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Abstract 

Monitoring of the fetal heart rate during pregnancy and labor gives 
experienced clinicians information about the physiological condition of the 
fetus. The heart rate is calculated from the heartbeat interval and is updated 
for each heartbeat. Therefore, an accurate and reliable algorithm for R-wave 
detection is crucial. R-wave detection is constantly improving and therefore it 
is important for Neoventa to compare the performance of new algorithms to 
the one currently implemented in fetal monitor STAN S31. 

The aim of this project is to implement various algorithms and validate their 
performance using adult and fetal ECG signals. 

Within the current project, three different published algorithms were 
implemented, validated and compared to the current algorithm in STAN S31. 
The result indicate that the heartbeat detection performance in STAN S31 
could be improved by replacing the existing algorithms with a non-linear 
method previously published by Pan and Tompkins
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1
Introduction

Cardiotocography (CTG) refers to the fetal heart rate (FHR) and uterine 
contraction monitoring during labor. The heart rate monitoring during late 
pregnancy and labor provides the experienced clinician information about the
physiological condition of the fetus that are needed to identify hypoxia which 
can lead to permanent brain damage or even death.

Fetal electrocardiogram (FECG) is used when determining the FHR. Figure 1.1 
shows two cycles in the ECG. Each QRS complex refers to one heartbeat and to 
find the heart rate, the RR-interval is calculated for each heart beat so the HR is 
updated for each beat. From this information the HR in beats per minutes 
(bmp) is calculated.

                                   Figure 1.1 : Electrocardiogram of one heart beat



Neoventa Medical made STAN S31 that is a system used for fetal 
monitoring.  The system combines CTG and ST-analysis of the FECG. 
When hypoxia related abnormalities in the ST segment occurs, the 
system sends an alarm [1].  STAN S31 uses two methods for a heart rate 
measurement. Ultrasound transducers are used on the mothers belly 
before the membranes rupture, and after rupture an electrode is placed 
on the fetus scalp, to record the FECG [1].  The methods for R-peak 
detection from ECG signals are constantly improving and it is important 
for Neoventa to compare the performance of new algorithms with the one 
currently implemented in fetal monitor STAN S31.

1.1 Objective
The aim of this project is to investigate different algorithms for R- peak 
detection and implement and validate suitable algorithms for FHR 
measurements. The project is done in five steps which are the following:

 Research different R-peak detection algorithms
 Implement algorithms in Mat lab
 Decide the criteria to validate the algorithms
 Validate the algorithms
 Implement the most suitable algorithm

1.2 Delimitations
Many different algorithms have been investigated for R-peak detection 
and out of them six were chosen for possible implementation, and they 
are all fundamentally different.  Three of these algorithms were chosen 
from a review paper by Kohler [2]. The paper summarizes the 
performance of different algorithms when using adult ECG signal. The 
other three algorithms were found when searching databases. All six 
algorithms seemed promising in a way that all of them had high sensitivity and 
positive predictive value.



2
Method

2.1 Literature Studies

Literature studies was performed to find suitable methods to implement 
in Mat lab. Two database were used, IEEE Xplore digital library and 
Springer link. In addition some articles were provided by Neoventa. The 
search words used were ECG detection, QRS detection, ECG Pan, ECG 
Afonso, ECG triangle, adaptive filter, R-wave detection, filter-banks.  
Table 2.1 shows the articles used as support for each implementation, 
the theory they are based on and their authors.

Name of the Paper Method Author Algorithm number
QRS Detection 
Using Zero Cross 
Count

A Real Time QRS 
Detection 
Algorithm

ECG Beat Detection 
Using Filter Bank

DSP 
implementation of 
wavelet transform 
for real time ECG 
wave forms 
detection and heart 
rate analysis

Zero cross count

Filters and window 
integration

Filter banks

Wavelet transform

Kohler

Pan and Tompkins

Afonso and 
Tompkins

Bahoura

1

2

3

X



A new approach of 
QRS complex 
detection based on 
matched filtering 
and triangle 
character analysis

Superiority analysis 
of MLMS over 
Adaptive Filtering 
Methods for Heart
Arrhythmias 
Detection

Triangle 
characteristics

Adaptive filter

Li and Yan

Khan and Billal

X

X

Table 2.1: Algorithms that were chosen for a possible implementation

When choosing the suitable algorithms for implementation there are two 
things that need to be kept in mind:

1. Fundamentally di_erent methods
2. Simple and easy implementation

When looking theoretically at an ECG signal it should be easy to 
distinguish the P-wave, the QRS complex and the T-wave but that is not 
always the case in reality. Therefore an R-wave detection algorithm has 
to be simple, robust and be able to distinguish the R-wave when using 
various ECG signals.

2.2 Validation of Algorithms
For the validation of the algorithms the Massachusetts Institute of 
Technology/Beth Israel Deaconess Medical Center (MIT/BIH) database 
was used for adults ECG signals and records from Neoventa for a fetal 
ECG signals. To compare the performance and accuracy of the 
algorithms, the sensitivity (Se) and positive predictive value (+P) were



calculated for all algorithms and for both adult and fetal ECG signal, see 
equations 2.1 and 2.2.

                                                          Se = 	 ? ?
? ? ? ? ?                                                        (2.1)

                                                          

                           +P = 
? ?

? ? ? ? ?                                                              (2.2)

where TP is the true positive, FN is the false negative and FP is the false 
positive.

2.2.1 Relation between frequency contents for adult and fetal ECG 
         Signal
Since all three algorithms were designed for adult ECG signals, they had 
to be adjusted to the fetal ECG signals. The frequency components for 
the QRS complex are different for adult and fetal ECG signal and 
therefore the relation between the frequency contents has to be 
explored. This can be done by looking at the QRS duration for both adult 
and fetal ECG signal and the QRS frequencies are directly proportional 
to the QRS duration. The QRS duration for the adult signal cannot be 
over 120 ms [3] and for the fetal ECG signal it is maximum 80 ms [4]. 
This gives the relation of the QRS duration:

                                
? ? ? 	? ??? ?
? ? ? 	? ? ? ??= 

? ? ? ?
? ? ? ? ? =0.67                                                       (2.3)

The frequency ratio is therefore:

                            
? 	? ? ?? ?
? 	? ? ? ??=

?
? Ç? ? =1.5                                                         

(2.4)

This means that the band pass filter from algorithm 1 which is designed 
to have frequency range of 18-35 Hz for the adult ECG signal, should be 
re designed to have the frequency range of 27-53 Hz for the fetal ECG 



signal. When looking at the frequency response of the filter in algorithm 
1, the upper and lower cut-off frequencies can be found by looking at -3 
dB.

Figure 2.1: Frequency response and the cut-o_ frequencies for the adult ECG signal



             Figure 2.2: Frequency response and the cut-o_ frequencies for the fetal ECG signal

From figures 2.1 and 2.2 it can be seen that the lower cut-off frequency 
for the adult ECG signal is 17 Hz and 23 Hz for the fetal ECG signal and 
the upper cut-off frequency for the adult ECG signal is 36 Hz and 50 Hz 
for the fetal ECG signal. Calculating the frequency ratio for both cases 
results in ratio of approximately 1.4.

This means that is it unnecessary to change the filters since changing 
the sampling rate from 360 Hz to 500 Hz will be sufficient to attain correct 
cut-off frequencies for the fetal ECG signal.

2.2.2 Adult ECG Signal

The MIT/BIH database contains 30 minutes long records from 48 adult 

patients which were sampled at 360 Hz. The _rst 23 recordings contain 

randomly chosen signals and the other 25 recordings have been chosen 

from patients with various arrhythmia [5].  Since the dataset contains 

di_erent variations of ECG signals with known location of the R-wave, 

the result will be accurate and they will show how robust and stable the 

algorithms are.



Validation: Each recording contains the ECG signal and the location and 
amplitude of the R-wave. It is therefore easy to calculate sensitivity and 
positive predictive values by comparing the detected values from the 
algorithms to the given values in each data set, see figure 2.3. The 
detected values that were within ±20 ms from the given values in the 
dataset were classified as a true positive (TP), the rest of the detected 
values wereclassified as false positive (FP) and the rest of the given 
values from the dataset were classified as false negative (FN).

Figure 2.3: Flow chart of the validation for the adult ECG signal

For each algorithm the focus was to look at the overall performance so 
the sensitivity and positive predictive value were calculated from all 48 
records instead of calculating the values for each record. The threshold 
value was changed 5 times for each algorithm to see the effect on the 
sensitivity vs. positive predictive value.

2.2.3 Fetal ECG Signal
The data from Neoventa contains 30 min records obtained during birth of 
82 children.  This data contains the ECG signal and the R-wave 
detection from STAN S31, but the correct location of the R-wave are 
unknown and therefore another method has to be applied when 
estimating number of TP, FN and FP. Figure 2.4 shows a flowchart of the 
method used for the estimation. The detection from STAN S31 are also 
evaluated with the detections from the three algorithms.



Figure 2.4: Flow chart of the validation for the fetal ECG signal



Validation:  First step was to put all detections from all four algorithms 
into array a.  Array B contains array a, which has been sorted from 
lowest to highest value. From there the differences between each values 
in B were calculated and the validation process was split into two groups 
depending if there were four or three detection within 30 ms. See figure 
2.5 for an example of the first step in the validation. 

            Figure 2.5: Example of step 1 in the validation process for fetal ECG

Four detections: If four detections were found within 30 ms, a back 
search was done to find which time belonged to which algorithm and the 
RR-interval was calculated.  At that point there are four RR-interval 
arrays of same length n, one for each algorithm. A new matrix RR, of 
size n x 4, was created using one RR-interval from each algorithm. Each 
row is sorted from lowest to highest value and if the difference between 
the first and the fourth value was less than 5 ms then the assumption 
was made that those detection were TP for all four algorithms. See figure 
2.6 for an example.

    



  

Figure 2.6: Example of step 2 in the validation process for fetal ECG

If the difference was more than 5 ms then it was not a TP for all four 
algorithms but if the difference between the first and the third or the 
second and fourth value was less than 5 ms than it was a TP for those 
three algorithms belonging to those times and a FP and FN for the fourth 
algorithm. Finally a back search was done to find out how many TP, FN, 
FP each of the algorithm had. See figure 2.7 for an example.



           Figure 2.7: Example of step 3 in the validation process for fetal ECG

Three detections: If three detections were found within 30 ms, a back 
search was done to _nd out which time belonged to which algorithms. 
From there four different groups were made depending on which three 
algorithms had those detections. The same logic was used as in steps 1-
2 in figures 2.5 and 2.6 for the RR-interval like when there were four 
detections but instead the RR matrix was of size n x 3.

The total number of TP, FN, FP and unknown detections were summed 
up. For all extra detections the classification was unknown detections 
and they were eliminated when calculating Se and +P.

2.3 Implementation of Algorithm 1

Algorithm 1 uses the zero crossing count method which is based on the 
signal constantly crossing over the threshold when it changes signs and 
in this case the R-wave can be located where the signal decreases its 
crossing. The block diagram of algorithm 1 can be seen in figure 2.8 [6].

     Figure 2.8: Block diagram for algorithm 1



2.3.1 Preprocessing
The preprocessing steps involve using different filters and then the signal 
is nonlinearly transformed. The amplitude is estimated and a high 
frequency sequence is added to the signal and finally the zero crossing is 
detected and counted. Figure 2.9 shows how the ECG signal looks after 
each preprocessing steps and table 2.2 shows the design parameters for 
both adult and fetal ECG signal. Different threshold values were chosen 
for the adult ECG signal to see if and then how it would affect the 
performance of the algorithm.

                               Figure 2.9: Preprocessing steps for algorithm 1

Linear and nonlinear filters: The signal was first filtered with a 27 tap 
linear phase finite impulse response (FIR) band pass filter with cut-o_ 
frequencies at 18 Hz and 35 Hz for the adult signal and 25 Hz and 49 Hz 
for the fetal signal. By doing this, the signal to noise ratio was increased, 
but for even better signal quality the signal was nonlinearly transformed.

                           



Table 2.2: Design parameters for algorithm 1

Equation 2.5 shows the nonlinear transformed signal where xf (n) is the 
filtrated signal [6].
                                           y(n) = sign(xf (n)) . x2d(n)

High frequency sequence and amplitude estimation: A high frequency 
sequence was added to the signal since the band pass filter reduces the 
high frequency components.  Equation 2.6 shows the high frequency 
sequence and equation 2.7 shows the signal after adding the sequence 
to the nonlinear transformed signal [6].

                                    b(n) = (-1)n .K(n)                                                      (2.6)

                            z(n) = y(n) + b(n)                                                      (2.7)

This was done to increase the number of zeros for the non QRS 
components. The amplitude estimation is calculated from equation 2.8 
where K(n) is the amplitude. The value for the amplitude cannot be too 
small since that will give noisy signal, and the difference between the 
QRS and non QRS complex is too small for classiffication. On the other 
hand, if the amplitude is too large, the number of zero crossing will be the 
same for both QRS and non QRS complex. Ideally the values of the 
signal, D(n), should be equal to the number of zero crossing during non 

Design Parameters Adult ECG Signal Fetal ECG Signal
Filter Frequencies

λK

Gain c

λD

λθ

p

18-35 Hz

0.99

4

0.99

0.99

0.94; 0.96; 0.98; 1; 1.02

35-49 Hz

0.99

4

0.99

0.97

1



QRS complex and less than the number of zero crossing during QRS 
complex. Equation 2.8 shows K(n) where _K 2 (0; 1) is the forgetting 
factor and c is the constant gain [6].

               K(n) = λKK(n-1) + (1-λK)[y(n)].c                                              (2.8)

Detection and counting of zero crossing: For the zero crossing 
detection, equation2.9 and 2.10 were used [6].

                                  d(n) =	[??? ? [? (? )]? ??? ? [? (? ? ? )]
? ]                                      (2.9)

                                   D(n) = λDD(n-1) + (1-λD)d(n)                                   (2.10)

Where λD ε 2 (0; 1) is the forgetting factor [6].

2.3.2 Event and R-wave detection

To detect events an adaptive _lter was implemented, using the featured 
signal. Equation 2.11 shows the threshold, where __ 2 (0; 1) is the 
forgetting factor. [6]

                             θ(n) = λ θ (n-1) + (1- λ θ)D(n)                                (2.11)

The featured signal, D(n), was compared to the threshold, λ θ , to create 
events. One event takes place during period when λ θ . p > D(n), where p 
is a weighing factor, and therefore each event has a lower and an upper 
limit. If two event are within 83 ms for adult signal and 60 ms for the fetal 
signal the two events are combined in one using the lower limit from the 
first event and the upper limit from the second event [6].

For each event the minimum and the maximum were found from the 
magnitude of the nonlinear transformed signal. If the minimum is much 
larger than the maximum then the R-wave is set to location of the 
minimum. Otherwise the R-wave is at the location of the maximum [6].

2.4 Implementation of Algorithm 2
Algorithm 2 uses different filters, squaring function and a moving window 
to bring out the features in the ECG signal and then the R-wave is 
located. Figure 2.10 shows the block diagram of algorithm 2.

                                          Figure 2.10: Block diagram of algorithm 2



2.4.1 Preprocessing
The preprocessing steps are band pass filter and differentiation, then the 
signal is squared and finally a moving window integration is applied. 
Figure 2.11 shows the ECG signal after each preprocessing steps and 
table 2.3 shows the design parameters for both the adult and fetal ECG 
signal. Different threshold values were chosen for the adult ECG signal 
to see if and then how it would effect the performance of the algorithm.

                                       
Design Parameter Adult ECG Signal Fetal ECG Signal

Filter Bandwidth

Window

p

5-10 Hz

54

0.8, 1, 1.2, 3 and 5

7-14 Hz

50

1

Table 2.3: Values for algorithm 2

Figure 2.11: Preprocessing steps for algorithm 2



Band pass filter: The implemented band pass filter is composed of a 
low pass and a high pass filter, which are designed to reduce noise from 
muscles, the power line interference, baseline wander and T-wave 
interference. Equations 2.12 and 2.13 show the transfer function and the 
difference equation for the low pass filter. The low pass filter has a gain 
of 32 dB, a cutoff frequency around 10 Hz for adult ECG signal and 14 
Hz for the fetal ECG signal and a total delay of 5 samples [7].

                                                    H(z) =
(? ? ? ? ? )?
(? ? ? ? ? )?                                            (2.12)

                              y(n
= 2y(n- 1)-y(n-2) + x(n) -2x(n-6) + x(n-12)   (2.13)

The high pass filter was obtained by dividing the low pass filter from 
equation 2.12 with its gain and then subtract it from the all pass filter 
Hall(z) = z-16. Equations 2.1 and 2.15 show the transfer function and the 

difference equation for the high pass filter.  The high pass filter has a 
gain of 32, a cutoff frequency of 5 Hz for the adult ECG signal and 7 Hz 
for the fetal ECG signal and a total delay of 16 samples [7].

                     H(z) = 32z-16-
? ? ? ? ? ?
? ? ? ? ? =

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ?                  (2.14)

                y(n) =-y(x-1) -x(n) + 32x(n-16) -32x(n -17) + x(n -32)        (2.15)

Derivative: After the signal had been filtered it was differentiated to get 
information about the QRS complex slope. A five-point derivative was 
used where equations 2.16 and 2.17 show the transfer function and the 
difference equation. This gave a delay of two samples [7].

                           H(z)=
? ? ? ? ? ? ? ? ? ? ? ?? ? ??

?                                              (2.16)

                           Y(n)=
? ? (? ? ? )? ? ? (? ? ? )? ? ? (? ? ? )? Æ? ? ? �

?                           (2.17)

Squaring function: The signal was squared point by point using 
equation 2.18
                             y(n) = [x(n)]2                                                                (2.18)

where x(n) is the derivate signal. This makes all points positive and the 
signal is nonlinearly amplified which emphasizes the higher frequencies 
[7].



Moving window integration: A moving window was implemented.

                            Y(n)=
? ?? ? (? ? ? )?? ? ?? ? (? ? ? )?? ⋯ � ..? ? (? )

?                         (2.19)

Where N is the width of the integration window, and should be 
approximately the same as the duration of the QRS complex which in 
this article was chosen to be 150 ms [7].

2.4.2 Event and R-wave detection
For the R-wave detection a new approach was used [8] since the R-wave 
detection logic in article [7] was too complicated for implementation.  

A threshold was calculated from equation 2.20, where p is a weighing 
factor. Events were located where the output of the moving window was 
higher than the threshold.  The lower and upper limit of each event were 
located and to find the R-wave the delay of the band pass filter had to be 

taken into consideration. For each event the maximum was found and 
the location of it set as the R-wave [8]

                                  threshold = p.max(y(n)) . mean(y(n))                                              (2.20)

where y(n) is the output of the moving window integration.

2.5 Implementation of Algorithm 3
Algorithm 3 uses filter banks which are used to divide the frequency 
range into sub bands and then the signal is processed for all the sub 
bands. Figure 2.12 shows the block diagram for algorithm 3.

                          Figure 2.12: Block diagram of algorithm 3



2.5.1 Preprocessing
Four FIR analysis filters with a length of 200 and a bandwidth of 5.6 Hz 
for the adult ECG signal and 7.9 Hz for the fetal ECG signal. The signal 
was first filtered and then down sampled by 32 for the adult ECG signal 
and by 44 for the fetal ECG signal.

  

Table 2.4 shows the values chosen for some design parameters. 
Equation 2.21 shows the down sampled signal Wl(z), where Ul(z) is the 
sub band signal, Hl(z) is the analysis filters, and X(z) is the input signal 
and M is the down samples rate [9]. Figure 2.13 shows the four filters 
used in the preprocessing step.

                     Figure 2.13: Preprocessing steps for algorithm 3



                     
Design Parameter Adult ECG Signal Fetal ECG Signal
Filter length

Down sample rate

Filter frequency range

Threshold 1/ Threshold 2

400

32

5.6-28 Hz

0.2/0.1; 0.7/0.3; 0.9/0.5; 
1.2/0.9; 1.7/1.5

400

44

7.9-39 Hz

0.7/0.3

Table 2.4: Design Parameters for algorithm 3

Wl(z) =
?
? ∑ ? ?Æ??

? ? ? �? ? ?? ? ? =
?
? ∑ ? ?? ??

? ? ? ? ? ? ??
? ? ? ? � ? � � � È� ? ÇÇ? − È? ? ?? ? ?               (2.21)

Sub bands were combined to create features, Px, with a certain energy 
relating to the QRS complex. Equations 2.22, 2.23 and 2.24 show how 
the three different features were calculated. P1 has a frequency band of 
5.6-22.4 Hz for the adult ECG signal and 7.9- 31 Hz for the fetal ECG 

signal, P2 a frequency band of 5.6-28 Hz for the adult ECG signal and 
7.9- 39 Hz for the fetal ECG signal and finally P3 has a frequency band 
of 11.2-28 Hz for the adult ECG signal and 15.7-39.2 Hz for the fetal 
ECG signal [9].
                                                               

                                            P1 = ∑ � ? ?(?)Ø??? ? 							                                       (2.22)
                
                                           P2 =	∑ � ? ?Æ?�??? ? Ø                                     (2.23)

                                           P3 = ∑ � ? ?(?)Ø??? ?                                      (2.24)

These features were the input to a moving window integration (MWI) 
where two samples were averaged at the sample rate [9].  The detection 
strength, Ds was calculated to determine if a peak was an R-wave or just 
noise. Equation 2.25 shows how the detection strength was calculated, 
where Px is the incoming feature, SL is the signal level and NL is the 
noise level [9] [10].



                                            Ds =
? ? ? ? ?
? ? ? ? ?                                                        (2.25)

Ds is set to zero if the features value is less than NL and to one if the 
value is higher than SL. When the detection strength is higher than a 
certain threshold it is classified as a peak and the history of the signal is 
updated for the feature value. If the detection strength is less than the 
threshold, it is classified as noise and the noise history is updated [9] 
[10].

2.5.2 Event and R-wave detection
The event detection was divided into six levels to maximize the true 
positives (TP) and minimize the false negatives (FN) and false positives 
(FP) [9].

Level 1: This level detects all peaks in the output of the MWI for feature 
P1. This level has no threshold and therefore it detects most of the true 
beats but it has high number of FP. Level 1 is the event detection and 
triggers further logic to reduce FP [9].

Level 2: Level 2 is triggered when there is a peak in level 1 and it uses 
two channels (Chan1 and Chan2) that operate simultaneously. The 
output of the MWI for P2 is used in both channels but Chan1 has a 
threshold T1 = 0:08 and Chan2 has a threshold T2 = 0:70. When level 2 
is triggered the channels calculate the detection strength and compare it 

to the thresholds. When Ds is higher than the threshold it is classified as 
an R-wave and the history of the R-wave is updated. If Ds is lower than 
the threshold it is classified as noise and the noise history is updated. 
Since Chan1 has a low threshold it will classify some noise as R-wave 
but the R-wave will be classified correctly. Chan2 has a higher threshold 
and therefore some R-wave will be classified as noise but the noise will 
be classified correctly. In other words, Chan1 will have many FP but few 
FN and Chan2 will have few FP but many FN [9] [10].

Level 3: This level uses the information in level 2 to classify what is a 
beat and what is noise. Level 3 uses if-then-else rules for the 
classification. These rules give four possible outcomes, if Chan1 and 
Chan2 classify an event as an R-wave then level 3 classifies it as a beat. 
If neither Chan1 or Chan2 classify an event as a beat then level 3 
classifies it as noise. Since Chan2 has higher threshold and few FP, it's 



detection is accurate, and if there is a R-wave detection in Chan2 and not 
in Chan1 it is classified as a beat.  If Chan1 classifies a peak as a beat 
and not Chan2 the normalized detection strength ∆ii = 1,2 indicate which 
detection is more likely to be a beat. The logic for level 3 is the following 
[9] [10]

Chan1

Chan2

√

√

x

x

x

√

√

x

Outcome √ x √ ∆1?∆2

where

                      ∆1∆2: if ∆1>∆2 then √, else x

                             ∆1=(DS1-T1)/(1-T1)

                               ∆2=(T2-DS2)/T2

                      √ is a beat and x is not a beat

Level 4: Level 4 uses feature P3 as a MWI input. This level updates the 
history of beats detected in level 3 and re-evaluates the noise from level 
3. All noise peaks from level 3 are compared to threshold T4 = 0:30 and 
if their detection strength is greater than the threshold their classi_cation 
is changed to a beat and the noise history is updated.  This level reduces 
the FN and is more accurate than levels 1-3 [9] [10].

Level 5: Level 5 looks at the time between beats. If the time is longer 
than 1.5. mean of the beat distance, the algorithm does a search back to 
find any missed beats. If a new beat is found it's detection strength is 
compared to a threshold, T5 = 0:2, if it is higher then the beat and noise 
history are updated [9] [10].

Level 6: This level eliminates beats that are too close together. If their 
distance is less than 250 ms the one with lower amplitude is eliminated 
and the beat history is updated.

2.6 Algorithm implemented in STAN S31



The algorithm implemented in STAN S31 uses two input signals; a scalp 
electrode to scalp reference lead (FHR channel) and a scalp electrode to 
skin electrode lead (ECG channel). The preprocessing step for both 
these signals include filters and the R-wave detection uses template 
matching [11].

2.6.1 Preprocessing
In the preprocessing step a filter is applied to both inputs signal to 
remove unwanted frequencies not belonging to the QRS complex [11].

2.6.2 Event and R-wave detection
For the R-wave detection a template selection is used on both the FHR 
and ECG channel and the events from those are compared to each other 
to find which selection are true R-waves [11].

Template selection: Two templates are used, one for each channel. 
The templates are 50 ms wide and they reflect the shape of the QRS 
complex.  The FHR channel is more reliable then the ECG channel and 
therefore the template search is initiated at that channel. From the FHR
channel a template is selected and only when a FHR template is 
selected the ECG template search begins [11].

FHR template selection: When selecting a template, a 2000 ms interval 
is searched to make sure that the correct template is detected. The 
algorithm uses three criteria when searching for the highest peak:

1. The amplitude has to be higher than 50 µV
2. The amplitude has to be lower than 2000 µV
3. No another peak within 250 ms that has half the amplitude or higher. 
This is done to reduce the number of templates which are picked up by 
noise [11]  

If a peak is found it is classified as a beat. Since the template search 
interval is 2000 ms there might be more than one peak inside the interval 
but the algorithm is only interested in the latest peak. The template 
search is repeated in the interval, 200 ms after the first peak detection to 
the end of the 2000 ms interval. If there is a peak within the later interval 
that has an amplitude of at least half the initially detected peak, the new 
peak is selected as a beat [11].



ECG template selection: When at least four continuous beats are found 
when using the FHR template and they all match in shape and 
amplitude, a mean value of those template wide section is calculated and 
defined as a ECG template. The ECG templates are picked up at the 
location of the FHR beat positions with no regards to where the highest 
amplitude is located in the ECG channel [11].

Comparison to the ECG signal: When a template have been chosen, it 
is constantly compared to the signal and yields in a three different DIFF 
signals [11]

1. FHR template compared to the FHR channel (DIFF FHR)
2. ECG template compared to the ECG channel (DIFF ECG)
3. Combination of DIFF FHR and DIFF ECG (DIFF COMBINED) [11].

Both DIFF FHR and DIFF ECG are calculated in the same way:
1. If a template is not selected the DIFF value will be set to INT MAX so it 
won't
generate any heart beats.
2. The comparison between template and signal is made sensitive to 
difference in power and offset, this is done to increase the precision. To 
normalize against difference in offset, the average of the signal and 
template is calculated and then subtracted.
3. The power is calculated for both the template and the signal, as the 
sum of the absolute values. If the difference between the power of the 
signal and the power of the template is less than 50% or higher than

200% then the DIFF is set to INT MAX to reject it. If the difference is 
within the range, the signal is made insensitive to difference in power by 
re-scaling it by template power/signal power.
4. From there the diff value is calculated as the sum of squared 
differences between template and signal, divided by the square of power 
of the template. This summing is done over the template width. By 
dividing the sum with the power of the template the DIFF value is made 
indifferent to the power of the signal and the same threshold can be used 
no matter what the signal strength is [11].



The DIFF COMBINED is calculated as:

                             DIFF COMBINED =
? ?? ? 	? ? ? Ç? ?? ? 	? ? ?

? ? ? ?? ? ? 	?? ?? ?? ? ?? 							                (2.26)

The DIFF FHR and DIFF ECG signals represent how well the FHR and 
ECG templates correlate to its respective signal. The DIFF COMBINED 
represents how well both theses template correlate to their respective 
signals. Since a beat is usually represented in both channels at the same 
time, there is an advantage to have a combined comparison [11].

Beat detection: All of the DIFF signals are compared to a threshold 
value. If any of the DIFF signals are lower then the threshold, that time is 
set as a possible beat [11].

Threshold values: The threshold contains four values; Block, low, 
medium and
high. Each DIFF value is compare with on of these four thresholds:

1. If a possible beat is too close (HR> 300 bpm) to a previous beat the 
block threshold is used to prevent FP detection.
2. If a possible beat is too close (240 bpm<HR<300 bpm) and the 
threshold/DIFF(FHR, ECG or COMBINED) that is being evaluated is not 
of the type that generated the lase beat, the block threshold is used.
3. The medium threshold is always used after three consecutive RR-
intervals.
4. If the possible beat yields in a HR that is ± 10 bpm from the last one, 
the high threshold is used.

5. As a means to avoid situations presenting half or, if third HR the 
candidate HR corresponding to the current sample is one half, or one 
third the last HR detected, ±5 bpm, the medium threshold is used. This 
only applies if the threshold/DIFF being evaluated is the same as for the 
last beat being detected.
6. In all other cases the low threshold is used [11].

Rejection of a beat: There are some cases where a beat is rejected:
1. If the HR is higher than 240 bpm
2. If the HR is lower than 30 bpm



3. if the HR between the last HR and the new HR has increased more 
than 28 bpm
4. if the HR between the last HR and the new HR has decreased more 
than 1/3 times the previous HR [11].



3

Result

3.1 Adult ECG signal

The first validation of the algorithms was performed using adult ECG 
signals from the MIT/BIH database which contains 48 recordings, each 
30 minutes long. The focus was to evaluate the overall performance of 
each algorithm by summing up numbers of TP, FN and FP to calculate 
the sensitivity and the positive predictive value. The results can be 
divided into two parts, first how the threshold effects the performance of 
the algorithms and the second is to determine which algorithms performs 
best for the adult ECG signal. These results are very accurate since the 
actual location of the R-waves are known. 

For each algorithm the threshold value was changed 5 times to see if 
and then how it affected the performance of the algorithms. Figure 3.1 
shows a sensitivity vs. positive predictive value graph with results from all 
four algorithms.



                                        Figure 3.1: Result for the adult ECG signal

From figure 3.1 it can be seen how different values for the threshold 
affect the sensitivity and positive predictive value. Increasing the 
thresholds results in a lower sensitivity of the algorithms while the 
positive predictive value is around the same for all thresholds. 

Table 3.1 shows the best obtained result for TP, FN and FP in each 
algorithm. From those values SE, +P and the variance are calculated. It 
is very clear from both figure 3.1 and table 3.1 that algorithm 3 performs 
the best. It has the lowest SE but the highest +P but when looking at 
figure 3.1 it is obvious the most accurate one when locating R-waves for 
adult ECG signal while the algorithm implemented in STAN S31 is not 
suited for adult R-wave detection. Table 3.1 shows the variance which 
gives indications of how close the detected values from each algorithm 
are to the actual R-wave location. Algorithm 3 has the lowest variance 
which means that its detected R-waves are closest to the actual R-
waves.



Algorithm TP FN FP Se [%] +P [%] Variance
Algorithm 1

Algorithm 2

Algorithm 3

STAN S31

103073

102339

101677

73826

6405

7139

7801

35652

5465

7472

2416

3986

94.15

93.48

92.87

67.4

94.96

93.20

97.68

94.9

3.04 . 10-5

1.21 . 10-5

6.65 . 10-6

2.4 . 10-5

Table 3.1: Best result for the adult ECG signal

3.2 Fetal ECG signal
The second validation of the algorithms was performed by using fetal 
ECG signals from Neoventa, which contains 82 records, each 
approximately 30 minutes long.  The focus was to evaluate the overall 
performance of each algorithm by summing up numbers of TP, FN and 
FP to calculate the sensitivity and the positive predictive value. Since the 
location of the R-waves are not known this validation will not be accurate. 
Only detections that three or all four algorithms detect were evaluated, 
the rest was disregarded.  

Table 3.2: Result for the fetal ECG signal

Algorithms TP FN FP Unknown 
detections

Se [%] P [%]

Algorithm 1

Algorithm 2

Algorithm 3

STAN S31

283074

284178

262666

267902

3162

2059

23568

18310

2138

323

6809

1476

21051

22067

26965

30897

98.90

99.28

91.77

93.60

98.25

99.89

97.47

99.45



The results from the validation of the three algorithms plus STAN S31 
using fetal ECG signal are shown both in figure 3.2 and table 3.2. Figure 
3.2 shows the sensitivity vs. positive predictive values while table 3.2 
also show the number of TP, FN and FP.

Figure 3.2: Result for the fetal ECG signal

From both table 3.2 and figure 3.2 it can be seen that the algorithm 2 has 
the highest sensitivity and positive predictive value. This gives an 
indication that algorithm 2 is the most accurate of those four though the 
values of sensitivity and positive predictive values are higher than in 
reality.



4

Discussion
4.1 Obstacles in the project
This project was divided into three steps; Investigate different algorithms, 
implement three of them and finally perform validation on two different 
types of ECG signals. When working on this project there were some 
obstacles that had to be dealt with. The first problem was when 
implementing the algorithms, the signal processing steps were easy to 
follow from the articles but the R-wave detections were more complicated 
and often it was unclear how the authors designed the R-wave 
detections. Therefore the algorithms may not be exactly the same as in 
the articles. The second obstacle was when deciding on how to perform 
the validation using the fetal ECG signal. Due to lack of time algorithm 2 
was not implemented in C# like it was proposed in the aim.

4.2 Results
The validation process for the algorithms using two different type of 
signals are chosen differently depending on what information exists. 
When using the adult ECG signal the locations of the R-waves are 
known so the validation process is easily performed.  The second and 
more important validation using the fetal ECG signal is more complex 
since the R-waves locations are not known. The most accurate way to 
determine TP, FN and FP is to look at figures of the signal with the 
detections but that is unrealistic since it is too time consuming. The
validation process has to be easily performed and automatic. That is why 
this validation process is chosen for the fetal ECG signal, even though it 
will not give accurate information it will still give important information of 
the performance of the algorithms. The values for the sensitivity and 
positive predictive value are therefore higher than in reality, the number 
of unknown detection for each algorithms are 10-14 % of total number of 
detection.



When looking at the performance of all four algorithms for the adult 
signal it is interesting to see how poorly the algorithm in STAN S31 
performs while the other three algorithms have high sensitivity and 
positive predictive value. By changing the threshold value it can be seen 
that the algorithms are stable and robust since they all have high 
performance rate for most threshold values. Changing the threshold 
gives lower sensitivity but similar positive predictive value. For the fetal 
signal all four algorithms have relatively good performance, all values for 
sensitivity and positive predictive value are over 90 %.  

When comparing the results from the two validations it is clear that the 
algorithms perform differently with different type of signal. When looking 
at the adult ECG signal algorithm 3 is the most accurate, but for the fetal 
ECG signal algorithm 2 has the highest performance rate. There can be 
many reasons why the algorithms perform differently with different types 
of signal. First thing to keep in mind is that the adult and fetal ECG signal 
don't look the same. The fetal ECG signal has lower amplitude then the 
adult ECG signal and the amplitudes varies a great deal between 
different fetal ECG signals. Secondly the threshold has a great impact on 
number of detection, algorithms 1 and 2 have adaptive threshold that 
adjusts to different types of signals while algorithm 3 has fixed thresholds 
for both the noise and the peaks. This means that is harder to find one 
fixed value that is going to work with different signals. Maybe if the 
threshold in algorithm 3 was to be changed to adaptive threshold the 
algorithm would have higher performance rate. The third reason is the 
filter. Each algorithm has different filter bandwidth and for some reason 
the filter in algorithm 2 seems to be performing better on the fetal ECG 
signal then the adult signal. Only algorithm 1 seems to be working similar 
for both the signals. 

The result of the validation using the adult signal can not be compared to 
the articles since different criteria was chosen for this project. As an 
example in the article about the zero cross count the authors used 75 ms 
interval when finding number of TP, FP and FN while in this project the 
interval was 20 ms. [6] This will result in higher sensitivity and positive 
predictive values in the article than in the project.



5
Conclusion

In this project, three R-wave detection algorithms were implemented in 
Mat lab and validated for both adult and fetal ECG signal. Algorithm 3 
has the best performance when using adult ECG signal with Se of 
92.87% and +P of 97.68%, but algorithm 2 has the best performance 
when using fetal ECG signal with Se of 99.28% and +P of 99.89%.  
When designing a R-wave detection algorithm, there are many factors 
that need to be taken into a consideration but the first thing it to decide 
what theory the algorithm should be based on. From there the 
preprocessing steps are decided but all methods have some kind of band
pass filter implementation to eliminate noise and disturbance from the 
body and surroundings. The frequency range of the QRS complex needs 
to be explored to find which frequencies the signal should contain after 
the filtering. The algorithm might contain more filtering steps but it would 
be convenient to square the signal at some point to emphasize the R-
wave and reduce unwanted parts of the signal. For the event detection 
some kind of threshold is necessary. This threshold can be fixed but it is 
better if the threshold adapts to the signal being processed since the 
signal don't look the same between people. When the events have been 
detected the R-wave can be located by finding the maximum value in 
each event. When comparing the performance of the algorithm in STAN 
S31 to the performance of the other three algorithms it is obvious that the 
algorithm in STAN S31 could be improved to get higher sensitivity. This 
could be done by replacing the algorithm with a non-linear method 
previously published by Pan and Tompkins (algorithm 2).
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A
Appendix: Algorithm 1

function [ RR time ] = function 1_ fetal ( ecg )

% The input is the ecg signal

fs =500; % sampling frequency
A= 2 6 ; % filter order

%% Bandpass Filt er , 27;53 Hz
bandpass = fir 1 (A, [ 5 / ( 0 . 5 * f s) 3 0 / ( 0 . 5 *f s ) ] ) ; % bandpass filter
filter_signal delay=conv ( bandpass , ecg ) ;
filter_signal=filter signal delay (A/ 2 : length ( filter signal delay )�A/ 2 ) ;

%% Nonlinear Transform of Signal
nonlinear = sign ( filter signal) . * filter signal . ^2;

%% High Frequency Sequence
K = zeros ; % timevarying amplitude
lambda = 0 .99 ; % forgetting factor : lamda [ 0 : 1 ]
gain = 4; % constant gain

f o r j =1: length ( nonlinear -1
K( j+1)= lambda*K( j )+(1�lambda )*gain *abs ( nonlinear ( j +1) );
end

b=zeros;
for j =1: length ( nonlinear )

b( j )=(-1)^ j *K( j );
end

%% Adding high frequency sequence to the noise_ecg
new_signal = nonlinear+b ';

%% Detection and counting of zero crossings
d=zeros ;
for  j = 1 : length ( new signal -1
     d( j+1) = 0.5*abs ( sign ( new signal ( j+1)-sign ( new signal ( j ) ) );

end

lambda2=0.99; % smooths the signal, higher value- > smoother signal



D = zeros ;

f o r j =1: length ( new signal -1
      D( j+1)= lambda2*D( j )+(1-lambda2 )*d( j +1);
end

%% Event detection
lambda3 = 0.97; % controlls the threshold , lower -> closer to signal
threshold = zeros ;
for j =1: length ( new_signal )-1
     threshold ( j+1)= lambda3*threshold ( j )+(1-lambda3 )*D( j +1);
end

%% Find all places where D is greater than threshold
% all places where D is smaller then threshold -> negative
% all places where D is larger then threshold ->positive
   positive= zeros;
   negative = zeros;
for  j = 1 : length (D)
      if D( j ) < threshold ( j )
            positive ( j ) = 1 ;
      else
                 negative ( j )=1;
      end
end

% location of every place where D>threshold and D<threshold , this marks
% the points of lower and upper thresholds -> every point where the
% threshold and D cross over each other.
[ pk1 locs_ pos ] = find ( positive );

[ pk2 locs_neg ]=find ( negative );

% positive and negative difference of the locations
difference_ pos=diff ( locs_ pos) ;
difference_neg=diff( locs_ neg) ;

% Remove all values where the difference is 1 .
Ind_pos=f ind (difference_pos >1);
Ind_neg=find (difference_ neg >1);

% Find the upper and lower_limit for all possible QRS segment interval .
Upper_ limit=locs_pos ( ind_ pos ) ;
lower limit=locs_neg ind_ neg) ;

% Making all possible events
for j =1: length (upper_ limi t )
     event ( j , : )=[ l ower_ limit ( j ) upper_ limit ( j ) ] ;
end

% Calculate the distance between two event s and if the distance is too
% close then the event s are grouped together where the lower limit belongs



% to the first one and the upper limit be longs to the last one
n=1;
for j =1: length (event ) -1
              dis t_ event (n)=event ( j+1,1) -event ( j , 2 );
             n=n+1;
             if dist_event ( j )<=30
                  new_event ( j , : )=[ lower limit ( j ) upper limit ( j +1 ) ] ;
             else
                   new event ( j , : )= event ( j , : ) ;
                   new event ( l eng th ( event ) , : )= event ( l eng th ( event ) , : ) ;
             end
end

n=1;
for j =1: length ( new event ) -1
    new dist_event (n)=new_event ( j+1,1) -new event ( j, 2);
    n=n+1;
    if new dist_event ( j )<20
         new_new event ( j , : )=[ new_event ( j, 1 ) new event ( j +1 , 2 ) ] ;
    else
         new_ new_event ( j, : )= new_event ( j , : );

         new_ new_event (length (new_event ) , : )= new_event (length ( new_event ) , : ) ;
   end
end
% finding events that have been repeated
for j =1: length ( new_new_event ) -1
        if new_new_event ( j ,2)==new_new_event ( j +1 ,2)
           new_new_event ( j +1 , : )=0;
        end
end

% Remove all the zeros
zeroRows = any ( new_new_event==0, 2 ) ;
new_new_event ( zeroRows , : ) = [ ] ;

% Repeat the step to make sure that the events are not repeated
for j =1: length (new_new_event  -1
        if new_new_event ( j ,2)==new_new_event ( j +1 ,2)
           new_new_event ( j +1 , : )=0;
        end
end

zeroRows = any (new_new_event==0, 2 ) ;
new_new_event ( zeroRows , : ) = [ ] ;

for j =1: length (new_new_event )
     event_size ( j )=new_new_event ( j ,2 – new_new_event ( j , 1 ) ;
     final_event ( j , : )= new_new_event ( j , : ) ;
     if event_size ( j )<30
          final_event ( j , : )=0 ;
     end
end



zeroRow = any (final_event ==0 ,2);
final_event ( zeroRow , : ) = [ ];

%% Find the min and max value for nonlinear signal at each interval
Abs_max=zeros ;
abs min=zeros ;
for j =1: length ( final_event)

abs max ( j )=abs (max( nonlinea r (final _event ( j , 1 ) : final_event ( j , 2 ) ) ) ) ;
abs min ( j )=abs (min ( nonlinea r ( final_event ( j , 1 ) : final_event ( j , 2 ) ) ) ) ;

end

% If abs min is much larger than abs max then the R peak i s located at
% abs min but otherwise the R peak is located at abs_max
RR amp=zeros ;
for j =1: length ( final_ event)
        if abs min ( j ) -abs max ( j ) > 0 . 4
                    RR amp( j )=abs min ( j ) ;
           else

                    RR amp( j )=abs max ( j ) ;
        end
end

% Find the l o c a t i o n o f the peaks
abs nonl ine a r=abs ( nonlinea r ) ;
RR_location=zeros ;
for j =1: length (RR amp)
     RR_loc ( j )=find (abs nonlinear ( final_event ( j, 1 ) : final_ event ( j, 2))==RR amp( j)
end

for j =1: length (RR amp)
    RR location ( j )=final_ event (j,1)+RR loc ( j ) ' ;

End

RR location=RR locat ion ' ;
RR loc_ time=(RR location )/ f s *10^3;

RR amp=abs nonlinear (RR location );

% erase values that are too close
RR time=RR_ locat ion;
n=1;
for j =1: length (RR_ location -1
     if RR_locat ion ( j+1 –RR_ locat ion ( j )<250*10^ -3*500
           if RR_amp( j )<RR_ amp( j+1)
              RR_time ( j )=0;
           else
              RR_time ( j +1)=0;
           end



end

end

% R -wave location
RR time=RR time (RR time ~=0);

% R-wave location in ms
RR_time=RR_time *10^3/ f s ;



B
Appendix: Algorithm 2

function [RR_time ] = function 2_fetal (ecg )
% Input signal is the ecg signal
fs =500; % Samplinga frequency
N = length (ecg ) ; % Signal leng th
%% Low Pass Filter
% delay = 5 samples
% Difference equation of low pass filter / coefficients a1 and b1
% cut off frequency is 14 Hz , gain is 36 and delay i s 10 ms
% Transfer function : H( z)= (1 -z ^ -6)^2/(1 -z ^-1)^2
a1 = [ 1-2 1 ] ;
b1 = [ 1 0 0 0 0 0 - 2 0 0 0 0 0 1 ] ;
lp_signal = filter (b1 , a1 , ecg ) ;
lp_ signal = lp_signal /max( abs ( lp_ signal) ) ; % Normal ize
%% High Pass Filter
% delay = 16 samples
% Difference equat ion of high pass filter /coefficients a2 and b2
% cutoff frequency is 7 Hz , gain is 32 and delay is 80 ms
%
a2 = [ 1-1] ;
b2 = [-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 -32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ] ;

hp_ signal = filter ( b2 , a2 , lp_signal) ;
hp_signal = hp_signal /max( abs ( hp_signal) ); % Normalize

%% Derivat e
% delay = 2 samples
h=[-1 -2 0 2 1 ] / 8;

derivative=conv ( hp_signal, h ) ;
derivative = derivative (2+[ 1 :N] ) ; % Correcting delay of two samples
derivative = derivative /max( abs ( derivative) ) ; % Normalize

%% Squaring
squaring = derivative. ^ 2 ;
squaring = squaring /max( abs (squaring ) ) ; % Normalize

%% Moving-Window Integration
width = 50; % Number of samples in the width (150 ms window)
h2 = ones (1, width+1)/(width+1); % Impulse reponse

moving window = conv ( squaring , h2 ); % Apply filter
moving window = moving window( width /2+[1:N] ) ; % Correcting delay of 15 samples
moving window = moving window/max( abs (moving window) ) ;



% QRS different than pan tompkins
max window = max(moving window ) ;
mean window = mean(moving window ) ;
threshold = mean_window*max_ window ;
y =(moving_window>thresho ld ) ' ;

left = find (diff( [ 0 y ] )==1) ;
right = find (diff ( [ y 0])==�1);

left= left -(5+16); % canc el delay of the low and high pas s filter
righ t=right -(5+16); % cancel delay of the low and high pass filter

R_loc=zeros ;
R_value=zeros ;

for j =1: length ( left )
     if left ( j )<1;
         left ( j )=1;
     end
     If right ( j )>length (ecg )

right ( j ) = length (ecg ) ;

end
   [ R_value ( j ) R_loc ( j ) ] = max( ecg ( left ( j ) : right ( j ) ) ) ;
   R_loc ( j )=R_loc ( j )-1+l e f t ( j ) ; % adding offset

end

RR _loc=R_loc ( find ( R_loc ~=0) ) ;

RR _amp=ecg (RR_ loc ) ;
RR_time=RR_ loc ;
n=1;
for j =1: length (RR_loc)-1

     if RR_loc ( j+1)-RR_loc ( j )<250_10^-3_500
          if RR_amp( j )<RR amp( j+1)
             RR_ time ( j )=0;

else
              RR_ time ( j +1)=0;
     end

  end
end

% R-wave location
RR_time=RR_time (RR_time ~=0);

% R-wave location in ms
RR_ time=RR_ time *10^3/500;



C
Appendix: Algorithm 3

Part s of the algorithm are obtained by using the free software in [ 1 0 ] .

func tion [RR time ] = function 3 fetal ( ecg )

% Input signal is the ecg signal
f s =500;
data=ECG;
N=400;

%% F i l t e r banks
Bw=5.625; %f i l t e r bandwidth
Bwn=1/( f s /2)_Bw;
M=32; %downsampling ra te

k1=.002;
h1=f i r 1 (N, [ Bwn-k1  2*Bwn+k1 ] ) ;
h2=f i r 1 (N, [ 2 *Bwn-k1 3*Bwn+k1 ] ) ;
h3=f i r 1 (N, [ 3 *Bwn-k1 4*Bwn+k1 ] ) ;
h4=f i r 1 (N, [ 4 *Bwn-k1 5*Bwn+k1 ] ) ;

w1=conv ( data , h1 ) ;
w2=conv ( data , h2 ) ;
w3=conv ( data , h3 ) ;
w4=conv ( data , h4 ) ;
y2=downsample (w1 , 3 2 ) ;

y3=downsample (w2 , 3 2 ) ;
y4=downsample (w3 , 3 2 ) ;
y5=downsample (w4 , 3 2 ) ;

%% Featur e s
P1=sum( [ abs ( y2 ) abs ( y3 ) abs ( y4 ) ] , 2 ) ;
P2=sum( [ abs ( y2 ) abs ( y3 ) abs ( y4 ) abs ( y5 ) ] , 2 ) ;
P4=sum( [ abs ( y3 ) abs ( y4 ) abs ( y5 ) ] , 2 ) ;



a1=[0; P1 ] ;
a2=[0; P2 ] ;
a3=[0; P4 ] ;

b1=[P1 ; 0 ] ;
b2=[P2 ; 0 ] ;
b3=[P4 ; 0 ] ;

c1=[a1 , b1 ] ;
c2=[a2 , b2 ] ;
c3=[a3 , b3 ] ;

FL1=sum( c1 , 2 ) / 2 ;
FL2=sum( c2 , 2 ) / 2 ;
FL4=sum( c3 , 2 ) / 2 ;

%% Level 1 [ 1 ]
[ EventsL1_amp EventsL1 ]=findpeaks (FL1 ) ;

%% Level 2 [ 1 ]
meanL1=sum(FL2( EventsL1 ) , 1 ) / length ( EventsL1 ) ;
NL=meanL1�meanL1 _ 0 . 1 ; %Start Noise Level
SL=meanL1+meanL1 _ 0 . 1 ; %Start Signal Level
threshold1 =0.08; %Threshold detection block 1
threshold2 =0.7; %Threshold detection block 2
[ SignalL21 , Noise1 ,DS1 , Class1 ]=detection block (FL2 , EventsL1 ,NL, SL , threshold1 ) ;
[ SignalL22 , Noise2 ,DS2 , Class2 ]=detection block (FL2 , EventsL1 ,NL, SL , threshold2 ) ;

%% Level 3 [ 1 ]
ClassL3 =[ ] ;
for i =1: length ( EventsL1 )
         C1=Class1 ( i ) ;
         C2=Class2 ( i ) ;
         if C1==1

if C2==1
      ClassL3=[ClassL3 1 ] ; %Classification as Signal

else

      delta1=(DS1( i )-threshold1 )/(1-threshold1 ) ;
      delta2=( threshold2-DS2( i ) ) / threshold2 ;
      if delta1>de ta2
           ClassL3=[ClassL31 ] ; %Classification as Signal

      else

           ClassL3=[ClassL3 0 ] ; %Classification as Noise
      end

end

else



if C2==1;
       ClassL3=[ClassL3 1 ] ; %Classification as Signal
  else
       ClassL3=[ClassL30 ] ; %Classification as Noise
  end

end

end

SignalL3=EventsL1 ( find (ClassL3 ) ) ; %Signal Level3
NoiseL3=EventsL1 ( find (ClassL3==0)); %Noise Leve 3
%% Leve l 4 [ 1 ]
threshold =0.3;
VSL=(sum(FL4( SignalL3 ) , 1 ) ) / length ( SignalL3 ) ;
VNL=(sum(FL4( NoiseL3 ) , 1 ) ) / length ( NoiseL3 ) ;
SL=(sum(FL4( SignalL3 ) , 1 ) ) / length ( SignalL3 ) ; %Initial Signal Level
NL=(sum(FL4( NoiseL3 ) , 1 ) ) / length ( NoiseL3 ) ; %Initial Noise Level
SignalL4 =[ ] ;
NoiseL4 =[ ] ;
DsL4=[ ] ; %Detection strength Level 4
for i =1: length ( EventsL1 )
     Pkt=EventsL1 ( i ) ;
     if ClassL3 ( i )==1; %Classification after Level 3 as Signa l
        SignalL4=[ SignalL4 , EventsL1 ( i ) ] ;
        SL=history (SL , FL4(Pkt ) ) ;
        Ds=(FL4(Pkt)-NL) / (SL-NL) ; %Detection strength
       if Ds<0
           Ds=0;
        e l s e i f Ds>1
                Ds=1;

        end
        DsL4=[DsL4 Ds ] ;
else                    %Classification after Level3 as Noise

Ds=(FL4(Pkt)-NL) / (SL-NL) ;
if Ds<0
   Ds=0;
else if Ds>1
   Ds=1;
end
DsL4=[DsL4 Ds ] ;
i f Ds>threshold %new classification as Signal
      SignalL4=[ SignalL4 , EventsL1 ( i ) ] ;
      SL=history (SL , FL4(Pkt ) ) ;
else                                     %new classification as Noise
       NoiseL4=[NoiseL4 , EventsL1 ( i ) ] ;
       NL=history (NL, FL4(Pkt ) ) ;
end
end
end



%% Level 5
%i f the time between two RR complexes i s too long => go back and check the
%event s again with lower thr e sho ld
SignalL5=SignalL4 ;
NoiseL5=NoiseL4 ;
periods=diff( SignalL4 ) ;
M1=100;
a=1;
b=1/(M1)_*ones (M1, 1 ) ;
meanperiod=f i l t e r (b , a , periods ) ; %mean o f the RR i n t e r v a l s
SL=sum(FL4( SignalL4 ) ) / l eng th ( SignalL4 ) ;
NL=sum(FL4( NoiseL4 ) ) / l eng th ( NoiseL4 ) ;
threshold =0.2;
for i =1: length ( periods )
     if periods ( i )>meanperiod *1 .5 %i f RR-interval is to long
        interval l=SignalL4 ( i ) : SignalL4 ( i +1);
        critical=intersect ( interval l , NoiseL4 ) ;
        for j =1: length ( critical )
            Ds=(FL4( critical ( j ))-NL) / (SL-NL) ;
            if Ds>threshold %Classification as Signal
                 SignalL5=union ( SignalL5 , critical ( j ) ) ;
                 NoiseL5=s e t x o r (NoiseL5 , critical ( j ) ) ;
            end
         end
    end
end

%% Upsample
Signal n=conversion ( data , FL2 , SignalL5 ,M,N, fs ) ;
%%
RR amp=data ( Signaln ) ;
RR amp=abs (RR_amp ) ;
RR time=Signal n ;

for j =1: length (RR_time)-1
     if RR time ( j+1)�RR_ time ( j )<250_10^-3_ f s
        if RR amp( j )<RR_ amp( j+1)
           RR _time ( j )=0;
else
RR _time ( j +1)=0;
end

end

end
% R_wave location
RR_time=RR_time (RR time ~=0);

QRS=RR_time _10^3/ f s ;

%% subfunctions



function [ Signal , Noise ,VDs , Clas s ]=detectionblock (mwi , Events ,NL, SL , thr e sho ld )

% detectionblock -computation o f one d e t e c t i o n block
%
% [ Signal , Noise ,VDs , Class ]=detectionblock (mwi , Events ,NL, SL , threshold )
%
% INPUT
% mwi Output of the MWI
% Events Events o f Leve l 1 ( s e e [ 1 ] )
% NL I n i t i a l Noi se Leve l
% SL I n i t i a l Si gna l Leve l
% thresho ld De t e c t ion thr e sho ld ( between [ 0 , 1 ] )
%
% OUTPUT
% Si gnal Events which ar e computed as Si gna l
% Noise Events which ar e computed as Noi se
% VDs De t e c t ion s t r eng th o f the Events

% Clas s                   Classification : 0=noi s e , 1=signal

Signal =[ ] ;
Noi se =[ ] ;
VDs=[ ] ;
Clas s =[ ] ;
sums ignal=SL ;
sumnoise=NL;
f o r i =1: length ( Events )

       P=Events ( i ) ;
       Ds=(mwi(P)-NL) / (SL-NL) ; %Detection strength
       if Ds<0
          Ds=0;
       e l s e i f Ds>1
          Ds=1;

       end
       VDs=[VDs Ds ] ;
       if Ds>threshold                    %Cl a s s i f i c a t i o n as Si gna l
            Signal=[ Si gnal P ] ;
            Class=[Class ; 1 ] ;
            sumsignal=sums ignal+mwi(P) ;
            SL=sums ignal /( l eng th ( Si gna l )+1) ; %Updating the Si gna l Leve l
        else             %Cl a s s i f i c a t i o n as Noi se
              Noi se=[Noi se P ] ;
              Class=[Clas s ; 0 ] ;
              sumnoise=sumnoise+mwi(P) ;
              NL=sumnoise /( length ( Noise )+1) ; %Updating the Noise Level

      end
end
%----------------------------------------------------------------------------
function [pnew]=c onversion (data , FL2 , pold ,M,N, f s )



% conversion - sets the fiducial points of the downsampled Signal on the
% sampl epoints of the original Signal
%
% [ pnew]=conversion ( data , FL2 , pold ,M,N, f s )
%
% INPUT
% data Original ECG Si gna l
% FL2 Feature o f Leve l 2 [ 1 ]
% pold old fiducial point s
% M M downsampling rate
% N filter order
% f s               sample rate
%
% OUTPUT
% pnew          new fiducial point s
%

Signaln=pold ;
P=M;
Q=1;
FL2res=resample (FL2 ,P,Q) ;                     %Resampl ing
nans1=i snan ( data ) ;
nans=find ( nans1==1);
data (nans)=mean( data ) ; %Replac es NaNs in Signa l
for i =1: leng th ( Signaln )
     Signaln1 ( i )=Signaln ( i )+(M-1)_( Signaln ( i )-1);
end
%------------------------------------------------ Se t s the f i d u c i a l po int s on the maximum o f FL2
Signaln2=Signaln1 ;
Signaln2=Signaln2 ' ;
int=2*M;         %Window length f o r the new f i d u c i a l point
range=1: length ( FL2res ) ;
for i =1: length ( Signaln2 )
     start=Signaln2 ( i )�i n t / 2 ;
     if start <1
          start =1;
     end
     stop=Signaln2 ( i )+i n t / 2 ;
     if stop>length ( FL2res )
          stop=length ( FL2res ) ;

end
interval l=start : stop ; %interval
FL2int=FL2res ( interval l ) ;
pkt=find ( FL2int==max( FL2int ) ) ; %Setting point on maximum o f FL2
if length ( pkt)==0 % i f pkt =[ ] ;
    pkt=Signaln2 ( i )-start ;
else
pkt=pkt ( 1 ) ;
end
delay=N/2+M;
Signaln3 ( i )=pkt+Signaln2 ( i )-i n t /2-delay ; %fiducial point s according to end



%Sets the fiducial point s on the maximum or minimum
%of the signal

Bw=5.625;
Bwn=1/( f s /2)_Bw;
Wn=[Bwn 5_Bwn ] ;
N1=32;
b=fir1 (N1, Wn, ' bandpass ' ) ;
Sf=f i l t f il t (b , 1 , data ) ;           %Fi l t e r e d Si gna l with bandwidth 5.6�28 Hz
beg=round ( 1 . 5 *M) ;
fin=1*M;
for i =1: length ( Signaln3 )
     start=Signaln3 ( i )-beg ;
     if start <1
        start =1;
end
stop=Signaln3 ( i )+f i n ;
i f stop>l eng th ( Sf )
    stop=l eng th ( Sf ) ;

end
i n t e r v a l l=s t a r t : s top ; %Window f o r the new f i d u c i a l point
S f i n t=abs ( det rend ( Sf ( i n t e r v a l l ) , 0 ) ) ;
pkt=f i n d ( S f i n t==max( S f i n t ) ) ; %Se t t ing point on maximum o f S f i n t
if length ( pkt)==0 %i f pkt =[ ] ;
      pkt=Signaln3 ( i )-s t a r t ;
else
      pkt=pkt ( 1 ) ;
end
pkt=pkt ( 1 ) ;
Signaln4 ( i )=pkt+Signaln3 ( i )-beg-1;
end
Signa l=Signaln4 ' ;        %New fiducial points according to the original signal

cutbeginning=find ( Signal<N) ; %Cut t ing out the f i r s t po int s because of initial point s 
b=Si gna l ( cutbeginning ) ;
cutend=f i n d ( Signal>l eng th ( data)�N) ; %Cut t ing out the l a s t po int s
f pointse=Signa l ( cutend ) ;
pnew=set x or ( Signal , [ f points b ; f points e ] ) ;
%-----------------------------------------------------------------
func tion yn=history (ynm1 , xn )
% history -computes y [ n]=(1-lambda )*x [ n]+lambda_y [ n-1]
%
% yn=history (ynm1 , xn )

lambda=0.8; %f o r getting factor

yn=(1-lambda )*xn+lambda*ynm1 ;


