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ABSTRACT 
 

“LIGHTWEIGHT ENCRYPTION SCHEME FOR RFID” 

 

Due to the tight cost and constrained resources of high volume consumer devices such as 

RFID tags, smart cards and wireless sensor nodes, it is desirable to employ lightweight and 

specialized cryptographic primitives for many security applications. It is widely believed that 

there is a trade-off between speed and security in cryptosystem design. No existing 

encryption algorithms are both fast enough for high-speed operation and sufficiently secure to 

withstand powerful cryptanalysis. Our objective is to design the ciphers that are suitable for 

security in Radio Frequency Identification (RFID) and other security applications with 

demanding area restrictions. In this work, we propose and analyze a generic construction of 

high-speed encryption schemes. Our solution is based on the fact that there exist secure 

lightweight hybrid cipher i.e. Hummingbird, which is the mainly designed for resource 

constrained environment like RFID technology, wireless sensors and other smart devices. 

The consumption of power is less and encryption speed is faster in Hummingbird. It is 

resistant to most of the cryptanalytic attacks common to block ciphers and stream ciphers 

such as linear and differential cryptanalysis.  

 But to make the scheme more secure than the existing ones, we combine a secure hybrid 

cipher with a super-fast stream cipher such that the resulting encryption scheme is more 

secure than the existing ones and is faster too. In this encryption scheme, we are generating 

the keys using hybrid cipher Hummingbird, in such a way that the output of Hummingbird is 

used as a key for superfast stream cipher scheme to encrypt the text. 

In this thesis work, all architectures proposed, are simulated by means of MentorGraphics 

ModelSim tool in order to verify the correct designs and functionality. For the development 

(synthesis) Xilinx simulator tool is used. Specifically, a loop architecture has been used, 

where one basic round is used iteratively. The basic performance metrics are the area, power 

consumption associated with the implementation resulting throughput of each cipher. We 

have compared the results with the existing schemes. Hummingbird, AES and the variants of 

Hummingbird have been employed in the comparison. Furthermore, we also presented the 

software implementation of the scheme and compare the performance of the proposed 

scheme on both the platforms i.e. Hardware as well as the software platforms. 
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CHAPTER 1 

 INTRODUCTION 

 

 

1.1 Motivation 

Today’s technologies are advancing every second of the day. The world is getting more and 

more compact with the new inventions and discoveries. The first era of computing in 1960s 

saw large mainframe computers which were common in large industries and with the US 

military and space program. These were large, expensive, error-prone, and very hard to use 

machines. In this Mainframe Era, many persons interact with one computer. With the 

Technological Advancement, the Mainframes got converted into desktops in the second era, 

where one person interacts with one computer and then the third era of computing is known as 

“Ubiquitous Computing”, where one person can use many computers at a time. 

 Increasingly, everyday items are enhanced to pervasive devices by embedding computing 

capabilities, power and their interconnection leads to the concept of Ubiquitous computing 

which is widely believed to be the next paradigm in the Information technology.  

Ubiquitous computing is a post-desktop model of human-computer interaction in which the 

information processing has been thoroughly integrated into everyday objects and activities. 

The idea is that almost any device from clothing to tools to appliances to human body to cars 

to homes, can be embedded with chips to connect the device to the infinite network of other 

devices. People are demanding more and more from the technologies and the creator of these 

technologies never failed to please their necessities. 

Low cost devices such as RFIDs, Sensor Network Nodes, and smartcards are crucial for 

building the next generation pervasive and ubiquitous networks. Such networks are 

envisioned to be extended in functionality and reach with wireless sensor nodes, RFIDs, and 

smartcards. Lightweight devices like mobile, pagers, ipad, Radio Frequency Identification 
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(RFID) are becoming popular day by day. They are becoming essential part of life. These 

devices are hardly ever switched off, if it’s even possible to do so, and they are very closely 

connected to a specific person. People typically carry around multiple RFID tags (e.g. access 

cards, passport, product tags) .In general we can describe an RFID tag as a small, wireless 

device without any user interface. 

Despite the wide range of applications of pervasive computing devices, they feature two 

common functionalities: 

 the devices store a moderate amount of sensitive information (e.g. label of the 

node/product ID/name of person, or key information) and 

 the devices transmit data through wireless networks. 

It is required that sensitive information is stored and communicated securely over the 

network. Both operations require security features, such as confidentiality, authentication, 

integrity checks and privacy. However, smart devices have several limitations with regards to 

memory, resources and computation power, hindering the opportunity to apply well 

established standard cryptographic algorithms and techniques for authentication, 

confidentiality and data security issues which were originally designed to secure high-end 

systems with abundant power. Furthermore, the sharp increase in the number, diversity and 

strength of physical attacks which directly target the implementation, may have devastating 

consequences in a network setting, by creating a single point of failure.  

Now a days, most of the transactions are being done using these handheld devices. Hence, 

security in wireless sensor networks is currently almost exclusively achieved through 

Lightweight Cryptography. 

In this work, we have proposed a lightweight Encryption approach which is “As light as a 

feather, and as hard as dragon-scales“. A strong focus is put on lightweight Encryption 

scheme that require as few area (measured in Gate Equivalents (GE)) as possible, takes less 

power and provides desired level of security. 

A variety of implementation results both in software and hardware—using different design 

strategies and different platforms is presented. 
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1.2 Research Goals 

In this work, we tried to focus on the following challenges:- 

 Design, analysis and implementation of lightweight Encryption Scheme which is as 

fast as stream cipher and as secure as Block cipher. 

 Cryptographic hardware simulation using VHDL on Xilinx 6.1i for constrained 

domains 

 Design and analysis of fast and compact cryptographic algorithms 

 Wireless network security for low-resource devices 

 Low-power crypto architectures 

 Comparison of Software Based Encryption with Hardware Simulation in terms of 

performance.  

 

1.3 Radio-frequency identification (RFID)  

Radio-frequency identification (RFID) is the wireless non-contact use of radio-frequency 

electromagnetic fields to transfer data, for the purposes of automatically identifying and 

tracking tags attached to objects. The tags contain electronically stored information. Some 

tags are powered by and read at short ranges (a few meters) via magnetic fields 

(electromagnetic induction), and then act as a passive transponder to emit microwaves or 

UHF radio waves (i.e., electromagnetic radiation at high frequencies). Others use a local 

power source such as a battery, and may operate at hundreds of meters. Unlike a bar code, the 

tag does not necessarily need to be within line of sight of the reader, and may be embedded in 

the tracked object. 

It is defined as an ADC (Automated Data Collection) technology that  

 uses radio frequency waves to transfer data between a reader and a movable item to 

identify, categorize, and track the tagged object. 

 Is fast and does not require physical sight or contact between reader/scanner and the 

tagged item. 

http://en.wikipedia.org/wiki/Electromagnetic_field
http://en.wikipedia.org/wiki/Electromagnetic_induction
http://en.wikipedia.org/wiki/UHF
http://en.wikipedia.org/wiki/Radio
http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/Bar_code
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 Performs the operation using low cost components. 

 Attempts to provide unique identification and backend integration that allows for wide 

range of applications. 

RFID tags are used in many industries [1]. An RFID tag attached to an automobile during 

production can be used to track its progress through the assembly line. Pharmaceuticals can be 

tracked through warehouses. Livestock and pets may have tags injected, allowing positive 

identification of the animal. On off-shore oil and gas platforms, RFID tags are worn by 

personnel as a safety measure, allowing them to be located 24 hours a day and to be quickly 

found in emergencies.  

 

Figure 1-1: RFID System Components 

 

1.3.1 RFID Tags 

A Radio-frequency identification system uses tags, or labels attached to the objects to be 

identified. Two-way radio transmitter-receivers called interrogators or readers send a signal 

to the tag and read its response. 

RFID tags contain at least two parts: an integrated circuit for storing and processing 

information, modulating and demodulating a radio-frequency (RF) signal, collecting DC 

power from the incident reader signal, and other specialized functions; and an antenna for 

receiving and transmitting the signal. The tag information is stored in a non-volatile memory. 

The RFID tag includes either a chip-wired logic or a programmed or programmable data 

processor for processing the transmission and sensor data, respectively. 

http://en.wikipedia.org/wiki/Microchip_implant_%28animal%29
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Modulation
http://en.wikipedia.org/wiki/Demodulation
http://en.wikipedia.org/wiki/Radio-frequency
http://en.wikipedia.org/wiki/Antenna_%28radio%29
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An RFID reader transmits an encoded radio signal to interrogate the tag. The RFID tag 

receives the message and then responds with its identification and other information. This 

may be only a unique tag serial number, or may be product-related information such as a 

stock number, lot or batch number, production date, or other specific information. 

 

Types of RFID Tags 

There are two types of RFID tags. These are:  

 Passive RFID tags don't have an internal source of power. There is an electrical current 

that is created in the antenna by the incoming radio frequency signal from the reader. This 

means that the antenna has to be able to collect power from the incoming signal and also 

transmit the outbound signal to the reader. A passive tag can respond with identification 

numbers or non-volatile storage data. It can be read from about 10 cm to a couple of  

meters and since they don't have to have a power source on the device, they can be 

extremely small(they can be embedded in a sticker or under the skin). 

 Active RFID tags have their own internal source of power. This is used to power the 

circuits and broadcast signals to the reader. These tags are usually more reliable than 

passive tags. They also have a stronger signal because of their built-in power supply. This 

also allows them to work in places that passive tags wouldn't be able to, such as in water 

(which would include humans and other animals), metal, or from longer distances. They 

are however, larger and more expensive than passive tags. Today, active tags can transmit 

from hundreds of meters and their batteries can last for about 10 years. Some active tags 

contain different sensors that can read things like temperature, humidity, and radiation. 

 

1.3.2 RFID Readers 

An RFID Reader’s function is to interrogate RFID tags. The interrogation is wireless and line 

of sight between the reader and tags is not necessary. A reader contains an RF module, which 

acts as both a transmitter and receiver of radio frequency signals. A microprocessor forms the 

control unit, which employs an operating system and memory to filter and store the data. The 

data is now ready to be sent to the network. RFID systems can be classified by the type of tag 

and reader. 
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1.3.3 RFID Security 

Radio Frequency Identification (RFID) readers can read hundreds of tags per second and they 

do not require the line of sight, as for example a bar code scanner, thus allowing for fast 

automation of the reading process. RFID tags respond to any reader request within range. 

Consequently, a person carrying a tagged item effectively broadcasts a fixed identifier to 

nearby readers. So, anyone with a reader can read the information in the tag, potentially 

violating the owner’s privacy [1]. 

Since RFID tags can be attached to clothing, possessions, or even implanted within people, 

the possibility of reading personally-linked information without consent has raised privacy 

concerns. Moreover, RFID applications have very limited resources, for example, tag memory 

is restricted to several hundred bits, and approximately 250–5000 logic gates out of the total 

tag space can be devoted for security-related tasks. The block ciphers used for security are 

lightweight because they aim to reduce the hardware resources needed. 

Widespread RFID deployment creates privacy risks for everyone. In this case, a reader would 

periodically broadcast a query and all the reader in the vicinity will respond to that Tag. The 

reader will then forward these responses to the database [29]. 

For instance, an unauthorized user can use the reader or buy another to communicate directly 

with the tag. So, RFID data can easily be attacked [4]. There are various attacks like sniffing, 

tracking, spoofing, replay and Denial of service cause security and privacy risk for RFID 

technology. 

 

1.3.3.1 Data Security Issues of RFID Tag 

At present, RFID is mainly facing the following three issues of security [5]: 

 Information of RFID tags are intercepted 

 RFID tags can be cracked 

 RFID tags can be copied 

The security and privacy study [21] has the following objectives [5,6]: 

 Investigate the security and privacy issues arise from the proposed use of RFID 

Technology  

http://en.wikipedia.org/wiki/Microchip_implant_%28human%29
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 Assess the capability of available technology to resolve those issues  

 Provide recommendations to help meet security and privacy requirements  

 Security and privacy risk assessments [1, 21] of the passive RFID System are provided, with 

a description of potential countermeasures to address the stated risks. 

General analysis of RFID technology indicates that several mitigation strategies are available 

to alleviate privacy and security concerns. Security mitigation strategies include the use of 

encryption, implementation of anti-collision algorithms to ensure reader availability and data 

integrity, the use of filters and audit trails to permit detection of counterfeit tags or replay 

attacks, and education of tag holders about the use of physical shielding. 

 

1.3.3.2 Security Risk Assessment of the RFID System  

The following are the security attacks which can be done on the RFID System [31]: 

 Counterfeit RFID Tag Attacks: Counterfeiting attacks [1] which seek to duplicate 

legitimate tags through cloning or forgery. By virtue of its inexpensive functionality, the 

low cost RFID Tag contains an unencrypted identifier that can be stolen for duplication 

efforts.  

 

 Replay Attacks: An attacker can perform replay attacks with counterfeit tags, mimicking 

the valid arrival and departure of tags. Replay attacks on a grand level can ultimately lead 

to a Denial of Service (DoS) attack in which counterfeit tags are replayed to readers in 

excess form. Authorized readers are inundated with counterfeit tags presented at a high 

rate. They consequently fail and cannot read legitimate tags. DoS attacks constitute a 

serious threat to system availability. 

 

 Eavesdropping Attacks: Electronic access to tag contents occurs via eavesdropping by 

attackers in possession of rogue readers. A rogue reader is a reader that is not authorized 

to interrogate a tag or population of tags. Unsophisticated RFID Tags indiscriminately 

respond to RFID interrogation at the proper frequency and cannot differentiate between a 

rogue and authorized reader.  
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 Electronic Collisions: They occur when multiple RFID devices (readers and tags) 

respond to each other simultaneously, causing their communication signals to interfere 

with one another. Reader and/or Tag Collisions results in failed transmissions, lost data 

and faulty data integrity. Readers are also prevented from interrogating tags, a loss of 

system availability. 

 

 Introduction of Rogue Components: RFID Readers and Middleware Access Points are 

units placed in strategic physical locations. To meet functionality needs, they are placed 

in close proximity to areas in which they are able to contact tags via radio frequency 

emissions. An intruder could gain access to a physical location and add a rogue reader. 

 

1.3.3.3 Mitigation Strategies for Security Risks  

Countermeasures to counterfeit tags [4] require an assurance of the confidentiality and 

integrity of tag data. Measures to prevent the disclosure or modification of tag contents 

include encryption and access controls. Unauthorized individuals, and rogue readers operating 

as their extensions, should be prevented from physically and electronically reading tags. 

 Encryption: The management of symmetric keys, and the maintenance of a public key 

infrastructure to support asymmetric keys, is accompanied with high overhead costs. In 

addition, keys embedded on tags are prone to physical attacks, the success of which can 

lead to cloning. 

 

 One-Way Hash Locks: A hash is a one-way function that converts a variable-length 

block of data into a fixed -length value called a “hash code.”[2] It cannot be reversed. A 

hash function known only to two parties provides two principles; it authenticates the 

sender and it provides integrity assurance for sent data. 

 

 Physical Shielding Sleeve (The Faraday Cage): A Faraday Cage [2] is a metal mesh or 

foil container that is impenetrable by radio signals of certain frequencies. It can be used 

to shield a tag from unwanted eavesdropping, but requires owner compliance for use. A 

physical shield around the tag can serve as a potential threat to availability and integrity if 

it is not removed to allow legitimate readers to perform their scans. 
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 The Selective Blocker Tag: Many RFID readers implement anti-collision algorithms. 

These functions allow for a reader to talk with a single tag without interference from 

nearby tags that are also responding to the reader’s interrogation signal [2]. Because these 

algorithms allow tags to be read singly, they are referred to as “singulation protocols.” 

RFID Systems operating at the UHF range usually employ the silent tree-walking 

singulation protocol for anti-collision. 

 

 Secure Reader Protocol 1.0 Implementations: Reader Protocol 1.0 is the EPCglobal[3] 

generated and industry accepted standard for defining communication between RFID 

Middleware and RFID Readers. 

 

 Anti-Collision Algorithms 

Tag collisions can be prevented with the use of anti-collision [5] algorithms that 

essentially “singularize” a tag from a population of tags. RFID systems operating at 915 

MHz generally implement the silent binary tree-walking algorithm as a singulation [2] 

technique. Although anti-collision algorithms [4, 5] are helpful commodities, their 

implementation nonetheless introduces significant tradeoffs that can potentially lead to 

less efficient and more costly systems. These tradeoffs include: 

 The speed which a tag may be read  

 The range at which a tag may be read  

 The bandwidth of the outgoing reader signal  

 The bandwidth of the incoming tag signal 

 

Risks Security Objectives Countermeasures 

Counterfeit Attacks Confidentiality , Integrity Encryption,  

One-way Hash Locks, 

Physical Shielding sleeve, 

Selective Blocker Tag 

Replay Attacks Availability, Integrity One-way Hash Locks, 
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Physical Shielding sleeve, 

Selective Blocker Tag 

Eavesdropping Attacks Confidentiality Encryption, 

Physical Shielding sleeve 

Electronic Collisions Availability , Integrity Anti-Collision Algorithms 

Rogue Components Availability , Integrity , 

Confidentiality, Non-Repudiation 

Secure Reader Protocol 

                Table 1-1: RFID System Risks, Their Impacts and Countermeasures 

 

1.4 Lightweight Cryptography 

Cryptography on an RFID tag however comes with a cost: it consumes chip area, power, 

energy and time, which are very scarcely available on an RFID tag. This implies that standard 

cryptographic solutions cannot be deployed on lightweight devices like RFID tags. Thus, the 

rise of lightweight devices has created new challenges in cryptography. 

Lightweight cryptography has been proposed to answer the demand for cryptography that 

uses minimal resources. Not only the cryptographic functions that are implemented on the 

chip should be minimized in terms of area, power or energy[8] while at the same time 

preserving an acceptable performance. Since cryptography also comes with a communication 

overhead, which in case of RFID tags can consume much energy and cause additional delay, 

this is an additional constraint that needs to be taken into account. It is clear that lightweight 

cryptography tries to minimize the impact of security and privacy protection[8] on the 

performance and cost of devices.  

Lightweight cryptography is a branch of the modern cryptography, which covers 

cryptographic algorithms intended for use in devices with low or extremely resource 

constrained environment. Lightweight cryptography does not determine strict criteria for 

classifying a cryptographic algorithm as lightweight, but the common features of lightweight 

algorithms are extremely low requirements to essential resources of target devices. 
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It is a relatively new field aimed to develop more efficient cryptographic implementations in 

response to typical constraints in the hardware used in Internet of Things (IoT).  The hardware 

used in IoT will likely be constrained in computational power, battery, as well as memory.  

Lightweight cryptography is tailored for such constrained devices, with the goal of balancing 

the tradeoffs between low resource requirements, performance, and cryptographic strength. 

Techniques used to meet this challenge include the adaptation of block ciphers, hash 

functions, and public key cryptography for lightweight cryptography. 

Lightweight Cryptography is  

 Cryptography tailored to (extremely) constrained devices 

 Not intended to replace traditional cryptography 

 Not intended for all extremely strong adversaries 

 Not weak Cryptography 

The expansion of smart technologies crucially raises data security problems. However, now it 

is impossible to suggest a cryptographic primitive that can be implemented in all types of 

target devices. We can tell that AES [20] is a really strong algorithm with good performance. 

It is absolutely advisable to use AES in high-end devices, in a large variety of embedded 

systems or in some low-end devices (with several constraints). But it is impossible to use 

common cryptographic algorithms in specific devices with extremely constrained resources. 

The examples of such devices include: 

 RFIDs 

  low-end smart cards (including wireless) 

  wireless sensors 

  Indicators, measuring devices, custom controllers etc. 

Security & privacy issues for applications that can be termed as lightweight security, due to 

the associated constraints on metrics such as available power, energy, computing ability, area, 

execution time, and memory requirements. As such applications are becoming ubiquitous, 

definitely providing an immense value to the society, they are also affecting a greater portion 

of the public & leading to a plethora of economical & security and privacy related concerns. 

The goal is to create a platform where these concerns can be addressed and proposed solutions 

are discussed and evaluated. The solutions should be economically applicable in constrained 
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environments such as wireless embedded systems. Providing implementation results & 

demonstrating the applicability of the proposed solutions are among the essentials. Metrics to 

evaluate different aspects of lightweight security solutions and combined metrics for overall 

evaluations thereof for a given application scenario are useful for implementers and engineers. 

Compactness and efficiency are the properties which are commonly sought. 

 

 1.4.1 Design Strategies  

Lightweight Cryptography is a relatively young scientific sub-field that is located at the 

intersection of electrical engineering, cryptography and computer science and focuses on new 

designs, adaption or efficient implementations of cryptographic primitives and protocols. Due 

to the harsh cost constraints and a very strong attacker model, there is an increasing need for 

lightweight security solutions that are tailored to the ubiquitous computing paradigm. 

Every designer of lightweight cryptography has to cope with the trade-off between security, 

costs, and performance [9]. For block ciphers the key length provides a security-cost trade-

off, while the amount of rounds provides a security-performance trade-off and the hardware 

architecture a cost-performance trade-off (see Figure).  

 

          

Figure 1-2: Design trade-offs between security/cost/performance for lightweight cryptography 
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Usually, any two of the three design goals – security and low costs, security and performance, 

or low costs and performance – can be easily optimized, whereas it is very difficult to 

optimize all three design goals at the same time. 

For example, a secure and high performance hardware implementation can be achieved by a 

pipelined architecture which also incorporates many countermeasures against side-channel 

attacks. The resulting design would have a high area requirement, which correlates with high 

costs. On the other hand it is possible to design a secure and low-cost hardware 

implementation with the drawback of limited performance. 

Generally speaking, there are three approaches for providing cryptographic primitives for 

extremely lightweight applications such as RFID tags: 

 Optimized low-cost hardware implementations for standardized and trusted 

algorithms. 

 Slightly modify a well investigated and trusted cipher. 

 Design new ciphers with the goal of having low hardware implementation costs. 

The problem with the first approach is that most modern block ciphers were primarily 

designed with good software implementation properties in mind, and not necessarily with 

hardware-friendly properties. This is the right approach for today’s block ciphers, because on 

the one hand the vast majority of algorithms run in software on PCs or embedded devices, and 

on the other hand silicon area has become so inexpensive that very high performance 

hardware implementations (achieved through large chip area) are not a problem.  

The second approach is to have a well investigated cipher, the design of which was driven by 

low hardware costs. A very well known cipher to this respect is the Data Encryption Standard, 

DES. DES was designed in the first half of the 1970s and the targeted implementation 

platform was hardware.  

Hence, virtually all components of DES were heavily driven by low hardware complexity: 

exclusive bit-wise OR (XOR), bit permutation and small S-boxes. We will follow the second 

approach by slightly modifying DES in order to gain DESL [18]. The obvious drawback of 

DES is that its key length is not adequate for many of today’s applications, but by applying 

key-whitening techniques the security level can be increased.  
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Though the implementation results of DESL are encouraging, they also show optimization 

potentials. In order to further decrease the hardware area requirements, the third approach ie 

design of the ultra-lightweight cipher is more preferred. 

 

1.4.2 Metrics 

To assess the efficiency of the implementation, the following metrics are used. 

 Area: Area requirements are usually measured in µm
2
, but this value depends on the 

fabrication technology and the standard cell library. In order to compare the area 

requirements independently it is common to state the area as gate equivalents [GE]. One 

GE is equivalent to the area which is required by the two-input NAND gate with the 

lowest driving strength of the appropriate technology. The area in GE is derived by 

dividing the area in µm
2
 by the area of a two-input NAND gate. 

 

 Cycles: Number of clock cycles to compute and read out the result. 

 

 Time: The required amount of time for a certain operation can be calculated by dividing 

the amount of cycles by the operating frequency such that t = (cycles / freq). In most 

cases the time is given in milli seconds [ms]. 

 Throughput: The rate at which new output is produced with respect to time. The number 

of output bits is divided by the time, i.e. by the needed cycles and multiplied by the 

operating frequency. It is expressed in bits per second [bps]. 

 

 Power: The power consumption is estimated on the gate level by Synopsys Power 

Compiler. It is provided in micro Watt [µW]. Note that power estimations on the 

transistor level are more accurate, but this would also require further design steps in the 

design flow. 

 

 Energy: The energy consumption denotes the power consumption over a certain time 

period. It can be calculated by multiplying the power consumption with the required time 
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of the operation. The energy consumption is provided in micro Joule [µJ] or micro Joule 

per bit [ µJ/bit ]. 

 

 Efficiency: Throughput to Area ratio is used as a measure of hardware efficiency. It is 

expressed in gate equivalents per bits per second [GE/bps]. 

 

 

1.4.3 Design Considerations 

RFID applications have very limited resources, for example, tag memory is restricted to 

several hundred bits, and approximately 250–5000 logic gates out of the total tag space can be 

devoted for security-related tasks. The block ciphers used for security are lightweight because 

they aim to reduce the hardware resources needed 

 1.4.3.1 Software vs Hardware Implementation 

 Cryptography algorithms demand high processing capabilities. A software implementation 

[26] of these algorithms requires more clock cycles and multiplies instructions to execute the 

partial operations and thus increase the total consumed energy. In addition, Software-based 

encryption provides privacy for data residing on the computer systems disk by using the 

system CPU to perform the encryption/decryption and related cryptographic operations.  The 

main scope is the designing of the appropriate hardware primitives that make these operations 

more efficient in terms of energy and area resources consumed. Hardware-based encryption 

[26] moves the encryption/decryption function inside the hard disk drive. Isolating the 

encryption functions and keys in the disk drive subsystem, where they are not accessible by 

the operating system, is advantageous because it protects these security components from root 

kits and malware. In addition, utilizing dedicated hardware in the disk drive to perform the 

encryption and decryption offloads results in system performance that is closer to that of an 

unencrypted computer.  

Important disadvantages that are common to most software-based encryption include 

performance, which is generally noticeably worse than on hardware encryption products. 
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Configuration complexity and the amount of time needed to initially set up the software are 

also disadvantages. 

 

1.4.3.2 Characteristics of the ciphers 

A quite huge range of ciphers were implemented, starting with DESL providing a lower 

security level with 56-bit key, and continuing with PRESENT[15,25] , which provides 

medium level of security with 80-bit key and 64-bit block size. The HIGHT ciphers provide a 

better level of security with 128-bit key and 64-bit block size. Last, DESXL was implemented 

that uses 184-bit key and 64-bit block size. DESL, DESXL, HIGHT are Feistel ciphers. 

CURUPIRA-1[25], and PRESENT [15] are Substitution-Permutation network (SP-network) 

ciphers. Some algorithms are based on the concept of pseudorandom numbers[7] . 

Feistel ciphers modify only half of the block in each round, while the SP-network   ciphers 

modify the complete block in each round. Also, some substitution boxes (S-boxes), for 

example in CURUPIRA-1 ciphers, are implemented in either combinational logic or with 

memory elements, while other S-boxes (DESL, DESXL and PRESENT ciphers) may be 

implemented only using memory elements as their combinational equations are not given by 

the ciphers’ constructors. The major problem with the S-boxes operation is that it cannot be 

easily encoded in a linear equation.  

For the above reasons a general architecture option for all ciphers’ implementations was used 

and no algorithm specific hardware designs were used for each cipher. It is impossible to 

apply the same design optimizations to all ciphers in order to examine the optimization 

methods efficiently and accurately. 
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Figure 1-3: Basic Round Unit 

 

Above figure shows the general architecture of majority of the algorithms. In this figure, only 

one round of each cipher is implemented. The output of the basic round unit is buffered and 

used as input to the next round. During initialization the multiplexer chooses the plaintext and 

then chooses the output of the basic round unit. In this architecture the key scheduler also 

consists of one basic round. The produced round subkey is used both for the data 

encryption/decryption and as input to the next key round. All S-boxes used by the ciphers 

have been implemented by Look-Up-Tables (LUTs) using ROM blocks.  

The iterative looping architecture was used for all ciphers. As the payload data transferred in 

RFID applications is too small and the bit rate is also low. So, the full loop unrolling 

architecture with successive rounds and pipeline stages between each round is not a practical 

solution.  
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CHAPTER 2 

 BASE WORK 
 

 

This work describes a lightweight security mechanism for securing transactions conducted 

over the RFID platform. RFID is gaining popularity and it is widely accepted. However, 

security over the platform is more critical due to the open nature of wireless networks. 

Furthermore, security is more difficult to implement on these platform because of the resource 

limitation of these devices. Therefore, security mechanisms for protecting traditional 

computer communications need to be revisited so as to ensure that transactions involving 

these devices can be secured and implemented in an effective manner.  

This research is part of designing security infrastructure for securing the data which needs to 

be protected from unauthorised access. A lightweight mechanism was designed to meet the 

security needs in face of the resource constraints. The proposed mechanism is proven to be 

practical in real deployment environment. 

Due to the pervasiveness of high-speed networks and multimedia communications and 

storage, the demand for high speed cryptosystems is ever increasing. The Cryptographic 

techniques and algorithms which are considered as highly secure, for example AES, takes 

time to encrypt the data and thus are not suitable for high speed networks. Highly Secure 

Systems that have embedded security mechanism to ensure its security operating 

requirements, which may sacrifice its performance due to limited system resources. 

Therefore, security for data transmission over wireless channel results in throughput loss. 

Trade-off between security and throughput is always a major concern in wireless networks. 
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Figure 2-1 : Security-Throughput Tradeoff as a function of Block Length 

 No existing encryption algorithms are both fast enough for high-speed operation and 

sufficiently secure to withstand powerful cryptanalysis. In most of the cryptographic 

algorithms, our primary focus is to protect the Security key which is used in the encryption 

process. If the key is compromised, the data can be easily deciphered by the unauthorised 

person. So the primary aims at protecting the keys from unauthorized intrusion. 

Feng Bao and Robert H. Deng[10] has proposed, a generic construction of high-speed 

encryption schemes. The solution is based on the fact that there exist secure but relatively 

slow block ciphers, e. g. AES[13, 20], and super-fast but relatively weaker stream ciphers. 

Secure block cipher with a super-fast stream cipher is combined in such a way that the 

resulting encryption scheme possesses both the speed of the stream cipher and the security of 

the block cipher. Secure block cipher is used to generate the keys which later are used to 

encrypt the text using Stream Cipher. We will show the performance analysis as well as our 

experiment on a Xilinx simulator. However, AES is inadequate for resource constrained 

devices since it is too heavy and slow for data. Furthermore, AES provides very low 

compression rate. 

 

2.1 High speed requirements 

A growing need of ultra – high speed data transfers has motivated continuous improvements 

in the physical layer transmission speed. Communication applications are on the rise for a 
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variety of services, such as multimedia electronic mail, video conferencing, and high-

definition televisions. Various types of high-speed networks exist. For example is the 

Asynchronous Transfer Mode (ATM) technology which provides data rates from tens of Mb/s 

to Gb/s. As new network services become more capable and user friendly, high-speed 

networks will continue to attract more traffic and more sensitive information. This type of 

speed is necessary for streaming high definition video, playing online games and sending and 

receiving large amounts of data. 

However, as researchers develop software and protocols to operate over such networks , they 

often fail to account for security .The processing power required to encrypt or sign data can 

significantly decrease transfer rates, and thus security is often sacrifice for throughput. High 

speed networks need to provide sufficient security in number of specific application so as to 

prevent any data compromise. So, secure cryptographic algorithms should be implemented in 

these networks to provide sufficient level of Security. There should be efficient encryption 

algorithms so that speed does not become a performance bottleneck in bandwidth-hungry 

applications.   

 

2.2 Trade-off between Speed and Security 

A stream cipher is a symmetric key cipher where plaintext digits are combined with a 

pseudorandom cipher digital stream (keystream). In a stream cipher each plaintext digit is 

encrypted one at a time with the corresponding digit of the keystream, to give a digit of the 

ciphertext stream. Block ciphers operate on large blocks of digits with a fixed, unvarying 

transformation.  

Stream ciphers typically execute at a higher speed than block ciphers and have lower 

hardware complexity. However, stream ciphers can be susceptible to serious security 

problems if used incorrectly (see stream cipher attacks); in particular, the same starting state 

(seed) must never be used twice i.e. in Stream Cipher the security of the algorithm rests on the 

security of the key. If key is compromised, the algorithm is no longer considered as safe. 

An example is the stream cipher TWOPRIMES, which is proved to possess high linear 

complexity, large cycle length, good resistance to LSFR-synthesis attacks and many other 

http://en.wikipedia.org/wiki/Symmetric_key_algorithm
http://en.wikipedia.org/wiki/Cipher
http://en.wikipedia.org/wiki/Pseudorandom
http://en.wikipedia.org/wiki/Keystream
http://en.wikipedia.org/wiki/Plaintext
http://en.wikipedia.org/wiki/Numerical_digit
http://en.wikipedia.org/wiki/Stream_cipher_attack
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desirable attributes of good stream ciphers; however, it was broken in with only a complexity 

of  2
32

. 

One way of providing security in High Speed networks is by using Stream Ciphers which are   

fast enough to meet the high speed requirement but they do not provide high security. We use 

Block Cipher which are highly secure (for example AES Cipher), but they are not fast enough 

to meet high speed requirements. 

 

2.3 Summary of Research Contributions and Outline  

In Stream Cipher, the security of the cipher rests on the key stream used in Encryption. If key 

is compromised, the cipher is no longer secure. So, in this work, we aim at designing super-

fast and secure symmetric key encryption schemes. However, we do not propose new 

encryption algorithms. What we do is to combine existing strong algorithms (relatively slow) 

with fast algorithms to form new encryption schemes, which are fast enough to satisfy the 

high-speed requirement for various applications. 

Symmetric key ciphers can be roughly classified into stream ciphers and block ciphers. Block 

ciphers usually have stronger security than stream ciphers. Here we refer to the traditional 

stream cipher based on the LFSR. A block cipher is typically an iterated function on a fixed 

block size. The security mainly comes from the iteration.  

For a block cipher, it is impossible to express the output and the input in an explicit algebraic 

formula. This is because the iteration function makes the formula expand into an 

overwhelmingly large size. Block ciphers are usually designed to resist various kinds of 

attacks, including linear attack and differential attack [11]  and so on. Most of the attacks to 

block cipher are aimed at deriving the key. So a secure block cipher should be able to keep the 

key forever secret, even under attacks where attackers can arbitrarily choose 

plaintext/ciphertext pairs as they want. Examples of such block ciphers are DES, AES, IDEA 

and SERPENT [12].  

A stream cipher is usually a pseudo-random generator. The pseudo-random sequence (key 

stream) generated by the pseudo-random generator is XORed with the plaintext to obtain the 
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ciphertext. The pseudo-random generator may or may not depend on the plaintext and cipher 

text. eg Algorithms based on multi-recursive generator [17]. 

This proposed approach combines a secure block cipher with a fast stream cipher such that the 

encryption scheme can have both the security of the block cipher and the speed of the stream 

cipher. The secret key of our encryption schemes is protected by the block cipher while the 

large plaintext is encrypted by the stream cipher with segment keys generated from the block 

cipher. 

 

2.4 Different Variants of Fast Stream Cipher 

Let BE(K, m) denote a block cipher encryption algorithm (such as AES) on message m using 

key K and SE(k, M) denote a stream cipher encryption algorithm on message M using key k. 

Here m has fixed size, i.e., the block size of BE while M has arbitrary size. We divided a 

plaintext into segments with equal size (padding may be applied to the last segment): 

tpseg,...,pseg,pseg  Plaintext 21  

The segment size is the number of bits of  
iseg  . Let K be the secret key of the scheme, which 

is a key of BE. The encryption is performed as follows. First we randomly choose a number r 

of the block size of BE, then generate the segment keys as 

k1 = BE (K, r), k2 = BE (K, k1),…, kt = BE(K, kt-1). 

 The corresponding ciphertext is given by 

 t21 cseg,...,cseg,csegr,Ciphertext   

where  )pseg,SE(kcseg iii  

Note that r precedes the ciphertext so that decryption can be carried out at the receiver. We 

require that r never be reused. In our schemes, r is set to be 128-bit; therefore, the probability 

that two randomly selected r's happen to be the same is as small as correctly guessing the key 

K. ( The r can also be generated from the plaintext, say, let r = BE(the first 128 bits of the 

plaintext, K). There are actually many ways to generate r. 
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2.4.1 Fast Encryption Scheme Variant I 

Let BE be the secure Block Cipher and SE be the fast Stream Ciphers. Let the Plaintext be 

1t21 P,...,P,P   and the corresponding cipher text will be 
1t21 C,...,C,C  . 

The first block 1P  is not in the original plaintext. It may be a random head appended to the 

original plaintext before the encryption. It may also be a number used as a counter to indicate 

the i
th

 encryption. It is fine as long as 1P  satisfies 

 a) 1P  is different for different plaintext or b) 1P  is not required to be confidential. 

We have 

1. 11 PC   

2. )P...,PP),PSE(BE(k,C...,C,C n3,21n3,2   

3. )P,...,PP),PSE(BE(K,C,...,CC 1)1)n((i2)(in1)(in(in)1)1)n((i2)(in1)(in    for i = 1, 2,…, t. 

The decryption is easy just reverse of encryption.  

Description of SE 

Let the plaintext be  

m21 ...bbb  

where each ib  is a 32-bit string. Let F be a function defined as 

 )k)k)k)k((((xx)F(k, 4321   

Notations 

K the 128-bit key and 4321 kkkkk   for 32-bit ik   

X 32-bit string 

  the bit-wise exclusive-OR  

+ mod 2
32

 addition 

  mod 2
32

 multiplication 

>>> to reverse the 32 bits into opposite ranking 
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The encryption of 
m21 ...bbb    is 

)d)b)dF(k,F(k,F(k,bd 2)(i1)(i1)(iii    

where 
m21 ...ddd  is the cipher text. The 

210 ddd 
 can be set

432 kkk . 

The Block cipher used in the fast encryption variant is AES [13, 33] which is highly secure 

and the key size in AES is 128,192 and 256 bits. In addition, the AES was designed primarily 

for hardware and is relatively slow when implemented in software.  

AES standard states that the algorithm can only accept a block size of 128 bits and a choice of 

three keys – 128, 192, 256 bits. Depending on which version is used, the name of the standard 

is modified to AES-128, AES-192 or AES-256 respectively. As well as these differences AES 

differs from DES in that it is not a feistel structure. AES was designed to have the following 

characteristics: 

 Resistance against all known attacks eg, Differential Cryptanalysis[11] , Linear 

Cryptanalysis attacks  

 Speed and code compactness on a wide range of platforms. 

 Design Simplicity. 

 It is implementable on both software and hardware. 

 

2.4.2 Fast Encryption Scheme Variant II 

In this Fast Encryption Variant, the block cipher is used to generate segment keys and the 

stream cipher is used to generate key streams from segment keys. The block cipher used is 

AES.  

Design of Stream Cipher:  

This stream cipher is used to extend a 128-bit key into a key stream of segment size.  

Notations 

& Bit-wise AND, 

  Bit-wise XOR, 

>>> Right Rotation 
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T Table containing 32 elements, each element is with 32 bits. 

F Feedback function, 

G Output function. 

K The 128-bit secret key. It consists of four 32-bit words: 
4321 k,k,k,k  

iC (0 ≤ i ≤ 31) 

Each one is a 32-bit constant. They are generated from the constant e in the 

following way: 

                    for i = 0 to 31 

0xFFFFFFFF&2(eC
1)32(i

i

  ; 

ir  (0 ≤ i ≤ 63) 

Each one is between 3 and 14. They are generated from the constant π in the 

following way: 

                   for  i = 0 to 63 

30xFF)mod12&)2((r
1)8(i

i    ; 

F 

The input of function F is the table T and two rotation constants 1r  and 2r . 

The output of function F is denoted as feedback. F operates in the following 

way: 

T[15]))rT[27])T[10]))rT[22])(((((T[0]tem 21   

31]&T[temtemfeedback   

G 

The input of function G is the table T. The output of function of G is 

denoted as output.  G operates in the following way: 

T[2]))rT[13])T[20]))rT[23])(((T[29]tem 21   

31]&T[temtemoutput   

 

The operation of this stream cipher consists of two stages: an initial setup stage and an output 

stage.   

Initial Setup 

1. Initialize the table T 

for i= 0 to 31    

(imod4)ii kCT   

2. Run the Main algorithm (given below) for 64 cycles and prepare for the output. 



26 
 

3. The Main Algorithm 

For the ith cycle, the cipher operates in the following way: 

1. Run the F function with 
(2imod32)r  and

1)mod32)(2(ir 
 , obtain the value of feedback . 

2. for j = 0 to 30  

T[ j] = T[ j + 1] ;  

T[31] = feedback ; 

3. Run the function G and generate the output. 
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CHAPTER 3 

 PROPOSED WORK 
 

 

3.1 Problem Statement 

The plethora of available security primitives are too excessive in terms of cost to be 

implemented on a cost constrained RFID chip. Low cost labels are also not self-powered and 

only consist of limited logic functionality, unlike smart card processors. For instance, private 

key cryptosystem such as AES are not suitable since a commercial implementation of AES 

typically requires 20,000 – 30,000 gates. This is far more than the number of gates on an 

entire low cost label. However the SHA-1 specified by the US Department of commerce is a 

possible candidate for an encryption rule but hardware implementations of SHA-1 are 

currently too costly to meet the cost budget of low cost RFID labels. Cryptographic systems 

and protocols need to fit into a label footprint without dramatically increasing the cost of a 

label.  

The problem with the existing scheme is that we were using AES scheme which is highly 

secure block cipher techniques but due to high computational complexity, the technique is not 

suitable for light weight devices like RFID tags, smart cards etc. In fact, it requires an extra 

module for implementing the Galois field multiplication which, additionally, has to be 

invoked several times. 

Instead of using AES which is not suitable for RFID, we propose an algorithm ultralight 

weight Hummingbird Cryptographic Algorithm. Different from existing (ultra-lightweight) 

cryptographic primitives which are either block ciphers or stream ciphers, Hummingbird is an 

elegant combination of the above two cipher structures with a 16-bit block size, 256-bit key 

size, and 80-bit internal state. The size of the key and the internal state of Hummingbird 

provides a security level which is adequate for many RFID applications. Existing lightweight 

Cryptographic algorithms are PRESENT[15], KATAN [23, 25] etc. 



28 
 

The fast and efficient stream Ciphers are given by  eSTREAM[24] project which was a multi-

year effort to promote the design of efficient and compact stream ciphers suitable for 

widespread adoption. The eSTREAM portfolio ciphers fall into two profiles. Profile 1 

contains stream ciphers more suitable for software applications with high throughput 

requirements. Profile 2 stream ciphers are particularly suitable for hardware applications with 

restricted resources such as limited storage, gate count, or power consumption. 

So in our scheme, Hummingbird is used to generate keys which are used in stream ciphers 

given in eSTREAM[24] project, for encrypting the data. 

   

3.2 Hummingbird Cryptographic Algorithm 

Hummingbird Cryptographic Algorithm is a new ultra-lightweight cryptographic algorithm 

which is mainly designed for resource-constrained devices like smart cards, RFID tags, and 

wireless sensor nodes.  

The radiofrequency identification (RFID) technology provides an extensible, flexible and 

secure measure against product counterfeiting. However, due to the limited cost and power 

constraints of RFID tags, only dedicated cryptographic engines or low-power consumption 

microcontrollers can be integrated into tags to implement various security mechanisms. 

Hummingbird provides designed security with small block size and it is resistant to the most 

common attacks such as linear and differential cryptanalysis[11] , birthday attack As the key 

size of Hummingbird cryptographic algorithm is very large i.e. 256 bits , so it can be used to 

provide desired security to lightweight devices like RFID tags , smart cards etc.  

The key issue of designing lightweight cryptographic algorithm is to deal with the trade-off 

among security, cost and performance. Hummingbird has a Hybird structure of both stream 

cipher and blocks cipher and is developed with both lightweight software and lightweight 

hardware for constrained devices in mind. The hybrid model can provide designed security 

with small block size and is therefore expected to meet the stringent response time and power 

consumption requirement for the large variety of embedded applications. 
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Notations  

iPT  The i
th

 Plaintext block , i = 1,2,3,……,n 

iCT  The i
th

 Ciphertext block , i = 1,2,3,…….,n 

K The 256-bit secret key 

(...)kE  The Encryption function of Hummingbird with 256-bit secret key K 

iK  The 64-bit subkey used in i
th

 block cipher, i = 1,2,3,4, such that 

4321 K||K||K||KK   

(...)
ikE  A block cipher encryption algorithm with 16-bit input,64-bit key iK  , and 16-

bit output , ie     1,2,3,4i,0,10,10,1:E
161616

ki
     

RSi  The i
th

 16-bit internal state register 

LFSR 16–stage Linear Feedback Shift Register with the characteristic polynomial f(x) 

such that , f(x) = x
16

 + x
15

 + x
12

 + x
10

 + x
7
 + x

3
 + 1   

+ Modular 2
16

 addition operator 

  Exclusive –Or (XOR) operator 

m<<< l Left circular shift operator which rotates all bits of m to left by l-bits 

i

j
k  The j

th
 16-bit key used in the block cipher,  j = 1,2,3,4 such that as

i

4

i

3

i

2

i

1i K||K||K||KK 
 

iS  The i
th

 4-bit to 4-bit S-Box used in the block cipher  

NONCE i  The i
th

 nonce which is a 16-bit random number 

IV 64-bit initial vector, such that 

4321 NONCE||NONCE||NONCE||NONCEIV   
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3.2.1 Encryption and Decryption 

The design of Hummingbird is based on an elegant combination of block cipher and stream 

cipher with 16 -bit block size, 256-bit key size, and 80-bit internal state. The size of the key 

and the internal state of Hummingbird provides a security level which is adequate for many 

embedded Applications. 

The overall structure of the Hummingbird encryption algorithm (see Figure 3-1(a)) consists of 

four 16-bit block ciphers
4321 kkkk E,E,E,E , four 16-bit internal state registers

4,3,2,1 RSRSRSRS , and a 16-stage LFSR. The 256-bit secret key K is divided into four 64-

bit subkeys 4321 K,K,K,K  which are used in the four block ciphers, respectively. 

  

3.2.1.1 Initialisation Process 

Figure 3-1 illustrates the initialization process of the Hummingbird cryptographic algorithm. 

The initialization consist of four 16-bit block ciphers 
ikE (i = 1, 2, 3, 4), four 16-bit internal 

state registers iRS (i = 1, 2, 3, 4), and a 16-stage Linear Shift Feedback Register (LFSR). 

Moreover, the 256-bit secret key K is divided into four 64-bit subkeys 4321 K,K,K,K which 

are used in the four block ciphers, respectively. 

When using Hummingbird in practice, four 16-bit random nonces iNONCE  are first chosen 

to initialize the four internal state registers RSi  (i = 1, 2, 3, 4), respectively, followed by four 

consecutive encryptions on the message 31 RSRS   by Hummingbird running in initialization 

mode. The final 16-bit Ciphertext TV is used to initialize the LFSR. Moreover, the 13th bit of 

LFSR is always set to prevent zero register. The LFSR is also stepped once before it is used to 

update the internal state register 4RS . 

 

3.2.1.2 Encryption Process 

A 16-bit plaintext block iPT  is encrypted by first executing modulo 2
16

 addition of iPT  and 

the content of the first internal state register RSi. The result of the addition is then encrypted 

by the first block cipher 
1kE . This procedure is repeated in a similar manner for another three 
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times and the output of 
4kE  is the corresponding ciphertext iCT . Furthermore, the states of 

the four internal state registers will also be updated in an unpredictable way based on their 

current states, the outputs of the first three block ciphers, and the state of the LFSR. The 

decryption process (see Figure 3-1) follows the similar pattern as the encryption. The exact 

encryption/decryption procedure and the internal state updating of Hummingbird are 

illustrated in the following algorithms. When using Hummingbird in practice, four 16-bit 

random nonce iNONCE  are first chosen to initialize the four internal state registers RSi  (i = 

1, 2, 3, 4), respectively, followed by four consecutive encryptions on the message by 

Hummingbird running in the initialization mode. The final 16-bit ciphertext is used to 

initialize the LFSR. Moreover, the 13
th

 bit of the LFSR is always set to prevent a zero 

register. The LFSR is also stepped once before it is used to update the internal state register. 

 

Figure 3-1: Hummingbird Cryptographic Algorithm 

 

3.2.1.3 Block Cipher Encryption 

Four identical 16-bit block ciphers are employed in a consecutive manner in the 

Hummingbird encryption scheme. The 16-bit block cipher is a typical substitution 

permutation (SP) network with 16-bit block size and 64-bit key as shown in figure. It consists 
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of four regular rounds and a final round that only includes the key mixing and the S-box 

substitution steps. The 64-bit subkey iK  is split into four 16-bit round keys  i

4

i

3

i

2

i

1 K,K,K,K  

which are used in the four regular rounds, respectively. Moreover, the final round utilizes two 

keys i

6

i

5 K,K
 
 directly derived from the four round keys. Like any other SP network, one 

regular round comprises of three stages: a key mixing step, a substitution layer, and a 

permutation layer. For the key mixing, a simple exclusive-OR operation is used in this 16-bit 

block cipher for efficient implementation in both software and hardware. The permutation 

layer in this 16-bit block cipher is given by the linear transform  

   
1616

{0,1}{0,1}:L  defined as follows: 

                      10);(m6)(mmL(m)    

where )m,...,m,(mm 1510  is a 16-bit data block. 

 

 

Figure 3-2: The Structure of the Block Cipher in the Hummingbird 
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The various algorithms used in Hummingbird Encryption process are as follows. 

Algorithm 1 Hummingbird Initialization 

Input : Four 16-bit random nonce iNONCE  ( i = 1,2,3,4) 

Output : Initialised four rotors 0RSi  ( i = 1,2,3,4) and LFSR 

 1:  10 NONCERS1                                                                          [Nonce Initialization]   

 2:  20 NONCERS2                                                        s                              

 3:  30 NONCERS3   

 4:  40 NONCERS4   

 5:  for t = 0 to 3 do  

 6:    )RS1)RS3((RS1EV12 tttkt 1
      

 7:   )RS2(V12EV23 ttkt 2
                                                                                                                                                                                                                                                                                                                     

 8:       )RS3(V23EV34 ttkt 3
      

  9:    )RS4(V34ETV ttkt 4
       

10:   tt1t TVRS1RS1         

11:   tt1t V12RS2RS2         

12:    tt1t V23RS3RS3       

13:                    tt1t V34RS4RS4     

14:   end for 

15:    0x1000||TVLFSR t                                                  [ LFSR Initialization

16:  Return tRSi  ( i = 1,2,3,4) and LFSR 
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Algorithm 2 Hummingbird Encryption 

Input : A 16-bit plaintext iPT  and four rotors tRSi  ( i = 1,2,3,4) 

Output : A 16-bit Ciphertext iCT    

 1:  )RS1(PTEV12 tikt 1
                                                                [ Block Encryption] 

 2:  )RS2(V12EV23 ttkt 2
                                                                

 3:  )RS3(V23EV34 ttkt 3
  

 4:  )RS4(V34ECT ttki 4


 5:  t1t LFSRLFSR                                                                        [Internal State Updating] 

 6:  
tt1t V34RS1RS1   

 7:  1ttt1t LFSRV23RS3RS3    

 8:  1ttt1t RS1V12RS4RS4    

 9:  1ttt1t RS4V12RS2RS2    

10: Return iCT  
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Algorithm 3 A 16-bit Block Cipher Encryption (.)E
ik  

Input: A 16-bit data block )m,...,m,(mm 1510  and a 64-bit subkey 
ik  , such that 

                Subkey i

4

i

3

i

2

i

1i K||K||K||KK 
 

Output: A 16-bit data block )m,...,m,(mm'
'

15

'

1

'

0  

1: For j = 1 to 4 do 

2:   
i

jKmm        
                              

[key mixing step] 

3:   ,m||m||m||mA 3210  ,m||m||m||mB 7654  

  ,m||m||m||mC 111098  15141312 m||m||m||mD   

4:   (D)S||(C)S||(B)S||(A)Sm 4321          [substitution layer]  

5:   10)(m6)(mmm                  [permutation layer] 

6: End for 

7: i

3

i

1 KKmm 
 

8: ,m||m||m||mA 3210  ,m||m||m||mB 7654  

    ,m||m||m||mC 111098  15141312 m||m||m||mD   

9:  (D)S||(C)S||(B)S||(A)Sm 4321   

10: 
i

4

i

2 KKmm   

11: return )m,...,m,(mm'
'

15

'

1

'

0  

 

3.2.3 Security Analysis of Hummingbird Cryptographic algorithm 

Hummingbird cryptographic algorithm by showing that it is resistant to the most common 

attacks[14] to block ciphers and stream ciphers including birthday attack, differential and 

linear cryptanalysis, etc. Note that Hummingbird has a hybrid mode of block cipher and 

stream cipher (This is the reason that the analysis in cannot be employed directly here.), 
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which can be considered as a finite state machine with the internal state (RS1, RS2, RS3, RS4, 

LFSR). However, the value of LFSR does not depend on those of RS1, RS2, RS3, and RS4. 

The purpose of using the LFSR is to guarantee the period of the internal state is at least 2
16

. 

 Birthday Attack on the Initialization. For a fixed key, one may want to find two 

identical internal states (RS1, RS2, RS3, RS4, LFSR) initialized by two different IV s 

using the birthday attack. However, if we fix the key in the initialization procedure of 

the Hummingbird encryption scheme, the mapping is one-to-one such as 

 )RS4,RS3,RS2,(RS1)RS4,RS3,RS2,(RS1 1t1t1t1ttttt  .  

Hence the birthday attack does not work in this case. 

 Differential Cryptanalysis and Linear Cryptanalysis: Hummingbird cryptography 

is resistant to differential and linear cryptanalysis [11]. 

 Slide and Related-Key Attack:  Both slide attacks and related-key attacks [21] need 

to exploit the weakness of key scheduling. However, there is no key scheduling in 

Hummingbird. In particular, the subkeys used in four small block ciphers are 

independent. In addition, the four rotors affect the output of each small block cipher in 

a nonlinear way. Hence, both slide attacks and related-key attacks cannot be applied to 

the Hummingbird. 

 Interpolation and Higher Order Differential Attack:  Interpolation and higher 

order differential attacks can be applied to block ciphers with the low algebraic 

degree. As we discussed before for algebraic attack, the algebraic degree of the 

Hummingbird encryption is high. Hence it is difficult to apply interpolation and higher 

order differential attacks to the Hummingbird. 

 Complementation Properties: The DES has the following well-known 

complementation[28] property, namely that if C is the ciphertext of the plaintext P 

under key K, then C’ is the ciphertext of P’ under key K, where x is the bitwise 

complement of x. However, Hummingbird does not have this weakness due to the 

presence of the carry propagation resulting from four rotors. 

 Structural Attack: The internal state transition in Humming-bird encryption scheme 

is much more complicated. Hence, those attacks cannot be simply applied to the 

Hummingbird encryption scheme.  
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In this paper, we describe efficient hardware implementations of a stand-alone Hummingbird 

component in field-programmable gate array (FPGA) devices. We implement an encryption 

only core on the low-cost Xilinx FPGA series Spartan-2E family on XC2S300e device with 

speed grade of (-6) on ft256 package and compare our results with the already existing 

scheme on the same series. Our experimental results highlight that in the context of low-cost 

FPGA implementation Hummingbird has favourable efficiency and low area and power 

requirements which can satisfy the resource constraints of Lightweight devices like RFID 

tags, Smart cards etc. 

 

3.3 New Lightweight Hummingbird Variants 

More over it is necessary to maintain confidentiality as much as it is necessary to process the 

sensitive personal information stored. Thus there is an ever increasing demand for integrating 

cryptographic functions into embedded applications and improvising them. 

This research is part of designing security infrastructure for securing the data which needs to 

be protected from unauthorised intrusion. A lightweight Hummingbird variant is designed to 

meet the security needs for the resource constrained environment. The proposed mechanism is 

proven to be practical in real deployment environment. 

In most of the cryptographic algorithms, our primary focus is to protect the Security key 

which is used in the encryption process. If the key is compromised, the data can be easily 

deciphered by the adversary. So the main aim is protecting the keys from unauthorized 

intrusion. 

In this paper, a generic construction of high-speed encryption schemes is proposed and 

analysed. The solution is based on the fact that there exist strong and secure block ciphers, e. 

g. Hummingbird, and fast but relatively weaker stream ciphers. We then combine a secure 

block cipher with a fast stream cipher such that the resulting encryption scheme is much 

stronger than the existing ones. Secure block cipher is used to generate the keys which later 

are used to encrypt the text using Stream Cipher. We have proposed a new ultra- light 

weighted scheme for encryption in light weighted devices like RFID, smart cards that can 

secure sensitive personal information and biological data. This new lightweight Hummingbird 

variant combines the already existing techniques in such a way that the keys used in 
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encryption method are generated from the Hummingbird and the encryption is done by the 

stream cipher techniques. We show the performance analysis as well as our experiment on a 

Xilinx simulator.  

We proposed the two new variants[14] of Hummingbird which uses the keys generated from 

the output of Hummingbird Scheme. The First Variant is used to secure the data by 

encrypting the Plaintext using stream cipher and the Second Variant is used to generate the 

stream of Sub keys using stream cipher which are further used in other stream ciphers for 

encrypting the data. 

We have done the hardware simulation and software implementation to prove the results that 

the proposed variants are better that that of the existing one in terms of speed, throughput, 

area and power which is required in resource constrained devices like RFID tags. 

 

3.3.1 First Variant of Lightweight Hummingbird 

In this design, a stream cipher is used with Hummingbird cryptography in such a way that the 

keys used in stream cipher are generated from the ciphertext resulting from Hummingbird 

cryptography.  

3.3.1.1 Security of the Scheme 

Stream ciphers are fast but they are not secure. In this scheme, fast stream cipher is used to 

encrypt the data using key generated by the Hummingbird scheme. This way keys are 

protected using Hummingbird Scheme and thus it is difficult to achieve the key. On the 

assumption of the security of Hummingbird, K will never be derived by any attacker no 

matter what kind of attacks is used. In Hummingbird, the length of the key used is 256-bits so 

it is highly secure[22]. 

 Meet in the middle Attack : This is a kind of attack of brute force , but the length of 

key used in Hummingbird cryptography is 256-bits ( total number of possible 

combinations formed is 2
256

 ) so it is not possible for adversary to find actual key used.   

 Chosen Ciphertext Attack (the attack to the segment keys) : As all the stream 

ciphers that have ciphertext feedback are weak to the chosen ciphertext. For example, 

if  stream cipher was defined by 
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)d)d)dF(k,F(k,F(k,bd 3i2i1iii    

 Then the cipher would be weak to chosen ciphertext attack. By choosing  '

1i1i dd    

,dd
'

2i2i   '

3i3i dd     different at only one bit, the attacker can ask for the 

decryption of '

ii d,d  and apply the differential attack. But our stream cipher is defined 

by 

)d)b)dF(k,F(k,F(k,bd 2i1i1iii    

where the formula has both ciphertext and plaintext feedback. In such case, if the 

attacker choose both plaintext and ciphertext, the decrypted plaintext has very small 

chance to meet the plaintext chosen by the attacker. 

 

3.3.2 Second Variant of Lightweight Hummingbird  

In this Scheme, Hummingbird is used to generate the segment keys and the stream cipher is 

used to generate key streams from the segment keys. 

3.3.2.1 Security of the Scheme 

In this scheme, the secret K of the encryption scheme is protected by Hummingbird 

cryptography. Therefore, to attack the key is as hard as attack Hummingbird. Second, each 

segment key generated by Hummingbird is used to encrypt message of a very limited length 

by the stream cipher. 

To resist known plaintext/ciphertext attack: Since in this stream cipher the key stream is 

generated independent of input/output, the known plaintext/ciphertext attack is just like to 

know the key stream of the same length. In the stream cipher, both the linear operation and 

non-linear operation are well combined. The relationships among the output words are 

extremely complicated. Although the G function is relative simple comparing to the 

traditional shift register-based ciphers, finding the relationship between the output blocks 

becomes more difficult due to the introduction of F. At this stage, we believe that the stream 

cipher cannot be broken within reasonable time for given key stream of short length. 
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CHAPTER 4 

 DESIGN 

 

 

4.1 Hardware Simulation 

Our Algorithmic implementation utilises only basic FPGA builing blocks such as LUTs and 

flip-flops and does not include any IP core or hardware macros, making it portable across 

different FPGA platforms without design modifications. We implemented the algorithms on 

the FPGA platform to confirm its portability using Xilinx tool on Spartan 2E device family. 

As the effects of FPGA design decisions on performance and area are often specific to 

individual architectures, it is necessary to further refine the FPGA target before proceeding in 

the analysis. Like most Xilinx FPGAs, the Spartan-IIE user-programmable gate array[27] is 

composed of five major configurable elements:  

 IOBs provide the interface between the package pins and the internal logic 

 CLBs provide the functional elements for constructing most logic 

 Dedicated block RAM memories of 4096 bits each 

 Clock DLLs for clock-distribution delay compensation and clock domain control 

 Versatile multi-level interconnect structure 

The Spartan™-IIE 1.8V Field-Programmable Gate Array family gives users high 

performance, abundant logic resources, and a rich feature set, all at an exceptionally low 

price. The five-member family offers densities ranging from 50,000 to 300,000 system gates. 

The Spartan-IIE[27] family is a superior alternative to mask-programmed ASICs. The FPGA 

avoids the initial cost, lengthy development cycles, and inherent risk of conventional ASICs. 

Also, FPGA programmability permits design upgrades in the field with no hardware 

replacement necessary (impossible with ASICs). 
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Features 

 Second generation ASIC replacement technology 

 Densities as high as 6,912 logic cells with up to 300,000 system gates 

 Streamlined features based on Virtex-E architecture 

 Unlimited in-system reprogrammability  

 Very low cost 

 System level features 

 SelectRAM + hierarchical memory: 

 16 bits/LUT distributed RAM 

 Configurable 4K-bit true dual-port block RAM 

 Fast interfaces to external RAM 

 Fully 3.3V PCI compliant to 64 bits at 66 MHz and CardBus compliant 

 Low-power segmented routing architecture 

 Full readback ability for verification/observability 

 Dedicated carry logic for high-speed arithmetic 

 Efficient multiplier support 

 Cascade chain for wide-input functions 

 Abundant registers/latches with enable, set, reset 

 Four dedicated DLLs for advanced clock control 

 Versatile I/O and packaging 

 Low cost packages available in all densities 

 Family footprint compatibility in common packages 

 19 high-performance interface standards, including LVDS and LVPECL 

 Up to 120 differential I/O pairs that can be input, output, or bidirectional 

 Zero hold time simplifies system timing • 

 Fully supported by powerful Xilinx ISE development system 

 Fully automatic mapping, placement, and routing 

 Integrated with design entry and verification tools 
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Table 4-1 : Spartan-IIE FPGA Family Members 

 

4.2 FPGA Specifications  

 The FPGA used in this project has the following specifications:  

 Vendor: Xilinx  

 Family: Spartan 2E  

 Family: XC2S300E  

 Package: FT256  

 Speed grade: -2Q 

 Synthesis Tool: VHDL  

 Simulator: Xilinx ISE 6.1i  

 

4.3 Behavioral Simulation  

After HDL designing, the code is simulated and its design and functionality is verified using 

simulation software, e.g. Xilinx ISE or ModelSim simulator. The code is simulated and 

verified using Mentor Graphics ModelSim 10.3 PE Student Edition. The output is tested for 

the various inputs. Actual output values are consistent with the expected values.   

 

4.4 Synthesis of Design  

Post the behavioral simulation the design is synthesized. During simulation following takes 

place:  
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4.4.1 HDL Compilation  

The Xilinx ISE tool compiles all the sub-modules of the main module. Design compiler 

includes tools that synthesis the HDL designs into optimized technology-dependent, gate 

level designs.  If any problem takes place then the syntax of the code must be checked. You 

need compile the design and verify the correctness of the model before you synthesize it for 

hardware realization. Once the code is successfully compiled, only then the HDL synthesis 

will be done. 

 

4.4.2 HDL synthesis  

It is the process that generates a gate-level netlist for an IC design that has been defined using 

a Hardware Description Language (HDL). Synthesis includes reading the HDL source code 

and optimizing the design from that description. Hardware components like Multiplexers, 

Adders, Subtractors, Counters, Registers, Latches, Comparators, XORs, Tri-State buffers, 

Decoders are synthesized from the HDL code. XST[29] generates synthesis report. This 

report contains the results from the synthesis run, including area and timing estimation. 

 

4.4.3 RTL Schematic 

This is a schematic representation of the pre-optimized design shown at the Register Transfer 

Level (RTL). This representation is in terms of generic symbols, such as adders, multipliers, 

counters, AND gates, and OR gates, and is generated after the HDL synthesis phase of the 

synthesis process. 

 

4.5 Parameters to compare the performance of the algorithms 

 Area: This metric represents the area normalized to that of one two-input NAND gate. 

This ratio is expressed in Gate Equivalent (GE). 

 

 Cycles per block: This is the number of clock cycles to compute the 

plaintext/ciphertext and read out the ciphertext/plaintext. 
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 Throughput: The rate at which new output is produced with respect to time. The 

number of ciphertext/plaintext bits is multiplied by the operating frequency and 

divided by the needed cycles. It is expressed in bits-per-second (bps). 

 

 Power: It consists of two major components: the static power and the dynamic power. 

The static power is proportional to the area and the fabrication process (due to leakage 

current) and is denoted as Pleak. The dynamic power is proportional to the switching 

activity and is denoted as Pdyn. Both components depend also on the supply voltage. 

 Throughput-to-area ratio: Measures the hardware resource cost associated with the 

implementation resulting throughput. 

 

4.6 Software Implementation 

The cryptographic algorithms AES, Hummingbird and the various variants of Hummingbird  

are also implemented in C using core i5 processor with 2.50 Ghz, in order to check their 

performance and results. We first examined the algorithms after software implementation. 

After comparing algorithms, we identified a set of efficient algorithms suitable for resource 

constrained systems. We also compared the performance of these algorithms for different 

input values. Finally, we simulated our implementation on an Xilinx 6.1i. Our implementation 

is more faster than the previous results without instruction set architecture extensions or 

hardware accelerations. 

 Platform Used:  

 Windows 7 Home Premium 64-bit   

 Compiler:  

 Dev C compiler  
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CHAPTER 5  

RESULTS AND OBSERVATIONS 
 

 

 

A summary of our implementation results is presented in Table 5-1, where the area 

requirements (in slices), throughput and power are given. All experimental results were 

extracted using ISE Design Suite from Xilinx on a Spartan-IIE family using XC2S300e 

device on ft256 package with speed grade -6Q. The 32-bit sub keys ki (i = 1, 2, 3, 4) are read 

from an external register based on the value of a round counter through the interfaces KEY1 

(31:0) to KEY4 (31:0).  

The design uses an iterative looping approach with block and key size of 128 bits in case of 

AES, and 256-bits in case of Hummingbird and lookup table implementation of S-box. This 

gives low complexity architecture. 

An FPGA design flow is used throughout and performance results are presented together with 

comparison with the previously known best designs. The designs presented all support a 256-

bit key in Hummingbird and 128 bit key in AES. Xilinx ISE version 6.1i was used for the 

design flow and the results quoted after Synthesis. The new designs were coded in VHDL. 

Mentor Graphics’ ModelSim 10.3 PE student edition is also used to verify and validate the 

results of the algorithms. 

 

5.1 Results of ModelSim Simulation 

ModelSim executes to create the libraries, compile the source files and testbench and display 

the results in the Wave window. The test bench are used to generate the results of VHDL 

code. 
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A Test Bench in VHDL is code written in VHDL that provides stimulus for individual 

modules (also written in VHDL). Individual modules are instantiated by a single line of code 

showing the port connections to the module. The code for the module, itself, does not show up 

in the Test Bench code, just the port link. Test Benches look like regular modules but they 

have no port connections. They may also contain code that is not synthesizable into a real 

device. It allows you to provide a documented, repeatable set of stimuli that is portable across 

different simulators. A test bench can be as simple as a file with clock and input data or a 

more complicated file that includes error checking, file input and output, and conditional 

testing. It has Clock and reset signals also alongwith the input and output signals. 

In almost any testbench, a clock signal is usually required in order to synchronise stimulus 

signals within the testbench. And reset is used to reset the values of the signals. Almost every 

test bench uses clock and reset signals. 

The following figures are the test-bench simulation of the different variants of the proposed 

Lightweight Encryption scheme using Mentor graphics ModelSim 10.3 PE simulator. It 

shows how the cipher generated from the scheme for the different inputs given. The cipher is 

generated when the clock signal is high and on reset signal, the values of the signals are reset 

ie set to 0.        

In ModelSim simulator, we can change the radix also ie we can view the output in different 

formats like ASCII , Decimal , Octal and hexadecimal. 

The output of the various Encryption scheme are as shown in the following snapshots.  
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5.2 XPower Analyzer Results 

XPower Analyzer[30] is a tool dedicated to power analysis of post-implemented place and 

routed designs. It provides a comprehensive graphical user interface (GUI) that allows a 

detailed analysis of the power consumed and offers as well thermal information under 

operating conditions.  

Different views are available to identify the power consumed either by type of blocks (Clock 

trees, Logic, signals, I/O's, Hard IPs such as BRAMs or DSP blocks) or over the design 

hierarchy.  

Both of these views enable users to perform a detailed power analysis and give a very 

efficient way to locate the blocks or parts of the design which are the hungriest in terms of 

power, thereby giving an easy path to power optimization.  

XPower Analyzer leverages device knowledge and design data to deliver accurate estimate of 

device power and individual net power utilization.  

The following are the results of xpower analyzer of the proposed lightweight Encryption 

scheme.   

 

 

Figure 5-6: Power analysis of Hummingbird Cryptography 
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Figure 5-7 : Power analysis of First variant stream Cipher 

 

 

 

 

Figure 5-8: Power analysis of Second variant stream Cipher 
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Figure 5-9: Power analysis of Hummingbird with first variant 

 

 

Figure 5-10: Power Analysis of Hummingbird with second variant 

 

 

5.3 Xilinx Synthesis Results 

The ISE Design Suite includes Xilinx Synthesis Technology (XST) allowing synthesis of 

HDL designs to create Xilinx specific netlist files. With specially optimized algorithms to 

leverage the advanced architectures of the Xilinx FPGA families, XST offers designers a low-



55 
 

cost design solution to achieve optimal design results. Synthesis Report gives the Device 

utilisation summary and the timing Report. 

Integrated within the ISE Project Navigator, XST provides support for mixed-language 

Verilog and VHDL designs. This flexibility allows designers to mix the best possible design 

source code for any particular project. XST helps designers solve their toughest design 

challenges[29]:  

 Performance: XST incorporates next-generation physical synthesis optimizations 

through techniques such as register balancing, global optimization, timing-driven 

synthesis, and logic optimization to improve the quality of results.  

 

 Reduced Runtime and Design Preservation: With its tight integration within the 

ISE SmartCompile Technology, XST helps maintain successful results to dramatically 

reduce runtimes during subsequent re-implementations.  

 

 Power Reduction: Power optimizations in XST provide power-aware logic 

optimizations for macro processing on blocks such as multipliers, adders and BRAMs. 

 

 Ease-of-use: XST provides designers with additional features to better explore their 

synthesis results. Integrated RTL and Technology Viewers allow designers to view 

their RTL netlist to better visualize how XST inferred the components of their design 

to help identify problems and improve their design early in the process.  

 

 

 

 
# of Slices 

Throughput 

(in MBps) 
Gate Equivalent Power (in mW) 

AES 1486 12.01 23,626 - 

Hummingbird 162 44.8 2072 28 

First Variant Stream 

Cipher 
245 68.8 5648 7 
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Second Variant 

Stream Cipher 
1395 131.04 10,056 30 

Hummingbird with 

First Variant 
174 59.23 3086 28 

Hummingbird with 

Second Variant 
2771 13.2 12,345 28 

Table 5-1: Comparison between AES, Hummingbird and different variants of proposed 

scheme 

Above is the table which shows the performance of different cryptographic primitives on 

Xilinx Spartan-IIE family using XC2S300e device. Table clearly shows that Hummingbird 

algorithm takes less Number of clock cycles, less area, less power and high throughput as 

compare to AES method to encrypt the bits. As Hummingbird algorithm utilises very limited 

resources so it can work in resource constrained environment like RFID tags. 

 

5.4 Software Results 

We implemented the Hummingbird and its various variants on 2.50 GHz Intel Core i5 

processor. The average encryption speed for the AES, Hummingbird and its variants is given 

in the following table.   

 

Encryption Scheme Average Encryption speed (KB/sec) 
AES  8.91 

Hummingbird 9 

Hummingbird First Variant 9.2 

Hummingbird Second Variant 11.97 

Table 5-2:  Average Encryption speed of the various Encryption Schemes on software 

platforms 

 

Above is the table which shows the performance of the existing schemes and the proposed 

variants, on the software platform.   
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CHAPTER 6 

 CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion 

The proposed cipher is appropriate for RFID applications. In this we can combine strong 

cipher with a weak cipher such that the combined encryption scheme is a much stronger as the 

former ones. We also gave some concrete variant schemes under this principle. 

Our design is based on the observation on the available attacks to symmetric key ciphers. 

When we talk about a cipher, it may be weak under some powerful attacks, i.e., the chosen 

plaintext/ciphertext attacks, which are targeting to drive the secret key. Though the encryption 

scheme ie Hummingbird itself is strong but it may weak under some powerful attacks. But, in 

this proposed scheme such attacks make no sense towards deriving segment keys. Therefore, 

many "weak" ciphers become "strong" when being used under our principle. 

In this project a Lightweight Encryption scheme is designed and simulated using Xilinx ISE 

using VHDL as a synthesis tool. The output of the core is analyzed and verified on the test-

bench, and compared with the actual values of the output obtained from Software 

implementation.  

Although our schemes are very fast, we would like to point out that the encryption schemes 

constructed under our principle have security advantage when they are used to encrypt large 

amount of data. AES are not suitable since a commercial implementation of AES typically 

requires 20,000 – 30,000 gates. This is far more than the number of gates on an entire low 

cost label. So in this, we present a novel ultra-lightweight cryptographic algorithm, 

Hummingbird, which is a combination of block cipher and stream cipher. This algorithm is 

mainly designed to work in the extremely resource constrained environment. The hybrid 

structure adopted in Hummingbird can provide the designed security with small block size 

which is expected to meet the stringent response time and power consumption requirements in 
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a large variety of embedded applications. We show that Hummingbird seems to be resistant to 

the most common attacks to block ciphers and stream ciphers including birthday attacks, 

differential and linear cryptanalysis, structure attacks, algebraic attacks, cube attacks, etc.  

 When compared to the block cipher AES implemented on similar platforms, our 

experimental results sshow that after a system initialization procedure Hummingbird can 

achieve up to 54.74 and 4.1 times faster throughput for a size-optimized and a speed-

optimized implementations, respectively. 

On comparing the performance of the proposed encryption schemes implemented on software 

as well as the hardware platform, clearly shows that the performance of the schemes is far 

better on the hardware platform as the hardware encryption doesn’t require system resources 

to perform the encryption/decryption process and therefore allows for better system 

performance. 

 

6.2 Future Scope  

Although the proposed scheme is efficient for resource constrained environment, but it can 

further be optimised. As we are using an iterative approach in designing the scheme, if the 

proposed scheme is designed using pipelining approach, efficiency can further be improved.   
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