprintf('4. K taken = %d',k)) 
disp(sprintf('5. w1 and w2 taken = %d and %d',w1,w2)) 
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