The Major Project on

"COMPARATIVE STUDY OF STABILIZATION OF EXPANSIVE SOIL USING JUTE FIBRE AND POLYPROPYLENE FIBRE"

Submitted in Partial Fulfillment for the Award of the Degree of

MASTER OF TECHNOLOGY

IN

CIVIL ENGINEERING

With Specialization in

GEOTECHNICAL ENGINEERING

By

DEEPAK DHIMAN

(Roll No. 2K12/GTE/05)

Under The Guidance of

DR. RAJU SARKAR

Department of Civil Engineering Delhi Technological University, Delhi 2014

DELHI TECHNOLOGICAL UNIVERSITY

CERTIFICATE

This is to certify that the project report entitled "COMPARATIVE STUDY OF STABILIZATION OF EXPANSIVE SOIL USING JUTE FIBRE AND POLYPROPYLENE FIBRE" is a bonafide record of work carried out by Deepak Dhiman (2K12/GTE/05) under my guidance and supervision, during the session 2014 in partial fulfillment of the requirement for the degree of Master of Technology (Geotechnical Engineering) from Delhi Technological University, Delhi.

This is to certify that the above statement made by candidate is correct to the best of my knowledge...

DR. RAJU SARKAR

(Asst. Professor) Department of Civil Engineering Delhi Technological University Delhi-110042

DELHI TECHNOLOGICAL UNIVERSITY

DECLARATION

I Deepak Dhiman hereby certify that the work which is presented in the Major Project entitled "COMPARATIVE STUDY OF STABILIZATION OF EXPANSIVE SOIL USING JUTE FIBRE AND POLYPROPYLENE FIBRE" is submitted in the partial fulfillment of the requirement for the award of degree of "MASTER OF TECHNOLOGY" with specialization in "GEOTECHNICAL ENGINEERING" at Delhi Technological University is an authentic record of my own work carried under the Supervision of **Dr. Raju Sarkar**. I have not submitted the matter embodied in this major project for the award of any degree or diploma also it has not been directly copied from any source without giving its proper reference.

DEEPAK DHIMAN

ACKNOWLEDGEMENT

I would like to express my deepest sense of gratitude and indebtedness to **Assistant Prof. Dr. Raju Sarkar**. For his gaudiness and Consistent encouragement and support during the course of my work in the last two year. I truly appreciate and value his esteemed gaudiness and encouragement from the beginning to the end of the thesis, his knowledge and company at the time of cries remembered lifelong.

I sincerely thank to our **Prof. A Trivedi**, Present Head of the Civil Engineering Department, for their maintained academic curriculum and providing necessary facility for my work. I am also thankful to **Prof. A.K. Gupta**, Former Head of Civil Engineering Department, **Prof. A.K Sahu**, Associate Professor in Civil Engineering Department as a Co-ordinator and advisor, **Dr. Amit Shrivastav**, Associate Prof.in Civil Engineering Department and all professor of the Civil Engineering Department, especially of Geotechnical engineering group who have directly or indirectly helped me during the project

I am also thankful to all the staff member of Geotechnical Engineering Laboratory, Transportation Laboratory and Nano Tech. Laboratory for their assistance and Co-operation during the course of experimentation

I also thank all my batch mates specially **Rohit Ralli** who have directly or indirectly helped me in my project work and shared the moments of joy and sorrow throughout the period of my project work.

Finally yet importantly, I would like thank my Parents, gaudiness, brothers and sisters, who taught me the value of hard work by their own example. I would like to share this moment of happiness with my parents. They rendered me enormous support and blessing during whole tenure of my stay in the Delhi Technological University.

At last but not the least, I thank to all those who directly or indirectly help me for the completion of project.

ABSTRACT

Expansive soil are considered to be unsafe with reference to safety of the structure in serviceability aspects, and needs to be tackled in a well engineered manner, if it should be used as a foundation soil. Several ground stabilization techniques are used to enhance the property of expansive soil, such as lime and cement stabilization. In this report the Jute fibre and polypropylene fibre are used to enhance the engineering properties of the soil. The main goal of this study is to understand the effectiveness of Jute fibre and polypropylene fibre when it is reinforced with soil in different proportions. The effect of fibre reinforcement with expansive soil was observed by a series of laboratory test such as index property test, compaction test, unconfined compression test, CBR test, free swell index test, Brazilian test (Indirect tensile test), scanning electron microscope test. All the test result shows that there is an improvement of soil when it is reinforced with jute fibre and polypropylene fibre and in this report on the basis of engineering property of soil a comparative study was done with Jute fibre and polypropylene fibre.

LIST OF FIGURES

Figure No	Name of the figure	Page No
1	Expansive soil at site	2
2	Jute Fibre	3
3	Polypropylene Fibre	4
4	Fibre mix in Expansive Soil	17
5	Plasticity Chart(IS:1428-1970)	21
6	Plasticity Chart	28
7	Particle Size Distribution	29
8	Arrangement of sieve	29
9	Variation of Water Content with No of Blows of soil	30
10	Free Swell Index of Soil	31
11	Electronic Dispersive Spectrum of Soil	32
12	Coating Apparatus at Nano. Tech. Lab	33
13	Installation of Sample	33
14	SEM Apparatus in our Nano Lab	34
15	Expansive Soil at 10.0um Scale	35
16	Expansive Soil at 20.0um Scale	35
17	Jute Fibre at 50.0um Scale	36
18	Jute Fibre at 100um Scale	36
19	Polypropylene Fibre at 100um Scale	37
20	Polypropylene Fibre at 300um Scale	37
21	Variation of Dry density with water content of soil	38
22	Variation of Compressive strength with Axial strain of soil at different days of curing	39
23	Variation of Load with Penetration of Soil	40
24	Testing of sample	40
25	Penetration depth in sample	40
26	Variation of Shearing Stress with Horizontal Displacement of Soil at different normal stress	41
27	Variation of Shearing Stress with Normal Stress of Soil	42
28	Variation of Dry density with water content of soil reinforced with different percentage of Jute Fibre	43

29	Variation of OMC with Jute Fibre in different Percentage	44
30	Variation of MDD with Jute Fibre in Different Percentage	45
31	Variation of Compressive Strength with Axial Strain of soil	45
	reinforced with jute Fibre in different Percentage at 1 Day	
	Curing Period	
32	Variation of Compressive Strength with Axial Strain of soil	46
	reinforced with Jute Fibre in different Percentage at 7 Days	
	Curing Period	
33	Variation of Compressive Strength with Axial Strain of soil	47
	reinforced with Jute Fibre in different Percentage at 14 Days	
	Curing Period	
34	Variation of UCS with different Percentage of Jute Fibre	47
35	Variation of Load with Penetration of soil reinforced with	50
	different Percentage of Jute Fibre	
36	Variation of CBR with Jute Fibre in Different Percentage	51
37	Variation of Free Swell index with Jute Fibre in different	52
	Percentage	
38	Variation of tensile strength with Jute Fibre reinforced in soil at	54
	different days of curing	
39	Variation of Shearing stress with horizontal displacement of Soil	56
	reinforced with Jute Fibre at Normal Stress 50KN/m ²	
40	Variation of Shearing stress with horizontal displacement of Soil	57
	reinforced with Jute Fibre at Normal Stress 100KN/m ²	
41	Variation of Shearing stress with horizontal displacement of Soil	58
	reinforced with Jute Fibre at Normal Stress 150KN/m ²	
42	Variation of Shearing Stress with Horizontal displacement of soil	59
	reinforced with 0.25% Jute fibre at different Normal stress	
43	Variation of Shearing Stress with Horizontal displacement of soil	59
	reinforced with 0.50% Jute fibre at different Normal stress	
44	Variation of Shearing Stress with Horizontal displacement of soil	60
	reinforced with 0.75% Jute fibre at different Normal stress	
45	Variation of Shearing Stress with Horizontal displacement of soil	61

	reinforced with 1% Jute fibre at different Normal stress	
46	Variation of Shearing Stress with Horizontal displacement of soil	61
	reinforced with 1.25% Jute fibre at different Normal stress	
47	Variation of Shearing Stress with Horizontal displacement of soil	62
	reinforced with 1.50% Jute fibre at different Normal stress	
48	Variation of Shearing Stress with Normal Stress of soil	64
	reinforced with Jute Fibre in different Percentage	
49	Variation of Cohesion with Jute Fibre in different Percentage	65
50	Variation of Angle of Internal Friction with Jute Fibre in	65
	different Percentage	
51	Variation of Dry density with water content of soil reinforced	66
	with different percentage of Polypropylene Fibre	
52	Variation of OMC with Polypropylene Fibre in different	67
	Percentage	
53	Variation of MDD with Polypropylene Fibre in Different	68
	Percentage	
54	Variation of Compressive Strength with Axial Strain of soil	69
	reinforced with Polypropylene Fibre in different Percentage at 1	
	Day Curing Period	
55	Variation of Compressive Strength with Axial Strain of soil	70
	reinforced with Polypropylene Fibre in different Percentage at 7	
	Day Curing Period	
56	Variation of Compressive Strength with Axial Strain of soil	71
	reinforced with Polypropylene Fibre in different Percentage at 14	
	Days Curing Period	
57	Variation of UCS with different Percentage of Polypropylene	71
58	Fibre Sample Prepared in Lab	72
59	Installation of Sample	72
60	Testing of Sample in Lab	72
61		72
62	Failure of Sample Variation of Load with Penetration of soil reinforced with	72
02		15
	different Percentage of Polypropylene Fibre	

63	Soil Fibre Interaction	75
64	Variation of CBR with Polypropylene Fibre in Different	76
	Percentage	
65	Variation of Free Swell index with Polypropylene Fibre in different Percentage	77
66	Variation of tensile strength with Polypropylene Fibre reinforced	79
	in soil at different days of curing	
67	Placing of Sample in Rock Lab	80
68	Failure of Sample at 7 days curing	80
69	Complete Failure at 14 days	80
70	Pressing of Sample	80
71	Variation of Shearing stress with horizontal displacement of Soil	82
	reinforced with Polypropylene Fibre at Normal Stress 50KN/m ²	
72	Variation of Shearing stress with horizontal displacement of Soil	83
	reinforced with Polypropylene Fibre at Normal Stress 100KN/m ²	
73	Variation of Shearing stress with horizontal displacement of Soil	84
	reinforced with Polypropylene Fibre at Normal Stress 150KN/m ²	
74	Variation of Shearing Stress with Horizontal displacement of soil	85
	reinforced with 0.25% Polypropylene fibre at different Normal	
	stress	
75	Variation of Shearing Stress with Horizontal displacement of soil	85
	reinforced with 0.50% Polypropylene fibre at different Normal	
	stress	
76	Variation of Shearing Stress with Horizontal displacement of soil	86
	reinforced with 0.75% Polypropylene fibre at different Normal	
	stress	
77	Variation of Shearing Stress with Horizontal displacement of soil	87
	reinforced with 1.00% Polypropylene fibre at different Normal	
	stress	
78	Variation of Shearing Stress with Horizontal displacement of soil	88
	reinforced with 1.25% Polypropylene fibre at different Normal	
	stress	
79	Variation of Shearing Stress with Horizontal displacement of soil	89

	reinforced with 1.50% Polypropylene fibre at different Normal	
	stress	
80	Sample in Direct Shear Box	90
81	Failure of Sample at 5KN/m ²	90
82	Failure of Sample at 10KN/m ²	91
83	Variation of Shearing Stress with Normal Stress of soil	91
	reinforced with polypropylene Fibre in different Percentage	
84	Variation of Cohesion with Polypropylene Fibre in different Percentage	92
85	Variation of Angle of Internal friction with Polypropylene Fibre	93
	in different Percentage	
86	Variation of OMC with Fibres in different Percentage	94
87	Variation of MDD with Fibres in different Percentage	94
88	Variation of Unconfined Compressive Strength with Fibres in	95
	different Percentage at 1 Day curing period	
89	Variation of Unconfined Compressive Strength with Fibres in	95
	different Percentage at 7 Days curing period	
90	Variation of Unconfined Compressive Strength with Fibers in	96
	different Percentage at 14 Days curing period	
91	Variation of CBR with Fibres in different Percentage	96
92	Variation of Free Swell Index with Fibres in different Percentage	97
93	Variation of Tensile Strength with Fibres in different Percentage	97
	at 7 Days curing period	
94	Variation of Tensile Strength with Fibres in different Percentage	98
	at 14Days curing period	
95	Variation of Cohesion with Fibres in different Percentage	98
96	Variation of Angle of Internal Friction with Fibres in different	99
	Percentage	

LIST OF TABLES

Table	Name of Table	Page
No		no
1	Physical Property of Jute Fibre	15
2	Physical Property of Polypropylene Fibre	16
3	Methodology used for stabilization of expansive soil using Jute and	17
	Polypropylene Fibre	
4	Range of Specific Gravity	19
5	Group Symbol in Plasticity Chart	20
6	Free Swell Index & Degree of Expansiveness	22
7	Standard Load for CBR Test	26
8	Mineralogical Characteristics	33
9	Shearing Stress & Normal Stress	42
10	Variation of MDD and OMC with Different Percentage of Jute Fibre Content	44
11	Unconfined Compressive Strength at Different % of Jute Fibre with different	48
	Curing Period	
12	CBR value at different % of Jute Fibre	51
13	Free Swell Index at different value of Jute Fibre	53
14	Tensile Strength of Soil Reinforced with Jute fibre at different curing period	55
15	Shearing Stress & Normal Stress at different Percentage of Jute Fibre	63
16	Equation of Line ,Slope & Intercept of Line are at different Percentage of	64
	Jute Fibre	
17	Variation of MDD and OMC with different Percentage of Polypropylene	67
	Fibre Content	
18	Unconfined Compressive Strength at different % of Polypropylene Fibre at	73
	different Curing Period	
19	CBR value at different % of Polypropylene Fibre	76
20	Free Swell Index at different Value of Polypropylene Fibre	78
21	Tensile Strength of Soil Reinforced with Polypropylene Fibre at different	81
	Curing Period	
22	Shearing Stress & Normal Stress at different Percentage of Polypropylene	89
	Fibre	

23	Equation of Line ,Slope & Intercept of Line are at different Percentage of	92
	Polypropylene Fibre	

LIST OF ABBREVIATION & SYMBOL

The principal symbol used in this thesis is presented for easy reference. A symbol is used for different meaning depending on the context and defined in the text as they occur.

S.No	Notation	Description
1	G	Specific gravity
2	LL	Liquid limit
3	PL	Plastic limit
4	PI	Plasticity index
5	С	Coefficient of curvature
6	С	Coefficient of uniformity
7	OMC	Optimum Moisture Content ,%
8	MDD	Maximum Dry Density, gm/cc
9	UCS	Unconfined Compressive strength,KN/m ²
10	CBR	California Bearing Ratio Test
11	DST	Direct Shear test
12	С	Unit Cohesion, KN/m ²
13	AR	Aspect Ratio
14	φ	Angle of Internal Friction
15	BCS	Expansive Soil
16	XRD	X-Ray Diffraction
17	SEM	Scanning Electron Microscope
18	M.C	Moisture Content
19	с	Intercept
20	M.C	Moisture Content

CONTENTS

	Page No.
Title	Ι
Certificate	II
Declaration	III
Acknowledgement	IV
Abstract	V
List of figures	VI-X
List of tables	XI-XII
Abbreviation &Symbol	XIII

Chapter-1

INTRODUCTION	1-6
1.1 Introduction	
1.2 Jute Fibre	
1.3 Polypropylene fibre	
1.4 Environmental Impact	
1.5 Need for Research	
1.6 Objective	
1.7 Scope of work	

Chapter-2

LITERATURE REVIEW

- 2.1 Introduction
- 2.2Jute fibre reinforced with Expansive Soil

7-14

2.3 Polypropylene fibre Reinforced with Expansive Soil

Chapter-3

EXPERIMENTAL INVESTIGATION

15-27

- 3.1Introduction
- 3.2 Material used
 - 3.2.1Expansive soil
 - 3.2.2Jute fibre
 - 3.2.3 Polypropylene fibre
- 3.3 Sample Preparation
- 3.4 Determination of Particle Size distribution
 - 3.4.1 Sieve analysis
 - 3.4.2 Hydrometer analysis
- 3.5 Determination of Index Property of soil
 - 3.5.1 Specific gravity
 - 3.5.2 Liquid Limit
 - 3.5.3 Plastic Limit
 - 3.5.4 Plasticity Index
 - 3.5.5 Free Swell Index
 - 3.5.6 Electronic Dispersive Spectrum (EDS)
 - 3.5.7 Scanning electron microscope
- 3.6 Determination of engineering property of the soil
 - 3.6.1 Proctor compaction test
 - 3.6.2Unconfined Compressive strength test
 - 3.6.3 California bearing ratio test
 - 3.6.4 Indirect tensile strength (Brazilian test)
 - 3.6.5 Direct shear test

Chapter-4

RESULT AND DISCUSSION

- 4.1 Physical property of the Expansive Soil
 - 4.1.1 Grain Size distribution
 - 4.1.2 Specific gravity
 - 4.1.3 Liquid Limit
 - 4.1.4 Plastic Limit
 - 4.1.5 Plasticity Index
 - 4.1.6 Free swell Index
 - 4.1.7 Electronic Dispersive Spectrum
 - 4.1.8 Scanning electron microscope
 - 4.1.9 Proctor Compaction test
 - 4.1.10 Unconfined compressive Strength
 - 4.1.11 California bearing ratio test
 - 4.1.12 Indirect tensile strength test
 - 4.1.13 Direct shear test
- 4.2 Soil Reinforced with Jute Fibre
 - 4.2.1 Proctor compaction test
 - 4.2.2 Unconfined compressive strength
 - 4.2.3 California bearing ratio test
 - 4.2.4 Free swell index
 - 4.2.5 Indirect tensile strength test
 - 4.2.6 Direct shear test
- 4.3 Soil reinforced with Polypropylene fibre
 - 4.3.1 Proctor Compaction test
 - 4.3.2 Unconfined compressive strength

- 4.3.3 California bearing ratio test
- 4.3.4 Free swell index
- 4.3.5 Indirect tensile strength
- 4.3.6 Direct shear test

Chapter-5

COMPARISON OF RESULT

- 5.1 Compaction test5.2 Unconfined compressive strength test5.3 California bearing ratio test5.4 Free swell index test
- 5.5 Tensile strength test
- 5.6 Direct Shear test

Chapter-6

CONCLUSION

- 6.1 Conclusion
- 6.2 Scope for future studies

REFERENCES

102

100-101

94-99