
i

A
Dissertation

On

CUSTOMER RETENTION ANALYSIS

Submitted in Partial Fulfilment of the Requirement
for the Award of the Degree of

Master of Technology
In

Software Engineering
by

Neha
University Roll No. 2K12/SWE/15

Under the Esteemed Guidance of

Dr. Kapil Sharma

Associate Professor, Computer Engineering Department, DTU

2013-2014
COMPUTER ENGINEERING DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY
DELHI – 110042

ii

ABSTRACT

Mining frequent patterns in transaction databases, time-series databases, and many other

kinds of databases has been studied popularly in data mining research. In our research

work we have used FP-Tree based approach for mining single-level frequent patterns. We

proposed a novel frequent-pattern tree (FP-tree) structure, which is an extended prefix-

tree structure for storing compressed, crucial information about frequent patterns, and

develop an efficient FP-tree based mining method, FP-growth, for mining the complete

set of frequent patterns by pattern fragment growth. Methodology for Mining Multilevel

frequent patterns is also used. Multilevel pattern carries more specific and concrete

information than the single level.

 We have used Graph based approach for extracting Multilevel frequent patterns. At each

level it scans the datasets once and creates a directed graph, which is stored in form of an

adjacency matrix and calculates all frequent patterns at the same level. Suppose database

items are coded at three levels than this approach will need only three database scans. It

does not require costly candidate generation method for creating new candidates. Another

advantage of this approach is for less correlated databases it takes small memory space

for storing graph at each level.

Keywords: Association Rules, Frequent Pattern Mining, Customer Churn, Apriori

Algorithm, Retention, Frequent pattern Tree.

iii

ACKNOWLEDGEMENT

First of all, I would like to express my deep sense of respect and gratitude to my

thesis supervisor Dr. Kapil Sharma for providing the opportunity of carrying out this

thesis and being the guiding force behind this research work. I am deeply indebted to him

for the support, advice and encouragement he provided without which the thesis could

not have been a success.

Secondly, I am grateful to Dr. O.P. Verma, HOD, Computer Engineering

Department, DTU for his immense support. I would also like to acknowledge Delhi

Technological University library and staff for providing the right academic resources and

environment for this research work to be carried out.

Last but not the least I would like to express sincere gratitude to my parents and

friends for constantly encouraging me during the completion of research work.

Neha

 University Roll no: 2K12/SWE/15
 M.Tech (Software Engineering)
 Department of Computer Engineering
 Delhi Technological University

Delhi – 110042

iv

CERTIFICATE

This is to certify that the thesis titled “Customer Retention Analysis” is a bonafide

record of work done by Neha, Roll No. 2K12/SWE/15 at Delhi Technological University

for partial fulfilment of the requirements for the degree of Master of Technology in

Software Engineering (Department of computer science). This thesis was carried out

under my supervision and has not been submitted elsewhere, either in part or full, for the

award of any other degree or diploma to the best of my knowledge and belief.

Date: __ __ ____

(Dr. Kapil Sharma)

Associate Professor & Project Guide

Department of Computer Engineering

Delhi Technological University

v

Declaration

I hereby declare that the thesis entitled “Customer Retention Analysis” which is

being submitted to the Delhi Technological University, in partial fulfillment of the

requirements for the award of degree of Master of Technology in Computer

Science Engineering is an authentic work carried out by me. The material

contained in this thesis has not been submitted to any university or institution for

the award of any degree.

Neha

 University Roll no: 2K12/SWE/15
 M.Tech (Software Engineering)
 Department of Computer Engineering
 Delhi Technological University

Delhi – 110042

vi

Contents
Abstract ii

Acknowledgment iii

Certificate iv

Declaration v

List of Figures viii

List of Tables ix

Abbreviations x

Chapter One: Introduction ... 1

1.1 GENERAL ... 1

1.2 ROLE OF DATA MINING .. 2

1.3 MOTIVATION OF WORK .. 4

1.4 AIM OF WORK... 4

1.5 ORGANISATION OF THESIS .. 6

Chapter Two: LITERATURE SURVEY ... 8

Chapter Three: FP-Tree Approach .. 16

3.1 OVERVIEW... 16

3.2 FREQUENT-PATTERN TREE: DESIGN AND CONSTRUCTION 17

3.3 FP-GROWTH ALGORITHM .. 21

Chapter Four: Graph Based Approach .. 27

4.1 INTRODUCTION ... 27

vii

4.2 CONCEPT OF MULTILEVEL PATTERN .. 27

4.3 ENCODED TRANSACTION TABLE .. 29

4.4 GRAPH BASED ALGORITHM ... 30

4.5 WORKING OF GRAPH BASED APPROACH ... 31

Chapter Five: Implementation Details and Results .. 38

5.1 RESULTS ... 39
5.1.1 Sample Dataset ... 39

5.2 OUTPUT .. 40
5.2.1 Screenshots.. 40

5.3 GRAPH BASED APPROACH ... 44

Chapter Six: Conclusion and Future scope ... 49

REFRENCES……………………………………………………………………….50

viii

LIST OF FIGURES

Figure 1 Market Basket Analysis .. 5

Figure 2 FP-tree for Table 1 ... 20

Figure 3 FP- Growth Approach .. 23

Figure 4 Concept hierarchy (taxonomy) ... 28

Figure 5 Directed Graph G for transaction Table 5 ... 32

Figure 6Adjacency Matrix of Directed Graph G ... 32

Figure 7 FP Tree Generation ... 40

Figure 8 Prefix Subtree .. 42

Figure 9 Generation of Association Rules ... 43

Figure 10 Multilevel Pattern Mining .. 44

Figure 11 Filtered dataset .. 45

Figure 12 Filtered Dataset ... 46

Figure 13 Frequent Itemsets .. 47

ix

LIST OF TABLES

Table 1:A transactional database as an example .. 18

Table 2 :Conditional FP-Tree .. 25

Table 3: Frequent pattern Generation ... 25

Table 4: Transactional Dataset D .. 29

Table 5 : Encoded transaction table T[1] .. 30

Table:6 Level -1, minsup=4 .. 33

Table 7 Filtered transaction table T [2] .. 33

Table 8 LEVEL-2 minsup=3 ... 35

Table 9 Level-3 minsup = 3 ... 36

x

Abbreviations

CET - Closed Enumeration Tree

WSW- Weighted Sliding Window

TID- Transaction Identity

DFS- Depth First Search

RELIM- Recursive Elimination

CDS- Compact Data Set

KDD- knowledge Discovery in Database

MINSUP- Minimum Support

DHP- Direct Hashing and Pruning

FP- Frequent Pattern

DB- Database

MFI- Most Frequent Itemset

1

Chapter One: Introduction

1.1 General

In area of data mining, the problem of deriving associations from data was

first formulated by (Agrawal, R., Imieliński,T., & Swami, A. 1993), and is often

referred to as the “market-basket” problem. In this famous problem, we are given a set

of items (also called attributes) and a large collection of transactions which are treated

as subsets (baskets) of these items. Association rule mining is about analysing and

presenting strong rules discovered in databases using different measures of

interestingness. Based on the concept of strong rules, association rules thus

introduced, are used for discovering regularities between products in large scale

transaction data. One such example is that of a supermarket. The items are products

and the baskets are customer purchase entries. By finding associations between

various products bought by customers, planning and marketing of products can be

done better. (Kotsiantis, S., & Kanellopoulos, D. 2006) Many other applications with

varied characterstics can also be used. For example, word counting in text documents,

patient medical report and diagnosis and many more. Association rules (Agrawal, R.,

Imieliński,T., & Swami, A. 1993, June) are defined as statements of the form {

1 2, ,.... }nX X X Y which means that Y may present in the transaction if

1 2, nX X X are all in the transaction. Note, that there can be a set of items, not just a

single item. The probability of finding Y in a transaction with all 1 2, nX X X is

called confidence. (Liming, W., & Hui, Z. 2007). The threshold (percentage) that a

rule holds in all transactions is called support.

Support

The support (s) of an association rule is the ratio (in percent) of the records

that contain X to the total number of records in the database. For e.g. if we say that

the support of a rule is 5% then it means that 5% of the total records contain X.

Confidence

Confidence (á) is the ratio (in percent) of the number of records that contain

&X Y to the number of records that contain X . For e.g. if we say that a rule has a

2

confidence of 85%, it means that 85% of the records containing X also contain Y .

The confidence of a rule indicates the degree of correlation in the dataset between X

and Y (Han,J, Pei, J., Yin, Y., & Mao, R. 2004).

 Today time series data analysis (Shih, M. J., Liu, D. R., & Hsu, M. L. 2010).

is fundamental to engineering, scientific and business endeavours. Data is collected

and analysed for frequent itemsets. For example, collecting data of various customer

purchases from a supermarket at regular intervals of time might help us identify

change in customer purchasing pattern. This gives us more realistic view of the

system. Finding interest of the customer in purchasing helps planning and marketing

of products in a better way.

1.2 Role of Data Mining

As database size has enlarged rapidly in recent years, this has led to development of

tools, due to increasing interest which is capable of automatic withdrawal of

knowledge from data (Papageorgiou, E. I. 2011).. In database the term knowledge

discovery or data mining has been taken for a research field which deals with

spontaneous discovery of knowledge or implicit information arising from the

databases.

Databases which provides implicit information among different sets of objects,

comes up with fascinating relationships that causes association rules and thus

Figure 1 Data Mining Process

3

discloses useful patterns for many applications like financial forecast, medical

diagnosis, decision support and marketing policies etc. (Colantonio, A., Di Pietro, R.,

Ocello, A., & Verde, N. V. 2012). The Figure 1depicts data mining process.

The term data mining is the process of identifying interesting patterns and

knowledge from large amount of data (Slimani, T., & Lazzez, A. 2014). The data

sources can include databases, data warehouses, the Web, other information

repositories or data that are streamed into the system dynamically.

As IT technologies are getting advance, (Pyun, G., Yun, U., & Ryu, K. H.

2014) the number of data accumulated is also enhancing very frequently. Hence the

role of data mining comes into the picture. The first algorithm proposed in this

approach was Apriori Algorithm (Agrawal, R., & Srikant, R.1994, September)With

the time, several algorithms came up during the past several years which includes

Apriori (Agrawal, R., & Srikant, R. 1994, September), (Relim Borgelt, C. 2005,

August), ECLAT (Borgelt, C. 2003, November) etc.

As the name says, recurrent (frequent) patterns are patterns that are occurring

recurrently in data (Sethi, N., & Sharma, P. 2013). Various types of recurrent patterns

are sequential patterns (also known as frequent subsequences), frequent itemsets and

frequent substructures. A frequent itemset implies to itemsets that often occur together

in data transactions – for instance bread and butter, which many customers often

purchase together in grocery stores. (Nebot, V., & Berlanga, R. 2012).

Association rule learning is an advance method of research for identifying

relations among large databases. The definition of association rule mining is implied

as: Consider 1 2, ... nK k k k is itemset of n binary attributes. Let 1 2{ , ... }nD S S S be a

transactions set known as database. Every transaction is associated with an identifier,

called TID and in K it has a subset of the items . The definition of association rule is

of the form P Q where P ,Q K and P Q . Here, P itemsets is called

antecedent (LHS or left-hand-side) and Q is called consequent (RHS or right-hand-

side) of the rule.

Support P Q = ()P P Q

Confidence P Q = ()P P Q) = Support ()P Q /Support(P)

4

Rules should satisfy minimum support and minimum confidence in order to

determine recurrent itemsets (Han, J., & Kamber, M. 2006).

Recurrent pattern mining is a two step process:

 Find all frequent itemsets i.e. each of these item sets will occur at least as

frequently as a predetermined minimum support count.

 Initiate strong association rule from frequent itemsets i.e. these rules must

satisfy minimum support and minimum confidence.

1.3 Motivation of work

Motivation behind this work is to understand the dynamics of customer

purchasing behavior by examining the recurring patterns that have taken place in

transactions. This would not only help to cut down the customer churn rate but will

also provide better customer satisfaction and good relationship. Idetinfying the

interest of customer is essential for any service based business that has an ongoing

relationship with their customers, that is of monetary value. So during an ongoing

contract, we need to make sure that customers are happy with the service and they

keep paying us. Otherwise loss of business, loss of revenue are not far away, when

today’s ongoing competition in the market in every field is considered.

1.4 Aim of work

The aim of my work is to study the customer needs, his interests, not only

bounded to a single level but to detailed levels. That is the purchasing behavior of the

customer is pruned to various levels of abstraction. For achieving this task we have

used two algorithms. The first is the FP- Tree algorithm and the second one is a graph

based approach for mining the interest of the customer to multiple levels of

abstraction. For example, besides finding 80% of customer that purchase computer

may also purchase printer, it is interesting to allow to users to “drill-down” and so that

75% of people buy color printer if they buy desktop computer. The latter statement

carries more specific and concrete information than the former. In other words,

buying habits of customer are analyzed by discovering the association between

different products which are often put together by the customer in shopping baskets.

Consider another example as shown in Figure 1, if customers tend to buy beer then

5

how likely they will also buy chips (and what type of chips) at the same time from the

market?

Figure 1 Market Basket Analysis

 Therefore, a data mining system should provide efficient method for mining

multiple-level interesting patterns.

6

1.5 Organisation of Thesis

The thesis is divided into 6 sections including Introduction.

The next chapter, Chapter-2 presents related literature available for our work.

It covers literature related to association rule mining as well as discovery of frequent

itemsets from large databases.

Chapter 3 presents FP-Tree and FP-Growth approach followed by an example

to obtain results. The approach in solving the problem has been presented here.

Chapter-4 gives the Graph Based Approach for mining patterns at multiple

level of abstraction.

Chapter 5 gives Implementation details and results obtained The final chapter

summarizes work done in the thesis and suggests future work that may be done in this

area.

7

Chapter 2

LITERATURE SURVEY

8

Chapter Two: LITERATURE SURVEY

Normally, the process to analyze data from distinct point of view and

summarize it into knowledgeable information i.e. information which can be used to

increase income, reduce costs, or perform both is data mining (referred as knowledge

discovery). Data mining, extracting hidden pattern or information from huge

databases, is a dominant advance technology having great power in helping

companies to focus on most significant information within data warehouses. From

several different sources and angles or dimensions it allows many users to analyze

data and then categorize it, and then relationships are identified. Professionally, the

way of searching patterns or correlations among various fields in huge relational

databases is data mining. Data mining perform prospective, automated analyses move

which is more than examining past events provided by retroactive tools typical of

decision support systems. The term data mining is the tool that answers business

questions that takes too much time to resolve. Data mining scour the databases for

finding hidden, predictive information that is beyond the expectation of experts.

Many research algorithms have been studied in this research work. The

various algorithms that have been studied are Apriori (Agrawal, R., & Srikant, R.

1994, September), FP Growth (Han,J, Pei, J., Yin, Y., & Mao, R. 2004)., Compacting

Data Sets (Han,J, Pei, J., Yin, Y., & Mao, R.2004)., Relim- Recursive Elimination

(Borgelt, C. 2005)Direct Hashing and Pruning –DHP Park, (J. S., Chen, M. S., &

1995)., Multilevel Association Rule Mining Algorithm Based on Boolean Matrix

(Chen, J., Lin, G., & Yang, Z.) etc. Brief discussion has been done on these

algorithms.

Apriori: It is a seminal algorithm for recurrent itemset mining and learning

association rule over transactional databases. This algorithm is suggested by(Agrawal,

R., & Srikant, R. 1994, September). Apriori is based on the closure property which

indicates that if an itemset is recurrent then all its subsets will also be recurrent. It

operates on transaction databases where itemset refers to transaction. For a specified

transaction threshold ξ., itemsets which are subsets of at least ξ. transaction in the

database are identified by the Apriori Algorithm. It is based on bottom up approach.

9

To count the candidate item sets in an efficient manner, Apriori make use of breadth

first search technique and also hash tree structure. It follows the two steps:

 firstly, DB is scanned once in order to get frequent 1-itemset,

 From length k frequent itemsets generate length (k+1) itemset candidate

itemsets, against DB test the candidate and finally when no frequent or

candidate set generation is found terminate the process.

The applications of this algorithm are in Market Basket Analysis and potential

user identification in telecom companies.

FP Growth: This algorithm is meant for discovering recurrent itemsets in a

transactional database. proposed this algorithm. FP Growth is memory efficient and

very fast algorithm. It uses FP-Tree which is a special internal structure. From the

database it stores the transaction and each item is represented by linked list. FP tree

consist of set of child nodes and root node and also frequent item header table. To

find out the frequent pattern subsequently the node link structure and the insert-tree

(P,N) subroutine is used. It makes use of horizontal and vertical database layout that

stores the database in memory. (Han,J, Pei, J., Yin, Y., & Mao, R. 2004)

The principal objective of FP Growth was to eradicate the drawbacks of

Apriori Algorithm in testing and generating the candidate set. Bottleneck of Apriori

was handled with by introduction of FP tree which is a compact data structure (Han et

al, 2004).

Compacting Data Sets (CDS): Apriori Algorithm is highly time consuming

as it requires huge candidate generation, rigorous data scanning is performed and

requires lot of input/output operations. To overcome these drawbacks CDS algorithm

is used (Han,J, Pei, J., Yin, Y., & Mao, R. 2004). which is unique among all the

algorithms as it not only eradicate redundant candidate generation but also eradicate

transactions that are duplicate. It merges the duplicate transaction and intersection

between the itemsets and then undesirable subsets are deleted repeatedly (Han,J, Pei,

J., Yin, Y., & Mao, R. 2004).

CDS provides a new and efficient method for discovering frequent pattern; it

compact data-set by removing items in infrequent 1-itemsets and duplicate

transactions are merged repeatedly, and make use of the subset of transactions with

10

other transaction itemsets to perform pruning; along with the discovering process,

with increasing number of deleted transactions, for calculating the subset the time

needed will decrease rapidly. When data-set volume increases, it's time & space cost

drastically decrease, so its usability retains for MFI applications for high volume data-

sets. In various aspects, CDS algorithm can be further optimized, such as keeping

record of all resulting sub set to avoid duplicated generation .

Recursive Elimination (RELIM): The recursive elimination algorithm

(Borgelt, C. 2005) is meant for searching frequent item sets. It has been adopted by

FP-growth algorithm and resembles H-mine algorithm. Its main advantage is its

simplicity of its structure. Without prefix tree it does its work. In singly linked lists,

transactions are processed directly and then organized. The biggest benefit of this

algorithm is simplicity of the data structures which are needed and re-representation

of the transactions is not necessary and thus saves memory in the recursion. From

transaction database with the frequencies are listed. Then, the reduced transactions

(reducing by the user defined minimum support to transaction) database with items in

the transaction database are sorted in ascending order with their frequencies. Then

simple arrays of item identifiers represent each transaction. Then a recursive

procedure is used to find out the frequent items.

Direct Hashing and Pruning (DHP): It is an improvement technique towards

Apriori. (Park, J. S., Chen, M. S., & 1995). The Apriori algorithm can be improved

using hashing technique to reduce the size of the candidate k-itemsets. The Hash table

is based on the hash function (,) (()*10 ()%7h x y orderofx orderofy . Then based on

the hash value the items can be mapped to different buckets. Thus the candidate items

are reduced. The performance is enhanced because DHP prunes both the number of

transactions and number of items in each transaction during the iterations.

Multilevel Association Rule Mining Algorithm Based on Boolean Matrix:

To find out the frequent itemsets Boolean matrix approach is used. The boolean

matrix is of the form “ 0 ” and “1” and the “ AND ” operation is 0.0 0 , 1.0 0 ,

1.1 1 , 0.1 0 . Now with minimum support matrix dimension is reduced. To

generate 3 itemsets AND operation is performed. The algorithm (Chen, J., Lin, G., &

Yang, Z. 2011, June). stops as soon as the maximum frequent itemset is found. Since

11

only once it scans the database and requires small memory for the operation, this is

the biggest advantage (Chen, J., Lin, G., & Yang, Z. 2011, June)..

Frequent Pattern Algorithm using Dynamic Function - The entire database

is scanned in this algorithm and transaction pairs are generated with longest common

sequences and computes longest common sequences of item id for each previous

transaction pair. Then the algorithm prunes the transaction pairs with empty longest

common sequences. Using the dynamic function the longest common sequence is

found. The support count is done for pruned subset patterns rather than the whole

database. In the next operation again the pruned transaction pair with the least

common sequences was observed. The advantage with this approach is that the

database access is reduced and the subsequent iteration is faster than the previous

iteration. (Jiawei, Hong, & Dong, 2007).

Partition –based Algorithm - Partition-based Algorithms (Aggarwal, C. C.,

Li, Y., Wang, J., & Wang, J. 2009, June) solves the problem of high number of

database scans, associated with Apriori-based algorithm. It requires two complete data

scan to mine frequent item sets. The Partition algorithm divides the dataset into many

subsets so that each subset can be fitted into the main memory. The basic idea of the

Partition-based algorithm is that a frequent item set must be frequent in at least one

subset. Partition-based algorithm generates local frequent item sets for each partition

during the first data scan. Since the whole partition can be fitted into the main

memory, the complete local frequent item sets can be mined without any disk I/O

operations. The local frequent item sets are added to the global candidate frequent

item sets. In the second data scan, false candidates are removed from the global

candidate frequent item sets. In a special case where each subset contains identical

local frequent item sets, Partition algorithm can mine all frequent item sets with a

single data scan. However, when the data is distributed unevenly across different

partitions, this algorithm may generate a lot of false candidates from a small number

of partitions. By employing the knowledge collected during the mining process, false

global candidate frequent item sets are pruned when they are found that they cannot

be frequent. In addition, those algorithms reduce the number of scans in the worse

case to (2 1) /b b where b is the number of partitions.

12

Moment Algorithm - It (Chi, Y., Wang, H., Yu, P. S., & Muntz, R. R. 2004),

introduced one algorithm, Moment, to extract closed frequent itemset within sliding

window. They designed, a prefix based data structure, CET (Closed Enumeration

Tree), to maintain closed frequent itemset(Chi, Y., Wang, H., Yu, P. S., & Muntz, R.

R. 2004),. CET maintains the boundary between closed frequent itemset and rest of

itemset, which makes the boundary relatively stable, whenever any itemset changes

its state (frequent to non frequent vice-versa), ultimately reducing the updating cost.

An efficient algorithm to incrementally update the CET, which update the CET when

newly arrived transaction change the content of window or oldest transaction being

deleted from the window. When a transaction arrives/expires, Moment traverse the

part of CET related to that transaction.

The merit of Moment is that it computes the exact set of closed frequent

itemset over a sliding window. Although an update to a node may result in a

propagation of the node insertion and deletion in the CET, most of the nodes related

to an incoming or expiring transaction do not change their type often. Therefore, the

average update cost in the CET is small. Limitation of Moment algorithm is, it stores

transaction using data structure, FP tree (Chi, Y., Wang, H., Yu, P. S., & Muntz, R. R.

2004), which require a considerable amount of memory. Secondly, if the size of

window is too large, CET can huge.

WSW algorithm: (Tsai, P. S. 2009), proposed a new framework data stream

mining, called weighted sliding window model, which allows user to specify the

number of windows, weight of window and size of window. A single pass algorithm,

called WSW, has been proposed to extract frequent itemset from data streams. The

motivation for weighted sliding window model come from the fact, that the size of

traditional sliding window model is fixed or defined by the number of transaction, say

W . Though recent W transactions are considered, the time to cover these W

transactions may be long or varies, which may effectively decrease the mining result.

(Tsai, P. S. 2009)proposed weighted sliding window model that defines window size

by time not by the number of transaction and user can specify the number of

windows, with each window assign with different weight (sum of all window weight

equals to 1). For example data may be more influential at current moment and hence,

13

should be assigned higher weight. The algorithm WSW scans the data once in each

window, and calculates the support count for each item present in current window, to

find out frequent k-itemset (k=1). Based on this information candidate (k+1)-itemset

are pointed out to find frequent (k+1)-itemset. The process terminates when no further

candidates itemset can be generated. If the number of windows increases the time to

determine frequent itemset increases. To reduce this runtime they proposed an

improvement of WSW algorithm called, WSW-imp, which further reduce the time of

deciding whether a candidate itemset is frequent or non-frequent itemset.

DFS and Hybrid Algorithm – (Eclat and Clique, 2002) combine both depth

first search (DFS) and intersection counting. Since intersection counting is used, no

complicated data structure is required. These hybrid algorithms reduces the memory

requirement, since only the TID sets of the path item sets from the root to the leaves

have to be kept in the memory simultaneously. Intersection of TID sets can be

stopped as soon as the remaining length of the shortest TID set is shorter than the

required support minus the counted support value. The intersection of TID sets of 1-

item set to generate frequent 2 item sets is expensive. The maximal hyper graph

clique clustering is applied to 2-frequent item sets to generate a refined set of maximal

item sets.(Garg, D., & Sharma, H. 2011). at DFS cannot prune candidate k item sets

by checking frequent (k – 1) item sets, because DFS searches from the root to the

leaves of the tree without using any subsets relationship. It is cheaper to use item set

counting with BFS to determine the supports, when the number of candidate frequent

item sets is small. When the number of candidate frequent item sets is relatively large,

the hybrid algorithm switches to TID set intersection with DFS, since simple TID set

intersection is more efficient than occurrence counting when the number of candidate

frequent item sets is relatively large. This results in additional costs to generate TID

sets. The authors proposed to use hash-tree-like structure to minimize the cost of

transition. However, the authors do not provide an algorithm to determine the best

condition to switch the strategy. Authors provide parameters to change in strategy.

However, those parameters may not be generalized enough for all kinds of datasets.

Incorrect timing of changing strategy may decrease the performance of hybrid

algorithm.

14

Eclat algorithm – (Borgelt, C. 2003, November). It follows depth-first search

using set intersection and uses a vertical database layout i.e. instead of explicitly

listing all transactions; each item is stored together with its cover (also called tidlist)

and uses the intersection based approach to compute the support of an itemset. The

support of an itemset X can be easily computed by simply intersecting the covers of

any two subsets , Z X , such that Y Z X . It states that, when the database is

stored in the vertical layout, the support of a set can be counted much easier by simply

intersecting the covers of two of its subsets that together give the set itself. In this

algorithm each frequent item is added in the output set. Then for every frequent item i

, the i-projected database iD is created. This is done by first finding every item j that

frequently occurs together with i . The support of set { , }i j is computed by

intersecting the covers of both items. If { , }i j is frequent, then j is inserted into iD

together with its cover. The reordering is performed at every recursion step of the

algorithm. Algorithm recursively calls to find all frequent itemsets in the new

database iD . Candidate itemsets are generated using only the join step from Apriori.

Again all items in the database are reordered in ascending order of support to reduce

the number of candidate itemsets that are generated, and hence, reduce the number of

intersections that need to be computed and the total size of the covers of all generated

itemsets. Since the algorithm doesn’t fully exploit the monotonicity property, but

generates a candidate itemset based on only two of its subsets, the number of

candidate itemsets that are generated is much larger as compared to a breadth-first

approach such as Apriori. As a comparison, Eclat essentially generates candidate

itemsets using only the join step from Apriori, since the itemsets necessary for the

prune step are not available.

15

CHAPTER 3

FP-TREE APPROACH

16

Chapter Three: FP-Tree Approach

3.1 Overview

Frequent-pattern mining plays an essential role in mining associations,

correlations, sequential patterns, multi-dimensional patterns, max-patterns, emerging

patterns, and many other important data mining tasks. Most of the previous studies

adopt an Apriori-like approach, which is based on the anti-monotone Apriori

heuristic. If any length k pattern is not frequent in the database, its length (k + 1)

super-pattern can never be frequent. The essential idea is to iteratively generate the set

of candidate patterns of length (k+1) from the set of frequent-patterns of length k (for

k ≥ 1), and check their corresponding occurrence frequencies in the database.

The Apriori heuristic achieves good performance gained by (possibly

significantly) reducing the size of candidate sets. However, in situations with a large

number of frequent patterns, long patterns, or quite low minimum support thresholds,

an Apriori-like algorithm may suffer from the following two nontrivial costs:

 It is costly to handle a huge number of candidate sets. For example, if there are

104 frequent 1-itemsets, the Apriori algorithm will need to generate more than

107 length-2 candidates and accumulate and test their occurrence frequencies.

Moreover, to discover a frequent pattern of size 100, such as{ 1......... 100}a a , it

must generate approximately 1030 candidates. This is the inherent cost of

candidate generation, no matter what implementation technique is applied.

 It is tedious to repeatedly scan the database and check a large set of candidates

by pattern matching, which is especially true for mining long patterns.

A method that may avoid candidate generation-and-test and utilize some novel

data structures to reduce the cost in frequent-pattern mining is as follows:-

First, a novel, compact data structure, called frequent-pattern tree, or FP-tree

in short, is constructed, which is extended prefix-tree structure storing crucial,

quantitative information about frequent patterns. To ensure that the tree structure is

compact and informative, only frequent length-1 items will have nodes in the tree, and

the tree nodes are arranged in such a way that more frequently occurring nodes will

have better chances of node sharing than less frequently occurring ones. Our

17

experiments show that such a tree is compact, and it is sometimes orders of magnitude

smaller than original database. Subsequent frequent-pattern mining will only need to

work on the FP-tree instead of the whole data set.

Second, an FP-tree-based pattern-fragment growth mining method is

developed, which starts from a frequent length-1 pattern (as an initial suffix pattern),

examines only its conditional-pattern base (a “sub-database” which consists of the set

of frequent items co-occurring with the suffix pattern), constructs its (conditional) FP-

tree, and performs mining recursively with such a tree. The pattern growth is achieved

via concatenation of the suffix pattern with the new ones generated from a conditional

FP-tree. Since the frequent itemset in any transaction is always encoded in the

corresponding path of the frequent-pattern trees, pattern growth ensures the

completeness of the results. In this context, our method is not Apriori-like restricted

generation-and-test but restricted test only. The major operations of mining are count

accumulation and prefix path count adjustment, which are usually much less costly

than candidate generation and pattern matching operations performed in most Apriori-

like algorithms.

3.2 Frequent-pattern tree: Design and construction

Let 1 2{ , }mI a a a be a set of items, and a transaction database,

1 2{ , }nDB T T T where
!(1......)

! !i
nT i n

r n r

 is a transaction which contains

a set of items in I. The support1 (or occurrence frequency) of a pattern A, where A is a

set of items, is the number of transactions containing A in DB. A pattern A is frequent

if A’s support is no less than a predefined minimum support threshold, ξ. Given a

transaction database DB and a minimum support threshold ξ, the problem of finding

the complete set of frequent patterns is called the frequent-pattern mining problem.

Frequent-pattern tree: To design a compact data structure for efficient frequent-

pattern mining, let’s first examine an example.

For e.g. let the transaction database, DB, be the first two columns of Table 1:A

transactional database as an example, and the minimum support threshold be 3 (i.e., ξ

= 3).

18

A compact data structure can be designed based on the following

observations:

 Since only the frequent items will play a role in the frequent-pattern mining, it

is necessary to perform one scan of transaction database DB to identify the set

of frequent items (with frequency count obtained as a by-product).

 If the set of frequent items of each transaction can be stored in some compact

structure, it may be possible to avoid repeatedly scanning the original

transaction database.

 If multiple transactions share a set of frequent items, it may be possible to

merge the shared sets with the number of occurrences registered as count. It is

easy to check whether two sets are identical if the frequent items in all of the

transactions are listed according to a fixed order.

Table 1:A transactional database as an example

TID Items Bought (Ordered)Frequent Items

100 f,a,c,d,g,i,m,p f,c,a,m,p

200 a,b,c,f,I,m,o f,c,a,b,m

300 b,f,h,j,o f,b

400 b,c,k,s,p c,b,p

500 a,f,c,e,l,p,m,n f,c,a,m,p

If two transactions share a common prefix, according to some sorted order of

frequent items, the shared parts can be merged using one prefix structure as long as

the count is registered properly. If the frequent items are sorted in their frequency

descending order, there are better chances that more prefix strings can be shared.

With the above observations, one may construct a frequent-pattern tree as follows.

First, a scan of DB derives a list of frequent items, {(f: 4), (c: 4), (a: 3), (b: 3),

(m: 3), (p: 3)} (the number after “:” indicates the support), in which items are ordered

in frequency descending order. This ordering is important since each path of a tree

19

will follow this order. For convenience of later discussions, the frequent items in each

transaction are listed in this ordering in the rightmost column of Table 1:A

transactional database as an example

Second, the root of a tree is created and labeled with “null”. The FP-tree is

constructed as follows by scanning the transaction database DB second time.

 The scan of the first transaction leads to the construction of the first branch of the tree:

 {(f: 1), (c: 1), (a: 1), (m: 1), (p: 1)}. Note that frequent items in transaction are listed

according to the order in the list of frequent items.

 For second transaction, since its (ordered) frequent item list (f, c, a, b, m) shares a

common prefix (f, c, a) with the existing path (f, c, a, m, p), count of each node along

the prefix is incremented by 1, and one new node (b: 1) is created and linked as a

child of (a: 2) and another new node (m: 1) is created and linked as the child of (b:1).

 For third transaction, since its frequent item list (f, b) shares only the node (f) with

the f -prefix subtree, f ’s count is incremented by 1, and a new node (b: 1) is created

and linked as a child of (f : 3).

 The scan of fourth transaction leads to construction of second branch of the tree, ((c:

1), (b: 1), (p: 1)).

 For last transaction, since its frequent item list (f, c, a, m, p) is identical to the first

one, path is shared with the count of each node along the path incremented by 1.

To facilitate tree traversal, an item header table is built in which each item

points to its first occurrence in the tree via a node-link. Nodes with the same item-

name are linked in sequence via such node-links. After scanning all transactions, the

tree, together with associated node-links, are shown in Figure 2.

Based on this example, a frequent-pattern tree can be designed as follows.

 It consists of one root labeled as “null”, a set of item-prefix subtrees as children of the

root, and a frequent-item-header table.

 Each node in item-prefix subtree consists of three fields: item-name, count, and

node-link, where item-name registers which item this node represents, count

registers the number of transactions represented by the portion of path reaching

this node, and node-link links to the next node in the FP-tree carrying same

item-name, or null if there is none.

20

 Each entry in frequent-item-header table consists of two fields, (1) item-name

and (2) head of node-link (a pointer pointing to the first node in the FP-tree carrying the

item-name).

Based on this definition, we have the following FP-tree construction algorithm.

Algorithm (FP-tree construction).

Input: A transaction database DB and a minimum support threshold ξ .

Output: FP-tree, the frequent-pattern tree of DB.

Method: The FP-tree is constructed as follows.

 Scan transaction database DB once. Collect F, sets of frequent items, and

support of each frequent item. Sort F in support-descending order as FList, list

of frequent items.

 Create the root of an FP-tree, T, and label it as “null”. For each transaction

Trans in DB do the following. Select frequent items in Trans and sort them

according to the order of FList. Let sorted frequent-item list in Trans be [p |

P], where p is the first element and P is remaining list. Call insert tree([p | P],

T).

The function insert tree([p | P], T) is performed if T has a child N such

that N.item-name = p.item-name, then increment N’s count by 1; else create a

new node N, with its count initialized to 1, its parent link linked to T , and its

Figure 2 FP-tree for Table 1

21

node-link linked to nodes with the same item-name via node-link structure. If

P is nonempty, call insert tree(P, N) recursively.

3.3 FP-Growth Algorithm

Construction of a compact FP-tree ensures that subsequent mining can be performed

with a rather compact data structure. In this section, we study how to explore the

compact information stored in an FP-tree.

Let us examine the mining process based on the constructed FP-tree shown

in Figure 3.

According to list of frequent items, f-c-a-b-m-p, all frequent patterns in the

database can be divided into 6 subsets without overlap:

 patterns containing item p;

 patterns containing item m but no item p;

 patterns containing item b but no m nor p;

 patterns containing item a but no b, m nor p;

 patterns containing item c but no a, b, m nor p; and

 patterns containing item f but no c, a, b, m nor p.

Algorithm (FP-growth: Mining frequent patterns with FP-tree by pattern fragment

growth).

Input: A database DB, represented by FP-tree constructed and a minimum support

threshold ξ.

Output: The complete set of frequent patterns.

Method: call FP-growth(FP-tree, null).

Procedure FP-growth(Tree; α)

{

(1) if Tree contains a single prefix path // Mining single prefix-path FP-tree

(2) then {

(3) let P be the single prefix-path part of Tree;

(4) let Q be the multiple-path part with the top branching node replaced by a null

root;

(5) for each combination (denoted as β) of the nodes in the path P do

22

(6) generate pattern β U α with support = minimum support of nodes in β;

(7) let freq pattern set(P) be the set of patterns so generated; }

(8) else let Q be Tree;

(9) for each item ai in Q do { // Mining multiple-path FP-tree

(10) generate pattern β = ai U α with support = ai.support ;

(11) construct β’s conditional pattern-base and then β’s conditional FP-tree Treeβ ;

(12) if Treeβ ≠ ø;

(13) then call FP-growth(Treeβ, β);

(14) let freq pattern set(Q) be the set of patterns so generated; }

(15) return(freq pattern set(P) U freq pattern set(Q) U (freq pattern set(P) × freq

pattern set(Q)))

}

Let us mine these subsets one by one:

 We first mine patterns having item p. An immediate frequent pattern in this

subset is (p: 3).

 To find other patterns having item p, we need to access all frequent item

projections containing item p. All projections can be collected by starting at

p’s node-link head and following its node-links.

 Following p’s node-links, we can find that p has two paths in the FP-tree: (f:

4; c: 3; a: 3; m: 2; p: 2) and (c: 1; b: 1; p: 1). The first path indicates that

string “(f; c; a; m; p)” appears twice in the database. Notice the path also

indicates that string (f; c; a) appears three times and (f) itself appears even four

times. However, they only appear twice together with p. Thus, to study which

string appear together with p, only p’s prefix path (f: 2; c: 2; a: 2;m: 2) (or

simply, (fcam: 2)) counts. Similarly, second path indicates string “(c; b; p)”

appears once in the set of transactions in DB, or p’s prefix path is (cb: 1).

These two prefix paths of p, “{(fcam: 2), (cb: 1)}”, form p’s subpatternbase,

which is called p’s conditional pattern-base (i.e., the subpattern-base under

the condition of p’s existence). Construction of an FP-tree on this conditional

pattern-base (which is called p’s conditional FP-tree) leads to only one branch

(c: 3) as shown in Table 2. Hence, only one frequent pattern (cp: 3) is derived.

(Notice that a pattern is an itemset and is denoted by a string here.) The search

for frequent patterns associated with p terminates.

23

 Now, let us turn to patterns having item m but no item p. Immediately, we

identify frequent pattern (m: 3). By following m’s node-links, two paths in FP-

tree, (f: 4; c: 3; a: 3;m: 2) and (f: 4, c: 3, a: 3, b: 1, m: 1) are found. Notice p

appears together with m as well, however, there is no need to include p here in the

analysis since any frequent patterns involving p has been analyzed in the previous

examination of patterns having item p. Similar to the above analysis, m’s

conditional pattern-base is {(fca: 2), (fcab: 1)}. Constructing an FP-tree on it, we

derive m’s conditional FP-tree, (f: 3; c: 3; a: 3), a single frequent pattern path, as

shown in above Figure 3. This conditional FP-tree is then mined recursively by

calling mine ((f: 3; c: 3; a: 3)|m)as shown in Table 2.

 Figure 3 shows that “mine((f: 3; c: 3; a: 3)|m)” involves mining three items

(a), (c), (f) in sequence. The first derives a frequent pattern (am: 3), a

conditional pattern-base {(fc: 3)}, and then a call “mine((f: 3; c: 3)|am)”;

second derives a frequent pattern (cm: 3), a conditional pattern-base {(f: 3)},

and then a call “mine((f: 3)|cm)”; and third derives only a frequent pattern (fm:

3). Further recursive call of “mine((f: 3; c: 3)|am)” derives (cam: 3), (fam: 3),

a conditional pattern-base {(f: 3)}, and then a call “mine((f: 3)|cam)”, which

derives the longest pattern (fcam: 3). Similarly, call of “mine((f: 3)|cm)”,

derives one pattern (fcm: 3). Therefore, whole set of frequent patterns

involving m is ((m: 3), (am: 3), (cm: 3), (fm: 3), (cam: 3), (fam: 3), (fcam: 3),

Figure 3 FP- Growth Approach

24

(fcm: 3)). This indicates a single path FP-tree can be mined by outputting all

the combinations of items in path.

 Similarly, we can mine patterns containing item b but no m nor p. Node b

derives (b:3) and has three paths: (f: 4; c: 3; a: 3; b: 1), (f: 4; b: 1), and (c: 1;

b: 10. Since b’s conditional pattern-base [(fca: 1), (f: 1), (c: 1)} generates no

frequent item, the mining for b terminates.

 For patterns having item a but no b, m nor p, node a derives one frequent

pattern {(a: 3)} and one subpattern base {(fc: 3)}, a single-path conditional FP-

tree. Thus, its set of frequent patterns can be generated by taking their

combinations. Concatenating them with (a: 3), we have {(fa: 3), (ca: 3), (fca:

3)}.

 Now, it is the turn to mine patterns having item c but no a, b, m nor p. Node c

derives (c: 4) and one subpattern-base {(f: 3)}, and set of frequent patterns

associated with (c: 3) is {(fc: 3)}.

 The last subset, i.e., pattern having item f but no any other items, is f itself and

(f: 4) should be output. No conditional pattern-base need to be constructed as

shown in last row of Table 2.

25

Table 2 :Conditional FP-Tree

Item Conditional pattern-base Conditional FP-tree

p {(fcam: 2), (cb: 1)} {(c: 3)}�p

m {(fca: 2), (fcab: 1)} {(f: 3, c:3,a: 3)}�m

b {(fca: 1), (f: 1), (c: 1)} �

a {(fc: 3)} {(f: 3,c: 3)}�a

c {(f: 3)} {(f: 3)}�c

f � �

From above Table 2 we generate following frequent patterns:

 Table 3: Frequent pattern Generation

Items Frequent Patterns Generated

P {p c: 3}

M {m f: 3, m c: 3, m a: 3, m f c: 3, m f a: 3, m c a: 3,

m f c a: 3}

A {a f: 3, a c: 3, a fc: 3}

C {c f: 3}

Hence Frequent Patterns are successfully generated using FP-Tree based mining

approach.

26

CHAPTER 4

Graph Based Approach

27

Chapter Four: Graph Based Approach

4.1 Introduction

The data mining is considered to be one of the promising field of Computer

Science. Researches are based on its applications such as bioinformatics, web-usage

mining, text and image recognition, remote sensing and biometric. Discovering

association rules from database has been considered as one of difficult task. A key

component of association rule mining is to find all frequent itemsets. The industries,

which work on huge voluminous data needs to extract association relationship for

improving their business and decision making aspect.

Most of the previous work has been focused on mining patterns at a single

concept level. Many applications at multiple levels of abstractions require that mining

be performed at multiple levels of abstraction. For example, besides finding 80% of

customer that purchase computer may also purchase printer, it is interesting to allow

to users to “drill-down” and so that 75% of people buy color printer if they buy

desktop computer. The latter statement carries more specific and concrete information

than the former. Therefore, a data mining system should provide efficient method for

mining multiple-level interesting patterns.

4.2 Concept of Multilevel Pattern

The approach used for mining multilevel frequent pattern in our project is

based on concept taxonomy or concept hierarchy. A concept hierarchy is defined as

sequence of mapping from a set of low-level concept to higher-level, more general

concept. For example we consider a concept hierarchy of computer items for the sales

which is shown in Figure 5. It has four levels denoted with 0,1,2,3, level 0 for

computer items i.e. most general abstraction level, level 1 includes Desktop computer,

printer and other peripherals, level 2 includes Pentium Desktop computer, Celeron

Desktop computer, Impact Printer etc. and level 3 includes HCL Pentium Desktop

computer, WIPRO Impact Printer etc.

In concept hierarchy as shown in Figure 4 higher level shows more general

information than the lower level i.e. lower level contains most specific information. In

28

Computer Items concept hierarchy Celeron desktop computer is more specific

information than the Desktop computer, similarly HCL Celeron Desktop computer is

more specific information than Celeron Desktop computer or Desktop Computer.

Based on the definition, the idea of mining multiple-level frequent patterns is

illustrated below:

The taxonomy information is provided in Figure 5. Let category of items (such as

“Printer”) represents the first-level concept, type (such as “Impact”) for the second

level one, and brand (such as “WIPRO”) for the third level one. Using this

taxonomy we can easily determine multilevel frequent patterns from

transaction dataset. The frequent pattern mining process first discover frequent

pattern at top-most level. Suppose frequent 1-itemsets are {Desktop

computer}, {Printer}, similarly frequent 2-itemset is {Desktop computer,

Printer} etc at level 1.

According to the definition of multilevel association rules, only the

descendants of the frequent item at level-1 are considered as candidate in level-

2 frequent 1-itemsets. Suppose {Other Peripherals} is a infrequent at level-1

than its descendants i.e. {mouse} etc will be not considered at level-2. Let the

{Pentium Desktop computer},{Impact Printer},{Non Impact Printer}are

frequent 1-itemsets, { Pentium Desktop computer , Impact Printer },{ Pentium

Desktop computer, Non Impact Printer} are the frequent 2-itemsets etc.

 Computer Items

Other Peripherals Desktop Computer Printer

Pentium Celeron Impact Non Impact Mouse

HCL DELL
WIPRO

INTEX

Figure 4 Concept hierarchy (taxonomy)

29

Similarly at level-3 the frequent 1-itemsets are the {HCL Pentium

Desktop computer}, {WIPRO Impact Printer}, {DELL Pentium Desktop

computer} and frequent 2-itemsets are {HCL Pentium Desktop computer,

WIPRO Impact Printer}, {DELL Pentium Desktop computer, WIPRO Impact

Printer} etc.

The process mining frequent patterns at multiple concept level starts

from top level and from next level, onwards the process repeats at even lower

concept level until no large patterns can be found.

4.3 Encoded Transaction Table

Now suppose we have the original transactional datasets as shown in Table 4:

Transactional Dataset D of Computer Items for the sales. Following table shows

the items purchased for each transaction.

Table 4: Transactional Dataset D

TID Items

T1 WIPRO Impact Printer, DELL Pentium

Desktop Computer

T2 HP Non Impact Printer, Intel Mouse

T3 HCL Pentium Desktop Computer, HP Non

Impact Printer

…. . ……….., …………………,………….,

Now we use an encoded transaction table instead of the original transaction

table shown in Table 4: Transactional Dataset D .First we encode the original

transaction table into encoded transaction.

30

with the help of concept taxonomy Figure 4.

 As stated above, the taxonomy information for each (grouped) item in Figure 4 is

encoded as a sequence of digits in the transaction Table 5 : Encoded transaction table

T[1] For example, the item ‘HCL Pentium Desktop Computer’ is encoded as ‘311’ in

which the digit, ‘3’, represents ‘Desktop Computer’ at level-1, the second digit, ‘1’,

for ‘Pentium’ at level-2, and the third, ‘1’, for the company ‘HCL’ at level-3. Similar

to [4], repeated items (i.e., items with the same encoding) at any level will be treated

as one item in one transaction.

Table 5 : Encoded transaction table T[1]

TID Items

T1

T2

T3

T4

T5

T6

T7

T8

{311, 321, 411, 421}

{311, 411, 422, 523}

{312, 322, 421, 611}

{311, 321}

{311, 322, 411, 421, 613}

{313, 523, 824}

{331, 431}

{523, 611, 713, 824}

4.4 Graph Based Algorithm

The unique feature of graph based algorithm is that it scans the entire database only

once, during scanning the database it creates the directed graph, which is stored in

memory in form of an Adjacency Matrix. The each vertex of graph represents to item

of datasets and weight of each edge represent the occurrence of itemsets that means

weight of edge between two vertices shows support of candidate 2-itemsets. The

weight of vertex shows support of single itemsets (vertex). If any vertex has weight

31

less than the user define support then this vertex is deleted from the graph i.e. it is not

participating for finding large frequent patterns. For mining large k-itemsets (k >=3)

this algorithm uses relationship of vertices in a graph. This algorithm avoids the

costly candidate generation process because large frequent patterns finding by logical

AND operation between each row element of Adjacency matrix.

4.5 Working of Graph Based Approach

To explain the working of this approach, we use the encoded transaction Table 5 :

Encoded transaction table T[1], which contains 8 transactions with itemsets I = {311,

312, 313, 321, 322, 331, 411, 421, 422, 431, 523, 611, 613, 713, 824}. Each item

encoded into three digits. First higher most significant digit represents to a item at

first level (higher level) i.e. 3**, 4** etc., first two higher most significant digits

represents to a item at second level (subsequent lower level) i.e. 31*, 41* etc.,

similarly all three digits of a item represents to a item at lower level i.e. 311, 411 etc.

Now here we will apply this graph based approach at the first level and suppose

min_sup= 4 for this level.

In first step, it will scan the database i.e. transaction Table 5 : Encoded transaction

table T[1] and create the directed graph G , which is shown in Figure 5. The items are

stored in database in lexicograpgical order and thus a directed edge in between two

vertices will be made in some spacial form. For example, if there is edge A B i.e.

in database transactions, occurrence of A will always preceed B and if A and B are

numreic number then, always, A < B . The edge (B , A) is assumed to be same as (A ,

B). Thus we get symmetric matrix (only upper triagular matrix).

The directed graph G Figure 5 stored in memroy in form of an adjacency matrix A

Figure 7. The diagonal element of the matrix shows the occurrence of 1-itemsets and

rest of elements shows occurrence of 2-itemsets.

32

Figure 5 Directed Graph G for transaction Table 5

In second step, it checks count value of each element of the matrix A , if any diagonal

element (for i j) m in _ su pijA co u n t then, delete row and column of

corresponding element from the matrix. Because, the super set of any infrequent

itemset will never be frequent. Those elements for which i j , m in _ su pijA co u n t ,

assign zero value for them i.e. 0ijA count . After completion of second step we will

gate filtered adjacency matrix.

 ** ** ** *** * * *
3 4 5 6 7 8

88

7877

686766

58575655

464544

3836353433

**

**

**

**

**

**

8
7
6
5
4
3

A
AA
AAA
AAAA

AAA
AAAAA

A

Figure 6Adjacency Matrix of Directed Graph G

In third step, we find all frequent patterns. All diagonal elements of filtered

adjacency matrix show frequent 1-itemsets, and except diagonal element other

element of adjaccy matrix (for which 0count) shows frequent 2-itemsets. For

extracting frequent k-itemsets(k >2), apply logical AND operation in between each

row elements of the filtered adjacency matrix.

33

Finally following frequent iteemsets will be generated from filtered adjacency matrix

at concept level first.

Table:6 Level -1, minsup=4

Similarly for getting frequent patterns from second, third and other lower

levels, same procedure will followed as level first, i.e. at each concept level this

approach scan datasets once and create a directed graph in the form of adjacency

matrix, and generate all frequent patterns from given adjacency matrix. At each level

we have used filtered transaction table e.g. for level-2, generate filtered transaction

table T [2] by removing item which is infrequent and also removing the transaction in

T [1] which contain only infrequent items.

Table 7 Filtered transaction table T [2]

TID Items

T1

T2

T3

T4

T5

T6

{311, 321, 411, 421 }

{311, 411, 422 }

{312, 322, 421}

{311, 321 }

{311, 322, 411, 421}

{313}

Large 1-

itemsets

Itemset Support

{3**}

{4**}
7
5

Large 2-

itemsets
{3**, 4**} 4

34

T7 {331, 431}

 The all possible frequent patterns mined from filtered transaction table T [2] at level
second and level third (used T [3] which is generated by T [2]) are given in Table 8
and

35

Table 9 respectively.

Table 8 LEVEL-2 minsup=3

Large 1-itemsets Itemset Support

{31*}

{32*}

{41*}

{42*}

6

4

3

4

Large 2-itemsets

{31*, 32*}

{31*, 41*}

{31*, 42*}

{32*, 42*}

{41*, 42*}

4

3

4

3

3

Large 3-itemsets {31*, 32*,

42*}

4

36

Table 9 Level-3 minsup = 3

Large 1-itemsets Itemset Support

{311}
{411}
{421}

4
4
3

Large 2-itemsets

{311, 411}

3

37

CHAPTER 5

Implementation Details and Results

38

Chapter Five: Implementation Details and Results

5.1 Implementation Details
 Development Language – Java

 Development Platform – Windows

 Test Framework – Java

 H/w & S/w Platform – Any on which Java Virtual Machine is supported

39

5.1 RESULTS

5.1.1 Sample Dataset

40

5.2 OUTPUT

5.2.1 Screenshots

Figure 7 FP Tree Generation

41

Contd..

42

Figure 8 Prefix Subtree

43

Figure 9 Generation of Association Rules

44

5.3 Graph Based Approach

Figure 10 Multilevel Pattern Mining

45

Figure 11 Filtered dataset

46

Figure 12 Filtered Dataset

47

Figure 13 Frequent Itemsets

48

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

49

Chapter Six: Conclusion and Future scope

From our research work and study it can be concluded that the recurrent

pattern mining at multiple levels has major advantages over other single level frequent

pattern mining approach. It carries more specific and concrete information than single

level frequent pattern mining approach. We can obtain information at different

hierarchal levels. The number of database scans for the candidate generation

algorithm - Apriori algorithm increases with the dimension of the candidate itemsets,

while the FP-growth algorithm needs at most two scans of database.

Thus, candidate generating algorithms like Apriori behave well only for small

databases with a large support factor (at least 30%). In other cases the algorithms

without candidate generation FP-growth behave much better and is memory saving

also as compared to Apriori. Also with study of customer purchasing pattern at

various abstract levels, it is easy for business people to target the customers with the

most demanding products in a more efficient and lucrative way. This would not only

result in more profits but would cut the customer churn to a great extent which would

help in retention of the existing customers.

For future work, we would propose to incorporate other mining techniques to

find find multilevel changes by monitoring data over time through association rules.

For example for census data, we may obtain associations which can help us figure out

reasons why population in a certain age group say 60-70 is decreasing, why average

income trends are shifting above 50000 per month etc. Moreover, qualitative

assessment of data changes could also be studied.

50

REFERENCES

51

REFERENCES

Agrawal, R., Imieliński,T., & Swami, A. (1993, June). Mining association rules

between sets of items in large databases. In ACM SIGMOD Record (Vol. 22,
No. 2, pp. 207-216). ACM

Agrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association
rules. In Proc. 20th int. conf. very large data bases, VLDB (Vol. 1215, pp.
487-499).

Park, J. S., Chen, M. S., & Yu, P. S. (1995). An effective hash-based algorithm for
mining association rules (Vol. 24, No. 2, pp. 175-186).

Borgelt, C. (2003, November). Efficient implementations of apriori and eclat. In
FIMI’03: Proceedings of the IEEE ICDM workshop on frequent itemset
mining implementations.

Wang, J., Han, J., & Pei, J. (2003, August). Closet+: Searching for the best strategies
for mining frequent closed itemsets. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data mining
(pp. 236-245).

Han,J, Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data mining and knowledge
discovery, 8(1), 53-87.

Chi, Y., Wang, H., Yu, P. S., & Muntz, R. R. (2004, November). Moment:
Maintaining closed frequent itemsets over a stream sliding window. In Data
Mining, 2004. ICDM'04. Fourth IEEE International Conference on (pp. 59-
66). IEEE.

 Han,J, Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data mining and knowledge
discovery, 8(1), 53-87.

 Borgelt, C. (2005, August). Keeping things simple: Finding frequent item sets by
recursive elimination. In Proceedings of the 1st international workshop on
open source data mining: frequent pattern mining implementations (pp. 66-
70). ACM. He, Z., Xu, X., Huang, Z. J., & Deng, S. (2005).

Fp-outlier: frequent pattern based outlier detection. Computer Science and
Information Systems/ComSIS, 2(1), 103-118.

Kotsiantis, S., & Kanellopoulos, D. (2006). Association rules mining: A recent
overview. GESTS International Transactions on Computer Science and
Engineering, 32(1), 71-82.

Han, J., & Kamber, M. (2006). Data Mining, Southeast Asia Edition: Concepts and
Techniques. Morgan Kaufmann

Thakur, R. S., Jain, R. C., & Pardasani, K. R. (2007). Fast Algorithm for Mining
Multi-Level Association Rules in Large Databases. Asian Journal of
Information Management, 1(1).

Wu, S. T. (2007). Knowledge discovery using pattern taxonomy model in text mining.
Liming, W., & Hui, Z. (2007). Algorithms of Mining Global Maximum Frequent

Itemsets Based on FP-Tree [J]. Journal of Computer Research and
Development, 3, 011.

52

Peng, Y., Kou, G., Shi, Y., & Chen, Z. (2008). A descriptive framework for the field
of data mining and knowledge discovery. International Journal of Information
Technology & Decision Making, 7(04), 639-682.

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., & Steinberg, D.
(2008). Top 10 algorithms in data mining. Knowledge and Information
Systems, 14(1), 1-37

Aggarwal, C. C., Li, Y., Wang, J., & Wang, J. (2009, June). Frequent pattern mining
with uncertain data. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 29-38). ACM

Li, H. F., & Lee, S. Y. (2009). Mining frequent itemsets over data streams using
efficient window sliding techniques. Expert Systems with Applications, 36(2),
1466-1477.

Tsai, P. S. (2009). Mining frequent itemsets in data streams using the weighted sliding
window model. Expert Systems with Applications, 36(9), 11617-11625

Novak, P. K., Lavrač, N., & Webb, G. I. (2009). Supervised descriptive rule
discovery: A unifying survey of contrast set, emerging pattern and subgroup
mining. The Journal of Machine Learning Research, 10, 377-403.

Loekito, E., Bailey, J., & Pei, J. (2010). A binary decision diagram based approach for
mining frequent subsequences. Knowledge and Information Systems, 24(2),
235-268.

Gaber, M. M., Zaslavsky, A., & Krishnaswamy, S. (2010). Data stream mining. In
Data Mining and Knowledge Discovery Handbook (pp. 759-787). Springer
US.

Shih, M. J., Liu, D. R., & Hsu, M. L. (2010). Discovering competitive intelligence by
mining changes in patent trends. Expert Systems with Applications, 37(4),
2882-2890.

Ng, W., & Dash, M. (2010). Discovery of frequent patterns in transactional data
streams. In Transactions on large-scale data-and knowledge-centered systems
II (pp. 1-30). Springer Berlin Heidelberg

Lin, W. Y., Wei, Y. E., & Chen, C. H. (2011). A generic approach for mining indirect
association rules in data streams. In Modern Approaches in Applied
Intelligence (pp. 95-104). Springer Berlin Heidelberg.

Liu, H., Lin, Y., & Han, J. (2011). Methods for mining frequent items in data streams:
an overview. Knowledge and information systems, 26(1), 1-30.

Papageorgiou, E. I. (2011). A new methodology for decisions in medical informatics
using fuzzy cognitive maps based on fuzzy rule-extraction techniques. Applied
Soft Computing, 11(1), 500-513.

Kuo, R. J., Chao, C. M., & Chiu, Y. T. (2011). Application of particle swarm
optimization to association rule mining. Applied Soft Computing, 11(1), 326-
336.

Chen, J., Lin, G., & Yang, Z. (2011, June). Extracting spatial association rules from
the maximum frequent itemsets based on Boolean matrix. In Geoinformatics,
2011 19th International Conference on (pp. 1-5). IEEE

 Bifet, A., Holmes, G., Pfahringer, B., & Gavaldà, R. (2011, August). Mining frequent
closed graphs on evolving data streams. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining
(pp. 591-599). ACM.

53

Gu, T., Wang, L., Wu, Z., Tao, X., & Lu, J. (2011). A pattern mining approach to
sensor-based human activity recognition. Knowledge and Data Engineering,
IEEE Transactions on, 23(9), 1359-1372.

Deypir, M., & Sadreddini, M. H. (2012). A dynamic layout of sliding window for
frequent itemset mining over data streams. Journal of Systems and Software,
85(3), 746-75 Li, Y.,

Chen, M., Li, Q., & Zhang, W. (2012). Enabling multilevel trust in privacy preserving
data mining. Knowledge and Data Engineering, IEEE Transactions on, 24(9),
1598-1612.

Colantonio, A., Di Pietro, R., Ocello, A., & Verde, N. V. (2012). Visual role mining:
A picture is worth a thousand roles. Knowledge and Data Engineering, IEEE
Transactions on, 24(6), 1120-1133.

Deypir, M., Sadreddini, M. H., & Hashemi, S. (2012). Towards a variable size sliding
window model for frequent itemset mining over data streams. Computers &
Industrial Engineering, 63(1), 161-172.

Nebot, V., & Berlanga, R. (2012). Finding association rules in semantic web data.
Knowledge-Based Systems, 25(1), 51-62.

Chen, H., Shu, L., Xia, J., & Deng, Q. (2012). Mining frequent patterns in a varying-
size sliding window of online transactional data streams. Information
Sciences, 215, 15-36.

Sethi, N., & Sharma, P. (2013). Mining Frequent Pattern from Large Dynamic
Database Using Compacting Data Sets. International Journal of Scientific
Research in Computer Science and Engineering, 1.

Quadrana, M., Bifet, A., & Gavalda, R. (2013, October). An Efficient Closed
Frequent Itemset Miner for the MOA Stream Mining System. In Artificial
Intelligence Research and Development: Proceedings of the 16th International
Conference of the Catalan Association for Artificial Intelligence (Vol. 256, p.
203). IOS Press.

Rao, C. S., Giri, D. R., Shankar, R. S., & Kumar, S. P. (2013). Index Support for Item
Set Mining-A Case Study. Indian Journal of Advances in Computer &
Information Engineering, 1(1), 37-42.

Leung, C. K. S., & Hayduk, Y. (2013, January). Mining frequent patterns from
uncertain data with mapReduce for big data analytics. In Database Systems for
Advanced Applications (pp. 440-455). Springer Berlin Heidelberg.

Mining N-most Interesting Multi-level Frequent Itemsets without Support Threshold.
In Recent Advances in Information and Communication Technology (pp. 125-
134). Springer International Publishing.

Pyun, G., Yun, U., & Ryu, K. H. (2014). Efficient frequent pattern mining based on
linear prefix tree. Knowledge-Based Systems, 55, 125-139.

Masciari, E., Shi, G., & Zaniolo, C. (2014). Trajectory Data Pattern Mining. In New
Frontiers in Mining Complex Patterns (pp. 51-66). Springer International
Publishing.

Slimani, T., & Lazzez, A. (2014). Efficient Analysis of Pattern and Association Rule
Mining Approaches. arXiv preprint arXiv:1402.2892. Chompaisal, S.,
Amphawan, K., & Surarerks, A. (2014).

