
Delhi Technological University, 2014 Page 1

A Dissertation on

Cost Estimation Model for Agile Software
Development Projects

Using Exploratory Factor Analysis and
Constraint Programming Approach

Submitted in the partial fulfilment of the requirement for the award of the degree of

MASTER OF TECHNOLOGY

In

COMPUTER SCIENCE & ENGINEERING

SUBMITTED BY

SAKSHI GARG

Roll No - 2K12/CSE/19

UNDER THE SUPERVISION OF

DR. DAYA GUPTA

Professor, Former HOD

Department of Computer Engineering, DTU

Department of Computer Engineering

Delhi Technological University, Delhi

2012-2014

Delhi Technological University, 2014 Page 2

DECLARATION

This thesis is a presentation of my original research work. Wherever

contributions of others are involved, every effort is made to indicate this clearly,

with due reference to the literature, and acknowledgement of collaborative

research and discussions.

The work was done under the guidance of Dr Daya Gupta (Professor, Former

HOD, Department of Computer Engineering, DTU) at Delhi Technological

University, Delhi

SAKSHI GARG

(Roll No- 2K12/CSE/19)

M.Tech CSE

Deptt of Computer Engineering

Delhi Technological University, Delhi

Delhi Technological University, 2014 Page 3

Acknowledgment

.

I would like to take this opportunity to express sincere gratitude to my mentor

and project guide Dr. Daya Gupta (Prof., Former HOD, Deptt. of Computer

Engineering, DTU). I am greatly indebted to her for her insightful and

encouraging words that have been a driving force. I am extremely thankful to

her for guidance.

I wish to convey my sincere gratitude to Prof. Rajeev Kapoor, Head of

Department, and all the faculties and PhD. Scholars of Computer Engineering

Department, Delhi Technological University who have enlightened me during

my project.

I would also like to express my deep gratitude towards Dr. XuenJun Yu,

Research scholar at the ‘Centre for Systems and Software Engineering’ at the

‘School of Engineering, University of South California’ for his valuable insight

at the critical stages of the project.

Also I wish to express my gratitude towards Shruti Jaiswal, Research Scholar,

Computer Engineering Department, DTU for her guidance and support during

the making of this thesis.

I would also like to Lab staff for their timely cooperation help.

Lastly I would like to thank all who inspired and helped during the project.

SAKSHI GARG

(2K12/CSE/19)

M.Tech CSE

Deptt of Computer Engineering

Delhi Technological University, Delhi

Delhi Technological University, 2014 Page 4

Delhi Technological University

CERTIFICATE

This is to certify that the thesis titled “Cost Estimation Model for Agile

Software Development Projects” submitted by Sakshi Garg (Roll No-

2K12/CSE/19) of Final Semester, M.Tech. Computer Science and Engineering,

Department of Computer Engineering, DTU, is a record of bonafide work

undertaken by her under my supervision. The work fulfils the requirement as

per the regulations of this institution and in our opinion meets the necessary

standards for submission.

Dr. Daya Gupta

Professor, Former HOD

Department of Computer Engineering

Delhi Technological University, Delhi

Delhi Technological University, 2014 Page 5

Table of Contents

Declaration (ii)

Acknowledgement (iii)

Certificate (iv)

Table of Contents (v)

List of Figures (vii)

List of Tables (viii)

Abstract (ix)

Chapter 1

Introduction 1

 1.1 Introduction 1

 1.2 Motivation 1

 1.3 Related Work 3

1.4 Research Problem 4

1.5 Scope of the work 5

1.6 Organisation of Thesis 6

Chapter 2

Agile Software Development 7

 2.1 Introduction 7

 2.2 Agile development environment 7

 2.3 How is Agile Different from Traditional Software Development 8

2.4 Agile Manifesto 10

 2.5 Characteristics of Agile methodologies 11

 2.6 Types of Agile methodologies 11

 2.7 Need for Agile Development 19

 2.8 Difficulties faced during implementation of agile 20

Chapter 3

Cost Estimation in Traditional System Development 22

 3.1 Introduction 22

 3.2 Cost Estimation Techniques 22

 3.3 Lines of Code (LOC) 23

 3.4 Function Point 23

 3.5 Regression models 24

 3.6 Learning-oriented models 24

Delhi Technological University, 2014 Page 6

 3.7 Expert Judgement 28

 3.8 Bayesian approach 29

 3.9 Benefits of Accurate Estimation 30

 3.10 Causes of Inaccurate Estimates in Systems Development 31

Chapter 4

Cost Estimation for Agile Development Methods 33

 4.1 Introduction 33

 4.2 Agile Estimation 33

 4.3 TEMs vs. AEMs 34

 4.4 Planning Poker 35

Chapter 5

 Recent Cost Estimation Approaches 38

Chapter 6

Proposed Cost Estimation Model 54

6.1 Overview of the Model 54

6.2 Data Pre-processing 55

6.3 Exploratory Factor Analysis Using PCA 56

6.4 Constraint Programming 60

Chapter 7

Implementation and Results Analysis 64

7.1 Introduction 64

7.2 Data-Set description 64

7.3 Software/Tool Used 67

7.4 Steps of Cost Estimation Process and Results 67

7.5 Evaluation of the Estimation Process 74

7.6 Comparison with previously existing estimation approaches 75

7.7 Results 80

Conclusion and Future Work 81

References 82

Annexure-I: Oz Programming Code 83

Annexure-II: Data-Set Used 88

Delhi Technological University, 2014 Page 7

List of Figures

Fig 1. Different methodologies to develop software 2

Fig 2. General Way of Developing Software through XP 12

Fig 3. Scrum Sprint process 15

Fig 4. Key Artifacts of Scrum 16

Fig 5 Simple Steps of FDD 18

Fig 6. Estimated effort v/s software size 27

Fig 7. Development Time v/s software size 27

Fig 8. Planning Poker 36

Fig 9. Agile grouped into user’s perception of value and quality 46

Fig 10. Procedure to obtain effort in hours for a story 49

Fig 11. Effort prediction model 53

Fig 12. Process model for cost estimation 55

Fig 13. Steps in Data Pre-processing 56

Fig 14. Steps in Exploratory Factor analysis 58

Fig 15 Steps of Factor Extraction using Principal Component Analysis 59

Fig 16 Steps in Constraint solving 60

Fig.17 Process model for constraint programming 61

Fig 18. Scree plot 71

Fig 19. MRE vs development cost for proposed estimation model 75

Fig 20. MRE vs Actual development cost plot for model-1 77

Fig 21. MRE vs plot formodel-2 79

Delhi Technological University, 2014 Page 8

List of Tables

Table 1. Differences between traditional approaches

and agile approach to software development 9

Table 2. Comparison of traditional estimation methods

and agile estimation methods 35

Table 3.High priority attributes and their weights 41

Table 4.Low priority attributes and their weights 41

Table 5. Attributes for cost estimation in data-set 43

Table 6. Procedure Steps to apply COSMIC method – Pt. 1 50

Table 7. Procedure Steps to apply COSMIC method – Pt. 2 50

Table 8. Attributes for cost estimation in data-set 56

Table 9. Some project data from the data set used 65

Table 10. Factor loadings and total variance of all the components 67

Table 11. Communalities 69

Table 12. cost estimation factors 70

Table 13. Component Coefficient matrix 71

Table 14. Results of estimation process 72

Table 15. Results of Model-1 estimation process 76

Table 16. Results of Model-2 estimation process 77

Delhi Technological University, 2014 Page 9

ABSTRACT

Agile software development has been attached much importance as a new software

engineering methodology as it emphasizes on good communication between the developers,

the rapid delivery of software, and change on demand. At early stages of software

development, effort must be estimated to come up with a planned schedule and budget. From

the Software Measurement point-of-view not every metrics and methods from conventional

lifecycle models can be used without changes. In the recent past researchers have proposed

different methodologies for cost estimation for software projects which use Agile

Development methodology. In this thesis work we have proposed a new cost estimation

model for Agile software development projects. In this model we apply Principal Component

Analysis to reduce the dimensions of the attributes required and identify the key attributes

which have maximum correlation to the development cost; and then use constraint solving

approach to satisfy the criteria imposed by agile manifesto. We have extracted 12 factors (or

components) for estimation of Development Cost and then constraint programming

implementation using OZ is done so that the manifesto criteria are met. The proposed

methodology is most suitable for agile projects as it uses constraint programming to explicitly

check for satisfaction of agile manifestos. On comparison with other approaches under

research we find that our model provides a low MMRE value i.e.50.63. Also the estimation

error does not increase in high cost/complexity projects. Most Agile software Cost estimation

processes rely on expert opinion or planning poker based cost estimation methods. However

in case that is not available then our methodology can be used in case of unavailability of

historical data or expert opinion. The extracted 12 factors can be used by the development

team to estimate software development cost while still satisfying the conditions of agile

manifesto. Hence we can safely say that the proposed cost estimation approach increases the

precision and accuracy of estimates; and hence is better suited for the Agile Software

Development Projects.

Delhi Technological University, 2014 Page 10

Chapter 1 INTRODUCTION

1.1 Introduction

Agile software development is the upcoming and new software engineering methodology. It

stresses upon communication skills among the development team, the quickly submitting of

software, and on-demand modification. Agile software development methodology

incorporates practises like eXtreme Programming, Feature Driven Development, Scrum

etc.try to decrease the cost of change and therewith reduce the overall development costs. It

provides a way to check if a project is going in the correct direction in the development

lifecycle. This is done by regular iteration of work, which presents a product increment

potentially shippable to the client. These iterations are called sprints. Focus is on the

repetition of small working cycles as well as the functional product which is their result.

Agile software development methodology thus becomes “iterative”.

Software estimation models help the development team in predicting of the probable amount

of time and cost that will be required to complete the project development task.

1.2 Motivation for the work

In the initial stages of software development life cycle and planning stages, the development

effort should be estimated so that the team can produce a plan, a time line called a schedule

and the costing budget. In the current times software processes are constantly evolving. New

and different technologies and applications are developed and are being currently used. In the

current software industry scenario since software changes are arbitrary, requirement is of an

evolving system for carrying out the estimation process, especially in agile environment.

Estimation the cost, size and duration (CSD) in the software development process has been a

major point of the discussion and debate in all development methods; be it agile, waterfall,

iterative or water fountain. The major issues being that of predictability and standardization.

Organizations and development teams modify and personalise the estimation methods and

development techniques so that they can be fitted over governance structures, culture and risk

profiles. There is no one size fits for all solution.

Delhi Technological University, 2014 Page 11

The latest Release of ISBSG (International Software Benchmarking Standard Group)

volume 12 has reported the fact that 9.8 % of the projects (the one which are included in

survey) in the world are developed through agile methodologies in spite of the several

advantages of the methodology like quick delivery, high customer involvement, iterative and

incremental model, always welcomes requirement changes etc. The graph below depicts the

use of different methodologies to develop software as reported by the ISBSG vol.11 and

vol.12 benchmark releases.

As reported by vol 12 release

As reported by vol 11 release

Fig 1. Different methodologies to develop software

Delhi Technological University, 2014 Page 12

We can see that there is an increase in the usage of agile development methodologies for

software development. Hence it becomes all the more important to develop efficient

estimation methodologies which can predict the development cost, effort and development

time. So in order to support and enhance the use of agile methodologies need for some good

estimation techniques arises which can provide accurate results.

Within this study we have investigated the domain of cost estimation practices for agile

software development projects. For this we should also have knowledge of the extents and

limitations or drawbacks of estimation tasks currently used in industry, in research and the

challenges they put up. The following aspects are examined:

- conditions assumed by the projects that use agile activities process models

- Basic approaches and state of the art of the estimation in projects which currently use

agile execution

- Applicability of the classic methods of the estimation and procedures, like code size

or Function Points or COCOMO

- Experiences of the practitioners from the industrial and academic backgrounds while

using of agile procedures

As a part of literature survey cost estimation activities for agile software development

projects have been studied to gather knowledge about the possibilities and borders of cost

estimation tasks and the new challenges.

1.3 Related work

From the Software Cost, Effort and Time Measurement point-of-view the metrics and

methods from conventional lifecycle models cannot be conveniently used without changes.

J.M. Desharnais et all in [26] developed on the COSMIC (Common Software Measurement

Consortium) method guidelines an estimation approach which works on COCOMO approach

incorporating quality of documentation for functional analysis. It uses Cumulative Function

Points (CFP) for estimation wherein each of the User Stories are defined by a single Function

Point (FP) called User Story Point or USP. COSMIC has introduced the first official

guideline in Agile software development methods for software sizing measurement based on

function points.[27]

However the mapping between CFP and USP is subjective. It requires expert judgment and

involves some degree of guesswork.

Delhi Technological University, 2014 Page 13

In another model given by Abrahamsson et all [16] predictors are extracted from current user

stories and then used for next stories. This incorporates elements of analogy based estimates

but works only in case the user stories are clearly written and well-structured.

In another research Zia et all [28] propose a SWOT analysis based method which uses

influence of internal vs external factors and quantifies them. Factors such as team

composition, process used, team dynamics, clarity of requirements etc are considered. In

order to understand the factors that influence agility dimensions in a project, Lee and Xia[30]

suggest a model which uses a trade-off relationship between response extensiveness and

response efficiency of the team[30].

Asnawi et all in [20] used the Factor Analysis technique to identify 15 factors, by evaluating

the responses they received in the survey. They explained contributions in several IT areas

such as process/governance, quality assurance, iterative and incremental development and

team communication. However these were not fully related to the aspects of projects which

impact project performance such as cost, quality, deadlines and scope.

In the literature survey it was observed that recent researches are using PCA based models for

software cost estimation for traditional software development.

Tosun et al. in [32] proposed feature ordering in terms of PCA based factor-importance and

provided heuristics for it. They ordered the features according to absolute values of the

elements of the eigenvector of the first principal component only.

and the features were ordered .

In [34] the researchers J Weng, Shixian Li, Linyang Tang demonstrated how PCA based

models can provide significant improvement in reliability and accuracy of effort prediction

over Traditional analogy based models. They compared the performance of PCA-based

feature extraction with analogy based methods on three public datasets namely COCOMO,

NASA and Desharnais. It was found that their WPCAA model outperforms the traditional

analogy based models in terms of MMRE and PRED(25).

Drawing inspiration from this we explored the use of PCA based cost estimation model in the

Agile Software Development environment.

1.4 Research Problem

In the recent past researchers have proposed different methodologies for cost estimation for

software projects which use Agile Development methodology. These methods use large

Delhi Technological University, 2014 Page 14

number of project characteristics such as story points, story size, factors related to team

dynamics, process model used, factors related to management, communication skills in the

team, quality and clarity of requirements etc.. to estimate development cost.

In this work we apply Principal Component Analysis so that we can significantly reduce the

dimensions of the attributes required; and identify the key attributes which have maximum

correlation to the development cost. This might improve the cost estimation process. Also the

constraints of agile manifesto are considered which may increase the accuracy of cost

estimation.

The Research Problem can be thus be stated as follows:

To propose a robust cost estimation model for agile software projects, which extracts

key factors using Principal Component Analysis and estimates the development cost

using these extracted factors and satisfies the constraints imposed by the agile

manifesto.

1.5 Scope of the work

This thesis reports on the results obtained by exploratory factor analysis carried out on Agile

development data of various industry projects. The proposed cost estimation model uses a

PCA based approach to derive the correlation between various project attributes and the cost

of development. A constraint programming based approach is used to estimate the

development cost while incorporating rules from the agile manifesto.

The scope of the thesis is presented as follows:

(i) We do exploratory factor analysis of the agile development data. Using the Principal

Components Analysis technique, we extract factors called as Principle components

(PC) and their correlation matrix. These PCs are the factors which have most affect on

the development cost and they account for most variation in the agile development

data.

(ii) Using constraint programming implementation using OZ we impose the agile

manifesto restrictions on the extracted factors. The weights as obtained by PCA along

with rules pertaining to agile manifestos are taken as the inputs and estimated

development cost is output.

Delhi Technological University, 2014 Page 15

(iii) The proposed model is validated by comparison with the existing cost estimation

models in terms of mean magnitude of relative error (MMRE) to show improved

accuracy of estimates.

1.6 Organisation of thesis

The subsequent chapters of the thesis are organised as follows:

Chapter 2 briefly explains the Agile development environment and the different types of

Agile development methodologies.

Chapter 3 discusses the software cost estimation models as used in traditional software

development, such as LOC model, Regression models, COCOMO, Bayesian model etc.

Chapter 4 introduces the cost estimation in agile development environments. This chapter

explains the differences in estimation in agile environment and traditional software

development environment, the challenges faced and planning poker estimation technique as

used in industry.

Chapter 5 presents several estimation approaches in research.

Chapter 6 presents the proposed approach for software cost estimation and explains PCA and

the constraint programming approach.

Chapter 7 presents the implementation details of the proposed model on the given agile data.

It also presents the results of implementation and analyses the results. In this chapter we have

also shown a comparison of the proposed approach with previous estimation approaches and

analyses the results.

And then we conclude the thesis.

Delhi Technological University, 2014 Page 16

Chapter 2 Agile Software Development

2.1 Introduction

Agile software development is a group of software development methods based on iterative

and incremental development, where requirements and solutions evolve through collaboration

between self-organizing, cross-functional teams. It promotes adaptive planning, evolutionary

development and delivery, a time-boxed iterative approach, and encourages rapid and flexible

response to change. It is a conceptual framework that promotes foreseen tight interactions

throughout the development cycle.

Agile methodology is a substitute to traditional project management, typically used in

software development. It helps a team to respond for unpredictability through incremental,

iterative work, known as sprints. Agile methodologies are an alternative to waterfall, or

traditional sequential development.

2.2 Agile development Environment

Agile development methods promote development, teamwork, collaboration, and process

adaptability throughout the life-cycle of the project.

 Iterative, incremental and evolutionary

Agile methods break tasks into small increments with minimal planning and do not

directly involve long-term planning. Iterations are short time frames (time-boxes) that

typically last from one to four weeks. Each iteration involves a cross-functional

team working in all functions: planning, requirements analysis, design, coding, unit

testing, and acceptance testing. At the end of the iteration a working product is

demonstrated to stakeholders. This minimizes overall risk and allows the project to

adapt to changes quickly. An iteration might not add enough functionality to warrant a

market release, but the goal is to have an available release (with minimal bugs) at the

end of each iteration. Multiple iterations might be required to release a product or new

features. Demonstration will minimizes overall risk in the development of project and

http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Acceptance_testing

Delhi Technological University, 2014 Page 17

hence will allows the project for adapting to changes rapidly. Each iteration will not

increase enough functionality to the software that it can be released to the market or

client-release. However but the goal was to make available a small version of the

product having some or all the functionality but with minimal bugs at the end of each

iteration. Many such iterations are to be required to release a product or new features.

 Extensive communication among team members

In agile teams the stakeholder or the customer appoints a representative like a Product

Owner for SCRUM. He will be acting on behalf of the customer/client and has the

decision making power. He is the person who will approve changes done by the team.

He will also foresee the team’s work so as to a make sure that they are on the correct

track of development. If the team has any doubts or queries in the ,middle of the

iteration he is the person responsible for correct answers. His interpretation of client

requirements are considered of utmost importance.

In 2002 Alistair Cockburn coined the term “information radiator”. It is used to inform

the whole team and other stakeholder about the status of the project and the direction

in which the product is headed. It is normally in the form of a big physical display

located prominently in an office, where every member can see it.

 Very short feedback loop and adaptation cycle

A common characteristic of agile development are daily status meetings or "stand-

ups", e.g. Daily Scrum (Meeting). In a brief session, team members report to each

other what they did the previous day, what they intend to do today, and what their

roadblocks are.

 Quality focus

Specific tools and techniques, such as continuous integration, automated unit

testing, pair programming, test-driven development, design patterns, domain-driven

design, code refactoring and other techniques are often used to improve quality and

enhance project agility.

2.3 How is Agile Different from Traditional Software Development

Barry Boehm described agile methods as “an outgrowth of rapid prototyping and rapid

development experience as well as the resurgence of a philosophy that programming is a craft

Delhi Technological University, 2014 Page 18

rather than an industrial process” [4]

 Table 1. Differences between traditional approach and agile approach to software

development[1][4][6][8][13][14]

Delhi Technological University, 2014 Page 19

2.4 Agile Manifesto

The four agile manifestoes[1] that are a concise summary of agile values in software

development are given below:

1. Interactions among team members are given precedence over formal processes

and tools.

This value factor essentially concentrates on the quality, efficiency and skills of the

development team members. The criteria like communication skills, managerial skills

and computer science skills play an important role than the process quality and the

sophistication of tools used.

2. Working software is more important than comprehensive documentation.

Agile team performs iterations and may not devote much time and effort for the

purpose of documentation. It develops product for its functional and non-functional

requirements at regular intervals and believes in delivering the working model for

each increment rather than elaborate documentation.

3. Customer collaboration is preferred over contract negotiation.

In-place of giving important to the formalisation of contract, agile software

development will concentrates on its clients beforehand. Customers are very much

involved in the software cost and schedule estimation tasks so much so that if the

development team has facing difficulty in understanding any user story they can

immediately have discussion with the customer and try to break the story down

further [5].

4. Quick and appropriate response to change in requirements is given precedence

over a fixed plan.

Agile methods welcome changing requirements, even late in development stage. They

accept changes in the requirement specification and allow a flexible software

development without being restricted to a fixed plan. The usual agile approach is to

fixing of the time schedule and development cost, and then scope of the project is

allowed to vary in a control-specified manner.

Delhi Technological University, 2014 Page 20

2.5 Characteristics of Agile methodologies

Some of the characteristics of the agile processes are as follows:

· The software versions are released quickly one after another as the iteration size and

the release cycles are short,

· The complex functionality is designed using an easy to understand architecture,

· The clients and developers and management team, all take collective ownership over

the product

· High coding standards are followed so as to produce a very sophisticated code;

Refactoring and re-use of code

· continuous testing of the code just as they are developed; comprehensive regression

tests and acceptance tests by the clients

· Continuous integration so that the product can be viewed a whole

2.6 Types of Agile methodologies

2.6.1 Extreme Programming

Extreme Programming (XP) is the most commonly used agile software development method.

It is also seldom used a reference when we talk about the general characteristics of Agile

software development methodologies.

According to XP principles the software development projects need to focus more on the

people involved rather than the documents, processes and tools. XP provides a set of

practices, values and principles [29]:

· Values : communication, simplicity, feedback, courage

· Principles : incremental changes, honest measuring

· Practices : pair programming, short version cycles

Delhi Technological University, 2014 Page 21

These are derived from the industry experienced best practices. It has been documented and

experienced that XP helps the teams in software development projects. To fulfil some of

these completely varying project characteristics, the agile software development model

establishes an XP product life cycle just like traditional life cycle models such as waterfall-

model, or spiral model [28].

`

 Test Scenarios

 New user story

 Reqs. bugs

 Release Last version

 plan

Fig 2. General Way of Developing Software through XP

The figure shows the necessary process steps of a XP-project. The major element of the XP

life cycle is the “Iteration”. The iteration is a recurring event in which an actual version is

edited for example by:

 Adding additional functionality.

 Correcting errors.

 Removing unnecessary functionality.

Each software version will be validated through an acceptance test

For example let us consider software project for an online mood-board application. A mood-

board is where an artist can place various different media- pictures, audio-video, fonts, text,

drawing etc as an inspiration for his project.

The requirements are given by the clients to a set of developers. They discuss these

requirements with the remaining of the team. The scope and extend of each requirement is

discussed. The developers divide the feature development work among themselves. In XP the

focus is on the creation of a working program for the software. The program code is given

utmost importance and the whole development process is focussed on the programming

aspect.

USER STORIES

RELEASE PLANNING ITERATION ACCEPTANCE TESTS

SMALL RELEASE ESTIMATION PROCESS

Delhi Technological University, 2014 Page 22

So the requirements of the online mood-board application could be given such as- to be able

to select an image to add to the board, to be able to perform basic editing on that image, to be

able to add fonts to the board, to be able to save and share the creation etc.

The xp processes say that the whole application’s coding should begin at once. All the

developers start the coding work on their assigned features. In each iteration either a part or

whole of the feature will be developed. If a feature is not fully developed in the iteration then

in the next iteration remaining work is done. This way in each iteration the original code or

the originally developed application is modified upon.

2.6.2 Agile Modelling (AM)

The software modelling is done before its development is started. It gives the developers a

blue-print of the program to be developed. It also helps the developers to identify any issues

or problems they are likely to come across while development. If modelling of the program is

done before development then these issues can be discussed and mitigation strategies can be

made before-hand.

Agile Modelling is the term for modelling in agile software development. Agile modelling

(AM) was established by Scott Ambler in 2002. It is a collective set of values, principles, and

practices for modeling software that can be used for software development project in an

effective and easy manner [1]. The values of AM, which are considered to be an extension to

the values of XP include: communication, simplicity, feedback, courage.

Again, the principles of AM are quite similar to those of XP, such as assuming simplicity,

embracing changes, incremental change of the system, and rapid feedback. In addition to

these Principles, AM principles also include

- Knowing why the Agile modelling is being done

- Presence of other effective models also;

- Importance is given to the content more than its look and representation;

- Extensive communication among the stakeholders and all those involved in the

development process;

- focusing on the work/ product quality [2].

The practices of AM have some commonalities with those of XP, too. An agile modeller

needs to follow these practices to create a successful model for the system. AM practices

highlight on active stakeholder participation; focus on group work to create the suitable

Delhi Technological University, 2014 Page 23

models; apply the appropriate artifact as UML diagrams; verify the correctness of the model,

implement it and show the resulting interface to the user; model in small increments; create

several models in parallel; apply modeling standards; and other practices [1].

Agile Model Driven Development (AMDD) is the agile version of model driven

development. To apply AMDD, an overall high level model for the whole system is created

at the early stage of the project. During the development iterations, the modeling is performed

as planned per iteration [11].

2.6.3 SCRUM

SCRUM methodology was initiated by Ken Swaber in 1995. It was practiced before the

announcement of Agile Manifesto. SCRUM has been used with the objective of simplifying

project control through simple processes, easy to update documentation and higher team

iteration over exhaustive documentation [4].

SCRUM shares the basic concepts and practices with the other agile methodologies, but it

comprises project management as part of its practices. These practices guide the development

team to find out the tasks at each development iteration.

Its principle lies in the fact that small teams working cross functionally produce good results.

Scrum is more revenue centric with attention on improving revenue and quality of the

software. Since being lightweight it can adapt to changing requirements and releases the

software in small release cycles called sprints.

In addition to the practices defined for agility, one main mechanism recommended by

SCRUM is to build a backlog. A backlog is a place where one can see all requirements

pending for a project, sized based on complexity, days or some other unit of measure the

team decides. Inside a product backlog, there is a simple sentence for each requirement;

something that will be used by the team to start discussions and putting details of what is

needed to be implemented by the team for that requirement [5].

For SCRUM, three main roles are defined.

· The first role is the product owner. His task is to make sure that the business aspect of

the software project is taken care of.

· The second role is the SCRUM team who take care of the development work aspect.

These comprise of developers, testers, and other technically skilled people.

Delhi Technological University, 2014 Page 24

· SCRUM master, the third role, is responsible for keeping the team focused on the

specific tasks [4][3].

Fig 3. Product development in Sprints

The process of development using SCRUM is done in phases. The development tasks are

divided into stages. In each phase, some of the functionality of the product is fully developed,

tested, and made ready to go to production. Only after completing one phase does the team

move to a new phase.

Delhi Technological University, 2014 Page 25

Fig 4. Key Artifacts of Scrum

Let us consider the previous example of an agile team of developers who have to develop a

software for an online mood-board application. A mood-board is where an artist can place

various different media- pictures, audio-video, fonts, text, drawing etc as an inspiration for

his project. The client gives requirements which are converted into user stories.

The user stories are written in the format:

“As a <role> i should be able to do <desired feature>”

These user stories are then divided so that they can be implemented in different small

iterations. Consider some of the user stories such as-

- As an artist i should be able to add images from my computer to the mood-board.

Product Backlog

• list of requirements and issues

• owned by product owner and he prioritizes the list

• anybody can add to it

Sprint Goal

•declared by the product owner and mutualy acceptable by
the team

• it is a one sentence summary of the tasks of that sprint

Sprint Backlog

• Lists of tasks to be done by the team

• it is owned by the team and they only modify the list

Blocks List

• Impediments, blocks and pending decisions

• owned and updated by the ScrumMaster

Increment

• shippable functionality which is tested and dicumented

• it is small version or release of the product

Visual Feedback

• Information radiators such as 'Burndown charts', architecture
diagrams etc.

Delhi Technological University, 2014 Page 26

- As an artist i should be able to search for images from Google image search and add it

to the mood-board.

- As an artist i should be able to select the size and shape of drawing tool

- As an artist i should be able to add background colour and texture to the mood-board

Now these stories are considered one by one by the product team. Developers are assigned

user stories and they become the owner of that feature.

Now the coder will provide an estimate of how much effort or time will be required for

developing that feature. The testing personnel will estimate how much time will be required

for testing it. The project management adds one or two days for legal checks and

internationalisation checks. And the total project effort and time schedule estimate is

produced.

 When the iteration starts each day a small part of the user story is implemented by the

developer. That part is also tested simultaneously by unit tests.

Every day the team gathers for a scrum meeting. This meeting is supervised by a scrum

master who is usually the program manager. In the scrum meeting the team discusses :

- The work completed till now

- The work in progress

- Problems and issues faced by each individual

- Any requirements from other teams

These issues are discussed daily by the team so that all the stakeholders are completely aware

of the project progress.

The user stories which are completed till the scheduled time become features for the release

of that iteration. The remaining user stories are added to product backlog i.e. to be completed

in the next iteration. The acceptance tests are carried out by the clients and issues or bugs are

logged. If there is any change in the requirements by the client then the product owner adds it

to the product backlog. It is taken up as a new feature in the subsequent cycles.

The features approved by the clients are then released in the form of a new version of the

software.

Delhi Technological University, 2014 Page 27

2.6.4 The Feature-Driven Development (FDD)

Fig. 5 Simple Steps of FDD[6]

Develop
an

overall
model

Build a
list of

features

Plan by
Feature

Design
by

feature

Build by
feature

Delhi Technological University, 2014 Page 28

Let us consider our previous example of the online mood-board application. Initially the

features of the software will be considered. These are- adding images to the board, drawing

on the board, adding a background, adding audio-video content, saving and editing the board

at a later stage, sharing the creation etc.

In each iteration some of the features will be considered. Consider that the feature ‘adding

images to the board’ is one of features selected in the current iteration. This feature will be

owned by the whole team as opposed to a single developer as in scrum or XP. The work on

all the features selected in the current iteration will be started. The focus on development is to

complete as many features as possible in the current iteration.

If one developer completes the work on one feature then they can help the other members of

the team in the completion of the in-completed features rather than starting on an new feature.

2.7 Why is Agile Development Necessary

In 1970, Dr. Winston Royce presented a paper entitled “Managing the Development of Large

Software Systems,” which presented the short-comings of sequential development process

used for software projects. He said that software should not be developed like an automobile

on an assembly line, in which each piece is added in sequential phases. In this type of

sequential development in phases, one phase of the project has to be done and then only the

next phase can begin. Dr. Royce spoke against such phase based approach in which

developers will initially be gathering all of a project’s requirements, then completely

designing of all of the architecture and design, then writing all of the code, and so on.

Royce’s paper specifically mentioned the drawbacks of the approach where there is not

Delhi Technological University, 2014 Page 29

enough communication among the smaller teams that are working on a particular phase of

work.

In waterfall model, development teams get a single chance only for each aspect of a project

development. They should produce correct result in that chance only. In an agile modeling,

every feature of development — like requirements, design, etc. — is again and again done

throughout the lifecycle. At the end of each iteration if there is any mistake or changes need

to be done, it is easy to do so.

By using agile development methodology we can re-evaluate the direction of a project at any

point during the development lifecycle. This is done by developing the project in small

iterations, known as sprints. At the end of each sprint the teams presents a potentially

shippable product increment to the clients. Hence, agile methodology can also be described

as “iterative” and “incremental”.

·

2.8 Difficulties faced during implementation of agile methods

2.8.1 Fear of Exposure of Skill-Deficiency

In a review of 17 companies, it was found that the development team was scared that the

agile process can highlight the gaps in their skills and expose their deficiencies[11]. So, they

felt a pressure at all times while using agile methodologies.

To mitigate this problem, the developers need an atmosphere in which they feel the safety to

project their weaknesses. They should be able to document any fears, issues or concerns due

to which they didn’t feel comfortable in an open forum.

 2.8.2 Broader Skill Sets for Developers

Generally in software companies using agile development methodology the management

requires personnel to exhibit a wide range of skill set rather than specialisation in only one

area like program writing using a particular language or build deployment only [11].

To address this problem, organization goals and HR policies and expectations should be

realistic. They must strive to provide their employees a well-balanced team with members

becoming “masters of all” or “masters of none.” The ideal situation will be when the

developers have broad knowledge of the stages and features of software development

however they are experts in certain areas.

Delhi Technological University, 2014 Page 30

2.8.3 Interpersonal Interaction among team members

Agile practices encourage collaborations, among developers and with the other stakeholders.

This leads to meetings, retrospectives etc. which require the social interaction. For this the

team members hone their inter-personal, communication, and presentation skills. In most of

the cases management prefers constant face-to-face communication, as they could see the

benefits of increased the degree of communication in agile environment. However there are

people who were technically very talented but had weak communication and presentation

skills[11].

This challenge can be met by providing social-skills training to the development team so that

they can be more comfortable in such social work settings.

2.8.4 Understanding Agile Principles

Not all projects are suitable for application of agile values and principles. Sometimes due to

irregular combination of staff personality, incorrect management style, company policy or

any other factors the projects development teams were forced to implement agile methods.

However it was only “on paper,” and they could not achieve agility’s ultimate goals.

Delhi Technological University, 2014 Page 31

Chapter 3 Cost Estimation in

Traditional System Development

3.1 Introduction

3.2 Cost Estimation Techniques

Delhi Technological University, 2014 Page 32

Lines of Code (LOC) is most commonly used as a size measure. The major software cost and

schedule estimation techniques are given in the following sections. These are classified as

regression-based models, learning-oriented models, expert based approaches and composite-

Bayesian methods.

3.3 Lines of Code (LOC)

3.4 Function Point

Delhi Technological University, 2014 Page 33

3.5 Regression models

Regression models however can be difficult to use in some cases, in particular if they do not

satisfy a number of conditions that can either enhance or halt successful use.[18]

3.6 Learning-oriented models

Delhi Technological University, 2014 Page 34

3.6.1 COCOMO Model

COCOMO model proposes following product classes:

(i) Application Programs- Data processing and scientific programs

(ii) Utility Programs- Compilers, linkers, editors, etc.

(iii) System Programs- Operating systems and real-time system programs, etc.

Delhi Technological University, 2014 Page 35

COCOMO takes into account these Cost Drivers and Detailed COCOMO accounts for the

influence of individual project phases.

3.6.1.1 Basic COCOMO

The basic COCOMO equations are given as follows:

where, KLOC is the number of delivered lines of code written for project expressed in

thousands. E = Development Effort Required in units of person-months. D = Development

Time in units of months and P = number of People required in the development team.

The estimated effort when plotted against the size of the project given the following graph:

Fig 6. Estimated effort v/s software size

Development time is a sub linear function of

product size.

When product size increases two times,

development time does not double.

Delhi Technological University, 2014 Page 36

Fig 7. Development Time v/s software size

3.6.1.2 COCOMO II

Each of the attributes is rated on a six-point scale ranging from "very low" to "extra high" (in

importance or value). An effort multiplier is applied to this rating. The product of all effort

multipliers is called the effort adjustment factor (EAF).

The Intermediate Cocomo formula:

Delhi Technological University, 2014 Page 37

where E is the estimated development effort in units of person-months, KLOC is the software

size in terms of number of thousands of lines of code for the project.

3.7 Expert Judgement

Delhi Technological University, 2014 Page 38

3.8 Bayesian approach

3.9 Benefits of Accurate Estimation


Delhi Technological University, 2014 Page 39

Early risk information

One of the most common wasted opportunities in software development is the failure

to correctly interpret the meaning of an initial mismatch between project goals and

project estimates.

3.10 Causes of Inaccuracy in Estimation Process in Software Development

There is always an inherent error associated with any form of estimation. This is primarily

because “an estimate is a probabilistic assessment of a future condition” and therefore

accuracy is expected to be low in tany kind of estimation process. The causes of inaccurate

estimates in development projects for Information Systems applications (IS) can be grouped

into five categories by Lederer and Prasad [7], namely methodology, politics, user

communication and management control, uncertainty.

Delhi Technological University, 2014 Page 40

.

3.10.5. Uncertainty: Due to lack of clear understanding of requirements and allowing

change in requirements, there is a lot of uncertainty in the requirements.

Delhi Technological University, 2014 Page 41

However the uncertainty extends further than requirements into factors such as

those that can be purely technical (whether specific

Delhi Technological University, 2014 Page 42

Chapter 4 Cost Estimation for

Agile Development Methods

4.1 Introduction

4.2 Agile Estimation

Delhi Technological University, 2014 Page 43

4.3 Traditional Estimation Methods vs. Agile Estimation Methods

Delhi Technological University, 2014 Page 44

 Table 2. Comparison of traditional estimation methods and agile estimation methods

4.4 PLANING POKER

Planning poker is the mostly used technique for estimation in agile environment. This

technique is highly depended on the expert who takes part in estimation process. The

participants are all the programmers, testers, analysts etc. working on that project.

The Steps of planning poker estimation are:

1. Each estimator is given a deck of cards with a valid estimate written on it in

numerical form. The numbers may for example be from Fibonacci Series 0, 1, 2, 3, 5,

8, 13 and 21. The numerical estimates are usually written in non-linear form. These

non-linear sequences correctly reflect the greater uncertainty associated with

estimates for larger units of work i.e. in case of 13 story points, it is difficult to argue

whether the card is worth 13 points or 12 points [24].

2. A moderator is assigned for the estimation process. The moderator is usually the

product owner (customer) or an analyst. He reads the user story description. The

Delhi Technological University, 2014 Page 45

customer explains user
stories to developers

each developer comes up with
estimate for time and effort

estimates are presented and discussed
till everybody reaches an agreement

developers develop features
in the story

stories are discussed in detail and any queries regarding the scope and complexity of

the story is answered by the product owner.

3. Each estimator will decide on an estimate for the cost or effort required for that story

to be completed. Then he selects the corresponding card. The estimators at this stage

do not discuss their estimates. This step is done individually by each estimator.

4. In this step, all cards are simultaneously turned over. This way all the participants can

see each others estimates.

5. If all the estimates are equal then that value is selected for cost estimate.

6. However if there is any disparity in the estimates then the participant with the highest

value and those with lowest values explain their concerns and the team discusses the

scope of the story again.

7. After this discussion, the steps 3and 4 are repeated until all the participants have

agreed to a common estimate.

Fig 8. Planning Poker

Shortcomings of Planning Poker

Based on a research [24][25], it has been concluded that the following areas need to be

addressed:

Delhi Technological University, 2014 Page 46

 High Magnitude of Relative Error (MRE) in estimation

Magnitude of Relative Error is a widely used measure for evaluating the estimation

accuracy of different models. For a single estimate, it is defined as:

ActualCost

ActualCostostEstimatedC
MRE

|| 


Mean MRE is used to quantify the accuracy for the complete model. Based on the

estimation data collected from the enterprise for planning poker [24], this value comes out

to be 1.0681 or 106.81% which is very high and can be reduced.

 Strong over-confidence in accuracy of estimates

Software development projects frequently have over-optimistic effort estimates and over-

confident assessments of estimation accuracy. It has been observed that [6] there is large

percentage of projects which are either over or under estimated using planning poker.

 An expert-dependent method

Even though planning poker takes every developer’s estimate into consideration, the bias

towards estimates from experts cannot be fully avoided. From the perspective of

managers and developers at the enterprise, an expert is more likely to convince his/her

opinion to the rest of the team than a novice developer in the team. And it has also been

observed that in absence of an expert in the team, the accuracy of estimates decreases

substantially.

If the user requirement documents are very well defined then we can easily use popular effort

estimation measurements in software industry. In Agile Software Development methods

requirements are subject to change and there is no standard way of specifying them. User

requirements in agile methods are defined as user stories and are collected in backlog.

Agile methods have typically less detailed processes based on their values and principles.

Such activities are really light-weight in terms of processes for planning, sizing and effort

estimation as well as project management. Most of the measuring practices in traditional

software development methods are not usable in agile methods directly. They have to be

customised for use in the particular company or a specific type of projects. In the next chapter

we describe in detail some these modified estimation approaches under research.

Delhi Technological University, 2014 Page 47

Chapter 5 Recent Software Cost Estimation

Approaches for Agile Development

Introduction

Due to uncertainty in requirements, the traditional estimation approaches cannot be used for

estimation of size, cost or duration in agile software development projects. However as we

have seen from the previous chapters that agile estimation relies mostly on analogy based

methods or expert judgement based methods for cost estimation.

Following are some of the current practices of agile software development cost estimation

techniques under research

1. SWOT based estimation model given by- Ziauddin, Shahid Kamal Tipu,

Shahrukh Zia, “An Effort Estimation Model for Agile Software Development”,

Advances in Computer Science and its Applications (ACSA), 2012

The authors proposed a multidimensional view to produce accurate and effective estimates

using a SWOT according to Internal vs. External influences. They used data collected from

past projects combined with mathematical formulae to develop a model to estimate the effort,

project duration and cost. The model predicts Completion time and cost for agile software

project. They identified the key differences between team organisation in agile and traditional

development approach as follows:

1. Agile teams are "Whole" :

It is an XP practise which implies that the team members have the requisite skills

between themselves only. Within the members of the team they have the required

testing skills, interfacing skills, UI designing skills, database skills, translation skills

etc. and do not need any external teams dependency to complete the project

2. Agile teams are formed of generalizing specialists:

A generalizing specialist is someone who has one or more technical specialties e.g.

Java programming, project management, database administration.

Delhi Technological University, 2014 Page 48

3. Agile teams are stable:

This means that any significant change in the team structure or organisation can

affects on the project performance.

 The authors found that the scrum practitioners used a comparative scale for estimating the

development effort. That is the development cost is estimated comparative to previous

projects; where the scale is often a Fibonacci scale [1,2,3,5,8].This means that the story

ranked 3 is approximately thrice as costly to develop than the one ranked 1.

The authors argued that this method of prediction by relative estimation does not take into

account the underlying elements that affect effort and uncertainty.

Effort estimation is based on user story size and its complexity. Using these two vectors,

effort of a particular User Story is determined using the following simple formula:

ES= Complexity x Size

For project cost estimation the concept of agile velocity was used. Velocity is calculated as

This is the observed velocity or initial velocity Vi.

The authors proposed a mechanism to optimise the velocity value by two factors:

i. The Friction or consistent forces that are a constant drag on productivity and

reduce Project Velocity.

ii. The Variable or Dynamic Forces that decelerate the project or team members and

cause the Project Velocity to be irregular.

Friction Factors are the external factors such as environment factors, process factor, team

dynamics etc which negatively impact the productivity hence increase the cost. The aim is to

reduce or minimise the friction factors.

The friction value FR is given as a product of all individual friction factors values.

Variable Factors are internal factors which are unpredictable and unexpected. They are for a

brief time and introduce a little irregularity in the velocity hence affect the cost. These forces

need to be made consistent and predictable as much as possible so that their effect on the

agile velocity can be predicted at the time of estimation.

Factors such as re-organisation of team, change in management, new tools or process, unclear

requirements, personal issues of development team etc can be considered under variable

factors.

Delhi Technological University, 2014 Page 49

The dynamic force DF is given as a product of all individual variable factor values.

Now the authors gave the following formulae for optimised velocity

Where V= optimized velocity, D = deceleration.

The following formula is given for estimating development cost:

Here ES refers to story point values.

Using empirical data the authors calibrated their model and found the net ratio to be 1.68.

The authors have also measured the estimation accuracy by performing experimental analysis

on data of previously developed projects from different software houses. They found that

MMRE for estimation of cost comes out be 61.90%.

This model also provides for uncertainty in the measurement by introducing a "Span of

Uncertainty".

The estimator can never be 100% sure of their estimates, hence they have a confidence level

CL. It indicates how much confidence they have in their estimates, how sure they are of their

understanding of the magnitude of project factors. CL is input in terms of % value. Typically

it ranges between 80% to 95%. Using the CL confidence level indicator, the model helps find

the variation range in the predicted cost. The lower bound of this range is Optimistic Point

and the upper bound is Pessimistic Point.

2. Chandrasekaran, R. Lavanya S., and V. Kanchana. "Multi-criteria approach for

agile software cost estimation model", Proceedings of APA, 2007

The authors have modelled a software cost estimation process with a number of constraints

imposed by stakeholders and environmental characteristics, thereby satisfying multitudinous

criteria using concurrent constraint programming. The proposed work is to focus on the

various factors affecting the people-oriented environment. The authors have argues taht in

agile environment, the development cost of a software project is dependent to a great extend

Delhi Technological University, 2014 Page 50

on the people and management issues. The cost factor for agile software is based on a

multiple-criteria approach.

The conceptual model describes the idea of arriving at the criteria set required to emulate the

agile environment. The major quality-attributes relating to the each of the agile manifestoes

and affecting the agile software are identified. Numerical weights are attached to them that

represent the effect of the attribute on the product quality and time of completion. the authors

have called them Quality Weights (QW) and Time Weights (TW) respectively.

These attributes are the cost drivers and by combining the agile manifestoes with the various

quality and time attributes, a particular set of the attribute levels are derived that forms the

criteria for estimation.

The below tables show the attributes and their time and quality weights as given by the

authors.

Table 3.High priority attributes and their weights as given by the model.

High Priority Attributes Quality weight QW Time Weight TW

Communication skills 5 -4

Proximity of team 3 -4

Feedback 1 5

Courage 1 -3

Managerial skills 5 -5

Consistent working 2 -2

Technical ability 3 -2

Debugging capability 2 -2

Reliability 3 -2

Function points 3 4

Ease of use 4 3

Early deliver 5 -2

Table 4.Low priority attributes and their weights as given by the model.

High Priority Attributes Quality weight QW Time Weight TW

Process maturity 4 -3

Toolavailabilty 4 -2

Delhi Technological University, 2014 Page 51

Tool familiarity 3 5

Conservativeness 1 3

Training 4 4

Planning 4 -3

Pages of documentation 2 3

Project complexity 1 4

Other expenditure 2 3

Documentation resources 2 3

Documentation period 4 3

The value of Quality Factor QF is given by

Where QWi and Li refer to the quality weightage and level of each of the attributes.

The value of Time Factor QF is given by

Where TWi and Li refer to the time weightage and level of each of the attributes.

Once these are determined, the model proposes the estimated Cost as follows:

Where CF = cost factor,

 TF = time factor

 QF = quality factor

The authors found that their model was well suited to small and medium sized development

teams which use agile development methodology. But the major drawback of this is that the

accuracy of the estimation depends entirely on the mathematical representation of agile

manifestoes.

Delhi Technological University, 2014 Page 52

3. Asnawi, Ani Liza, Andrew M. Gravell, and Gary B. Wills. "Factor analysis:

Investigating important aspects for agile adoption” AGILE India (AGILE

INDIA), 2012. IEEE

The authors used the Factor Analysis technique to identify/propose 15 factors. They

conducted a survey, and evaluated the practices having significant contributions in several IT

areas such as process/governance, quality assurance, iterative and incremental development

and team communication but not directed at project performance aspects such as cost,

quality, deadlines and scope.

From an initial 27 factors they have extracted 8 factors. The Eigen values ranged from 0.093

to 7.852. The eight extracted factors and their related variables are described as follows:

Table 5. Variables and their loadings

VARIABLE LOADING

FACTOR-1 Level of Involvement of the developer and impact of their opinion

Responsibility of the developers towards organisation’s Agile mission 0.816

Involvement of developers in setting goals for Agile activities 0.805

Delhi Technological University, 2014 Page 53

Importance of identifying project scope and suitability of agile in the project 0.674

Transparency and encouragement to developers 0.497

Allowing of interpersonal interactions among the developers 0.564

FACTOR-2 Organisational Culture and People Related Aspects

Presence of people of different ethnic and racial backgrounds 0.845

Use of English as communication language 0.810

change of mindset when using Agile practices 0.434

FACTOR-3 Customer Involvement when Practicing Agile methods

Involvement of customers in setting goals for Agile activities 0.680

Requirement of special skills for agile practises 0.656

Resposibility of the customers towards fulfilling the organisation’s Agile goals 0.615

Customers knowledge of Agile Practises 0.556

FACTOR-4 Benefits/Impact of using Agile methods

Focus on customers’ satisfaction when using Agile methods 0.881

Efficiency in the software development process achieved by collaboration

between both parties i.e. customers and developers.
0.867

Agile Developer’s Morale 0.585

Quickness of delivery of results by Agile Methods 0.495

FACTOR-5 Importance of training and learning

Training for Agile methods -0.879

continuous learning helping in knowledge transfer when using Agile methods -0.811

FACTOR-6 Importance of Technical and Technological Aspects when using Agile

Suitability of Agile methods for that specific project and technology -0.943

Importance of tools for supporting the usage of Agile method -0.507

emphasises on achievement and goal accomplishment -0.414

FACTOR-7 Importance of Sharing, Knowledge. etc

Personal interaction between team-mates 0.614

Limitations regarding Knowledge about Agile Practices -0.530

FACTOR-8 Team Commitment and Clarity of Purpose

Clarity in division of knowing roles and responsibilities of each member 0.694

attitude such as team spirit and team commitment required from everyone 0.515

Early Delivery Time requirement 0.493

Delhi Technological University, 2014 Page 54

4. Santos MA, Bermejo PHS, Oliveira MS, Tonelli AO “Agile Practices: An

Assessment of Perception of Value of Professionals on the Quality Criteria in

Performance of Projects”, Journal of Software Engineering and Applications, v.

04, p. 700-709, 2011

Overall, the available studies focus on analyzing factors and attributes is related to agile

principles and not on the applicability of practices. The authors analysed from the perceived

value of various stakeholders in the process of software development, the relationship

between the use of agile practices and quality of software products.

Another important point raised is the limitation of these studies to evaluate projects using

specific methodologies and more popular, such as XP and Scrum. The magnitude and

diversity of practices and agile methodologies it’s disregarded in most of the studies.

Delhi Technological University, 2014 Page 55

Therefore, the investigation of the perceived value of the users those agile practices in their

software development environment is presented as an appropriate objective since the article

proposes to seek understanding of the impact and positive effect of the adoption of agile

practices in software projects as a way to get quality on the final software product.

The authors gave a set of six latent root criteria which are given below and depicted in fig 9.

Fig 9. Agile grouped into criteria that represent user’s perception of value and quality

i. Backlog with continuous integration:

It represents practices related to the phase of planning of the features of the

project, where the team sets during the planning meeting of the iterative cycle, the

implementations of higher priority and which deliver customer value. The

practices had higher factorial weights This justify a positive perception of value

from the respondents regarding the creation of a prioritized list of features in the

iteration planning meeting, that must be worked and integrated in small releases

Delhi Technological University, 2014 Page 56

and continuously evaluated qualitatively at the meeting of the Iteration

Retrospective, in order to create a improve plan for the next features to be worked.

ii. Agile requirements analysis:

This refers to the perception of practices related to the execution and analysis of

test of features specified in the users stories. A User story is an agile practice

where the requirements are specified from the customer’s point of view, in a

simple language and description. In this case, the data indicate which this practice

plays an important and active role in the definitions of the projects and that the

features created from the stories users are properly tested through the use of

functional tests.

iii. Modelling the testing process

This has high significance in practices related to the modelling of testing phase.

The practices had higher weight factor justifying the positive perceived value of

the respondents in the generation of use cases and UML diagrams to build test

cases adapted to the agile process in their companies.

iv. Preventing bugs with test cases

Use of test cases for the correction of errors arising from the acceptance tests. The

practices that justify the development of test cases to implement the features ill-

defined in the planning phase and not properly functional identified in screening

of errors of acceptance tests by the user.

v. Vision document

This represents the use of a vision document as an artifact which reports system

technical’s perspectives, process preceding the analysis of the domain model. In

this case, the Vision Document, despite being built using simple language, yet has

a more technical aspect of a user story.

vi. Multifunctional development teams guided by tests

This sixth factor represents factorial weights in practices related to the formation

of a cross-functional team which implements unit tests of the more valuable

features. The values of features are defined in accordance with the customers or

Delhi Technological University, 2014 Page 57

the Product Owner. A team with different abilities to execute tests could bring

positive results because they will search for failures in the sys- tem from different

aspects. The practices had higher factorial weights justifying the positive

perception of value of the respondents to practice cross-functional teams including

the customer in a more representative way.

The authors showed that agile practices combined into factors used in the various phases of

the project, can contribute positively in achieving quality in three aspects:

a) developed code in terms of maintainability, reusability and re-factoring of code.

b) Higher involvement of stakeholders as they present the business point of view for the

project.

c) Management of the uncertain and changing requirements

They also suggested combinations of widely used agile practices in the software market.

These can be designed for suitability and compliance of quality standards in software projects

can lead to a performance positive.

5. J.-M. Desharnais and L. Buglione, "Using the COSMIC method to estimate

Agile user stories,"12th International Conference on Product Focused Software

Development and Process Improvement, Torre Canne, Brindisi, Italy, 2011.

COSMIC, "Guideline for the use of COSMIC FSM to manage Agile projects”

2011.

They proposed a procedure for using COSMIC Function Points in agile methods and assessed

it in a real project. It involves some degree of guess estimation on some of the user stories;

however by eliciting requirements from the user stories and focusing on high quality of

documentation, this methods can be helpful.

The authors proposed an approach based on COCOMO using cosmic measurement method at

user story level in addition to quality of documentation. They also demonstrated that their

approach can help planners know better why the global effort changes along with time.

The proposed approach can be given by the following flow diagram

Each of the steps is described below.

The COSMIC method is used to provide a standardized method of measuring the functional

size of software. Firstly user requirements are taken in the form of User Story (US). A user

Delhi Technological University, 2014 Page 58

Fig 10. Procedure to obtain effort in hours for a story

story describes a feature of the software. Each story is formulated in one or two sentences in

the language of the customer. This is only a short broad level description of the user story.

Then these user stories are formulated in terms of technical implementation and their

functional process are determined. This is the mapping phase of the cosmic method. The

mapping procedure is given in table 5 below.

Get user requirements for
each user story

Discussion on user
requirements formulation

by the team to find
Functional Processes

Determining the size of
each story CFP using

COSMIC method

Discussion on calculating
effort per CFP

Calculate total number of
hours

Prepare project plan
according to calculated

effort values

Delhi Technological University, 2014 Page 59

Table 6. Procedure Steps to apply COSMIC method – Pt. 1

MANAGEMENT STRATEGY

(MS)

MS.01 Defining Purpose of measurement

MS.02 Defining Scope of measurement

MS.03 Identifying Functional Users

MS.04 Identifying level of granularity

MAPPING (MA)

MA.01 Applying generic software model

MA.02 Identifying functional processes

MA.03 Identifying objects of interest and data groups

COSMIC measurement method raises some questions about the project information such as:

o how many functional processes within a story

o is the story imply a change in the database

o what is the trigger of the functional process

As the project will go on, and more information is coming in, there is a possibility to have a

number of changes in the software product.

Next step is the determination of the functional size of each US n terms of CFPs

Measurement of the stories is done by using the COSMIC method, which gives the size of

each functional process in terms of COSMIC Function Points or CFP from the information

available at that time. This completes the Mapping phase as shown in table 5. Remaining

steps to apply COSMIC method are shown in the following table:

Table 6. Procedure Steps to apply COSMIC method – Pt. 2

MEASUREMENT (ME)

ME.01 Identifying Data Attributes

ME.02 Identifying Data Movements

ME.03 Application of Measurement function

ME.04 Aggregation of Measurement Results

After the functional size for each US is determined, effort per CFP value needs to be

determined. Experienced members of the development team discuss and find an agreement

on the value of effort per functional point. this value can also be derived from a repository of

previously implemented projects, selecting their more feasible PDR(productivity) in terms of

effort/CFP values after applying some filters by the needed project characteristics e.g.

development type, programming language(s), application domain, etc.

Delhi Technological University, 2014 Page 60

Next step is to apply those PDRs to each US and therefore summing them within the

boundary of the overall project. PDR values will be multiplied by the number of measured

CFP for each US, and such value will return the needed effort for that US. Then in order to

calculate the total effort of the project in terms of person-hours (p/hrs), the sum of such

calculated values will be taken.

Where n is the number of user story,

 CFPUSi is the COSMIC Function Point for i
th

 user story

 EUSi is the effort per CFP for i
th

 user story

Story could include changes to a previously released User Story. The estimation is basically

done in the beginning of iterations and it works on the updates over previous predictions.

Using this method, any change in any of the user requirements could be calculated which will

Delhi Technological University, 2014 Page 61

happen in the next iteration. Hence, based on adding, changing or cancellation of any data

movement, change in the size of software is measured and the cost increments are deduced

from that. Here the first estimate is of prime importance as any error in the first estimate will

propagate and increase each of the subsequent iterations.

6. P. Abrahamsson, I. Fronza, R. Moser, J. Vlasenko, and W. Pedrycz, "Predicting

development effort from user stories",International Symposium on Empirical

Software Engineering and Measurement (ESEM), IEEE, 2011, pp. 400-403.

The authors proposed a model for predicting development effort based on user stories. Their

method relies on predictors which are extracted from completed user stories and which will

be used for next stories. The approach is well suited for agile software projects where

requirements are developed along with the product. Initial requirements are sketched in a

rough manner only.

Given a set of user stories the users define a set of predictors that can be extracted

automatically from a user story. No particular structure or format is required for the content

of the story. Next the models are built to predict then implementation effort of a user story.

The results are then compared to estimation based on design metrics.

The model predicts the effort for each iteration defined by asset of user stories, hence it is

naturally fitting for Agile development practices. Also the data required for the estimation

process is user stories only which are readily available after the planning phase and before

development phase. Since it is not dependent on prior or expert knowledge, novice users and

new teams can also use it for estimation process.

A schematic view is given in Figure 11.

Initially a set of completed user stories are available. Predictors are extracted from the user

stories.

Predictors extracted from user stories are:

i. Number of characters – a higher value depicts a more complex user story because

developers need more text to define complex functionality. Hence a higher

number of characters mean more development effort.

ii. Presence of keywords – the authors have given a list of 15 keywords. The user

stories are checked for presence and frequency of these keywords and this is

stored as binary values.

Delhi Technological University, 2014 Page 62

iii. Priority – the team discussions occur with customers to decide on priority order of

user stories; 1 indicating the highest priority and 4 denoting leastd priority. The

authors considered high priority user stories to be requiring more effortthan low

priority stories.

The 15 keywords identified by the authors are –

Gestation (Management), File, Test, Creation, Report, Tool, Possibility, Data,

Modification, Visualization, Configuration, Build, To Visualize, Time, Channels.

Fig 11. Effort prediction model

These predictors are used to train the model. the authors consider only algorithmic models in

their estimation process. The models which can be quantitatively derived from the data such

as: regression models, neural networks, Support Vector machines(SVM).

Then the model is used for estimation for new stories. Cross validation methods like leave

one out (LOOV) procedure.

Such approach is well suited for Agile software projects where requirements are developed

along with the project and only sketched in a rough manner. In the proposed model the

effectiveness of the model is different from case to case and is based on quality and style of

user stories.

By applying their proposed method to two industrial Agile software projects of very different

size and structure the authors show that such effort estimation works reasonably well if user

stories are written in a structured way.

Delhi Technological University, 2014 Page 63

Chapter 6 Proposed Cost Estimation Process for Agile

Software Development Projects

In this chapter we present a cost estimation model for agile software projects which estimates

the development cost by extracting key factors using Principal Components Analysis and

using constraint programming to satisfy the constraints imposed by the agile manifesto. The

model is then evaluated and compared with recent researches.

6.1 Overview of the Cost Estimation Model

Using inspiration from recent researches involving SWOT analysis based model and use of

PCA-based models for estimation in traditional development methods, we propose a Cost

estimation model as depicted in the figure12. The first step is to identify the factors affecting

development costs by analysis of the sample data by using the Exploratory Factor Analysis

with factor extraction using Principal Component Analysis (PCA). This results in generation

of the coefficient matrix for each of the identified principle components. The second step is to

use constraint programming for satisfying the criteria imposed by agile development

environment through the agile manifesto. The Development cost is determined by using the

factors and coefficients generated by factor analysis while satisfying the agile manifesto

conditions by the Constraint programming. This estimation process is expected to enhance

the level of visibility of cost estimation in the planning stages.

Delhi Technological University, 2014 Page 64

Training Data

 Testing Data

Fig 12. Process model for cost estimation

6.2 Data pre-processing

Project Characteristics

Data Pre-processing

Factor Reduction using

Principal Components

Analysis

Constraint solving for

satisfying Agile Manifesto

Extracted Key Factors

and Coefficient matrix

Estimated Cost

Delhi Technological University, 2014 Page 65

Hence the qualitative data in the data set was converted into a set of quantitative values

through summarizing on an N-point scale (where N is a prime number usually 3 or 5 or 7).

The next step is smoothening of data which involves treatment for missing data values. The

missing data which was mostly empty was ignored; in case the missing data was less it was

filled with the mean value. Next Step is removal of statistical noise and deletion of

exceptional/extreme points in data.

The complete data set is divided into two parts - training data set and testing data set.

Fig13. Steps in data pre-processing

6.3 Exploratory Factor Analysis using Principle Component Analysis

Following the pre-processing step the agile development data will be analyzed using the

multi-variate statistical technique Exploratory Factor analysis

relationship among variables. The agile development data contains data from multiple

projects. This data contains values of recorded attributes for each of the software project. The

recorded attributes are:

Table 8. Attributes for cost estimation in data-set

Software size

IDE

Productivity

Development Platform

Application Type

Programming Language

Operating System

Team Size

Delhi Technological University, 2014 Page 66

Language Type

Data Base System

Organization Type

Hardware

Following process model

Training

Technical ability

Planning

Debugging capability

Client/Server

Communication skills

Process maturity

Proximity of team

Tool availability

Feedback

Tool familiarity

CMMI

Architecture

ISO

Type of Server

Package Customization

Project complexity

Function points

Reliability

Pages of documents

Risk taking

Managerial skills

Ease of use

Documentation resources

Early delivery

Documentation period

Other Expenditure

6.3.1 Principal Component Analysis- PCA

PCA is the statistical technique which is used to reduce the dimensionality of a data set which

has a large number of inter-related variables, while also retaining as much as possible of the

variation present in the data set. This is achieved by transformation of the given data into a

Delhi Technological University, 2014 Page 67

new set of variables, the PCs which are uncorrelated, and which are ordered so that the first

few retain more variation than the rest of the components.

This definition means that the PCA transforms the data to a new coordinate system ensuring

In statistical analysis works, the variables that have factor loadings of 0.55 or higher are

usually considered.

The principle components are extracted from the sample data by the following steps:

Fig 14. Steps in Exploratory Factor analysis

6.3.2 PCA based Factor Analysis

From the processed training data set we obtain the component correlation matrix. The

Component Correlation matrix contains the Factor loadings for each component which

Delhi Technological University, 2014 Page 68

explains the co-relation between the corresponding component and the cost of development.

These are essentially the eigen values of the covariance matrix of X for each component.

Communalities are the variance in observed variables (here it refers to project development

cost) accounted for by common factors. Using these we draw a scree plot.

 The components whose values are below a predefined threshold value are dropped and those

above the threshold value are considered as principal components.

The Principal Components are identified through accumulation contribution, communalities

and scree plot as is depicted in the following flowchart.

Fig. 15 Steps of Factor Extraction using Principal Component Analysis

Data after Pre-Processing

Component

Correlation Vector

Calculate

Communalties

Generate Scree Plot Calculate Cummulative

Variance

Determine no. Of

Principal Components

Principal Component

Coefficients matrix

Delhi Technological University, 2014 Page 69

6.4 Constraint Programming for satisfying Agile Manifesto Criteria

On obtaining the set of principal components/attributes and the score coefficients matrix we

have to determine the criteria set required to emulate the agile development environment.

The agile manifestoes impose certain constraints on the factors that are to be concurrently

solved to obtain these criteria. These are:

 Individuals and interactions over processes and tools.

 Working software over comprehensive documentation.

 Customer collaboration over contract negotiation

 Responding to change over following a plan

In the software development environment different possible combinations of the components’

coefficient values are equally likely to exist. The objective of this step is to formulate a set of

criteria for an agile environment from this huge domain. Different issues affecting the people-

oriented and adaptive agile environment are considered to come out with a set of criteria

based on which the estimation process is carried out. Constraint Solving follows the

following steps:

Fig16. Steps in Constraint solving

Delhi Technological University, 2014 Page 70

Fig.17 Process model for constraint programming

In order that the estimation best fits the agile environment, the four manifestoes of the agile are

given prime importance. The PCA outputs key factors extracted and their corresponding

coefficient values. The extracted factors are classified under the agile manifestos as applicable.

Each extracted factor corresponds to one or more manifesto.

Let there be N extracted factors denoted as f1, f2, f3...fN with corresponding coefficient values as

C1, C2, C3...CN

Now we classify these extracted factors according to each of the agile manifesto and calculate the

cumulative factor value for each manifesto.

Let factors f1, f4, f6, f9 be applicable to the first manifesto. These are then denoted as f11, f12, f13, f14;

and their respective coefficient values as C11, C12, C13, C14.

Similarly f21, f22, f23.. denote the factors which are applicable to the second manifesto and C11, C12,

C13 are their corresponding factor coefficients;

Delhi Technological University, 2014 Page 71

f31,f32,f33.. denote the factors which are applicable to the third manifesto and C21, C22, C23 are their

corresponding factor coefficients;

and f41,f42,f43.. denote the factors which are applicable to the fourth manifesto and C41, C42, C43 are

their corresponding factor coefficients.

 Next we calculate the cumulative factor value for each manifesto as a summation of individual

products of the value of the corresponding attribute and the coefficient value.

Cumulative Factor Value for manifesto-1 F1 is given as:

It can be also expressed as :

Where N1 denotes the number of factors which correspond to manifesto-1.

Similarly Cumulative Factor Value for manifesto-2 F2 is expressed as:

Where N2 denotes the number of factors which correspond to manifesto-2.

Cumulative Factor Value for manifesto-3 F3 is expressed as:

Where N3 denotes the number of factors which correspond to manifesto-3

Cumulative Factor Value for manifesto-4 F4 is expressed as:

Delhi Technological University, 2014 Page 72

Where N4 denotes the number of factors which correspond to manifesto-4.

The development cost is estimated as a product of the cumulative factor value of each of the

manifesto as –

Constraint solving is done using the OZ programming language. OZ is a multi paradigm language

that is designed for advanced, concurrent, networked, soft real-time and reactive applications that

is ideal to solve the constraint base estimation problem. The OZ constraint programming allows to

pre-define the set of constrains that must be satisfied constantly rather than having to write the

methods to maintain the relations

Delhi Technological University, 2014 Page 73

Chapter 7 Implementation and
Results Analysis

7.1 Introduction

In this chapter we will implement the proposed estimation model on the sample data set and

demonstrate the steps of the cost estimation process. The model is evaluated by finding out

the mean magnitude of relative error observed (MMRE) and compared with two of the

existing models- SWOT based estimation model and multi-criteria based approach.

7.2 Data-Set Description

The proposed two step model for cost estimation in agile software projects was used on the

data-set which is used in research in the domain of agile development methodologies and

agile studies at the 'Centre For Systems And Software Engineering' at the 'School of Engg,

University of South California'. The dataset contains knowledge about software projects that

are 'standardised, verified, recent and representative of current technologies'.

It is a repository of the software development project data from about 250 development

projects using agile technologies. In other words ait is a record of values of 40 attributes for

250 projects. The data is collected from reputed software development firms in various

countries- Switzerland, USA Australia, Netherlands, Spain, China, Finland, France,

Germany, Italy, and Japan.

The data is collected primarily from middle-level to big level teams with a team size ranging

from 25 to 70 persons. The projects considered are also of varying size, complexity and costs.

The suitability and appropriateness of the data to conduct factor analysis should to be

checked. This validation of data used for analysis has been tested by the Kaiser-Meyer-Olkin

(KMO) method.

The KMO method is used to measure sampling adequacy and it ranges from 0 to 1. Values

between 0.5 and 0.7 are mediocre, values between 0.7 and 0.8 are good, values between 0.8

and 0.9 are great and lastly values above 0.9 are superb. A KMO with 0.6 is suggested as the

Delhi Technological University, 2014 Page 74

minimum value for a good factor analysis. If the value yields more than 0.7, then the

correlation on the whole are sufficient to make factor analysis suitable [35].

The KMO value founded was 0.816, which according to research, corresponds to a data-set

which is of good quality and suitable for analysis.

A few examples of the records in the data set are-

Table 9. Some project data from the data set used

Project Attributes Project 1 Project 2 Project 3 Project 4 Project 5

Software size 113 293 132 60 16

IDE 3 3 2 0 6

Productivity 0.88 0.88 1 0.75 0.88

Development Platform 4 4 3 1 1

Language Type 2 2 0 0 1

Data Base System 7.2 7.2 5.4 1.8 1.8

Organization Type 6 6 4.5 1.5 1.5

Hardware 1.1 1 0.91 1 1

Following process

model 1.24 1.1 0.91 1.24 1.24

Training 1.07 1.07 0.94 1 1

Technical ability 1.19 1 0.86 1.19 1

Planning 1.1 0.9 0.9 1 0.9

Debugging capability 1.15 0.97 0.83 1.15 0.97

Client/Server 5.5 5.5 4.2 1.4 1.4

Communication skills 4 4 2.5 -0.5 -0.5

Process maturity 8.68 7.7 6.37 8.68 8.68

Proximity of team 44 44 27.5 -5.5 -5.5

Tool availability 0.72 0.72 0.63 0.67 0.67

Feedback 3.6 3.6 2.7 0.9 0.9

Tool familiarity 2.15 2.15 1.89 2.01 2.01

Application Type 9 7 2 8 3

Programming

Language 4 4 3 1 1

Operating System 14.4 14.4 10.8 3.6 3.6

Delhi Technological University, 2014 Page 75

Team Size 66 66 50 17 17

CMMI 2 2 5.5 2.5 2.5

Architecture 3.5 1.5 2.5 2.5 3.5

ISO 3 3 3.5 3.5 3.5

Type of Server 3 3 2 1 1

Package

Customization 1.17 2.17 3.17 4.17 5.17

Project complexity 0.95 0.74 0.21 0.84 0.32

Function points 1130 2930 1320 600 160

Reliability 0.88 1.88 2.88 3.88 4.88

Pages of documents 4500 3500 1000 4000 1500

Risk taking -0.001 0.009 0.019 0.029 0.039

Managerial skills 30 30 23 8 8

Ease of use 0.37 0.37 0.20 0.28 0.28

Documentation

resources 108 84 24 96 36

Early delivery 1 1 1 1 1

Documentation period 6.4 4.9 1.4 5.6 2.1

Other Expenditure 14.83 11.63 1.77 1.74 0.24

Actual Cost 2040 1600 243 240 33

The complete data-set is provided in Annexure-2

This data can be used for estimation, benchmarking, project management, infrastructure

planning, bid planning, outsources management, standards compliance and budget support.

The data set is essentially a 250*40 matrix i.e. there is a record of values of 40 attributes for

250 projects. 70% of the data i.e. 175 records are considered as the training data set and the

remaining 75 records are used for Testing Data-set.

The training data-set is used to extract principal components for factor analysis. And the

estimation process is run on the training dataset. Then the results of estimation process are

compared with the actual cost values so as to determine the accuracy of estimates.

Delhi Technological University, 2014 Page 76

7.3 Software/tool used:

 For Principal component analysis of the agile project data the Statistical Toolbox of

MATLAB software is used.

 For Constraint Programming the Oz constraint programming language is used. Oz is

a multi-paradigm programming language allows to predefine the set of constrains that

must be satisfied constantly, rather than to write methods to maintain the relations.

The Mozart Compiler called “Mozart Programming System” is the primary

implementation of Oz. It is released with an open source license for various platforms

such as Unix, FreeBSD, Linux, Microsoft Windows, and Mac OS X.

7.4 Steps of Cost Estimation Process and their results

The Principal Components are identified using the MATLAB software through accumulation

contribution, communalities and scree plot as seen in previous chapter.

From the processed training data set we obtain the component correlation matrix.

The Component Correlation matrix contains the Factor loadings for each component which

explains the co-relation between the corresponding component and the cost of development.

The following table shows these factor loadings for each of the 40 components).

Table 10. Factor loadings and total variance of all the components

S.No. COMPONENT EIGEN

VALUE

% OF

VARIANCE
CUMMULATIVE

1 Cumulative Function points 5.721 12.099 12.099

2 Team Size 4.451 9.414 21.513

3 Development Platform 3.465 8.328 29.841

4 Project complexity 2.904 7.142 36.983

5 Operating System 1.986 6.300 43.183

6 CMMI 1.899 6.016 49.199

7 Architecture 1.585 5.352 54.552

8 ISO 1.542 5.261 60.813

http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/FreeBSD
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Mac_OS_X

Delhi Technological University, 2014 Page 77

9 Application Type 1.313 5.177 66.590

10 Process maturity 1.242 4.627 71.216

11 Programming Language 1.019 4.155 75.372

12 Risk taking 1.001 4.007 79.203

13 Early delivery 0.865 3.829 82.318

14 Software Size 0.851 1.900 83.118

15 Managerial skills 0.837 0.870 84.888

16 Technical ability 0.824 0.843 85.631

17 Planning 0.782 0.754 86.285

18 Data Base System 0.774 0.637 87.022

19 Reliability 0.756 0.599 87.920

20 Productivity 0.756 0.579 88.119

21 Following process model 0.746 0.478 89.697

22 Communication skills 0.745 0.476 90.273

23 Feedback 0.739 0.463 90.836

24 Tool availability 0.728 0.440 91.375

25 Organization Type 0.724 0.431 91.906

26 IDE 0.719 0.421 92.427

27 Tool familiarity 0.702 0.385 92.912

28 Proximity of team 0.694 0.368 93.380

29 Language Type 0.688 0.355 93.735

30 Hardware 0.671 0.349 94.254

31 Type of Server 0.658 0.325 95.645

32 Package Customization 0.652 0.319 96.024

33 Client/Server 0.617 0.305 96.329

34 Debugging capability 0.612 0.294 96.624

35 Training 0.581 0.229 97.852

36 Ease of use 0.578 0.222 98.075

Delhi Technological University, 2014 Page 78

37 Documentation period 0.561 0.186 98.261

38 Pages of documents 0.559 0.182 98.443

39 Documentation resources 0.534 0.129 99.917

40 Other Expenditure 0.512 0.083 100

The following table shows the Communalities extraction for each component.

Table 11. Communalities

S.No.

COMPONENT

EXTRACTION

VALUE

1 Cumulative Function points 8.18246

2 Team Size 4.95285

3 Development Platform 3.001556

4 Project complexity 2.108304

5 Operating System 0.986049

6 CMMI 0.90155

7 Architecture 0.628056

8 ISO 0.594441

9 Application Type 0.430992

10 Process maturity 0.385641

11 Programming Language 0.25959

12 Risk taking 0.2505

13 Early delivery 0.187056

14 Software Size 0.18105

15 Managerial skills 0.175142

16 Technical ability 0.169744

17 Planning 0.152881

18 Data Base System 0.149769

19 Reliability 0.142884

20 Productivity 0.142884

Delhi Technological University, 2014 Page 79

21 Following process model 0.139129

22 Communication skills 0.138756

23 Feedback 0.13653

24 Tool availability 0.132496

25 Organization Type 0.131044

26 IDE 0.12924

27 Tool familiarity 0.123201

28 Proximity of team 0.120409

29 Language Type 0.118336

30 Hardware 0.11256

31 Type of Server 0.108241

32 Package Customization 0.106276

33 Client/Server 0.095172

34 Debugging capability 0.093636

35 Training 0.08439

36 Ease of use 0.083521

37 Documentation period 0.07868

38 Pages of documents 0.07812

39 Documentation resources 0.071289

40 Other Expenditure 0.065536

From the above two tables we extract 12 factors which have significantly high extraction

values. The Cumulative of first 12 components is 0.792. This means that the first 12

components explain 79.2% of the variation in the Development Cost. Hence we will consider

the first 12 components as the Principal Components. The eigen value for the rest of the

components is below 1. The same can also be seen from the scree plot in figure18.

Delhi Technological University, 2014 Page 80

Fig 18. Scree plot

We can see that the line becomes nearly flat and below 1 after the first 12 components.

Hence the extracted factors using Principal Component Analysis are:

 Table 12. cost estimation factors

Cumulative Function points Architecture

Team Size ISO

Development Platform Application Type

Project complexity Process maturity

Operating System Programming Language

CMMI Risk taking

For the extracted factors a Principal Component Coefficients matrix is generated. It describes

the relative scores of the principle components for the purpose of Cost Estimation.

Table 13. Component Coefficient matrix

COMPONENT

Number
COMPONENT

COEFFICIENT

VALUE

1 Cumulative Function points 0.274

2 Team Size 0.094

3 Development Platform 0.054

Delhi Technological University, 2014 Page 81

4 Project complexity 0.646

5 Operating System 0.096

6 CMMI 0.705

7 Architecture 0.419

8 ISO 0.541

9 Application Type 0.012

10 Process maturity 0.385

11 Programming Language 0.259

12 Risk taking 0.255

On obtaining the set of principal components/attributes and the score coefficients matrix we

have to determine the criteria set required to emulate the agile development environment.

The OZ implementation code for this is given in Annex-1.

The Input is the Component Coefficient matrix as obtained in previous step. This code is run

on the Test data-set while specifying the constraints respective to each manifest.It solves the

given constraints and outputs the development cost factor for each record in the test data-set.

The estimated cost value and actual cost value for each of the project as given in the testing

data set is given as follows:

Table 14. results of estimation process

Record

No. Actual Development Cost

Estimated Development

Cost

1 2040 1027.997

2 1600 1009.334

3 243 166.652

4 240 355.107

5 33 45.595

6 43 22.587

7 80 9.774

8 1075 452.773

9 423 229.127

10 321 189.945

11 218 170.653

12 201 102.792

13 79 170.108

Delhi Technological University, 2014 Page 82

14 60 30.157

15 61 100.652

16 40 70.741

17 9 23.917

18 11400 3469.998

19 6600 1820.674

20 6400 3096.462

21 2455 923.864

22 724 453.347

23 539 270.614

24 453 241.959

25 523 175.878

26 387 182.817

27 88 57.906

28 98 232.928

29 7 27.781

30 5 6.519

31 1063 747.700

32 702 957.050

33 605 359.256

34 230 121.408

35 82 98.398

36 55 35.076

37 47 87.706

38 12 19.719

39 8 18.427

40 8 19.786

41 6 14.690

42 45 109.272

43 83 103.778

44 87 132.802

45 106 109.269

46 126 213.934

47 36 32.778

48 1272 1830.003

49 156 110.712

50 176 115.826

51 122 82.728

52 41 40.164

53 14 21.255

54 20 11.771

55 18 7.515

Delhi Technological University, 2014 Page 83

56 958 271.801

57 237 207.013

58 130 102.387

59 70 82.787

60 57 50.117

61 50 47.269

62 38 7.641

63 15 13.863

64 278 297.900

65 656 698.008

66 67 36.780

67 678 622.054

68 34 85.012

69 677 477.987

70 890 687.456

71 346 268.897

72 456 226.897

73 23 9.126

74 76 89.697

75 89 103.375

In the next section we will compare the estimated costs with the actual values.

7.5 Evaluation of the Estimation Process

The proposed two step cost estimation model predicted the development cost for the given

data-set. The estimated values were then compared against the Actual cost values.

This was done using MMRE (Mean Magnitude of Relative Error) .

MMRE values are computed from the relative error, or RE, which is the relative size of the

difference between the actual and estimated value. It is calculated as follows:

REi = (estimatei - actuali) / (actuali)

MREi = abs(REi)

MMRE = (100/N)*(MRE1 + MRE2 + ... + MREN)

Delhi Technological University, 2014 Page 84

For the above results we derive that the

MMRE = 50.63

The below plot shows the trend of MRE of the estimate cost with respect to rising project

cost. We can see that

 The error value is localised within the a small range around the mean value with the

exception of a few projects.

 Increased cost of development has no effect on the estimation error value.

 This means that even for very complex and costly projects the error in estimation will

be the same.

Fig 19.MRE vs development cost for proposed estimation model

7.6 Comparison with previously existing estimation approaches

In this section we will compare the proposed model with the models which are currently

under research as studied in the chapter 5

We use the model-1 on our dataset. The results of estimation process are as shown in Table

15.

Delhi Technological University, 2014 Page 85

Table 15. results of Model-1 estimation process

Record
No.

Actual
Cost

Estimated Cost
(EBV)

Record
No.

Actual
Cost

Estimated Cost
(EBV)

1 2040 5577.985

39 8 8.528

2 1600 4242.752

40 8 8.554

3 243 387.068

41 6 6.359

4 240 375.514

42 45 51.482

5 33 36.378

43 83 105.543

6 43 48.899

44 87 111.811

7 80 99.708

45 106 142.744

8 1075 2685.521

46 126 174.154

9 423 743.072

47 36 40.063

10 321 530.819

48 1272 3272.941

11 218 324.331

49 156 221.73

12 201 294.371

50 176 253.864

13 79 97.535

51 122 166.405

14 60 71.03

52 41 46.356

15 61 72.774

53 14 15.123

16 40 44.977

54 20 21.857

17 9 9.655

55 18 19.592

18 11400 35431.885

56 958 2259.802

19 6600 19850.663

57 237 364.447

20 6400 18637.265

58 130 182.166

21 2455 6925.608

59 70 84.896

22 724 1616.358

60 57 66.979

23 539 1034.74

61 50 57.94

24 453 812.911

62 38 42.503

25 523 981.118

63 15 16.263

26 387 665.888

64 278 451.059

27 88 114.351

65 656 1321.192

28 98 130.353

66 67 80.579

29 7 7.44

67 678 1435.97

30 5 5.285

68 34 37.654

31 1063 2579.708

69 677 1397.811

32 702 1526.04

70 890 2041.808

33 605 1189.265

71 346 583.468

34 230 347.793

72 456 836.409

35 82 103.211

73 23 25.242

36 55 64.171

74 76 92.982

37 47 54.108

75 89 116.983

38 12 12.917

Delhi Technological University, 2014 Page 86

The plot of MRE (magnitude of relative error) is given as follows:

Fig20. MRE vs Actual development cost plot for model-1

From the above results and plot we see that

- The mean magnitude of relative error MMRE = 46.7

- The error value is affected by the increasing development cost of the project.

- This means that even though the MMRE value is less than our approach by a 4%, the

actual value of the error in estimate is high for projects which are not small or low-

budget. Hence our approach using PCA and constraint programming will be more

suited to real-world Agile software projects.

Next we use the model-2 estimation approach. The results of estimation process are as

follows:

Table 16. results of Model-2 estimation process

Record

No.

Actual Cost

(EBV)

Estimated Cost

(EBV)

Record

No.

Actual Cost

(EBV)

Estimated Cost

(EBV)

1 2040 1027.997

39 8 18.427

2 1600 1009.334

40 8 19.786

3 243 166.652

41 6 14.690

4 240 355.107

42 45 109.272

5 33 45.595

43 83 103.778

6 43 22.587

44 87 132.802

0.000

0.500

1.000

1.500

2.000

2.500

5

8

1
2

1

8

3
3

3

8

4
3

5

0

6
0

7

0

8
0

8

7

9
8

1

2
6

1

7
6

2

3
0

2

4
3

3

4
6

4

5
3

5

3
9

6

7
7

7

2
4

1

0
6

3

1
6

0
0

6

4
0

0

magnitude (MRE)

Delhi Technological University, 2014 Page 87

7 80 9.774

45 106 109.269

8 1075 452.773

46 126 213.934

9 423 229.127

47 36 32.778

10 321 189.945

48 1272 1830.003

11 218 170.653

49 156 110.712

12 201 102.792

50 176 115.826

13 79 170.108

51 122 82.728

14 60 30.157

52 41 40.164

15 61 100.652

53 14 21.255

16 40 70.741

54 20 11.771

17 9 23.917

55 18 7.515

18 11400 3469.998

56 958 271.801

19 6600 1820.674

57 237 207.013

20 6400 3096.462

58 130 102.387

21 2455 923.864

59 70 82.787

22 724 453.347

60 57 50.117

23 539 270.614

61 50 47.269

24 453 241.959

62 38 7.641

25 523 175.878

63 15 13.863

26 387 182.817

64 278 297.900

27 88 57.906

65 656 698.008

28 98 232.928

66 67 36.780

29 7 27.781

67 678 622.054

30 5 6.519

68 34 85.012

31 1063 747.700

69 677 477.987

32 702 957.050

70 890 687.456

33 605 359.256

71 346 268.897

34 230 121.408

72 456 226.897

35 82 98.398

73 23 9.126

36 55 35.076

74 76 89.697

37 47 87.706

75 89 103.375

38 12 19.719

Delhi Technological University, 2014 Page 88

The plot of MRE (magnitude of relative error) is given as follows:

Fig21. MRE vs actual development cost plot formodel-2

From the above results and plot we see that

- The mean magnitude of relative error MMRE = 64.37

- This is higher than the results of our PCA based approach. Hence our approach using

PCA and constraint programming will be more suited to real-world Agile software

projects.

7.7 RESULTS

Results can be stated as follows:

 We have extracted 12 factors (or components) which account for the most variation

(79.2%) in the Development Cost. Thus we can discard the remaining attributes which

estimating development cost in the project planning stage.

 The proposed methodology is most suitable for agile projects as it uses constraint

programming to explicitly check for satisfaction of agile manifestos. Each of the

extracted factor is associated with one of the 4 manifestos and the constraint

Programming implementation (using OZ) is done so that the manifesto criteria are

met.

Delhi Technological University, 2014 Page 89

 The proposed methodology can be used in case of unavailability of historical data or

expert opinion. Most Agile software Cost estimation processes rely on expert opinion

or planning poker based cost estimation methods. However in case that is not

available then the extracted 12 factors can be used by the development team to

estimate software development cost while still satisfying the conditions of agile

manifesto.

 On comparison with other approaches under research we find that our model provides

a low MMRE value i.e.50.63; which is marginally lower than that seen with Planning

Poker i.e. 106.81[24]. Also the estimation error does not increase in high

cost/complexity projects. Hence we can safely say that the proposed cost estimation

approach increases the precision and accuracy of estimates; and hence is better suited

for the Agile Software Development Projects.

Delhi Technological University, 2014 Page 90

CONCLUSION

 Most of the existing cost estimation techniques have been developed to support

traditional sequential software development methodologies whereas Agile Software

Development is iterative in nature. If these traditional techniques are used for

estimation in Agile software projects, then the results will be definitely inaccurate.

 Only COSMIC published a measurement guideline for ASD methods and in this

guideline only software size will be estimated. Yet there is no well-defined and

standard other measurement practices in ASD methods.

 It has been observed that agile methods mostly rely on an expert opinion and

historical data of project for estimation of cost, size and duration. It has been observed

that these methods do not consider the vital factors affecting the cost, size and

duration of project for estimation. In absence of historical data and experts, existing

agile estimation methods such as analogy, planning poker become unpredictable.

Therefore, there is a strong need to devise simple algorithmic method that

incorporates the factors affecting the cost, size and duration of project. It will also

provide the basis for inexperienced practitioners to estimate more precisely.

 The proposed cost estimation model does just that. In this estimation approach we

have extracted 12 agile development factors which affect Development Cost.

Principal Component Analysis Technique is used to extract these factors.

The resulting factors along with their coefficients are used to predict software

development cost constraint programming technique. This estimation is modelled

through a careful consideration of all attributes relating to the four agile manifestos.

This cost estimation model is suitable for software development teams working in

agile environment

Future work will focus on finding more cost affecting attributes for different

categories of agile software development projects so as to improve the precision of

the model. Secondly we can in-corporate the similarity difference measurement while

assigning coefficients/weights to the factors.

Delhi Technological University, 2014 Page 91

References

[1] K. Beck, A. Cockburn, R. Jeffries, And J. Highsmith, Agile Manifesto,2001,

http://www.ggilemanifesto.Org.

[2] Pressman R. S.,'Software Engineering: A Practitioner's Approach', Mcgraw-Hill, 1997

[3] Agile Software Development, Alistair Cockburn, Addison Wesley Professional, 2002

[4] M. Cristal, D. Wildt And R. Prikladnicki, 'Usage Of Scrum Practices Within A Global

Company', IEEE International Conference On Global Software Engineering (ICGSE 2008),

Pp222- 226, IEEE, 2008

[5] M. Singh, 'U-Scrum: An Agile Methodology For Promoting Usability In Agile', Agile '08

Conference, Toronto, 2008.

[6] Ceschi M., Sillitti A., Succi G. & De Panfilis S, 'Project Management In Plan- Based And

Agile Companies', IEEE Software, Vol22, Pp21-25,2005

[7] Lederer A. L. & Prasad J, 'Perceptual Congruence and Information Systems Cost

Estimating', 1995 ACM Sigcpr, Nashville, Tennessee.

[8] Ewusi-Mensah, K. & Przasnyski, Z. H. ,'Learning From Abandoned Information Systems

Development Projects', Journal Of Information Technology, Vol10,Pp 3-14,1995

[9] Schalliol G., 'Challenges For Analysts on A Large XP Project', XP Universe 2001,

Raleigh, North Carolina.

[10] Jørgensen, M. & Moløkken, K., 'A Preliminary Checklist For Software Cost

management', Proceedings Of The 3rd International Conference On Quality Software, 2003

[11] Stamelos, I. & Angelis, L., 'Managing Uncertainty in Project Portfolio Cost Estimation’,

Information and Software Technology, Vol43, Pp759-768, 2001

[12] Strike, K., El Emam, K. & Madhavji, N., 'Software Cost Estimation with Incomplete

Data', IEEE Transactions on Software Engineering, Vol27, Pp890-908, 2001

[13] Jørgensen, 'A Review of Studies on Expert Estimation of Software Development Effort',

Journal of Systems and Software, 2004

[14] Jørgensen, 'Top-Down And Bottom-Up Expert Estimation of Software Development

Effort', Information and Software Technology, 2004

Delhi Technological University, 2014 Page 92

[15] Boehm, B. W., Abts, C. & Chulani, 'Software Development Cost Estimation

Approaches: A Survey', Usc-Cse, 2000

[16] Abrahamsson, Pekka, Et Al. 'Predicting Development Effort from User Stories', 2011

International Symposium on Empirical Software Engineering and Measurement (ESEM),

IEEE, 2011.

[17] Agarwal, R., Kumar, M., Yogesh, Mallick, S., Bharadwaj, R. M. & Anantwar, D.

,'Estimating Software Projects. ACM Sigsoft Software Engineering Notes, Vol26, Pp60-67,

2011

[18] Finnie, G. R., Wittig, G. E. & Desharnais, J.-M., 'A Comparison Of Software Effort

Estimation Techniques: Using Function Points With Neural Networks, Case-Based

Reasoning And Regression Models', Journal Of Systems And Software, Vol 39, Pp 281-289,

1997

[19] Jørgensen, M., Indahl, U. & Sjøberg D., 'Software Effort Estimation By Analogy And

Regression Toward The Mean', Journal Of Systems And Software, Vol 68, Pp253-262, 2003

[20] Asnawi, Ani Liza, Andrew M. Gravell, and Gary B. Wills, 'Factor Analysis:

Investigating Important Aspects for Agile Adoption', Agile India 2012, IEEE, 2012.

[21] Santos Ma, Bermejo Phs, Oliveira Ms, Tonelli Ao, 'Agile Practices: An Assessment Of

Perception Of Value Of Professionals On The Quality Criteria In Performance Of Projects',

Journal Of Software Engineering And Applications, V. 04, P. 700-709,2011

[22]Moser Raimund, Witold Pedrycz, and Giancarlo Succi, 'A Comparative Analysis Of The

Efficiency Of Change Metrics And Static Code Attributes For Defect Prediction', ACM/IEEE

30th International Conference On Software Engineering, 2008 (Icse'08), IEEE, 2008

[23] M. Cohn, User Stories Applied: For Agile Software Development, 1 Ed.: Addison-

Wesley, 2004.

[24] Haugen, N., 'An Empirical Study of Using Planning Poker for User Story Estimation',

Proceedings Of Agile 2006 Conference, 2006

[25] Moløkken-Østvold, Kjetil, Nils Christian Haugen, And Hans Christian Benestad, 'Using

Planning Poker For Combining Expert Estimates In Software Projects', Journal Of Systems

And Software 81.12, Pp 2106-2117, 2008

[26] J.-M. Desharnais And L. Buglione, 'Using The Cosmic Method To Estimate Agile User

Stories', Presented At The Proceedings Of The 12th International Conference On Product

Focused Software Development And Process Improvement, Torre Canne, Brindisi, Italy,

2011.

Delhi Technological University, 2014 Page 93

[27] Cosmic, "Guideline For The Use Of Cosmic FSM To Manage Agile Projects," Ed, 2011.

[28] Ziauddin, Shahid Kamal Tipu, Khairuz Zaman, And Shahrukh Zia, 'An Effort

Estimation Model For Agile Software Development', Advances In Computer Science And Its

Applications (ACSA) Vol 2 (2012): 314-324, 2012.

[29] Tessem, Bjørnar, 'Experiences in Learning XP Practices: A Qualitative Study.’ Extreme

Programming and Agile Processes in Software Engineering, Springer Berlin Heidelberg, 131-

137, 2003

[30] Lee G, Xia W, 'Toward Agile: An Integrated Analysis of Quantitative And Qualitative

Field Data On Software Development Agility', Communications Of The ACM 47.5 (2004),

68-74

[31] Capers Jones,“Estimating Software Costs: Bringing Realism to Estimating”,2007, Tata

McGraw-Hill , Second Edition.

[32] A. Tosun, B. Turhan, and A. B. Bener, “Feature weighting heuristics for analogy-based

effort estimation models,” Expert Systems with Applications, vol. 36, no. 7, pp. 10 325–10

333,Sep. 2009.

[33] G Mathur, K Jugdev, S Fung, “Project management assets and project management

performance outcomes- Exploratory factor analysis”, Management Research Review, Vol.36

No.2, 2013

[34] J Weng, Shixian Li, Linyang Tang, “Improve Analogy-Based Software Effort

Estimation Using Principal Components Analysis And Correlation Weights”, 16
th

 Asia-

Pacific Software Engineering Conference, IEEE, 2009

[35]Krohn, David, Daniel Marino-Johnson, and John Paul Ouyang. "The KMO Method for

Solving Non-homogenous, m th Order Differential Equations." Rose-Hulman Undergraduate

Mathematics Journal 15.1 (2014)

