

DECLARATION

I, hereby declare that the work embodied in the dissertation entitled "*Feasibility Study of Solar Furnace as a Crematorium*" in partial fulfillment for awarding the degree of *Master of Technology* in "*Thermal Engineering*", is an original piece of work carried out by me. I have been working on this thesis under the supervision of Dr. J. P. Kesari, Associate Professor, Department of Mechanical Engineering, Delhi Technological University.

I also declare that the matter of this work either in full or in part have not been submitted to any other institution or University for the award of any other Degree or Diploma or any other purpose what so ever. All the literature sources which I have used are cited in the References.

> Akhilesh Chandra Kashyap M. Tech. (Thermal Engineering) Roll No.: 2K11/THE/21

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

Dr. J. P. Kesari Associate Professor Department of Mechanical Engineering Delhi Technological University Delhi-110042

CERTIFICATE

It is to certify that the dissertation entitled "<u>Feasibility</u> <u>Study of Solar Furnace as a Crematorium</u>" submitted by Mr. "<u>Akhilesh Chandra Kashyap</u>", Roll No. "<u>2K11/THE/21</u>" in partial fulfilment for awarding the Degree of "<u>Master of Technology</u>" in "<u>Thermal Engineering</u>" is an authentic record of student's own work carried out by him under my guidance and supervision.

It is also certified that this dissertation has not been submitted to any other Institute/University for the award of any degree or diploma.

Date :

Dr. J. P. Kesari

Associate Professor Department of Mechanical Engineering Delhi Technological University Delhi-110042

ACKNOWLEDGEMENT

It gives me immense pleasure to acknowledge my indebtedness and great sense of gratitude to Dr. **J. P. Kesari**, Associate Professor, Department of Mechanical Engineering, Delhi Technological University, Delhi for his able guidance, sympathetic and encouraging attitude throughout the project work. In spite of his busy schedule, he could find time to provide me precious guidance.

My sincere thanks to Shri **Deepak Gadhia**, Trustee of **Muni Seva Ashram**, who is also Director at MSA Renewtech Foundation and Adviser at GreenBrilliance Energy Pvt. Ltd. for allowing and co-operating me to visit and observe the solar crematorium installed at Goraj Village near Vaghodia town in Vadodara district of Gujrat state.

I also take this opportunity to thank Prof. Dr. Naveen Kumar, Head of Department of Mechanical Engineering and other faculty members of the department for encouragement and guidance.

I am thankful to my fellow friends and colleagues who were always there to lend a helping hand in the hour of need.

I am sure that the knowledge & informations that I have gained during this period would be of immense value for my growth in the field of engineering.

> Akhilesh Chandra Kashyap M. Tech. (Thermal Engineering) Roll No.: 2K11/THE/21

ABSTRACT

While cremation is an established Hindu ritual practice since ancient times and the **Hindu religion permits the cremation of dead body in day-time only, there is much more scope of solar crematorium in this ritual; as solar power is also available in day-time only**.

Between 500 and 600 kg of wood are used to cremate a dead body. Many trees are felled to meet this requirement. As a result we are significantly contributing in global warming and polluting the atmospheric air much more. Therefore today, the world is moving towards the sustainable energy sources which are renewable and biodegradable in nature. One of most sustainable energy source is sunlight that too is inexhaustible and available free of cost. The heat (energy) produced is very clean with no pollutants. So above environmental problems can be the addressed very well by using solar crematorium. Therefore **anyone can be a firm believer of world powered by solar energy**.

Since the sunlight has very little part, only 20% of its energy as lighting effect and large portion, 80% as thermal effect, So energy of solar radiation can be utilized more in solar thermal power generation than in solar photo-voltaic (which utilizes only lighting effect of sunlight) for power generation. In this report, the most recent developments are described to build a Solar Crematorium in India. A special scheffler reflector has been designed for this purpose. Its speciality is a flexible surface curvature and simultaneously a non-moving focal area.

CONTENTS

S. No.		Title	Page No.	
	Declar	ation	i	
	Certific	Certificate		
	Acknow	wledgement	iii	
	Abstra	ct	iv	
	Conter	nts	v- vii	
	List of	Figures	viii-ix	
	List of	Charts	x	
	Nomer	nclatures	xi	
1.	Introdu	uction	1-20	
	1.1	World Energy Scenario	2	
	1.2	Indian Energy Scenario	8	
	1.3	Advantages of Solar Power	13	
	1.4	Energy Independence in India by 2030	14	
	1.5	Funeral in Hindu Religion	14	
	1.6	Problems with Traditional Cremation System	16	
	1.7	Why to Opt a Topic of Solar Crematorium?	16	
	1.8	Introduction to the Solar Crematorium	18	
2.	Literature Review		21-26	
	2.1	Literature Review	22	
	2.2	Solar Furnace at Odeillo in France	22	
	2.3	Review of Work on Solar Crematoria	23	
	2.4	Problem Statements and Objectives	25	
3.	Under	standing Solar Energy and Indian Policies	27-50	
	3.1	Understanding Solar Energy	28	
	3.2	The Sun	29	
	3.3	Terminology	32	
	3.4	Solar Radiation and Terrestrial Radiant Energy	36	
	3.5	Solar Technology	39	

S. No.		Title	Page No.
	3.6	Methods of Solar Energy Utilization	40
	3.7	Ministry of New and Renewable Energy	42
	3.8	Policies	43
	3.9	Jhakhand Solar Policy, 2013	47
4.	Theore	etical Study of Solar Crematorium	51-70
	4.1	Cremation Process	52
		4.1.1 Ash Weight and Composition	52
		4.1.2 Factors Affecting Cremation Time	53
	4.2	Concept of the Solar Crematorium	54
	4.3	Scheffler Reflector	56
		4.3.1 Designing the Scheffler Reflector	56
		4.3.2 Material of Scheffler Reflector	57
	4.4	Tracking System	58
		4.4.1 Stopping the Sun	58
		4.4.2 Moving with the Sun	59
		4.4.3 Bending and Flexing, the Most Unique Feature of the Scheffler Reflectors	59
	4.5	Cremation Chamber	63
	4.6	Backup System For Non-Sunny Hours	65
	4.7	Development of Solar Crematorium	66
	4.8	Further Steps	69
5.	Feasib	ility Study in India	71-83
	5.1	Demands of Cremation Facility	72
	5.2	Factors Influencing People's Choice of Crematorium	74
		5.2.1 Location	74
		5.2.2 Bereaved People	74
		5.2.3 Crematorium Marketer	75
		5.2.4 Funeral Director	76
	5.3	Case Study of a Solar Crematorium in Gujrat	76
		5.3.1 Introduction to the Problems	77
		5.3.2 Geographical Suitability of The Place	77
		5.3.3 Government Policy	78

S. No.		Title	Page No.
		5.3.4 Design and Development	79
		5.3.5 Customers and Business Opportunities	81
		5.3.6 Potential Environmental Impact	82
		5.3.7 Conclusion of the Case Study	82
6. E	Econo	mic Analysis	84-94
	6.1	Factors Affecting Cost of New Crematorium	85
	6.2	Operating Costs	87
	6.3	Cost of the Cremation Equipment	88
		6.3.1 EquipmentPurchase Costs	89
		6.3.2 Equipment Operating Costs	90
		6.3.3 Equipment Maintenance Costs	91
	6.4	Premises Costs	92
	6.5	Expenditure Summary	93
	6.6	Crematorium Income	93
	Conclu	usion	95-96
I	Refere	nces	97-99

LIST OF FIGURES

Fig. No.	Title	Page No.
1.1	Global Coal Map	4
1.2	Global Oil Map	5
1.3	Global Solar Map	8
1.4	Indian Coal Map	10
1.5	Wind Resource Map	11
1.6	Solar Insolation in India	12
1.7	An Schematic View of Solar Crematorium	19
2.1	World's Largest Solar Furnace at Odeillo in France	23
2.2	Experimental Setup for Solar Crematorium in Baroda with Two Axis Tracking of the Sun	24
3.1	Distribution of Solar Radiation	28
3.2	Structure of the Sun	30
3.3	The Sun and Earth Relationship	32
3.4	Geometry of Ray-Surface Intersection	33
3.5	DNI Solar Map	37
3.6	GHI Solar Map	39
4.1	Block Diagram of Solar Crematorium	54
4.2	Different Parabolas Focus the Sunlight in Different Seasons	60
4.3	Automatic Tracking Stand for Small Scheffler Reflector	62
4.4	Crematorium Tracking Stand Aligned with Back Crane and Reflector Frame	62
4.5	Manual Changing of Length of the Reflector's Rear Support for Seasonal Change	63
4.6	Flue Gases Leaving the Chamber Through Focus Opening, A Long Flame is Burning off without Visible Smoke	65

Fig. No.	Title	Page No.
4.7	Foundation for Stand: Reinforced Concrete	66
4.8	Aligned Stand and Back Crane	67
4.9	Top View of the Cross-Bar Stand	67
4.10	Platform 6.3 X 9 M2 Under Construction Where Chamber will be Placed	68
4.11	Chamber (Front) Arrives in; Focal-Opening 240 mm Diameter, Connection for Air-Blower at the Side	68
4.12	Chamber (Back-Side) with Wooden Bier on Trolley and Insulated "Closing Door"	68
4.13	Dead Body being Inserted in Crematorium	69
5.1	Solar Crematorium Which I Visited at Goaraj Village near Waghodia Town in Gujrat State	80

LIST OF CHARTS

Chart No.	Title	Page No.
1.1	Country-Wise Per Captia Energy Consumption of Year 2009 in kgoe	3
1.2	Top Ten Countries of Proven Natural Gas Reserves in Million Tonnes of Oil Equivalent	6
1.3	Top 10 Countries of Windpower Capacity (2011 Year-End)	7
1.4	Indian Petroleum Scenario	9
1.5	Fuel Wise Total Installed Capacity	13
3.1	Yearly Solar Fluxes & Human Energy Consumption	29
5.1	Cremation in Various Religions	73
6.1	Factors Affecting Cost of New Crematorium	86
6.2	Installation Cost	86
6.3	Operating Cost of Employee	88
6.4	Equipment Operating Cost	91
6.5	Expenditure Summary	93

NOMENCLATURES

:	Area
:	Aperture Area
:	Receiver/Absorber Area
:	Commission For Additional Sources Of Energy
:	Central Electricity Authority
:	Concentration Ratio
:	Optical Concentration Ratio
:	Centre for Science and Environment
:	Direct Normal Irradiance
:	Irradiance
:	Total Energy
:	Diffuse Solar Irradiance
:	Global Solar Irradiance
:	Energy Information Administration
:	Reflected Solar Irradiance
:	Foreign Direct Investment
:	Foreign Investment Implementation Authority
:	Foreign Investment Promotion Board
:	Gujarat Energy Development Agency
:	Gujarat Energy Development Agency
:	Gujarat Energy Research & Management Institute
:	Global Horizontal Irradiance
:	Radiant Exposure

I	:	Radiant Intensity
ICNEER	:	International Center for Networking, Ecology, Education & Reintegration
IEA	:	Reintegration International Energy Agency
IREDA	:	Indian Renewable Energy Development Agency
IRENA	:	International Renewable Energy Agency
JNNSM	:	Jawaharlal Nehru National Solar Mission
JREDA	:	Jharkhand Renewable Energy Development Agency
К	:	Kelvin Temperature
kwh	:	Kilo Watt Hour
L	:	Radiance
Μ	:	Radiant Exitance
MNES	:	Ministry For Non-Conventional Energy Sources
MNRE	:	Ministry of New And Renewable Energy
mtoe	:	Million Tonnes of Oil Equivalent
MW	:	Mega Watt
Р	:	Power
Q	:	Radiant Energy
RBI	:	Reserve Bank Of India
RE	:	Renewable Energy
RET	:	Renewable Energy Technologies
S	:	Direct Solar Irradiance
So	:	Solar Constant
SOP	:	Standard Operation Procedure
UNDP	:	United Nations Development Programmes
α	:	Absorptance
3	:	Emittance

- θ : Angle of Incidence
- ρ : Reflectance
- T : Transmittance
- Φ : Radiant Flux Density