
Mobile Data Compression using e-cloud Page 1

Mobile Data Compression using e-cloud

A dissertation submitted in the partial fulfillment for the award of Degree of

Master of Technology

In

Software Technology

by

Jatin (Roll no. 2K11/SWT/08)

Under the Essential guidance of

 Mr. Manoj Kumar

Associate Professor

DEPARTMENT OF SOFTWARE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

BAWANA ROAD, DELHI

2011-2014

Mobile Data Compression using e-cloud Page 2

DECLARATION

I hereby want to declare that the thesis entitled “Mobile Data Compression using e-cloud”

which is being submitted to the Delhi Technological University, in partial fulfillment of the

requirements for the award of degree in Master of Technology in Software Technology is an

authentic work carried out by me. The material contained in this thesis has not been submitted to

any institution or university for the award of any degree.

Jatin

Department of Software Engineering

Delhi Technological University,

Delhi.

Mobile Data Compression using e-cloud Page 3

CERTIFICATE

DELHI TECHNOLOGICAL UNIVERSITY

BAWANA ROAD, DELHI-110042

Date:

This is to certify that the thesis entitled “Mobile Data Compression using e-cloud” submitted

by Jatin (Roll Number: 2K11/SWT/08), in partial fulfillment of the requirements for the award

of degree of Master of Technology in Software Technology, is an authentic work carried out by

him under my guidance. The content embodied in this thesis has not been submitted by him

earlier to any institution or organization for any degree or diploma to the best of my knowledge

and belief.

Mr. Manoj Kumar ,

Associate Professor, Department of Software Engineering,

Delhi Technological University, Delhi-110042

Mobile Data Compression using e-cloud Page 4

ACKNOWLEDGEMENT

I would like to take this opportunity to express my appreciation and gratitude to all those who

have helped me directly or indirectly towards the successful completion of this work.

Firstly, I would like to express my sincere gratitude to my guide Mr. Manoj Kumar, Associate

Professor, Department of Software Engineering, Delhi Technological University, Delhi

whose benevolent guidance, encouragement, constant support and valuable inputs were always

there for me throughout the course of my work. Without her continuous support and interest, this

thesis would not have been the same as presented here.

In addition, I would like to extend my thanks to the entire staff in the Department of Software

Engineering, DTU for their help during my course of work.

Jatin

2K 11/SWT/ 08

Mobile Data Compression using e-cloud Page 5

ABSTRACT

Data processing has been existing as a field since the origin of computer science. However, the

interest for data processing increased recently due to the present extension of Internet

communication, and to the fact that nearly all texts produced today are stored on, or transmitted

through a computer medium at least once during their lifetime. In this context, the processing of

large, unrestricted texts written in various languages usually requires basic knowledge about

words of these languages. These basic data are stored into large data sets called lexicons or

electronic dictionaries, in such a form that they can be exploited by computer applications like

spelling checkers, spelling advisers, typesetters, indexers, compressors, speech synthesizers and

others. The use of large-coverage lexicons for data processing has decisive advantages: Precision

and accuracy: the lexicon contains all the words that were explicitly included and only them,

which is not the case with recognizers like spell. Predictability: the behavior of a lexicon-based

application can be deduced from the explicit list of words in the lexicon. In this context, the

storage and lookup of large-coverage dictionaries can be costly. Therefore, time and space

efficiency is crucial issue.

In mobile most of the words are repeating it again and again and there are lot of compression

technique. It has been observed that LZ trie is best of them if the data is similar in most of the

words or sentences.

Trie data structure is a natural choice when we think about storing and searching over sets of

strings or words. In the contemporary usage of the term, a trie for a set of words is a tree in

which each transition represents one symbol (or a letter in a word), and nodes represent a word

or a part of a word that is spelled by traversal from the root to the given node. The identical

Mobile Data Compression using e-cloud Page 6

prefixes of different words are therefore represented with the same node and space is saved

where identical prefixes abound in a set of words - a situation likely to occur with natural

language data. The access speed is high, successful look up is performed in time proportional to

the length of word since it takes only as many comparisons as there are symbols in the word. The

unsuccessful search is stopped as soon as there is no letter in the trie that continues the word at a

given point, so it is even faster.

With the above technique we can compress the static data but data is changing continuously. In

order to make it dynamic, we will compress the static data and will keep the separate database

for the modify/delete/add entries and then send the compress data along with the database that

stores the modified data to e-cloud in order to make it faster.

At eloud, decompression take place for compressed data and appended/modified the list as per

the modification and them compression take place and send it to mobile.

Based on the results, it is concluded that LZ Trie is most suitable compression technique in terms

of memory saving. It is having the time constraint for compressing the data if the data is very

large which can be overcome by doing all these operations at e-cloud.

Mobile Data Compression using e-cloud Page 7

Table of Contents

Declaration 2

Certificate 3

Acknowledgement 4

Abstract 5

Table of Contents 7

List of Tables 9

List of Figures 10

Chapter 1

Introduction 11

 1.1 Motivation of Work 14

 1.2 Goals of the Thesis 14

 1.3 Organization of the Thesis 15

Chapter 2

Literature Survey 16

 2.1 Huffman Coding 17

 2.2 LZW 19

Mobile Data Compression using e-cloud Page 8

 2.2.1 Encoding 19

 2.2.1 Decoding 21

Chapter 3

Research Methodology 23

 3.1 Encoding Algorithm 23

 3.2 Trie Generation 24

 3.2.1 Algorithm for Generation of Trie 24

 3.3 Linked List Generation from the Trie 26

 3.3.1 Data Structure Used 27

 3.4 Generation of MDFA 29

 3.5 Generation of LZ-Trie 31

 3.6 Procedure GenerateConversionArray 38

 3.7 Writing Generated information in the corresponding files 39

 3.8 Decoding 40

 Chapter 4

Conclusion and Future work 44

 4.1 Conclusion 44

 4.2 Limitations and future work 45

References 46

Mobile Data Compression using e-cloud Page 9

 List of Tables

Table No Table Name Page No

1 Bit required for expressing symbol in Huffman coding 18

2 Compression sequence using LZW 20

3 Decompression sequence using LZW 22

4 Parameters description for generation of Trie 25

5 Parameters description for generation of linked list 28

6 Parameters for generation of MDFA 32

7 Compressed data comparison of LZ Trie with Huffman

44

Mobile Data Compression using e-cloud Page 10

 List of Figures

Figure No Figure Name Page No

1 Data compression and Decompression 12

2
Trie generated corresponding to the 8 strings aijaklm, aijaxy, bijbklm,

bijbxy, cijcklm, cijcxyz, dijdklm, dijdxyz
24

3 Linked list trie equivalent to that of Figure 2 27

4
Minimal deterministic finite automaton equivalent to the trie of

Figure 2
30

5 Linked list representation of the Figure 4 31

6
LZ trie equivalent to the trie of Figure 2 and MDFA of Figure 3. p1

and p2 are pointers substituting the repeated parts of MDFA.
31

7
Linked list representation of figure 6 with Elements 13 and 23 are

one way pointers, and 11, 15, 17 and 21 are two-way pointers
33

8 Steps for generation of the compressed files 39

9 Design Architecture 43

10 E-cloud Operation 43

Mobile Data Compression using e-cloud Page 11

CHAPTER 1

INTRODUCTION

Now a day’s data are increasing at a very fast rate and we need a large amount of storage to save

it. However, there are many systems like mobile phones where we have the memory constraints.

Therefore, we need to compress the data so that more data can be saved in the available memory.

In computer science data compression, source coding or bit-rate reduction involves encoding

information using fewer bits than the original representation.

Data Compression

The process of reducing the size of a data file is popularly referred to as data compression,

although it’s formal name is source coding (coding done at the source of the data before it is

stored or transmitted.

Compression can be either lossy or lossless. Lossless compression reduces bits by identifying

and eliminating statistical redundancy. No information is lost in lossless compression. Lossy

compression reduces bits by identifying unnecessary information and removing it.

Compression is useful because it helps reduce resource usage, such as data storage space or

transmission capacity. Because compressed data must be decompressed to use, this extra

processing imposes computational or other costs through decompression. Data compression is

subject to a space–time complexity trade-off.

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Encoding
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Lossy_compression
http://en.wikipedia.org/wiki/Lossless_compression
http://en.wikipedia.org/wiki/Lossless_compression
http://en.wikipedia.org/wiki/Redundancy_(information_theory)
http://en.wikipedia.org/wiki/Lossy_compression
http://en.wikipedia.org/wiki/Lossy_compression
http://en.wikipedia.org/wiki/Lossy_compression
http://en.wikipedia.org/wiki/Bandwidth_(computing)
http://en.wikipedia.org/wiki/Time/space_complexity

Mobile Data Compression using e-cloud Page 12

 Figure1: Data compression and Decompression

There are many applications that involve storing and accessing finite static sets of strings. These

may be sets of simple strings or sets of annotated strings. A simple string lookup is a part of

applications such as spelling checkers and word games, while annotated strings are used as keys

for accessing the data associated with the strings in dictionaries and database indexes. We shall

call a set of simple strings a lexicon, and a set of strings with associated data a dictionary. In

addition, we’ll use the term enumerated string set for a set of strings where each string has a

number, preferably unique, attached to, or derived from it. This number is used to access the data

associated with the string. A natural way to enumerate strings in a set of strings is to use their

positions in the alphabetically ordered set. A dictionary can be a natural language dictionary

(language-to-language or linguistic) or any other translation table that associates some data to a

key, like IP number/name database. The dictionary can be implemented as a simple set of

compound strings where each string consists of a key and its associated data.

Alternatively, dictionary can be organized as two sets of strings with the keys in the first set and

the data in the second. Then, keys need to be enumerated in such a way that the number

associated with each key can be used to access the appropriate entry in the data set. Enumerated

strings are also needed to access the database indexes.

Mobile Data Compression using e-cloud Page 13

A trie is a tree where paths from the root to leaves correspond to input words. A trie was first

introduced over four decades ago as a means for quick search in a small set of keys As the need

for storing larger key sets had developed, improvements were made in order to reduce the trie

space requirements. The compression was based mainly on exploiting the sparseness immanent

to complete tries for big key sets. A lot of research effort has been put into it and various levels

of compression are achieved for both dynamic and static tries If a trie is built with only one

character per transition, then this structure, called a character trie or a digital search tree, is a

case of a deterministic finite automaton (DFA). An example of such a trie for eight strings is

presented in below Figure No 2 . The layout is that of a DFA implemented as a Mealy automaton

with root starting state, symbol labeled transitions and eight accepting transitions. Although a

standard graphical representation of a DFA would involve accepting states (as in Moore

automata) instead of accepting transitions (as in Mealy automata), this layout is more in

agreement with the logic of implementation that will be presented later in the text.

The strings displayed or stored in the mobile (text strings and the soft keys strings) for the

various languages are stored in the separate text files for each language. In the low end phones

these text files are stored as a part of the binary. So in order to display any string, we have to

refer to the text file, according to the set phone language and pass the ID of the string and

accordingly the value of the string is returned.

In the new approach, rather than storing the text files as such, the files are first compressed using

the LZ-Trie String compression algorithm and these compressed files are then stored in the

binary. While displaying the string, the id is first mapped to the id of the compressed file which

is then used for accessing the string. As the strings are static, thus the approach is called as Static

String Compression Algorithm.

By compressing the string files the space used for storing the text files is considerably reduced.

For storing the contacts in compressed form, which is dynamic we need to alter the compress

data on regular basis which is based on some algorithm (regular interval, after modification of

x entries, low CPU utilization, night etc). In this case we compress the data after some time, then

maintain the separate database for the updated entries, and then again compress the data along

Mobile Data Compression using e-cloud Page 14

with the modified one. In this way we are compression the dynamic data using static string

compression.

1.1 Motivation of the Work

To assure, more and more features/ solutions can be provided at a low memory segment phone.

There is a need to compress the data and find out the efficient compression technique.

 The fundamental principles are as follows:

• Find out the efficient compression algorithm

• Trade off between the time and space

• Complexity

• Type of Data

In low segment mobile phones, most of the data are in the form of strings like phonebook data,

display strings. Some of them are static while some are dynamic. We need to compress this data

so that more feature support can be provided which is very important in competitive market

1.2 Goals & Major Thesis Contributions

The thesis focuses majorly on the following topics and areas:

• To analyze the various lossless compression techniques for the data in the form of strings

• Development of LZ Trie Algorithm

Mobile Data Compression using e-cloud Page 15

• Use the Algorithm for compression of dynamic data after doing some modification

• Use the e-cloud to make it compression and decompression faster

• Use the mobile phone as a client for the compression and decompression and e-cloud as a

server

• Comparison of different compression algorithm

1.3 Organization of Thesis

The rest of the thesis is organized as follows:

Chapter 2 discusses the previous work done in the field of data compression techniques. This

includes the extensive study of various compression and decompression techniques that have

been proposed in the literature so far.

Chapter 3 is about research methodology used herein. It describes the objectives of this research

and also the techniques used for the same. It tells about the design and attributes of the

compression and decompression of LZ Trie. We also analyzed how we can use the LZ Trie

algorithm for the dynamic data using e-cloud.

Chapter 4 In this chapter we give our final concluding remarks. Also we mention the limitations

of this study and what are the plans for any future study.

Mobile Data Compression using e-cloud Page 16

CHAPTER 2

 Literature Survey

This chapter discusses various most widely used compression techniques. The main objective of

data compression is to increase the storage with the time/space tradeoff with minimal and no data

loss. This chapter also discusses about the introduction of LZ Trie Algorithm.

Introduction:-

Compressions are of 2 types:-

Lossy

In information technology, "lossy" compression is the class of data encoding methods that uses

inexact approximations (or partial data discarding) for representing the content that has been

encoded. Such compression techniques are used to reduce the amount of data that would

otherwise be needed to store, handle, and/or transmit the represented content.

Lossy compression is most commonly used to compress multimedia data (audio, video, and still

images), especially in applications such as streaming media and internet telephony.

Loseless

Lossless data compression is a class of data compression algorithms that allows the original data

to be perfectly reconstructed from the compressed data

Lossless compression is used in cases where it is important that the original and the

decompressed data be identical, or where deviations from the original data could be deleterious.

Typical examples are executable programs, text documents, and source code. Some image file

http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Multimedia
http://en.wikipedia.org/wiki/Sound_recording_and_reproduction
http://en.wikipedia.org/wiki/Video
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Streaming_media
http://en.wikipedia.org/wiki/VOIP
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Algorithm

Mobile Data Compression using e-cloud Page 17

formats, like PNG or GIF, use only lossless compression, while others like TIFF and MNG may

use either lossless or lossy methods

The main objective of this chapter is to introduce two important lossless compression algorithms:

Huffman Coding and Lempel-Ziv Coding. A Huffman encoder takes a block of input characters

with fixed length and produces a block of output bits of variable length. It is a fixed-to-variable

length code. Lempel-Ziv, on the other hand, is a variable-to-fixed length code. The design of the

Huffman code is optimal (for a fixed blocklength) assuming that the source statistics are known a

priori. The Lempel-Ziv code is not designed for any particular source but for a large class of

sources. Surprisingly, for any fixed stationary and ergodic source, the Lempel-Ziv algorithm

performs just as well as if it was designed for that source. Mainly for this reason, the Lempel-Ziv

code is the most widely used technique for lossless file compression.

2.1 Huffman Coding

Huffman coding is based on the frequency of occurance of a data item (pixel in images). The

principle is to use a lower number of bits to encode the data that occurs more frequently. Codes

are stored in a Code Book which may be constructed for each image or a set of images. In all

cases the code book plus encoded data must be transmitted to enable decoding.

The Huffman algorithm is now briefly summarised:

A bottom-up approach

1. Initialization: Put all nodes in an OPEN list, keep it sorted at all times (e.g., ABCDE).

2. Repeat until the OPEN list has only one node left:

(a) From OPEN pick two nodes having the lowest frequencies/probabilities, create a parent node

of them.

(b) Assign the sum of the children's frequencies/probabilities to the parent node and insert it into

OPEN.

(c) Assign code 0, 1 to the two branches of the tree, and delete the children from OPEN.

http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/Graphics_Interchange_Format
http://en.wikipedia.org/wiki/TIFF
http://en.wikipedia.org/wiki/Multiple-image_Network_Graphics
http://www.data-compression.com/lossless.html
http://www.data-compression.com/lossless.html

Mobile Data Compression using e-cloud Page 18

Table1: Bit required for expressing symbol in Huffman coding

Symbol Count log(1/p) Code Subtotal (# of

bits)

A 15 1.38 0 15

B 7 2.48 100 21

C 6 2.70 101 18

D 6 2.70 110 18

E 5 2.96 111 15

 TOTAL (# of bits): 87

The following points are worth noting about the above algorithm:

Decoding for the above two algorithms is trivial as long as the coding table (the statistics) is sent

before the data. (There is a bit overhead for sending this, negligible if the data file is big.)

Unique Prefix Property: no code is a prefix to any other code (all symbols are at the leaf nodes)

-> great for decoder, unambiguous.

If prior statistics are available and accurate, then Huffman coding is very good.

In the above example:

Number of bits needed for Huffman Coding is: 87 / 39 = 2.23

In computer science and information theory, Huffman coding is an entropy encoding algorithm

used for lossless data compression. The term refers to the use of a variable-length code table for

encoding a source symbol (such as a character in a file) where the variable-length code table has

been derived in a particular way based on the estimated probability of occurrence for each

possible value of the source symbol.

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Entropy_encoding
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Variable-length_code

Mobile Data Compression using e-cloud Page 19

2.2 LZW

Lempel–Ziv–Welch (LZW) is a universal lossless data compression algorithm created by

Abraham Lempel, Jacob Ziv, and Terry Welch. It was published by Welch in 1984 as an

improved implementation of the LZ78 algorithm published by Lempel and Ziv in 1978. The

algorithm is simple to implement, and has the potential for very high throughput in hardware

implementations.[1] It was the algorithm of the widely used Unix file compression utility

compress, and is used in the GIF image format.

2.2.1 Encoding

A high level view of the encoding algorithm is shown here:

• Initialize the dictionary to contain all strings of length one.

• Find the longest string W in the dictionary that matches the current input.

• Emit the dictionary index for W to output and remove W from the input.

• Add W followed by the next symbol in the input to the dictionary.

• Go to Step 2.

1 w = NIL;

 2 while (read a character k)

 3 {

 4 if wk exists in the dictionary

 5 w = wk;

 6 else

 7 add wk to the dictionary;

http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Abraham_Lempel
http://en.wikipedia.org/wiki/Jacob_Ziv
http://en.wikipedia.org/wiki/Terry_Welch
http://en.wikipedia.org/wiki/LZ77_and_LZ78
http://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Compress
http://en.wikipedia.org/wiki/GIF

Mobile Data Compression using e-cloud Page 20

 8 output the code for w;

 9 w = k;

 10 }

Input string is "^WED^WE^WEE^WEB^WET".

Table2: Compression sequence using LZW

w k output index symbol

NIL ^

^ W ^ 256 ^W

W E W 257 WE

E D E 258 ED

D ^ D 259 D^

^ W

^W E 256 260 ^WE

E ^ E 261 E^

^ W

^W E

^WE E 260 262 ^WEE

E ^

E^ W 261 263 E^W

Mobile Data Compression using e-cloud Page 21

W E

WE B 257 264 WEB

B ^ B 265 B^

^ W

^W E

^WE T 260 266 ^WET

T EOF T

2.2.2 Decoding

The decoding algorithm works by reading a value from the encoded input and outputting the

corresponding string from the initialized dictionary. At the same time it obtains the next value

from the input, and adds to the dictionary the concatenation of the string just output and the first

character of the string obtained by decoding the next input value, or the first character of the

string just output if the next value can not be decoded (If the next value is unknown to the

decoder, then it has just been added, and so its first character must be the same as the first

character of the string just output). The decoder then proceeds to the next input value (which was

already read in as the "next value" in the previous pass) and repeats the process until there is no

more input, at which point the final input value is decoded without any more additions to the

dictionary.

1 read a character k;

2 output k;

 3 w = k;

 4 while (read a character k)

 /* k could be a character or a code. */

http://en.wikipedia.org/wiki/Concatenation

Mobile Data Compression using e-cloud Page 22

 5 entry = dictionary entry for k;

 6 output entry;

 7 add w + entry[0] to dictionary;

 8 w = entry;

 9 }

Input string is "^WED<256>E<260><261><257>B<260>T".

Table3 : Decompression sequence using LZW

w k output index Symbol

 ^ ^

^ W W 256 ^W

W E E 257 WE

E D D 258 ED

D <256> ^W 259 D^

<256> E E 260 ^WE

E <260> ^WE 261 E^

<260> <261> E^ 262 ^WEE

<261> <257> WE 263 E^W

<257> B B 264 WEB

B <260> ^WE 265 B^

<260> T T 266 ^WET

Mobile Data Compression using e-cloud Page 23

CHAPTER 3

 Research Methodology

In the new approach used for compression, first each of these text files are first compressed and

then these compressed files are stored in the binary. These compressed files are then used to refer

for displaying of the strings.

The approach used can be broadly divided into 2 categories:

• Compression Algorithm

• Decoding Procedure

3.1 Encoding Algorithm

For compression algorithm comprises of following steps:-

• Firstly each of the text files are parsed and sorting algorithm is applied to sort the strings.

• Generation of trie from the strings in sorted manner.

• Generation of the linked list corresponding to the generated trie.

• Marking of the repeated subsequence.

• Populating the global variables to be written in the compressed files

• Sorting of the generated array and generation of Id Conversion array

• Writing of the generated data in the file.

Mobile Data Compression using e-cloud Page 24

 3.2 Trie Generation

Trie

A trie is a tree where paths from the root to leaves correspond to input words. A trie was first

introduced over four decades ago as a means for quick search in a small set of keys. If a trie is

built with only one character per transition, then this structure, called a character trie or a digital

search tree, is a case of a deterministic finite automaton (DFA).

Consider the following strings aijaklm, aijaxy, bijbklm, bijbxy, cijcklm, cijcxyz, dijdklm,

dijdxyz. From these strings the trie is generated as:-

Figure 2. Trie generated corresponding to the 8 strings aijaklm, aijaxy, bijbklm, bijbxy, cijcklm,

cijcxyz, dijdklm, dijdxyz.

For simplicity and maintaining only one way pointer from root to other node, while making the

trie we insert the string in the sorted manner in the trie. The node is made the sibling node if the

node value is greater than the current node. Thus while insertion in the trie the nodes are parsed

till we find the node having the value greater than the node value.

3.2.1 Algorithm for Generation of Trie

Data structure used:

A structure treenode having members

Mobile Data Compression using e-cloud Page 25

 Table 4 : Parameters description for generation of Trie

Members Description

word_end For denoting the end of the string

data For storing the character value

sibbling_node It is a pointer node pointing to the

sibling node

child_node Pointer node pointing to the child node

Procedure Trie_Generation

1. for each string i

i. Call InsertUTF8StringInPointerTrie(UnsortPhoneString[i])

2. end

Procedure InsertUTF8StringInPointerTrie (Char *str)

1. Initialize CurrentTrieNode = &RootNode

2. While str != NULL

 a) StrData = Store the character value str[i]

 b) if (CurrentTrieNode == NULL)

 1) Initialize CurrentTrieNode.data=StrData

 2) If (tempnode != NULL)

 CurrentTrieNode.sibbling_node= tempnode

 3) tempnode==NULL

 4) if(str +1 ==NULL)

 CurrentTrieNode.wordend= 1

Mobile Data Compression using e-cloud Page 26

 5) CurrentTrieNode=&(*CurrentTrieNode)->child_node;

 6) str=str+1

 c) else

 1) if((*CurrentTrieNode)->data==(StrData))

 tempnode=NULL;

 if(*(str+1)==0)

 (*CurrentTrieNode)->word_end=1;

 CurrentTrieNode=&(*CurrentTrieNode)->child_node;

 str=str+1

 2) else if((*CurrentTrieNode)->data>(StrData))

 tempnode=*CurrentTrieNode;

 *CurrentTrieNode=NULL;

 3) else

 tempnode=NULL;

 CurrentTrieNode=&(*CurrentTrieNode)->sibbling_node

 d) end if

 3. End of while loop

3.3 Linked List Generation from the Trie

The most compact way representing the trie graph is to represent using it using the linked list

where each node having the information regarding

1) Symbol

2) Distance, measured in number of elements, to the next element belonging to the same

node.

Mobile Data Compression using e-cloud Page 27

3) One bit flag indicating whether the word ends with the current symbol

4) One bit flag indicating whether there is a continuation of word past the current symbol.

For example the trie shown in figure 2 can be represented in the form of the linked list. The

“empty” ∈ symbol indicates that this field is unused. Nodes are formed by linking the elements

within-node offsets. For example, elements 1, 10, 19 and 29 form one node, elements 5 and 8

another, etc. The building elements with empty in-node offset field indicate the last (or the only)

symbol in the node.

Figure 3. Linked list trie equivalent to that of Figure 2.

3.3.1 Data Structure Used

Each entry in the linked list table contains the node information. It is structure having members

containing information about tree node. Its members are:-

Table 5: Parameters description for generation of linked list

S.No Data Structure

Members

Description

1 Data Contains the node data information, it contains the of tree node

data

Mobile Data Compression using e-cloud Page 28

2 sibbling_node Have information about distance from the current node to its

sibling node

3 sibbling_of Points to the parent node

4 ifWordEnd It is the bit specifying that end of the word

5 isLeafNode It specifies that the node is the leaf node

6 wordendcount Specifies that the character is a part of how many words. This

value is set for the nodes which have sibling nodes and which

are sibling of any node.

7 Mergedpointernum It is used to contain the information regarding merged nodes.

It is a pointer in the merged node where each node points to

the referring merging node.

8 IsMergeStartNode It is used to mark the starting of the merged node

9 Numberofmergenode It is used to store the number of the merged nodes.

10 DataArrayOffset It is array containing the all the information about the node.

Procedure GenerateTableData(RootNode,SibbIndex)

1. Index++

2. Table[Index].data=RootNode->data

3. if(SibbIndex)

 Table[SibbIndex].sibbling_node=Index-SibbIndex;

 Table[Index].sibbling_of=SibbIndex;

4. SibbIndex=Index;

5. if(RootNode->child_node)

 GenerateTableData(RootNode->child_node,0);

 else

 Table[SibbIndex].isLeafNode=1

 endif

6. if(RootNode->word_end)

 Table[SibbIndex].ifWordEnd=1;

 word_end_count++

Mobile Data Compression using e-cloud Page 29

7. if(RootNode->sibbling_node)

 Table[SibbIndex].wordendcount=word_end_count;

 word_end_count=0;

 Call GenerateTableData(RootNode->sibbling_node,SibbIndex);

 word_end_count=word_end_count+Table[SibbIndex].wordendcount;

8. else if(Table[SibbIndex].sibbling_of)

 Table[SibbIndex].wordendcount=word_end_count

Marking of the repeated subsequence

3.4 Generation of MDFA

Trie (DFA represented in Figure 2.) can be minimized to produce minimal deterministic finite

automaton (MDFA). Deterministic finite automaton stores a finite set of words or a language,

and for each language there exists an automaton with the minimal number of states.

Minimization is performed by merging the equivalent states in the automaton. A conventional

procedure for automata minimization involves building a trie and searching for the equivalent

states. For example the trie in figure 2 can be reduced by merging the repeated prefix “lm”

present in the strings bijbklm, cijcklm and dijdklm by pointing to its first appearance.

Figure 4. Minimal deterministic finite automaton equivalent to the trie of Figure 2

This tree structure can be represented using the linked list. In order to maintain the same

structure of the node as that of the pointer node the same four members as that of the node

Mobile Data Compression using e-cloud Page 30

structure are used to store the pointer node information. In case of the pointer node these

contains the information regarding:-

• Length of the repeated subsequence:- This length is used to denote how many elements,

when searching the structure, must be checked before returning and continuing from the

position of the pointer. Since in case of the MDFA, there is no need to return at the

pointer position which means that the pointer is to be replaced the complete branch in the

trie. In our case we are specifying it with 0.

• Address of the first occurrence of the repeated subsequence

• 0

• 0

The pointer node is differentiated from the normal node by the last two bits. In case of the

pointer node both these two bits have the value 0.

Figure 5. Linked list representation of the Figure 4. Node 14,20,28 are one way pointer node.

3.5 Generation of LZ-Trie

Merging equivalent states in a trie (Figure 2) to produce MDFA (Figure 3) effectively reduces

redundancy in a trie by substituting all identical repeated branches with only one. However, this

may still leave a number of repeated identical subsections of a trie. These repeated subsections

can be replaced with pointers to its first occurrence as demonstrated in Figure 6. If a pointer is

Mobile Data Compression using e-cloud Page 31

smaller in size than the replaced part, then overall size is reduced according to LZ compression

paradigm. Hence such compression is called as LZ trie.

Figure 6. LZ trie equivalent to the trie of Figure 2 and MDFA of Figure 3. p1 and p2 are pointers

substituting the repeated parts of MDFA.

Data Structures Used

Table 6 : Parameters for generation of MDFA

 Field 1 Field 2 Field 3 Field 4

For Storing

the node

Symbol

Code

In-Node

Offset

End of word

bit flag (0/1)

Continuation

of word bit-

flag (0/1)

For Storing

the pointer

Length of

repeated

subseq.

Address Of

the first

Pointer

Occurrence

0 0

Mobile Data Compression using e-cloud Page 32

Mobile Data Compression using e-cloud Page 33

The linked list structure can be represented for the LZ-trie by updating the information of length

of the repeated subsequence which in this case would contain the length of the repeated

subsequence rather than 0. These nodes are called as the two way pointer.

Figure 7. Linked list representation of figure 6 with Elements 13 and 23 are one way pointers,

and 11, 15, 17 and 21 are two-way pointers.

However for simplicity and for maintaining the pointer node structure while marking the

repeated subsequence following points are to be taken care of:-

• Recursive pointers are not allowed so we must take care for the repeated substring not to

overlap with the original one.

• Replacement is not done if, any node in repeated substring is pointing outside the

repeated one

• Also replacement is not allowed if any node in repeated substring is pointed by a node

earlier than first node of repeated string

Algorithm

In our case while finding the repeated subsequence first we start with finding of 15 characters

matching and find all such subsequences and mark them. When all the repeated subsequences

with 15 characters are found, we decrease the min number of nodes that should be there in the

Mobile Data Compression using e-cloud Page 34

repeated subsequence by 1 and find all such patterns until min number of nodes in the repeated

subsequence becomes less than 2.

 Procedure CheckForMergeNode (total_nodes)

1) Initialize merge_count, i=0

2) Initialize min_node_match=15

3) while(min_node_match>=2)

a) while (i<=num-2)

i) if (Table[i]. Mergedpointernum)

 continue;

 ii) initialize j=i+2

 iii) while(j<num-1)

 a) merge_count=for each node from start node i to dest node j till num check

for the merged nodes after satisfying the merge criteria's.

b) if(merge_count>= min_node_match)

i) Table[j].Numberofmergenode =count;

 ii) if(! Table[i].IsMergeStartNode)

 Table[i].IsMergeStartNode=1;

 iii) for(temp=0;temp< count; temp++)

 Table[j +temp].Mergedpointernum=i+ temp;

 iv) j=j+1

c) end of while loop

d) min_node_match =min_node_match-1;

4) End of while loop

Populating of the global variables

The information of the node of the LZ-Trie linked list is represented using the 20 bits for each

node. In case of the normal node these bits are populated as

• 1 Bit : is used to mark the word ending (SSC_WORD_END_MARKER_BIT_COUNT)

• 8 bits: are used to store the node data information (SSC_DATA_BIT_COUNT)

Mobile Data Compression using e-cloud Page 35

• 5 bits: are used store the sibling information(SSC_SIBBLING_BIT_COUNT)

• 5 bits: are used store the word end count

(SSC_WORD_END__NUMBER_BIT_COUNT)

In case of the pointer node these 20 bits are populated as:-

• 1 bit: Is used to store the validating node info

(SSC_VALIDATION_NODE_BIT_COUNT)

• 5 bit: Contains the information about the number of merged nodes

(SSC_MERGE_NODE_NUMBER_BIT_COUNT)

• 14 bit: Are used to store the merged nodes sibling info

(SSC_MERGE_NODE_ADDR_BIT_COUNT)

Data Structure Used:

• Structure SearchSt used for pushing the nodes in the stack having members

• Node :- Containing the node information

• CurrentRemainingMergeNodeCount :- Have information regarding the current

count of the nodes that are merged.

• NextLevelMergeNodeCount :- Containing the information regarding the total

number of the merged nodes in the merged pointer

• gSibblingOverFlowCount :- It contains the size of the gSibblingOverFlowArray array.

• gSibblingOverFlowArray :- It contains the sibling information if the sibling information

is greater than can be contained in 14 bits in case of pointer node and 5 bits in case of

normal node.

• gMergeCountOverFlowCount :- It contains the size of the gMergeCountOverFlowArray

array.

Mobile Data Compression using e-cloud Page 36

• gMergeCountOverFlowArray :- It contains the merged count information is greater than

5 bits.

• gWordEndCountOverFlowCount :- It contains the size of

gWordEndCountOverFlowArray array.

• gWordEndCountOverFlowArray :- This array contains the information about the word

end count if it exceeds the 5 bits.

• DataArray[MAX_DATA_ARRAY_SIZE] :- It contains the information of the offset of

node.

Algorithm

Procedure FillPackDataArray()

1. Initialize bit_count =20 (i.e.ONE_NODE_BIT_SIZE) and i=1

2. while (Table[i].data != 0)

3. if(Table[i].Mergedpointernum)

a. Set first bit to 1 to mark the pointer node.

b. value=Table[i].Numberofmergenode

c. if(value>=31) //as 5 bit are used for no of merge node

i. Fill the mergecountoverflowarray

ii. value=31

d. fill the 5 bits for the number of the merge nodes

e. value = offset of the sibling which is pointing to the current node;

f. if value>= 16383 // max value with 14 bits

i. Fill the sibling overflow array

ii. value = 16383

g. Fill the 14 bits having info about the sibling node offset which is being pointed

out

Mobile Data Compression using e-cloud Page 37

h. Check if within the pointer node any node is sibling of any node (case in which

the node is pointed by other within the merged node

If exists

i. Value= Table[Table[i].sibbling_of].DataArrayOffset/20

ii. if (value > 31) // 5 bits are used

1. Fill the sibling overflow array, Set value =31

iii. Fill 5 bits for the sibling info

i. i=i+Table[i].Numberofmergenode

4. else

a. if(Table[i].ifWordEnd)

b. Fill 1 bit for word end info

5. Fill 8 bits containing the node data

6. If(node is sibling of any node and that node Mergedpointernum=0)

a. value = Table[Table[i]. sibbling_of].DataArrayOffset/20

b. if value>=31 //5 bits are used

i. fill the sibling over flow array

ii. value=31

c. Fill 5 bits containing the parent node

d. if (Table[i].wordendcount)

i. value = Table[i].wordendcount

ii. if value > =31 //5 bits are used

1. fill the wordendoverflow array and set value =31

iii. fill the 5 bits for the word end count

7. i=i+1

Sorting of the Generated Array and Generation of the ID conversion array

Mobile Data Compression using e-cloud Page 38

The gSibblingOverFlowArray array generated is sorted before being written in the array. This is

done in the procedure SortOverFlowArray.

Corresponding to each string the ID Conversion array, IDConversionArray is generated this

array is used while decoding procedure to map the SS value of the requested string to the id used

to map in the compressed database files. The procedure used to handle this is

GenerateConversionArray.

3.6 Procedure GenerateConversionArray

1. Initialize i=0,value=0

2. i=find the occurrence of the string in the table.

3. Value = add all the word end count of the nodes which have the sibling nodes.

4. Value = value +1 // for the word end information

5. Encode the value of the Value in the 2 bytes of IDConversionArray array.

3.7 Writing Generated information in the corresponding files

The information generated about the nodes,

• gSibblingOverFlowCount ,

• gSibblingOverFlowArray ,

• gMergeCountOverFlowCount,

• gMergeCountOverFlowArray,

• gWordEndCountOverFlowCount,

• gWordEndCountOverFlowArray,

• DataArray

• IDConversionArray

• gCharSetArray

is written in the corresponding text and soft key files for each language. It is handled in the

procedure WriteDBFile.

Mobile Data Compression using e-cloud Page 39

Steps for Generation of the Compressed files:-

Figure 8. Steps for generation of the compressed files

 3.8 Decoding

Once the compressed files are generated these are used for the decoding purposes. The steps

followed for decoding are:-

• In the code get_text (IDS_String), function is called where IDS is the value of the string

to be displayed which in turn is mapped to the SS value. Same as the one followed

earlier.

• From the get_text (IDS_String) function, function GetTextFromCompressedDB(SS) is

called which handles all the decoding process. Here SS is the value corresponding to the

IDS defined in the lkmap.hec file.

• In the function GetTextFromCompressedDB, corresponding to the gv_TextLanguage

global variable storing the current selected phone language information, global variable

gIntSsc_language_idx is set.

• The value of the SS, is decoded making use of the IDConversionArray generated while

encoding and stored in the compressed file. This decoded id is further used for searching

in the compressed db file.

Run the batch file

Take the text files as

i/p

Execute Compression

Produces compressed

db files

Mobile Data Compression using e-cloud Page 40

• Using the decoded ID, the word is searched in the compressed db file. It is handled in the

procedure SearchInCompressedArrayByIndex(ID). The word corresponding to the ID

is searched in the compressed db and is populated in the global decoded array,

gChrSsc_DecodedString. This function returns the ending position of the array till the

word has been added. Using the starting position and the end position, the word is

returned from the decoded array.

Algorithm Used for searching the word in the compressed file

 Data Structures Used:-

Structure SearchSt used for pushing the nodes in the stack while transversal (same as used in

compression). It has elements:-

• Node

• CurrentRemainingMergeNodeCount;

• NextLevelMergeNodeCount;

Structure dbSt is used to map to elements stored in the compressed file. It has elements

• gSibblingOverFlowCount;

• gSibblingOverFlowArray;

• gMergeCountOverFlowCount;

• gMergeCountOverFlowArray;

• gWordEndCountOverFlowCount;

• gWordEndCountOverFlowArray;

• CharSetArray;

• IDConversionArray;

• DataArray

corresponding to each entry in the compressed file.

gChrSsc_DecodedString:- Global array used to store the decoded string.

gIntSsc_DecodedCharCount:- It is the global variable used to store the last entry in the

gChrSsc_DecodedString array.

Mobile Data Compression using e-cloud Page 41

Algorithm:-

Procedure SearchInCompressedArrayByIndex(id)

1. Initialize char_count=gIntSsc_DecodedCharCount

2. BitOffset= SSC_ONE_NODE_BIT_SIZE

3. While (id)

a. check whether the given node is pointer node

if yes

a. push the given node information along with total merged

count in stack and points the BitOffset to the new valueof

the pointed node.

b. value = decode bits from BitOffset + 1 +1 +8

(SSC_VALIDATION_NODE_BIT_COUNT +

SSC_WORD_END_MARKER_BIT_COUNT + SSC_DATA_BIT_COUNT) till

5 bits (SSC_SIBBLING_BIT_COUNT) to check if the node has any sibling node

c. if value !=0 //sibling node exists

i. if value >= 32 //max value for 5 bits

1. value = Search value in the sibling in the sibling overflow array

ii. word_end = decode value from offset+1+1+8+5 till 5 bits

iii. if word_end >= 32

1. word_end = Search in the wordendoverflow array.

iv. if id < word_end // if the information of the word is in sibling node

1. id=id- word_end

2. Get siblings of the compressed node and set BitOffset to sibling

node

d. charvalue= Decode the node character array offset by decoding 8 bits from

BitOffset + 1 + 1 (validation+dataend)

Mobile Data Compression using e-cloud Page 42

e. Fetch the character value from the gStSsc_DBInfo[gIntSsc_language_idx] .

CharSetArray [charvalue];

f. Check if the part of the string is at the end of the global array

i. if yes then cut characters and append it to the starting of the global array

ii. Append the decoded character to the gChrSsc_DecodedString.

g. Check if the stack is not empty

If yes Then pop the entry from the stack and make the BitOffset value points to the value offset

information stored in the stack.

Figure 9: Design Architecture

Database file

Compression

Compressed

db file

Modified/delet

e/deletion db

file

e-

cloud

Mobile Data Compression using e-cloud Page 43

=

Figure 10: e-cloud operation

Decompress

db file

Modified/dele

te/deletion

db file

+

New text

database File

 Compression

Compressed

File sent to

Server

Mobile Data Compression using e-cloud Page 44

CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

The goal of this research is to find out the best compression techniques for the mobile data.

We analyzed the different lompression techniques and observed that modified LZ Trie is the

best compression technique specially when the data is static

By making use of the above comression algorithm, the fetching time for decoding increases

slightly (however it is still reasonable and does not contribute much of delay).

However the big advantage is that the size of the binary is reduced from 4875.488 Kb to

4608 Kb which is quite essential in case of the low end mobile.

Table 7: Compressed data comparison of LZ Trie with Huffman

Lexicon Raw Size

[KB]

Mealy

Recognizer[KB]

LZ Trie

[KB]

In % of Mealy

recognizer Size

English
688 270 145 54

French 2418 245 120 49

German 2661 337 189 56

Russian 8911 538 262 49

Random 1027 1688 799 48

Mobile Data Compression using e-cloud Page 45

The results of this study are that we can made use of above static data algorithm (LZ Trie) for dynamic

data with the help of e-cloud where all the compression and decompression takes place.

4.2 Limitations and Future work

This study presented here has its own limitations. These limitations can be summed up as

follows:

• It has been observed that decoding time is higher (still it is reasonable) but it can be

improved more with the help of some other technique

• The set of quality parameters used by us is limited. This need to be extended to many

quality factors (Compression time and complexity of algorithm) that are linked to all the

quality factors related to a code.

• Extended the support of static data LZ trie algorithm to dynamic data but can be more

optimized .

• The current study has been performed on a particular type of mobile data and this can be

conducted on a number of varieties of data and applications. In this way we can infer that

which applications are more relevant for this data compression algorithm.

• It will be a humble effort in all our future work to attract the attention of the entire

scientific community towards the fact that optimization can actually have a very positive

impact in a very effective way.

Mobile Data Compression using e-cloud Page 46

REFERENCES

[1] Strahil Ristov, “LZ trie and dictionary compression”, in Software: Practice and Experience,

June 31, 2008

[2] Strahil Ristov, Eric Laporte, “Ziv Lempel compression of huge natural language data tries

using suffix arrays”, combinatorial pattern matching: 10th annual symposium

[3] J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEE

Transactions on Information Theory, Vol. IT-23, No. 3, 337-343,

[4] S. Ristov, Space saving with compressed trie format, Proceedings of the 17
th

 International

Conference on Information Technology Interfaces, eds. D. Kalpic and V. Hljuz Dobric, 269-274,

Pula, Jun 1995.

[5] A. Acharya, H. Zhu and K. Shen, Adaptive Algorithms for Cache-efficient Trie Search, ACM

and SIAM Workshop on Algorithm Engineering and Experimentation ALENEX 99, Baltimore,

Jan. 1999.

 [6] YonghuiWu,Stefano Lonardi, Wojciech Szpankowski on Error-Resilient LZW Data

Compression, IEEE 2006

[7]D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge University Press, 1997.

[8] T. Kowaltowski, C. Lucchesi and J. Stolfi, Finite automata and efficient lexicon

implementation, Technical report IC-98-2, University of Campinas, Brazil, 1998.

[9] C. Lucchesi and T. Kowaltowski, Applications of finite automata representing large

vocabularies, Software-Practice and Experience, Vol. 23, No. 1, 15-30, 1993.

[10] U. Manber and G. Myers, Suffix arrays: a new method for on-line search, SIAM Journal on

Computing, Vol. 22, No. 5, 935-948, 1993.

Mobile Data Compression using e-cloud Page 47

[11]K. Morimoto, H. Iriguchi and J. Aoe, A method of compressing trie structures, Software-

Practice and Experience, Vol. 24, No. 3, 265-288, 1994.

[12]T. D. M. Purdin, Compressing tries for storing dictionaries, Proceedings of the 1990

Symposium on Applied Computing, Fayetteville, Apr. 1990.

[13]D. Revuz, Dictionnaires et lexiques: Méthodes et algorithmes, Ph.D. thesis, CERIL,

Université Paris 7, 1991.

[14] S. Ristov, Space saving with compressed trie format, Proceedings of the 17
th

 International

Conference on Information Technology Interfaces, eds. D. Kalpic and V. Hljuz Dobric, 269-274,

Pula, Jun 1995.

[15] S. Ristov, D. Boras and T. Lauc, LZ compression of static linked list tries, Journal of

Computing and Information Technology, Vol. 5, No. 3, 199-204, Zagreb, 1997.

[16]M. Silberztein, INTEX: a corpus processing system, Proceedings of COLING-94, Kyoto,

1994.lexique-grammaire, Ph.D. thesis, CERIL, Université Paris 7, 1993.

[16]Ristov S, Lauc D. A system for compacting phonebook database, 25th International

Conference on Information Technology Interfaces ITI03, Cavtat, Croatia, June 2003. Kalpić

D,Hljuz Dobrić V (eds.). 155 – 159.

[17] Ristov S. A Note on Indexing DNA and Protein Sequences, 6th International

multiconference Information Society IS03, Vol A: Intelligent and Computer Systems. Ljubljana,

Slovenia, October 2003. 121-126

[18] Andersson A, Nilsson S. Improved Behaviour of Tries by Adaptive Branching Information

Processing Letters 1993; 46(6): 295-300

