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ABSTRACT 
 
 

Mining frequent patterns in transaction databases, time-series databases, and many other 

kinds of databases has been studied popularly in data mining research. In our research 

work we have used FP-Tree based approach for mining single-level frequent patterns. We 

proposed a novel frequent-pattern tree (FP-tree) structure, which is an extended prefix-

tree structure for storing compressed, crucial information about frequent patterns, and 

develop an efficient FP-tree based mining method, FP-growth, for mining the complete 

set of frequent patterns by pattern fragment growth. Methodology for Mining Multilevel 

frequent patterns is also used. Multilevel pattern carries more specific and concrete 

information than the single level.  

  

 We have used Graph based approach for extracting Multilevel frequent patterns. At each 

level it scans the datasets once and creates a directed graph, which is stored in form of an 

adjacency matrix and calculates all frequent patterns at the same level. Suppose database 

items are coded at three levels than this approach will need only three database scans. It 

does not require costly candidate generation method for creating new candidates. Another 

advantage of this approach is for less correlated databases it takes small memory space 

for storing graph at each level. 

 

Keywords: Association Rules, Frequent Pattern Mining, Customer Churn, Apriori 

Algorithm, Retention, Frequent pattern Tree. 
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Chapter One: Introduction 

1.1 General  

In area of data mining, the problem of deriving associations from data was 

first formulated by (Agrawal, R., Imieliński,T., & Swami, A. 1993), and is often 

referred to as the “market-basket” problem. In this famous problem, we are given a set 

of items (also called attributes) and a large collection of transactions which are treated 

as subsets (baskets) of these items. Association rule mining is about analysing and 

presenting strong rules discovered in databases using different measures of 

interestingness. Based on the concept of strong rules, association rules thus 

introduced, are used for discovering regularities between products in large scale 

transaction data. One such example is that of a supermarket. The items are products 

and the baskets are customer purchase entries. By finding associations between 

various products bought by customers, planning and marketing of products can be 

done better. (Kotsiantis, S., & Kanellopoulos, D. 2006) Many other applications with 

varied characterstics can also be used. For example, word counting in text documents, 

patient medical report and diagnosis and many more. Association rules (Agrawal, R., 

Imieliński,T., & Swami, A. 1993, June) are defined as statements of the form {

1 2, ,.... }nX X X Y   which means that Y  may present in the transaction if 

1 2, ..... nX X X  are all in the transaction. Note, that there can be a set of items, not just a 

single item. The probability of finding Y  in a transaction with all 1 2, ..... nX X X   is 

called confidence. (Liming, W., & Hui, Z. 2007). The threshold (percentage) that a 

rule holds in all transactions is called support. 

Support 

The support (s) of an association rule is the ratio (in percent) of the records 

that contain X to the total number of records in the database. For e.g. if we say that 

the support of a rule is 5% then it means that 5% of the total records contain X. 

Confidence 

Confidence (á) is the ratio (in percent) of the number of records that contain 

&X Y to the number of records that contain X  . For e.g. if we say that a rule has a 
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confidence of 85%, it means that 85% of the records containing X  also contain Y . 

The confidence of a rule indicates the degree of correlation in the dataset between X  

and Y  (Han,J, Pei, J., Yin, Y., & Mao, R. 2004). 

 Today time series data analysis (Shih, M. J., Liu, D. R., & Hsu, M. L. 2010). 

is fundamental to engineering, scientific and business endeavours. Data is collected 

and analysed for frequent itemsets. For example, collecting data of various customer 

purchases from a supermarket at regular intervals of time might help us identify 

change in customer purchasing pattern. This gives us more realistic view of the 

system. Finding interest of the customer in purchasing helps planning and marketing 

of products in a better way. 

1.2 Role of Data Mining 

As database size has enlarged rapidly in recent years, this has led to development of 

tools, due to increasing interest which is capable of automatic withdrawal of 

knowledge from data (Papageorgiou, E. I. 2011).. In database the term knowledge 

discovery or data mining has been taken for a research field which deals with 

spontaneous discovery of knowledge or implicit information arising from the 

databases. 

 

Databases which  provides implicit information  among different  sets of objects, 

comes up with fascinating  relationships that causes association rules and thus 

Figure 1 Data Mining Process 
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discloses useful patterns for many applications like financial forecast, medical 

diagnosis, decision support and  marketing policies etc. (Colantonio, A., Di Pietro, R., 

Ocello, A., & Verde, N. V. 2012).  The Figure 1depicts data mining process.  

The term data mining is the process of identifying interesting patterns and 

knowledge from large amount of data (Slimani, T., & Lazzez, A. 2014). The data 

sources can include databases, data warehouses, the Web, other information 

repositories or data that are streamed into the system dynamically. 

As IT technologies are getting advance, (Pyun, G., Yun, U., & Ryu, K. H. 

2014) the number of data accumulated is also enhancing very frequently. Hence the 

role of data mining comes into the picture. The first algorithm proposed in this 

approach was Apriori Algorithm (Agrawal, R., & Srikant, R.1994, September)With 

the time, several algorithms came up during the past several years which includes 

Apriori (Agrawal, R., & Srikant, R. 1994, September), (Relim Borgelt, C. 2005, 

August), ECLAT (Borgelt, C. 2003, November) etc.  

As the name says, recurrent (frequent) patterns are patterns that are occurring 

recurrently in data (Sethi, N., & Sharma, P. 2013). Various types of recurrent patterns 

are sequential patterns (also known as frequent subsequences), frequent itemsets and 

frequent substructures. A frequent itemset implies to itemsets that often occur together 

in data transactions – for instance bread and butter, which many customers often 

purchase together in grocery stores. (Nebot, V., & Berlanga, R. 2012). 

Association rule learning is an advance method of research for identifying 

relations among large databases. The definition of association rule mining is implied 

as: Consider  1 2, ... nK k k k  is itemset of n binary attributes. Let 1 2{ , ... }nD S S S be a 

transactions set known as database. Every transaction is associated with an identifier, 

called TID and in K  it has a subset of the items . The definition of association rule is 

of the form P Q  where P ,Q  K  and P Q  . Here, P  itemsets  is called 

antecedent (LHS or left-hand-side) and Q  is called consequent (RHS or right-hand-

side) of the rule. 

Support P Q = ( )P P Q  

Confidence P Q = ( )P P Q ) = Support ( )P Q /Support( P ) 
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Rules should satisfy minimum support and minimum confidence in order to 

determine recurrent itemsets ( Han, J., & Kamber, M. 2006). 

Recurrent pattern mining is a two step process: 

 Find all frequent itemsets i.e. each of these item sets will occur at least as 

frequently as a predetermined minimum support count. 

 Initiate strong association rule from frequent itemsets i.e. these rules must 

satisfy minimum support and minimum confidence. 

1.3 Motivation of work 

Motivation behind this work is to understand the dynamics of customer 

purchasing behavior by examining the recurring patterns that have taken place in 

transactions. This would not only help to cut down the customer churn rate but will 

also provide better customer satisfaction and good relationship. Idetinfying the 

interest of customer is essential for any service based business that has an ongoing 

relationship with their customers, that is of monetary value. So during an ongoing 

contract, we need to make sure that customers are happy with the service and they 

keep paying us. Otherwise loss of business, loss of revenue are not far away, when 

today’s ongoing competition in the market in every field is considered. 

1.4 Aim of work 

The aim of my work is to study the customer needs, his interests, not only 

bounded to a single level but to detailed levels. That is the purchasing behavior of the 

customer is pruned to various levels of abstraction. For achieving this task we have 

used two algorithms. The first is the FP- Tree algorithm and the second one is a graph 

based approach for mining the interest of the customer to multiple levels of 

abstraction. For example, besides finding 80% of customer that purchase computer 

may also purchase printer, it is interesting to allow to users to “drill-down” and so that 

75% of people buy color printer if they buy desktop computer. The latter statement 

carries more specific and concrete information than the former. In other words, 

buying habits of customer are analyzed by discovering the association between 

different products which are often put together by the customer in shopping baskets. 

Consider another example as shown in Figure 1, if customers tend to buy beer then 
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how likely they will also buy chips (and what type of chips) at the same time from the 

market? 

 
Figure 1 Market Basket Analysis 

 Therefore, a data mining system should provide efficient method for mining 

multiple-level interesting patterns. 
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1.5 Organisation of Thesis 

The thesis is divided into 6 sections including Introduction. 

The next chapter, Chapter-2 presents related literature available for our work. 

It covers literature related to association rule mining as well as discovery of frequent 

itemsets from large databases. 

Chapter 3 presents FP-Tree and FP-Growth approach followed by an example 

to obtain results. The approach in solving the problem has been presented here.  

Chapter-4 gives the Graph Based Approach for mining patterns at multiple 

level of abstraction. 

Chapter 5 gives Implementation details and results obtained The final chapter 

summarizes work done in the thesis and suggests future work that may be done in this 

area. 
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Chapter Two: LITERATURE SURVEY 

 

Normally, the process to analyze data from distinct point of view and 

summarize it into knowledgeable information i.e. information which can be used to 

increase income, reduce costs, or perform both is data mining (referred as knowledge 

discovery). Data mining, extracting hidden pattern or information from huge 

databases, is a dominant advance technology having great power in helping 

companies to focus on most significant information within data warehouses. From 

several different sources and angles or dimensions it allows many users to analyze 

data and then categorize it, and then relationships are identified. Professionally, the 

way of searching patterns or correlations among various fields in huge relational 

databases is data mining. Data mining perform prospective, automated analyses move 

which is more than examining past events provided by retroactive tools typical of 

decision support systems. The term data mining is the tool that answers business 

questions that takes too much time to resolve. Data mining scour the databases for 

finding hidden, predictive information that is beyond the expectation of experts. 

Many research algorithms have been studied in this research work. The 

various algorithms that have been studied are Apriori (Agrawal, R., & Srikant, R. 

1994, September), FP Growth (Han,J, Pei, J., Yin, Y., & Mao, R. 2004)., Compacting 

Data Sets (Han,J, Pei, J., Yin, Y., & Mao, R.2004)., Relim- Recursive Elimination 

(Borgelt, C. 2005)Direct Hashing and Pruning –DHP Park, (J. S., Chen, M. S., & 

1995)., Multilevel Association Rule Mining Algorithm Based on Boolean Matrix 

(Chen, J., Lin, G., & Yang, Z.) etc. Brief discussion has been done on these 

algorithms. 

Apriori: It is a seminal algorithm for recurrent itemset mining and learning 

association rule over transactional databases. This algorithm is suggested by(Agrawal, 

R., & Srikant, R. 1994, September). Apriori is based on the closure property which 

indicates that if an itemset is recurrent then all its subsets will also be recurrent. It 

operates on transaction databases where itemset refers to transaction. For a specified 

transaction threshold ξ., itemsets which are subsets of at least ξ. transaction in the 

database are identified by the Apriori Algorithm. It is based on bottom up approach. 
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To count the candidate item sets in an efficient manner, Apriori make use of breadth 

first search technique and also hash tree structure. It follows the two steps:  

 firstly, DB is scanned once in order to get frequent 1-itemset,  

 From length k frequent itemsets generate length (k+1) itemset candidate 

itemsets, against DB test the candidate and finally when no frequent or 

candidate set generation is found terminate the process. 

The applications of this algorithm are in Market Basket Analysis and potential 

user identification in telecom companies. 

FP Growth: This algorithm is meant for discovering recurrent itemsets in a 

transactional database. proposed this algorithm. FP Growth is memory efficient and 

very fast algorithm. It uses FP-Tree which is a special internal structure. From the 

database it stores the transaction and each item is represented by linked list. FP tree 

consist of set of child nodes and root node and also frequent item header table. To 

find out the frequent pattern subsequently the node link structure and the insert-tree 

(P,N) subroutine is used. It makes use of horizontal and vertical database layout that 

stores the database in memory. (Han,J, Pei, J., Yin, Y., & Mao, R. 2004) 

The principal objective of FP Growth was to eradicate the drawbacks of 

Apriori Algorithm in testing and generating the candidate set. Bottleneck of Apriori 

was handled with by introduction of FP tree which is a compact data structure (Han et 

al, 2004). 

Compacting Data Sets (CDS): Apriori Algorithm is highly time consuming 

as it requires huge candidate generation, rigorous data scanning is performed and 

requires lot of input/output operations. To overcome these drawbacks CDS algorithm 

is used (Han,J, Pei, J., Yin, Y., & Mao, R. 2004).  which is unique among all the 

algorithms as it not only eradicate redundant candidate generation but also eradicate 

transactions that are duplicate. It merges the duplicate transaction and intersection 

between the itemsets and then undesirable subsets are deleted repeatedly (Han,J, Pei, 

J., Yin, Y., & Mao, R. 2004). 

CDS provides a new and efficient method for discovering frequent pattern; it 

compact data-set by removing items in infrequent 1-itemsets and duplicate 

transactions are merged repeatedly, and make use of the subset of transactions with 
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other transaction itemsets to perform pruning; along with the discovering process, 

with increasing number of deleted transactions, for calculating the subset the time 

needed will decrease rapidly. When data-set volume increases, it's time & space cost 

drastically decrease, so its usability retains for MFI applications for high volume data-

sets. In various aspects, CDS algorithm can be further optimized, such as keeping 

record of all resulting sub set to avoid duplicated generation . 

Recursive Elimination (RELIM): The recursive elimination algorithm 

(Borgelt, C. 2005) is meant for searching frequent item sets. It has been adopted by 

FP-growth algorithm and resembles H-mine algorithm. Its main advantage is its 

simplicity of its structure. Without prefix tree it does its work. In singly linked lists, 

transactions are processed directly and then organized. The biggest benefit of this 

algorithm is simplicity of the data structures which are needed and re-representation 

of the transactions is not necessary and thus saves memory in the recursion. From 

transaction database with the frequencies are listed. Then, the reduced transactions 

(reducing by the user defined minimum support to transaction) database with items in 

the transaction  database are  sorted in ascending order with  their frequencies. Then 

simple arrays of item identifiers represent each transaction. Then a recursive 

procedure is used to find out the frequent items. 

Direct Hashing and Pruning (DHP): It is an improvement technique towards 

Apriori. (Park, J. S., Chen, M. S., & 1995). The Apriori algorithm can be improved 

using hashing technique to reduce the size of the candidate k-itemsets. The Hash table 

is based on the hash function ( , ) (( )*10 ( )%7h x y orderofx orderofy  . Then based on 

the hash value the items can be mapped to different buckets. Thus the candidate items 

are reduced. The performance is enhanced because DHP prunes both the number of 

transactions and number of items in each transaction during the iterations. 

Multilevel Association Rule Mining Algorithm Based on Boolean Matrix: 

To find out the frequent itemsets Boolean matrix approach is used. The boolean 

matrix is of the form “ 0 ” and “1” and the “ AND ” operation is 0.0 0 , 1.0 0 , 

1.1 1 , 0.1 0 . Now with minimum support matrix dimension is reduced. To 

generate 3 itemsets AND operation is performed. The algorithm (Chen, J., Lin, G., & 

Yang, Z. 2011, June). stops as soon as the maximum frequent itemset is found. Since 
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only once it scans the database and requires small memory for the operation, this is 

the biggest advantage (Chen, J., Lin, G., & Yang, Z. 2011, June).. 

Frequent Pattern Algorithm using Dynamic Function - The entire database 

is scanned in this algorithm and transaction pairs are generated with longest common 

sequences and computes longest common sequences of item id for each previous 

transaction pair. Then the algorithm prunes the transaction pairs with empty longest 

common sequences. Using the dynamic function the longest common sequence is 

found. The support count is done for pruned subset patterns rather than the whole 

database. In the next operation again the pruned transaction pair with the least 

common sequences was observed. The advantage with this approach is that the 

database access is reduced and the subsequent iteration is faster than the previous 

iteration. (Jiawei, Hong, & Dong, 2007). 

Partition –based Algorithm - Partition-based Algorithms (Aggarwal, C. C., 

Li, Y., Wang, J., & Wang, J. 2009, June) solves the problem of high number of 

database scans, associated with Apriori-based algorithm. It requires two complete data 

scan to mine frequent item sets. The Partition algorithm divides the dataset into many 

subsets so that each subset can be fitted into the main memory. The basic idea of the 

Partition-based algorithm is that a frequent item set must be frequent in at least one 

subset. Partition-based algorithm generates local frequent item sets for each partition 

during the first data scan. Since the whole partition can be fitted into the main 

memory, the complete local frequent item sets can be mined without any disk I/O 

operations. The local frequent item sets are added to the global candidate frequent 

item sets. In the second data scan, false candidates are removed from the global 

candidate frequent item sets. In a special case where each subset contains identical 

local frequent item sets, Partition algorithm can mine all frequent item sets with a 

single data scan. However, when the data is distributed unevenly across different 

partitions, this algorithm may generate a lot of false candidates from a small number 

of partitions. By employing the knowledge collected during the mining process, false 

global candidate frequent item sets are pruned when they are found that they cannot 

be frequent. In addition, those algorithms reduce the number of scans in the worse 

case to (2 1) /b b  where b  is the number of partitions. 
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Moment Algorithm - It (Chi, Y., Wang, H., Yu, P. S., & Muntz, R. R. 2004), 

introduced one algorithm, Moment, to extract closed frequent itemset within sliding 

window. They designed, a prefix based data structure, CET (Closed Enumeration 

Tree), to maintain closed frequent itemset(Chi, Y., Wang, H., Yu, P. S., & Muntz, R. 

R. 2004),. CET maintains the boundary between closed frequent itemset and rest of 

itemset, which makes the boundary relatively stable, whenever any itemset changes 

its state (frequent to non frequent vice-versa), ultimately reducing the updating cost. 

An efficient algorithm to incrementally update the CET, which update the CET when 

newly arrived transaction change the content of window or oldest transaction being 

deleted from the window. When a transaction arrives/expires, Moment traverse the 

part of CET related to that transaction.  

The merit of Moment is that it computes the exact set of closed frequent 

itemset over a sliding window. Although an update to a node may result in a 

propagation of the node insertion and deletion in the CET, most of the nodes related 

to an incoming or expiring transaction do not change their type often. Therefore, the 

average update cost in the CET is small. Limitation of Moment algorithm is, it stores 

transaction using data structure, FP tree (Chi, Y., Wang, H., Yu, P. S., & Muntz, R. R. 

2004), which require a considerable amount of memory. Secondly, if the size of 

window is too large, CET can huge. 

WSW algorithm: (Tsai, P. S. 2009), proposed a new framework data stream 

mining, called weighted sliding window model, which allows user to specify the 

number of windows, weight of window and size of window. A single pass algorithm, 

called WSW, has been proposed to extract frequent itemset from data streams. The 

motivation for weighted sliding window model come from the fact, that the size of 

traditional sliding window model is fixed or defined by the number of transaction, say 

W . Though recent W transactions are considered, the time to cover these W 

transactions may be long or varies, which may effectively decrease the mining result. 

(Tsai, P. S. 2009)proposed weighted sliding window model that defines window size 

by time not by the number of transaction and user can specify the number of 

windows, with each window assign with different weight (sum of all window weight 

equals to 1). For example data may be more influential at current moment and hence, 
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should be assigned higher weight. The algorithm WSW scans the data once in each 

window, and calculates the support count for each item present in current window, to 

find out frequent k-itemset (k=1). Based on this information candidate (k+1)-itemset 

are pointed out to find frequent (k+1)-itemset. The process terminates when no further 

candidates itemset can be generated. If the number of windows increases the time to 

determine frequent itemset increases. To reduce this runtime they proposed an 

improvement of WSW algorithm called, WSW-imp, which further reduce the time of 

deciding whether a candidate itemset is frequent or non-frequent itemset.  

DFS and Hybrid Algorithm – (Eclat and Clique, 2002) combine both depth 

first search (DFS) and intersection counting. Since intersection counting is used, no 

complicated data structure is required. These hybrid algorithms reduces the memory 

requirement, since only the TID sets of the path item sets from the root to the leaves 

have to be kept in the memory simultaneously. Intersection of TID sets can be 

stopped as soon as the remaining length of the shortest TID set is shorter than the 

required support minus the counted support value. The intersection of TID sets of 1-

item set to generate frequent 2 item sets is expensive. The maximal hyper graph 

clique clustering is applied to 2-frequent item sets to generate a refined set of maximal 

item sets.( Garg, D., & Sharma, H. 2011). at DFS cannot prune candidate k item sets 

by checking frequent (k – 1) item sets, because DFS searches from the root to the 

leaves of the tree without using any subsets relationship. It is cheaper to use item set 

counting with BFS to determine the supports, when the number of candidate frequent 

item sets is small. When the number of candidate frequent item sets is relatively large, 

the hybrid algorithm switches to TID set intersection with DFS, since simple TID set 

intersection is more efficient than occurrence counting when the number of candidate 

frequent item sets is relatively large. This results in additional costs to generate TID 

sets. The authors proposed to use hash-tree-like structure to minimize the cost of 

transition. However, the authors do not provide an algorithm to determine the best 

condition to switch the strategy. Authors provide parameters to change in strategy. 

However, those parameters may not be generalized enough for all kinds of datasets. 

Incorrect timing of changing strategy may decrease the performance of hybrid 

algorithm.  
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Eclat algorithm – (Borgelt, C. 2003, November). It follows depth-first search 

using set intersection and uses a vertical database layout i.e. instead of explicitly 

listing all transactions; each item is stored together with its cover (also called tidlist) 

and uses the intersection based approach to compute the support of an itemset. The 

support of an itemset X  can be easily computed by simply intersecting the covers of 

any two subsets , Z X , such that Y Z X . It states that, when the database is 

stored in the vertical layout, the support of a set can be counted much easier by simply 

intersecting the covers of two of its subsets that together give the set itself. In this 

algorithm each frequent item is added in the output set. Then for every  frequent item i

, the i-projected database iD  is created. This is done by first finding every item j  that 

frequently occurs together with i . The support of  set { , }i j  is computed by 

intersecting the covers of both items. If { , }i j  is frequent, then j is inserted into iD

together with its cover. The reordering is performed at every recursion step of the 

algorithm. Algorithm recursively calls to find all frequent itemsets in the new 

database iD  . Candidate itemsets are generated using only the join step from Apriori. 

Again all  items in the database are reordered in ascending order of support to reduce 

the number of candidate itemsets that are generated, and hence, reduce the number of 

intersections that need to be computed and the total size of the covers of all generated 

itemsets. Since the algorithm doesn’t fully exploit the monotonicity property, but 

generates a candidate itemset based on only two of its subsets, the number of 

candidate itemsets that are generated is much larger as compared to a breadth-first 

approach such as Apriori. As a comparison, Eclat essentially generates candidate 

itemsets using only the join step from Apriori, since the itemsets necessary for the 

prune step are not available. 

  



15 

 

 

 

 

 

 

 

CHAPTER 3 

FP-TREE APPROACH 

 

 

 

  



16 

 

Chapter Three: FP-Tree Approach 

3.1  Overview 

Frequent-pattern mining plays an essential role in mining associations, 

correlations, sequential patterns, multi-dimensional patterns, max-patterns, emerging 

patterns, and many other important data mining tasks. Most of the previous studies 

adopt an Apriori-like approach, which is based on the anti-monotone Apriori 

heuristic. If any length k pattern is not frequent in the database, its length (k + 1) 

super-pattern can never be frequent. The essential idea is to iteratively generate the set 

of candidate patterns of length (k+1) from the set of frequent-patterns of length k (for 

k ≥ 1), and check their corresponding occurrence frequencies in the database. 

The Apriori heuristic achieves good performance gained by (possibly 

significantly) reducing the size of candidate sets. However, in situations with a large 

number of frequent patterns, long patterns, or quite low minimum support thresholds, 

an Apriori-like algorithm may suffer from the following two nontrivial costs:  

 It is costly to handle a huge number of candidate sets. For example, if there are 

104 frequent 1-itemsets, the Apriori algorithm will need to generate more than 

107 length-2 candidates and accumulate and test their occurrence frequencies. 

Moreover, to discover a frequent pattern of size 100, such as{ 1......... 100}a a , it 

must generate approximately 1030 candidates. This is the inherent cost of 

candidate generation, no matter what implementation technique is applied.  

 It is tedious to repeatedly scan the database and check a large set of candidates 

by pattern matching, which is especially true for mining long patterns. 

A method that may avoid candidate generation-and-test and utilize some novel 

data structures to reduce the cost in frequent-pattern mining is as follows:- 

First, a novel, compact data structure, called frequent-pattern tree, or FP-tree 

in short, is constructed, which is extended prefix-tree structure storing crucial, 

quantitative information about frequent patterns. To ensure that the tree structure is 

compact and informative, only frequent length-1 items will have nodes in the tree, and 

the tree nodes are arranged in such a way that more frequently occurring nodes will 

have better chances of node sharing than less frequently occurring ones. Our 
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experiments show that such a tree is compact, and it is sometimes orders of magnitude 

smaller than original database. Subsequent frequent-pattern mining will only need to 

work on the FP-tree instead of the whole data set. 

Second, an FP-tree-based pattern-fragment growth mining method is 

developed, which starts from a frequent length-1 pattern (as an initial suffix pattern), 

examines only its conditional-pattern base (a “sub-database” which consists of the set 

of frequent items co-occurring with the suffix pattern), constructs its (conditional) FP-

tree, and performs mining recursively with such a tree. The pattern growth is achieved 

via concatenation of the suffix pattern with the new ones generated from a conditional 

FP-tree. Since the frequent itemset in any transaction is always encoded in the 

corresponding path of the frequent-pattern trees, pattern growth ensures the 

completeness of the results. In this context, our method is not Apriori-like restricted 

generation-and-test but restricted test only. The major operations of mining are count 

accumulation and prefix path count adjustment, which are usually much less costly 

than candidate generation and pattern matching operations performed in most Apriori-

like algorithms. 

 

3.2  Frequent-pattern tree: Design and construction 

Let 1 2{ , ...... }mI a a a  be a set of items, and a transaction database, 

1 2{ , ...... }nDB T T T where    
!( 1...... )

! !i
nT i n

r n r
 


 is a transaction which contains 

a set of items in I. The support1 (or occurrence frequency) of a pattern A, where A is a 

set of items, is the number of transactions containing A in DB. A pattern A is frequent 

if A’s support is no less than a predefined minimum support threshold, ξ. Given a 

transaction database DB and a minimum support threshold ξ, the problem of finding 

the complete set of frequent patterns is called the frequent-pattern mining problem. 

Frequent-pattern tree: To design a compact data structure for efficient frequent-

pattern mining, let’s first examine an example. 

For e.g. let the transaction database, DB, be the first two columns of Table 1:A 

transactional database as an example, and the minimum support threshold be 3 (i.e., ξ 

= 3).  
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A compact data structure can be designed based on the following 

observations: 

 Since only the frequent items will play a role in the frequent-pattern mining, it 

is necessary to perform one scan of transaction database DB to identify the set 

of frequent items (with frequency count obtained as a by-product). 

 If the set of frequent items of each transaction can be stored in some compact 

structure, it may be possible to avoid repeatedly scanning the original 

transaction database. 

 If multiple transactions share a set of frequent items, it may be possible to 

merge the shared sets with the number of occurrences registered as count. It is 

easy to check whether two sets are identical if the frequent items in all of the 

transactions are listed according to a fixed order. 

Table 1:A transactional database as an example 

 

TID Items Bought (Ordered)Frequent Items 

100 f,a,c,d,g,i,m,p f,c,a,m,p 

200 a,b,c,f,I,m,o f,c,a,b,m 

300 b,f,h,j,o f,b 

400 b,c,k,s,p c,b,p 

500 a,f,c,e,l,p,m,n f,c,a,m,p 

 

If two transactions share a common prefix, according to some sorted order of 

frequent items, the shared parts can be merged using one prefix structure as long as 

the count is registered properly. If the frequent items are sorted in their frequency 

descending order, there are better chances that more prefix strings can be shared. 

With the above observations, one may construct a frequent-pattern tree as follows. 

First, a scan of DB derives a list of frequent items, {( f: 4), (c: 4), (a: 3), (b: 3), 

(m: 3), (p: 3)} (the number after “:” indicates the support), in which items are ordered 

in frequency descending order. This ordering is important since each path of a tree 
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will follow this order. For convenience of later discussions, the frequent items in each 

transaction are listed in this ordering in the rightmost column of Table 1:A 

transactional database as an example 

Second, the root of a tree is created and labeled with “null”. The FP-tree is 

constructed as follows by scanning the transaction database DB  second time. 

 The scan of the first transaction leads to the construction of the first branch of the tree:  

 {(f: 1), (c: 1), (a: 1), (m: 1), (p: 1)}. Note that frequent items in transaction are listed 

according to the order in the list of frequent items. 

 For second transaction, since its (ordered) frequent item list (f, c, a, b, m) shares a 

common prefix (f, c, a) with the existing path (f, c, a, m, p), count of each node along 

the prefix is incremented by 1, and one new node (b: 1) is created and linked as a 

child of (a: 2) and another new node (m: 1) is created and linked as the child of (b:1). 

 For third transaction, since its frequent item list ( f, b) shares only the node (f ) with 

the f -prefix subtree, f ’s count is incremented by 1, and a new node (b: 1) is created 

and linked as a child of ( f : 3). 

 The scan of fourth transaction leads to construction of second branch of the tree, ((c: 

1), (b: 1), (p: 1)). 

 For last transaction, since its frequent item list (f, c, a, m, p) is identical to the first 

one, path is shared with the count of each node along the path incremented by 1. 

To facilitate tree traversal, an item header table is built in which each item 

points to its first occurrence in the tree via a node-link. Nodes with the same item-

name are linked in sequence via such node-links. After scanning all transactions, the 

tree, together with associated node-links, are shown in Figure 2. 

Based on this example, a frequent-pattern tree can be designed as follows. 

 It consists of one root labeled as “null”, a set of item-prefix subtrees as children of the 

root, and a frequent-item-header table. 

 Each node in item-prefix subtree consists of three fields: item-name, count, and 

node-link, where item-name registers which item this node represents, count 

registers the number of transactions represented by the portion of path reaching 

this node, and node-link links to the next node in the FP-tree carrying same 

item-name, or null if there is none. 
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 Each entry in frequent-item-header table consists of two fields, (1) item-name 

and (2) head of node-link (a pointer pointing to the first node in the FP-tree carrying the 

item-name). 

 
 

 

Based on this definition, we have the following FP-tree construction algorithm. 

Algorithm (FP-tree construction). 

Input: A transaction database DB and a minimum support threshold ξ . 

Output: FP-tree, the frequent-pattern tree of DB. 

Method: The FP-tree is constructed as follows. 

 Scan transaction database DB once. Collect F, sets of frequent items, and 

support of each frequent item. Sort F in support-descending order as FList, list 

of frequent items. 

 Create the root of an FP-tree, T, and label it as “null”. For each transaction 

Trans in DB do the following. Select frequent items in Trans and sort them 

according to the order of FList. Let sorted frequent-item list in Trans be [p | 

P], where p is the first element and P is remaining list. Call insert tree([p | P], 

T ).  

The function insert tree([p | P], T ) is performed if T has a child N such 

that N.item-name = p.item-name, then increment N’s count by 1; else create a 

new node N, with its count initialized to 1, its parent link linked to T , and its 

 

Figure 2  FP-tree for Table 1 
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node-link linked to nodes with the same item-name via node-link structure. If 

P is nonempty, call insert tree(P, N) recursively. 

3.3  FP-Growth Algorithm 

Construction of a compact FP-tree ensures that subsequent mining can be performed 

with a rather compact data structure. In this section, we study how to explore the 

compact information stored in an FP-tree. 

Let us examine the mining process based on the constructed FP-tree shown 

in Figure 3. 

According to list of frequent items, f-c-a-b-m-p, all frequent patterns in the 

database can be divided into 6 subsets without overlap: 

 patterns containing item p; 

 patterns containing item m but no item p; 

 patterns containing item b but no m nor p; 

 patterns containing item a but no b, m nor p; 

 patterns containing item c but no a, b, m nor p; and 

 patterns containing item f but no c, a, b, m nor p. 

 

Algorithm (FP-growth: Mining frequent patterns with FP-tree by pattern fragment 

growth). 

Input: A database DB, represented by FP-tree constructed and a minimum support 

threshold ξ. 

Output: The complete set of frequent patterns. 

Method: call FP-growth(FP-tree, null). 

 

Procedure FP-growth(Tree; α) 

{ 

(1)  if Tree contains a single prefix path // Mining single prefix-path FP-tree 

(2)  then { 

(3)  let P be the single prefix-path part of Tree; 

(4)  let Q be the multiple-path part with the top branching node replaced by a null 

root; 

(5)  for each combination (denoted as β) of the nodes in the path P do 
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(6)  generate pattern β U α with support = minimum support of nodes in β; 

(7)  let freq pattern set(P) be the set of patterns so generated;   } 

(8)  else let Q be Tree; 

(9)  for each item ai in Q do {  // Mining multiple-path FP-tree 

(10)  generate pattern β = ai U α with support = ai.support ; 

(11)  construct β’s conditional pattern-base and then β’s conditional FP-tree Treeβ ; 

(12)  if Treeβ ≠ ø; 

(13)  then call FP-growth(Treeβ, β); 

(14)  let freq pattern set(Q) be the set of patterns so generated; } 

(15) return(freq pattern set(P) U freq pattern set(Q) U (freq pattern set(P) × freq 

pattern set(Q))) 

} 

Let us mine these subsets one by one: 

 We first mine patterns having item p. An immediate frequent pattern in this 

subset is (p: 3). 

  To find other patterns having item p, we need to access all frequent item 

projections containing item p. All projections can be collected by starting at 

p’s node-link head and following its node-links. 

 Following p’s node-links, we can find that p has two paths in the FP-tree: (f: 

4; c: 3; a: 3; m: 2; p: 2) and (c: 1; b: 1; p: 1). The first path indicates that 

string “(f; c; a; m; p)” appears twice in the database. Notice the path also 

indicates that string (f; c; a) appears three times and (f) itself appears even four 

times. However, they only appear twice together with p. Thus, to study which 

string appear together with p, only p’s prefix path (f: 2; c: 2; a: 2;m: 2) (or 

simply, (fcam: 2)) counts. Similarly, second path indicates string “(c; b; p)” 

appears once in the set of transactions in DB, or p’s prefix path is (cb: 1). 

These two prefix paths of p, “{(fcam: 2), (cb: 1)}”, form p’s subpatternbase, 

which is called p’s conditional pattern-base (i.e., the subpattern-base under 

the condition of p’s existence). Construction of an FP-tree on this conditional 

pattern-base (which is called p’s conditional FP-tree) leads to only one branch 

(c: 3) as shown in Table 2. Hence, only one frequent pattern (cp: 3) is derived. 

(Notice that a pattern is an itemset and is denoted by a string here.) The search 

for frequent patterns associated with p terminates. 
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 Now, let us turn to patterns having item m but no item p. Immediately, we 

identify frequent pattern (m: 3). By following m’s node-links, two paths in FP-

tree, (f: 4; c: 3; a: 3;m: 2) and (f: 4, c: 3, a: 3, b: 1, m: 1) are found. Notice p 

appears together with m as well, however, there is no need to include p here in the 

analysis since any frequent patterns involving p has been analyzed in the previous 

examination of patterns having item p. Similar to the above analysis, m’s 

conditional pattern-base is {(fca: 2), (fcab: 1)}. Constructing an FP-tree on it, we 

derive m’s conditional FP-tree, (f: 3; c: 3; a: 3), a single frequent pattern path, as 

shown in above Figure 3. This conditional FP-tree is then mined recursively by 

calling mine ((f: 3; c: 3; a: 3)|m)as shown in Table 2. 

 Figure 3 shows that “mine((f: 3; c: 3; a: 3)|m)” involves mining three items 

(a), (c), (f) in sequence. The first derives a frequent pattern (am: 3), a 

conditional pattern-base {(fc: 3)}, and then a call “mine((f: 3; c: 3)|am)”; 

second derives a frequent pattern (cm: 3), a conditional pattern-base {(f: 3)}, 

and then a call “mine((f: 3)|cm)”; and third derives only a frequent pattern (fm: 

3). Further recursive call of “mine((f: 3; c: 3)|am)” derives (cam: 3), (fam: 3), 

a conditional pattern-base {(f: 3)}, and then a call “mine((f: 3)|cam)”, which 

derives the longest pattern (fcam: 3). Similarly, call of “mine((f: 3)|cm)”, 

derives one pattern (fcm: 3). Therefore, whole set of frequent patterns 

involving m is ((m: 3), (am: 3), (cm: 3), (fm: 3), (cam: 3), (fam: 3), (fcam: 3), 

 

Figure 3  FP- Growth Approach 
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(fcm: 3)). This indicates a single path FP-tree can be mined by outputting all 

the combinations of items in path. 

 Similarly, we can mine patterns containing item b but no m nor p. Node b 

derives (b:3) and has three paths: (f: 4; c: 3; a: 3; b: 1), (f: 4; b: 1), and (c: 1; 

b: 10. Since b’s conditional pattern-base [(fca: 1), (f: 1), (c: 1)} generates no 

frequent item, the mining for b terminates. 

 For patterns having item a but no b, m nor p, node a derives one frequent 

pattern {(a: 3)} and one subpattern base {(fc: 3)}, a single-path conditional FP-

tree. Thus, its set of frequent patterns can be generated by taking their 

combinations. Concatenating them with (a: 3), we have {(fa: 3), (ca: 3), (fca: 

3)}. 

 Now, it is the turn to mine patterns having item c but no a, b, m nor p. Node c 

derives (c: 4) and one subpattern-base {(f: 3)}, and set of frequent patterns 

associated with (c: 3) is {(fc: 3)}. 

 The last subset, i.e., pattern having item f but no any other items, is f itself and  

(f: 4) should be output. No conditional pattern-base need to be constructed as 

shown in last row of Table 2. 
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Table 2 :Conditional FP-Tree 

Item Conditional  pattern-base Conditional  FP-tree 

p {(fcam: 2), (cb: 1)} {(c: 3)}�p 

m {(fca: 2), (fcab: 1)} {(f: 3, c:3,a: 3)}�m 

b {(fca: 1), (f: 1), (c: 1)} � 

a {(fc: 3)} {(f: 3,c: 3)}�a 

c {(f: 3)} {(f: 3)}�c 

f � � 

 

From above Table 2 we generate following frequent patterns: 

 Table 3: Frequent pattern Generation 

Items Frequent Patterns Generated 

P {p c: 3} 

M {m f: 3, m c: 3, m a: 3, m f c: 3, m f a: 3, m c a: 3,  

m f c a: 3} 

A {a f: 3, a c: 3, a fc: 3} 

C {c f: 3} 

 

Hence Frequent Patterns are successfully generated using FP-Tree based mining 

approach. 
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Chapter Four: Graph Based Approach 

4.1 Introduction 

The data mining is considered to be one of the promising field of Computer 

Science. Researches are based on its applications such as bioinformatics, web-usage 

mining, text and image recognition, remote sensing and biometric. Discovering 

association rules from database has been considered as one of difficult task. A key 

component of association rule mining is to find all frequent itemsets. The industries, 

which work on huge voluminous data needs to extract association relationship for 

improving their business and decision making aspect.  

Most of the previous work has been focused on mining patterns at a single 

concept level. Many applications at multiple levels of abstractions require that mining 

be performed at multiple levels of abstraction. For example, besides finding 80% of 

customer that purchase computer may also purchase printer, it is interesting to allow 

to users to “drill-down” and so that 75% of people buy color printer if they buy 

desktop computer. The latter statement carries more specific and concrete information 

than the former. Therefore, a data mining system should provide efficient method for 

mining multiple-level interesting patterns. 

 

4.2  Concept of Multilevel Pattern 

The approach used for mining multilevel frequent pattern in our project is 

based on concept taxonomy or concept hierarchy. A concept hierarchy is defined as 

sequence of mapping from a set of low-level concept to higher-level, more general 

concept. For example we consider a concept hierarchy of computer items for the sales 

which is shown in Figure 5. It has four levels denoted with 0,1,2,3,  level 0 for 

computer items i.e. most general abstraction level, level 1 includes Desktop computer, 

printer and other peripherals, level 2 includes Pentium Desktop computer, Celeron 

Desktop computer, Impact Printer etc. and level 3 includes HCL Pentium Desktop 

computer, WIPRO Impact Printer etc. 

In concept hierarchy as shown in Figure 4 higher level shows more general 

information than the lower level i.e. lower level contains most specific information. In 
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Computer Items concept hierarchy Celeron desktop computer is more specific 

information than the Desktop computer, similarly HCL Celeron Desktop computer is 

more specific information than Celeron Desktop computer or Desktop Computer. 

 

 

 

 

 

 
 

 

 

 

Based on the definition, the idea of mining multiple-level frequent patterns is 

illustrated below: 

The taxonomy information is provided in Figure 5. Let category of items (such as 

“Printer”) represents the first-level concept, type (such as “Impact”) for the second 

level one, and brand (such as “WIPRO”) for the third level one. Using this 

taxonomy we can easily determine multilevel frequent patterns from 

transaction dataset. The frequent pattern mining process first discover frequent 

pattern at top-most level. Suppose frequent 1-itemsets are {Desktop 

computer}, {Printer}, similarly frequent 2-itemset is {Desktop computer, 

Printer} etc at level 1.  

According to the definition of multilevel association rules, only the 

descendants of the frequent item at level-1 are considered as candidate in level-

2 frequent 1-itemsets. Suppose {Other Peripherals} is a infrequent at level-1 

than its descendants i.e. {mouse} etc will be not considered at level-2. Let the 

{Pentium Desktop computer},{Impact Printer},{Non Impact Printer}are 

frequent 1-itemsets, { Pentium Desktop computer , Impact Printer },{ Pentium 

Desktop computer, Non Impact Printer} are the frequent 2-itemsets etc.  

 Computer Items 

Other Peripherals Desktop Computer Printer 

Pentium Celeron Impact Non Impact Mouse 

HCL DELL 
WIPRO 

INTEX 

Figure 4 Concept hierarchy (taxonomy) 
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Similarly at level-3 the frequent 1-itemsets are the {HCL Pentium 

Desktop computer}, {WIPRO Impact Printer}, {DELL Pentium Desktop 

computer} and frequent 2-itemsets are {HCL Pentium Desktop computer, 

WIPRO Impact Printer}, {DELL Pentium Desktop computer, WIPRO Impact 

Printer} etc.  

The process mining frequent patterns at multiple concept level starts 

from top level and from next level, onwards the process repeats at even lower 

concept level until no large patterns can be found. 

4.3  Encoded Transaction Table 

Now suppose we have the original transactional datasets as shown in Table 4: 

Transactional Dataset D of Computer Items for the sales. Following table shows 

the items purchased for each transaction. 

Table 4: Transactional Dataset D 

TID Items  

T1 WIPRO Impact Printer, DELL Pentium 

Desktop Computer 

T2 HP Non Impact Printer, Intel Mouse 

T3 HCL Pentium Desktop Computer, HP Non 

Impact Printer 

…. . ……….., …………………,…………., 

Now we use an encoded transaction table instead of the original transaction 

table shown in Table 4: Transactional Dataset D .First we encode the original 

transaction table into encoded transaction. 

  



30 

 

with the help of concept taxonomy Figure 4. 

 As stated above, the taxonomy information for each (grouped) item in Figure 4 is 

encoded as a sequence of digits in the transaction Table 5 : Encoded transaction table 

T[1] For example, the item ‘HCL Pentium Desktop Computer’ is encoded as ‘311’ in 

which the digit, ‘3’, represents ‘Desktop Computer’ at level-1, the second digit, ‘1’, 

for ‘Pentium’ at level-2, and the third, ‘1’, for the company  ‘HCL’ at level-3. Similar 

to [4], repeated items (i.e., items with the same encoding) at any level will be treated 

as one item in one transaction. 

 

Table 5 : Encoded transaction table T[1] 

TID Items 

T1 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

{311, 321, 411, 421} 

{311, 411, 422, 523} 

{312, 322, 421, 611} 

{311, 321} 

{311, 322, 411, 421, 613} 

{313, 523, 824} 

{331, 431} 

{523, 611, 713, 824} 

 

4.4 Graph Based Algorithm 

The unique feature of graph based algorithm is that it scans the entire database only 

once, during scanning the database it creates the directed graph, which is stored in 

memory in form of an Adjacency Matrix. The each vertex of graph represents to item 

of datasets and weight of each edge represent the occurrence of itemsets that means 

weight of edge between two vertices shows support of candidate 2-itemsets. The 

weight of vertex shows support of single itemsets (vertex). If any vertex has weight 



31 

 

less than the user define support then this vertex is deleted from the graph i.e. it is not 

participating for finding large frequent patterns. For mining large k-itemsets (k >=3) 

this algorithm uses relationship of vertices in a graph. This algorithm avoids the 

costly candidate generation process because large frequent patterns finding by logical 

AND  operation between each row element of Adjacency matrix. 

 

4.5  Working of Graph Based Approach 

To explain the working of this approach, we use the encoded transaction Table 5 : 

Encoded transaction table T[1], which contains 8 transactions with itemsets I = {311, 

312, 313, 321, 322, 331, 411, 421, 422, 431, 523, 611, 613, 713, 824}. Each item 

encoded into three digits. First higher most significant digit represents to a item at 

first level (higher level) i.e. 3**, 4** etc., first two higher most significant digits 

represents to a item at second level (subsequent lower level) i.e. 31*, 41* etc., 

similarly all three digits of a item represents to a item at lower level i.e. 311, 411 etc.   

Now here we will apply this graph based approach at the first level and suppose 

min_sup= 4 for this level. 

In first step, it will scan the database i.e. transaction Table 5 : Encoded transaction 

table T[1] and create the directed graph G , which is shown in Figure 5. The items are 

stored in database in lexicograpgical order and thus a directed edge in between two 

vertices will be made in some spacial form. For example, if there is edge A B  i.e. 

in database transactions, occurrence of A  will always  preceed B and if A  and B  are 

numreic number then, always, A < B . The edge ( B , A ) is assumed to be same as ( A ,

B ). Thus we get symmetric matrix (only upper triagular matrix).  

The directed graph G  Figure 5 stored in memroy  in form of  an adjacency matrix A  

Figure 7. The diagonal element of the matrix shows the occurrence of 1-itemsets and 

rest of elements shows occurrence of 2-itemsets.  
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Figure 5 Directed Graph G for transaction Table 5 

In second step, it checks count value of each element of the matrix A , if any diagonal 

element (for i j ) m in _ su pijA co u n t   then, delete row and column of 

corresponding element from the matrix. Because, the super set of any infrequent 

itemset will never be frequent. Those elements for which i j , m in _ su pijA co u n t  , 

assign zero value for them i.e. 0ijA count  . After completion of second step we will 

gate filtered adjacency matrix. 

                    ** ** ** *** * * *
3 4 5 6 7 8  
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Figure 6Adjacency Matrix of Directed Graph G 

In third step, we find all frequent patterns. All diagonal elements of filtered 

adjacency matrix show frequent 1-itemsets, and except diagonal element other 

element of adjaccy matrix (for which 0count  ) shows frequent 2-itemsets. For 

extracting frequent k-itemsets(k >2), apply logical AND  operation in between each 

row elements of the filtered adjacency matrix. 
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Finally following frequent iteemsets will be generated from filtered adjacency matrix 

at concept level first. 

 

Table:6 Level -1, minsup=4 

 

    

 

 

 

 

 

 

Similarly for getting frequent patterns from second, third and other lower 

levels, same procedure will followed as level first, i.e. at each concept level this 

approach scan  datasets once and create a directed graph in the form of adjacency 

matrix, and generate all frequent patterns from given adjacency matrix. At each level 

we have used filtered transaction table e.g. for level-2, generate filtered transaction 

table T [2]  by removing item which is infrequent and also removing the transaction in 

T [1] which contain only infrequent items.   

 

Table 7 Filtered transaction table T [2] 

TID Items 

T1 

T2 

T3 

T4 

T5 

T6 

{311, 321, 411, 421 } 

{311, 411, 422 } 

{312, 322, 421} 

{311, 321 } 

{311, 322, 411, 421} 

{313} 

Large 1-

itemsets 

Itemset Support 

{3**} 

{4**} 
7 
5 

Large 2-

itemsets 
{3**, 4**} 4 
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T7 {331, 431} 

 

 The all possible frequent patterns mined from filtered transaction table T [2] at level 
second and level third (used T [3] which is generated by T [2]) are given in Table 8 
and   
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Table 9 respectively. 

Table 8 LEVEL-2 minsup=3 

Large 1-itemsets Itemset Support 

{31*} 

{32*} 

{41*} 

{42*} 

6 

4 

3 

4 

Large 2-itemsets 

  

{31*, 32*} 

{31*, 41*} 

{31*, 42*} 

{32*, 42*} 

{41*, 42*} 

4 

3 

4 

3 

3 

Large 3-itemsets {31*, 32*, 

42*} 

 

4 
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Table 9 Level-3 minsup = 3 

Large 1-itemsets Itemset Support 

{311} 
{411} 
{421} 

4 
4 
3 

Large 2-itemsets 

  

{311, 411} 
 

3 
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CHAPTER 5 

Implementation Details and Results 
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Chapter Five: Implementation Details and Results 

 

5.1 Implementation Details 
 Development Language    – Java 

 Development Platform     – Windows 

 Test Framework               – Java 

  H/w & S/w Platform        – Any on which Java Virtual Machine is supported 
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5.1 RESULTS 

5.1.1 Sample Dataset 
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5.2 OUTPUT 

5.2.1 Screenshots 

 

Figure 7 FP Tree Generation 
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Contd.. 
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Figure 8 Prefix Subtree  
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Figure 9  Generation of Association Rules 
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5.3  Graph Based Approach 

 

Figure 10 Multilevel Pattern Mining 
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Figure 11 Filtered dataset 
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Figure 12 Filtered Dataset 
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Figure 13 Frequent Itemsets 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 
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Chapter Six: Conclusion and Future scope 

 

From our research work and study it can be concluded that the recurrent 

pattern mining at multiple levels has major advantages over other single level frequent 

pattern mining approach. It carries more specific and concrete information than single 

level frequent pattern mining approach. We can obtain information at different 

hierarchal levels. The number of database scans for the candidate generation 

algorithm - Apriori algorithm increases with the dimension of the candidate itemsets, 

while the FP-growth algorithm needs at most two scans of database. 

Thus, candidate generating algorithms like Apriori behave well only for small 

databases with a large support factor (at least 30%). In other cases the algorithms 

without candidate generation FP-growth behave much better and is memory saving 

also as compared to Apriori. Also with study of customer purchasing pattern at 

various abstract levels, it is easy for business people to target the customers with the 

most demanding products in a more efficient and lucrative way. This would not only 

result in more profits but would cut the customer churn to a great extent which would 

help in retention of the existing customers. 

For future work, we would propose to incorporate other mining techniques to 

find find multilevel changes by monitoring data over time through association rules. 

For example for census data, we may obtain associations which can help us figure out 

reasons why population in a certain age group say 60-70 is decreasing, why average 

income trends are shifting above 50000 per month etc. Moreover, qualitative 

assessment of data changes could also be studied. 
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