
1

CHAPTER-1

INTRODUCTION

1.1 OVERVIEW

Electrical power systems are composed and worked to meet the nonstop variety of power

demand. With the increment in energy demand, the size of our electrical power system is

additionally expanding day by day and making electrical power system muddled. Rebuilding

of the power sector has motivated new improvements in power system operation and

arranging. To satisfy the energy need, amounts of power plants are joined in parallel to supply

the system load by interconnection of systems. These days, real test is to satisfy the

consumer's demand for power at least cost. Any given power system consisting of various

generating stations, having their own particular characteristic operating parameters, are

utilized to take care of the total consumer demand. Generally, the cost of operating these

generators is not proportional with their output, therefore the test for power utilities is to

attempt to adjust the total load among generators. It gets complicated when utilities attempt to

represent the transmission loss and seasonal changes. Rebuilding of the power sector has

motivated new improvements in power system operation and arranging. Although distributed

generation (D.G) and demand response projects are not extremely recent, the present power

system operational requirements is to give electricity in a conservative and proficient way, for

the expanding rate of demand growth.

Economic Load Dispatch (ELD) is a technique to plan the power generator outputs as

for the load demands, and to work the power system most economically, or as such, we can

say that primary target of economic load dispatch is to designate the optimal power generation

from distinctive units at the least cost conceivable while meeting all system constraints. The

unpredictability of ELDprelies on upon the components like size of the system, generator

attributes and system constraints.

Generating the definite measure of power as demanded meeting all of the losses is

crucial and takes after a complex methodology. ELD can be used to figure and to plan the

obliged amount of power to be generated among the different generating units in the system .

The operation of the different generating systems in a economical way is constantly viewed as

a important factor in power industry while considering different enhanced type of limitations

with respect to power generation, power demand and operational limits of the generating

units.

This thesis is concerned with the ELD of all thermal system only. It is to be note that

2

all the generating units in a system don't took part in the economic dispatch. Nuclear units and

huge steam units are keep running at consistent MW setting as it is desirable (because of some

specialized reasons) to keep up the yield of such units at as consistent a level as could

reasonably be expected. Rest of the units those partake in economic dispatch will be called

controllable units. Fuel costs in base-load units then show up as an altered cost and don't show

up in the economic dispatch issue. We consider the minimisation of those costs that, by fitting

proper methodology, we can control it, i.e. the fuel costs in the controllable units.

The issue of economic operation of a power system or ideal power flow can be state

as: Allocating the load (MW) among the different units of generating stations and among the

different generating stations in such ways that, the general cost of generation for the given

load demand is least.

This is an optimization problem, the objective of which is to minimize the generation cost

function subject as per the general inclination of a given arrangement of straight and non-

direct equality and inequality constraints. The issue is dissected, solved and afterward

executed under online state of the power system. The information for the issue originates from

conventional power flow study. For a given load demand, power flow study can be utilized to

compute of active and reactive power generations, line flows and losses. The answer for this

issue can't be ideal unless generally every one of the limitations of the system are fulfilled.

We examine the economic scheduling issue in the following sections, however first we

consider the requirements that should be addressed.

The majority of the industrial practices known so far consider a quadratic function of

real power output generated for the working fuel cost of generators and valve point loading

effect if considered in the event of thermal power plants calls for brokenness in the

optimization problem. Accordingly, ELD problem show non-linear and non-convex elements

because of the presence of valve point loading effects. Established optimization techniques

incorporate constantly differentiable functions which are hard to handle and now and again,

does not converge to optimum solution. The evolutionary computational techniques can

handle such non-convex and non-differential objective functions effectively and give a

practically ideal solution in an interval of time. Numerous meta-heuristic calculations can

proficiently understand non-continuous, non-linear and non-convex optimization problems as

being what is indicated techniques don't force any requirements on the given problem. Like

these evolutionary algorithms, randomly took after artificial intelligence techniques, for

example, say Particle Swarm Optimization (PSO) is likewise connected to numerous

complicated optimization fields.

In this thesis work one of great heuristic method PSO is utilized. This strategy is in

3

view of the experience picked up from the investigation of artificial life and psychological

exploration. Eberhart and Kennedy created PSO, in light of the similarity of the swarm of

birds and the school of fish. One of the principle objectives is to look at how natural creatures

carry on as a swarm and to reconfigure the swarm model computationally. It is understood

that the PSO methods can give a top notch arrangement with basic implementation and quick

convergence. PSO algorithm has been produced for the nonlinear consistent optimization

issue to accomplish the best compromise arrangement. In this work the expense of generation

is taken as the objective which is should have been be minimized. Adjustments in PSO have

been indicated in some recent research papers. These changes makes PSO algorithm to

demonstrates more preferable result over the Basic PSO. In this thesis work modifications

have been done in PSO which is named as MPSO (Modified Particle Swarm Optimization).

This change is done to enhance the speed and it gives better results.

1.2 AIM AND APPROACH

Our fundamental thought process in this thesis work is to solve the ELD (economic load

dispatch) problem by the utilization of Modified Particle Swarm Optimization (MPSO)

recognizing the cost of generation and the transmission line losses of the system for which

IEEE 5, 14, & 30 bus system have been studied. The optimum point or the best compromise

arrangement have been completed by utilizing MPSO as a part of which we take the best

esteem result from the particles by which we figure out the cost of generation and the

transmission line losses of the system.

The work has been done in the following way:

a. Analysing about Particle Swarm Optimization and organizing its algorithm in MATLAB

R2013a.

b. Explanation of distinct mathematical benchmark functions using SBPSO.

c. Formulation of Economic Load Dispatch (ELD) recognizing the cost of generation and

the transmission line losses of the system for IEEE 5, 14, & 30 Bus System utilizing

SBPSO.

d. Generation of non-inferior sets of IEEE 5, 14, & 30 bus systems.

e. Accomplishment of optimum point for IEEE 5,i14 and 30 bus system with lesser no of

kount acknowledging the cost of generation and the transmission line losses of the system

4

1.3 LITERATURE REVIEW

Basic PSO: Eberhart and Kennedy [1] described a concept for the optimization of nonlinear

functions using particle swarm methodology is introduced. The evolution Benchmark of the

paradigm is described, and applications, including nonlinear function optimization and neural

network training, was proposed. The relationships between particle swarm optimization and

both artificial life and genetic algorithms was described.

Ajith Abraham ,Hi Guo and Hanpo Liu[2] implemented PSO and ACO algorithms on same

mathematical benchmark function as Griewank function ,Schwefel function, Quadratic

function and also an real world applications as travelling sales man problem and data mining

. They also analysed and discussed the results in detail.

Karin Zielinski and Rainer Laum [3]evaluated various stopping criteria‟s on the basis of

movements made by the particles ,improvements based criteria‟s and distribution based

criterion for a constrained single – objective particle swarm optimisation algorithm. In this

paper ,optimisation of power allocated scheme for code division multiple Access (CDMA)

system has been considered : Improvement based movement based and distribution based

stopping criterion .these criterions have been compared on the basis of convergence rate and

success performance. It was further observed that there was no use of combining different

criteria‟s on this incorporates adjustments of more parameters.

MODIFIED:

W.B. Laydon et al [4] used kernel to provide the values for each particle of a swarm which

guides the unit as a whole. They solved one- dimensional multi-model 3-peaks and rastrigin

function problem using kernel.

Marks S. Voss[5] introduced principal component PSO I e PCPSO in which particles are

made to fly in two separate spaces simultaneously, one in traditional n- dimentional space

and a rotated m-dimensional z- spaces. Where m≤n.PCPSO algorithm has been introduced

using Greiewank function.

Jaco F.Schutte and Albert A. Grroenwold [6] studied the variants of PSO algorithms and

applied to Dixan – Szego test set. The variations studied were –constant inertia weight, linear

inertia reduction, limit on maximum velocity, construction factor, dynamic inertia and

maximum velocity reduction. It was observed that constriction and dynamic inertia weight

5

both affect reliability and cost. Dynamic inertia reduction was found to be less sensitive than

constriction factor.

Wei-Bing Liu and Xian Jia Wang [7]introduced Evolutionary game (EGPSO) in which the

behaviour of particles are modelled using Replicator dynamics and multi –start technique.

This technique overcomes premature convergence and has better convergence property than

traditional pso.

Wei Zu et al [8] proposed a new technique PSOED based on particle equilibrium distribution

in which a sub-optimum trap i.e. clustering of particles within a subarea of problem scope is

avoided.This technique is applied to various benchmark functions and is shown to be better

than basic pso and GA.

Sevkan et al [9] introduced multi-dimensional pso (MD-PSO)where swarm particles can seek

both positional and dimentional optima. They also proposed FGBF(Fractional Global Best

Function) technique to avoid premature convergence. This technique is then applied to multi

model dynamic environment and is shown to track the global optima with minimum error.

Touahria[10] illustrated the effect of excluding the redundant particle from current iteration.

Huanhuan Ji et al [11] proposed a bi-swarm particle swarm optimization with cooperative co-

evolution (BPSO-CC).In this model second swarm was generated from the first swarm which

conducts the local search. The proposed technique was implemented on size benchmark

functions in dimensions of 100 to 500.

Zhe Li and Yong chen [12] have introduced a new pso with parallel processing and color

quantization.

Weidong Ji and keai Wang[13] combined PSO with gradient method, which avoids immature

convergence.

Ismail et al [14] proposed a novel multi –state particle swarm optimization (MSPSO) to solve

discrete problems. It was applied to two benchmark instances of travelling salesman problem.

(TSP). The proposed technique was compared with Binary Particle swarm optimization (Bin-

PSO). It was observed that the proposed technique gave better solution compared Bin-PSO

and was found to be simple in complexity.

Kyle Robert Harison [15] hybridized GA with PSO. They also claimed new version of pso

avoids premature convergence.

6

Nikhil Padhya et al [16] suggested three different PSOs with boundary handling approaches

in this paper ,the authors have proposed two boundary handling methods- Inverse parabolic

spread Distribution and Inverse parabolic confined Distribution. These were compared with

existing boundary handling methods- Random, Periopdic, Set on boundary, SHR and

Exponential Distribution for four test functions.

Zahara Beheshti et al [17] proposed binary accelerated PSO. They have shown that new pso

requires only common controlling parameters viz no. of genewrations and population size.

Luis Miguel Rios and Nikolaos Sahinidias[18] presented a review of derivative free

algorithms including PSO for constrained problems.They combined twenty – two(22) such

algorithm and implemented on a test set of 502 problems. It was observed that all solvers

provided the best solution for at least some of the test problems and there is no single solver

which provides best result for all the problems.

Zhimin chen et al [19] presented an organizational adjustment PSO based particle filter

(OAPSO-PF) algorithm which allowed the particles to adopt to environment and reach the

global optimum.

Lin Lu et. al. [20] developed a hierarchical structure poly –particle swarm

optimization(HSPPSO). Approach using the hierarchical structure concept of control theory.

This algoritm was implemented on four benchmark functions –Spherical, Rosenbrock,

Griewank and Rastrigin and was also compared with PSO. HSPPSO was found to search

better for global optimum, and converged faster.

Kyle Robert Harison [21] hybridized GA with PSO. They also claimed new version of pso

avoids premature convergence.

Xan Zhe ping et al [22] also presented a pso with two sub population. Liu Jin –yue et al [62]

proposed linearly decreasing weight PSO (LDWPSO) algorithm. And introduced mutation

operator to improve the global and local search . Ability of the algorithm was tested on two

non linear functions- Ackeley and Rastrigin functions and compared the performance with

standard pso. It was observed that this improved algorithm increased the convergence speed

as well as the global search capability.

Nikhil Padhya et al [23] suggested three different PSOs with boundary handling approaches

in this paper ,the authors have proposed two boundary handling methods- Inverse parabolic

spread Distribution and Inverse parabolic confined Distribution. These were compared with

7

existing boundary handling methods- Random, Periopdic, Set on boundary, SHR and

Exponential Distribution for four test functions . Inverse parabolic spread Distribution was

found to be the most robust and consistent method.

Zahara Beheshti et al [24] proposed binary accelerated PSO. They have shown that new pso

requires only common controlling parameters viz no. of genewrations and population size.

Luis Miguel Rios and Nikolaos Sahinidias[25] presented a review of derivative free

algorithms including PSO for constrained problems.They combined twenty – two(22) such

algorithm and implemented on a test set of 502 problems. It was observed that all solvers

provided the best solution for at least some of the test problems and there is no single solver

which provides best result for all the problems.

Zhimin chen et al [26] presented an organizational adjustment PSO based particle filter

(OAPSO-PF)algorithm which allowed the particles to adopt to environment and reach the

global optimum.

Lin Lu et. al. [27] developed a hierarchical structure poly –particle swarm

optimization(HSPPSO)

Approach using the hierarchical structure concept of control theory. This algoritm was

implemented on four benchmark functions –Spherical, Rosenbrock, Griewank and Rastrigin

and was also compared with PSO.HSPPSO was found to search better for global optimum,

and converged faster.

ELD:

Megahed et al. [28] developed a method for solving the economic load dispatching problem

by changing it from constrained nonlinear programming problem to a sequence of

constrained linear programming problems. The formulation of the load scheduling is exact in

the sense that all the system voltages, active and reactive generation, as well as the phase

angles are considered as independent variables. In addition, the effect of bus voltages on the

loads is taken into consideration

Happ [29] reviewed the progress of optimal dispatch, also called economic load dispatch,

since its inception to the present in chronological sequence. The classic single area as well as

multi area cases is summarized, and the important theoretical work in optimal load flows

8

suggested to date reviewed. Approaches to the optimal load flow taken by industry are also

reported, as well as an itemization of problems that still remain to be solved.

Kwatny and Athay [30] presented the coordination of the economic load dispatch and

regulation functions of automatic generation control in electric power systems. The point of

view taken is that such coordination appropriately takes place at the regulation or load

frequency control level. Thus, the coordinating controller is obtained through the formulation

of a suitably extended load frequency control problem in the context of linear multivariable

control theory.

Aoki and Satoh [31] presented an efficient method to solve an economic load dispatch

problem with dc load flow type network security constraints. The conventional linear

programming and quadratic programming methods cannot deal with transmission losses as a

quadratic form of generator outputs. In order to overcome this defect, the extension of the

quadratic programming method is proposed, which is designated as the parametric quadratic

programming method. The upper bounding technique and the relaxation method are coupled

with the proposed method for the purpose of computational efficiency. The test results show

that the proposed method is practical for real-time applications.

Lin and Viviani [32] presented a method to solve the economic power dispatch problem with

piecewise quadratic cost functions. The solution approach is hierarchical, which allows for

decentralized computations. An advantage of this approach is the capability to optimize over

a greater variety of operating conditions. Traditionally, one cost function for each generator

is assumed. In this formulation multiple intersecting cost functions are assumed. This method

has application to fossil generation units capable of burning gas and oil, as well as other

problems which result in multiple intersecting cost curves for a particular unit. The results

show that the solution method is practical and valid for real-time application.

Ramanathan [33] presented an extremely fast, simple, efficient and reliable economic load

dispatch algorithm. The algorithm utilizes a closed form expression for the calculation of the

Lambda, as well' as taking care of total transmission loss changes due to generation change,

thereby- avoiding ,any iterative processes in the calculations. The closed form expression

9

presented for Lambda can be used with 'any type of incremental transmission loss

calculation. For this algorithm, penalty factors are derived based upon the Newton's method.

Walters and Sheble [34] used genetics-based algorithm to solve an economic dispatch

problem for valve point discontinuities. The algorithm utilizes payoff information of

candidate solutions to evaluate their optimality. Thus, the constraints of classical Lagrange

techniques on unit curves are circumvented. The formulations of an economic dispatch

computer program using genetic algorithms are presented and the program's performance

using two different encoding techniques is compared. The results are verified for a sample

problem using a dynamic programming technique.

Abdullah and Bakar [35] presented the implementation of hybrid particle swarm

optimization for solving Economic-Emission Load Dispatch Problem (EELD). They studied,

the hybrid Evolutionary programming (EP) and Particle Swarm Optimization (PSO) named

Evolutionary Particle Swarm Optimization (EPSO) was proposed. The effectiveness of the

EPSO algorithm has been tested on the IEEE 30 bus system and the results obtained were

compared with the other reported algorithms. The results also reveal the capability of the

proposed EPSO for obtaining the best fuel cost compared to PSO.

Bhattacharya and Chattopadhyay [36] presented a novel Particle Swarm Optimizer combined

with Roulette selection operator to solve the economic load dispatch (ELD) problem of

thermal generators of a power system. Several factors such as quadratic cost functions with

valve point loading, transmission Loss, generator ramp rate limits and prohibited operating

zone were considered in the computation models. The experimental results showed that the

proposed modified PSO method is indeed capable of obtaining solution in less time and in

fewer numbers of iterations.

Dasgupta and Banerjee [37] explains different techniques has used to solve these problems.

Recently, the soft computing techniques has widely used in practical applications. They

showed successful implementation of four evolutionary algorithms, namely particle swarm

optimization (PSO), particle swarm optimization with constriction factor approach

(PSOCFA), particle swarm optimization with inertia weight factor approach (PSOIWA) and

10

particle swarm optimization with constriction factor and inertia weight factor approach

(PSOCFIWA) algorithms to economic load dispatch problem. Power output of each

generating unit and optimum fuel cost obtained using all four algorithms has been compared.

N.K.Jain and Uma Nangia [38] explained Particle Swarm Optimization converges to local

optima, especially in some complex issue like optimization of high dimension function. They

observed that the traditional particle swarm optimization algorithms converses rapidly during

the initial stage of a search, but in course of time becomes steady considerable and gets

trapped in a local optima. They presented four evolutionary optimization models (IPSO 1, 2,

3, 4) based on the particle swarm optimization algorithms for Economic Load Dispatch

considering cost of generation. Their analysis suggests that IPSO (Improved Particle Swarm

Optimization) significantly improves the performance with less no of iteration. They

implemented different IPSO to ECONOMIC LOAD DISPATCH to get optimum value of

cost with less no of iteration.

Liu, Han and Zhou [39] explained chaotic particle swarm optimization (CPSO) algorithm to

solve the optimal dispatch problem, adopting the adaptive inertia weight to accelerate the

convergence speed. They improved hybrid optimization algorithm from particle swarm

optimization (PSO) algorithm by chaotic searching in the neighborhood to avoid getting into

the local optimum, with the algorithm steps listed in the paper. They considered a numerical

example and analyzed, verifed the validity of the hierarchical optimization mode and CPSO.

1.4 PLAN OF THESIS

This thesis has been arranged in five chapters. The contents of the chapters are briefly

outlined as indicated below:

Chapter 1 is an introduction chapter. It describes the overview of thesis, aim and approach of

the problem taken up for thesis work and literature review.

11

Chapter 2 describes the introduction, algorithm, flowchart and mathematical formulas of

Particle Swarm Optimization.

Chapter 3: Explores the concepts of Selection Based Particle Swarm Optimization algorithm

in MATLAB R2013a and its application on various mathematical benchmark functions.

Analysis of various parameters in SBPSO algorithm has also been carried out.

Chapter 4: Discusses the solution of Economic Load Dispatch by SBPSO for IEEE 5, 14 and

30 bus systems.

Chapter 5: Conclusion and the future work directions have been discussed.

References and Appendix are at the end of the thesis.

12

CHAPTER-2

PARTICLE SWARM OPTIMIZATION

2.1 INTRODUCTION

A modern heuristic optimization method, for example, simulated annealing, evolutionary

algorithms, neural networks, and ant colony have been given much consideration by

numerous specialists because of their capacity to find a practically global optimal solution in

EDPs. One of these modern heuristic optimization ideal models is the particle swarm

optimization (PSO).

PSO is a kind of evolutionary algorithm taking into account a populace of individuals

and roused by the simulation of social conduct instead of the survival of the fittest individual.

It is a populace based evolutionary algorithm. Like the other populace based evolutionary

algorithms, PSO is initialized with a populace of random solutions. Not at all like a large

portion of the evolutionary algorithm is solution (individual) in PSO likewise connected with

a randomized velocity, and the potential solutions, called particles, are then "flown" through

the problem space. PSO algorithm has been produced for the nonlinear consistent

optimization issue to accomplish the best compromise arrangement. In this work the expense

of generation is taken as the objective which is should have been be minimized. Adjustments

in PSO have been indicated in some recent research papers.

The most striking distinction in the middle of PSO and the other evolutionary algorithms

is that PSO picks the way of collaboration over rivalry. The other algorithms normally utilize

some type of annihilation, survival of the fittest. Interestingly, the PSO populace is steady

and individuals are not crushed or made. Individuals are influenced by the best execution

does not have hereditary operators like crossover in the middle of individuals and of their

neighbors. Individuals inevitably meet on optimal points in the problem domain. Also, the

PSO traditions transformation, and other individuals never substitute particles during the run.

Instead, the PSO refines its pursuit by attracting the particles to positions with great

solutions.

Additionally, contrasted with genetic algorithms (GAs), the information sharing

mechanism in PSO is significantly diverse. In GAs, chromosomes offer information with one

13

another. So the entire population moves like an one gathering towards an optimal zone. It is a

restricted information sharing component. The advancement searches for the best solution. In

PSO, every one of the particles have a tendency to converge to the best solution rapidly,

comparing with GA, even in the local version in most cases.

Particle swarm advancement is fundamentally a population-based searching procedure

which searches in parallel and does not prompting elimination of any of the arrangement. It is

a sort of searching method which follows its movement taking into account the advancing

development of birds rushing or fish schooling search for nourishment. It introduces particles

randomly into the predetermined search space and these particles accumulate data through

their corresponding positions. The alteration in position of every molecule in the swarm is in

light they could call their own personal best experience and their neighbor's experiences. In

PSO, just gbest (or pbest) gives out the data to others. The inertia weight presented at the

velocity updating step is responsible for the energy of every molecule. It was presented by

Shi and Eberhart and it meets expectations by weighing the inclusion of the past for the

purpose of dispensing with the necessity for velocity clamping. Estimation of w chooses the

particle velocity overhauling and in this manner entire framework bearing is taking into

account its quality. With w having a quality more prominent than 0, divergent behavior of the

framework come about because of expansion in framework's velocity and accordingly

particles neglect to acquire the best position. With w being under 0, deceleration of particles

happens which bring about moderate convergence to the best solution. Static inertia qualities

or versatile qualities may lead to convergent solution.

PSO has various key elements that turn out to be extremely dependable in distinctive

applications where conventional optimization techniques may come up short when compared

with other evolutionary optimization algorithms. Following are a advantages of the PSO over

other conventional algorithms:

 It makes use of basic logical and mathematical functions which are easy to

handle and operate with a succession of methodology.

 It has less working parameters which are easy to work.

 It uses real esteemed operational integers which dispenses with the requirement

of converting binary form to real coded structure as in GA.

 It is better in terms of time utilized for computation and memory storage

requirement.

14

2.2 CONCEPT OF SWARM AND PARTICLE

The term swarm has a premise in the literature. Specifically, the authors utilize the term

as per a paper by Millonas [40], who added to his models for applications in artificial

life, and enunciated five fundamental standards of swarm intelligence.

 Proximity principle: As per this standard, the population ought to have the

capacity to do basic space and time computations.

 Quality principle: As per this standard, the population ought to have the

capacity to react to quality factors in nature.

 Principle of diverse response: As per this standard, the population ought not to

confer its activities along unreasonably narrow channels.

 Principle of stability: As per this standard, the population ought not change its

method of conduct each time the environment changes.

 Principle of adaptability: As per this standard, the population must have the

capacity to change conduct mode when it's justified the computational cost..

3.3 BASIC PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization has establishes in two fundamental segment strategies.

Maybe more clear are its binds to artificial life and to bird flocking, fish schooling, and

swarming hypothesis specifically. It is likewise related, be that as it may, to

evolutionary computation, and has binds to both genetic algorithms and evolution

strategies. Particle swarm optimization contains an exceptionally straightforward idea,

and standards are executed in a couple lines of PC code. It requires just primitive

mathematical logic, and is computationally reasonable as far as both memory need and

speed. Early testing has discovered the execution to be powerful with a few sorts of

problems. PSO has likewise been exhibited to perform well on genetic algorithm test

15

functions, and it has all the earmarks of being a promising methodology for robot task

learning.

PSO is initialized with a gathering of random particles (solutions) and then

scans for optima by redesigning generations. In every iteration, every molecule is

overhauled by taking after two "best" values. The first is the best solution (fitness) it

has accomplished in this way. The fitness quality is additionally put away. This quality

is called pbest. Another "best" esteem that is followed by the particle swarm optimizer

agent is the best esteem, got so far by any particle in the populace or it is the best

esteem among every one of the estimations of pbest. This best esteem is a global best

and called gbest. At the point when a particle participates of the populace as its

topological neighbors, the best esteem is a local best and is called pbest..

The PSO idea comprises of, at every single time step, changing the velocity

(accelerating) every particle toward its pbest and gbest areas (global adaptation of

PSO). Acceleration is weighted by a random term, with isolated random numbers being

created for acceleration toward pbest and gbest areas. There is likewise a local form of

PSO in which, in addition to pbest, every particle stays informed regarding the best

solution, called lbest, achieved inside of a topological neighbourhood of particles.

The (original) process for actualizing the global variant of PSO is as per the following:

1) Initialize a population (array) of particles with random positions and velocities

on d dimensions in the problem space.

2) For every particle, assess the desired optimization fitness function in d

dimensions.

3) Compare particle's fitness assessment with particle's pbest. In the event that

present value is superior to pbest, then set pbest worth equivalent to the present

value, and the pbest location equivalent to the present location in d-dimensional

space.

4) Compare fitness evaluation and the populace's general previous best. On the off

chance that present quality is superior to gbest, then reset gbest to the present

particle's array record and values.

5) Modifies the velocity and position of the particle according to equations (2.1)

and (2.2), respectively:

Vi
k+1

 = W*Vi
k
 +Cp* Rp *(Xpbesti - Xi

k
) + Cg* Rg *(Xgbest - Xi

k
) …..(2.1)

16

Xi
k+1

 = Xi
k

+ Vi
k+1

…..(2.2)

6) Circle to step 2 until a criterion is met, usually a sufficiently best fitness or a

most extreme number of iterations reaches.

Particles' velocities on every single dimension are clipped to a most extreme

velocity Vmax. On the off chance that the sum of accelerations would cause the

velocity on that dimension to surpass Vmax, which is a parameter specified by the user,

then the velocity on that dimension is constrained to Vmax.

Vmax is hence a vital parameter. It determines the resolution, or fineness, with

which regions between the current position and the objective (best so far) position are

searched. On the off chance that Vmax is too high, particles may fly past great

solutions. On the off chance that Vmax is too small, then again, particles may not

investigate sufficiently past generally great regions. Truth be told, they could get to be

caught in local optima, not able to move sufficiently far to achieve a superior position

in the problem space.

The acceleration constants Cp and Cg in mathematical eqn. (2.1) represent the

weighting of the stochastic acceleration terms that force every particle toward pbest and

gbest positions. Thus, adjustment of these constants modifies the measure of "tension"

in the system. Low values permit particles to meander a long way from target regions

before being pulled back, while high values result in sudden development toward, or

past, target regions. Early involvement with particle swarm optimization

(experimentation, mostly) drove us to set the acceleration speed constants Cp and Cg

every equivalent to 2.0 for almost all applications. Vmax was thus the main parameter

we routinely adjusted, and we regularly set it at about 10-20% of the dynamic scope of

the variable on every dimension.

Based, in addition to other things, on findings from social simulations, it was chosen to

design a "local" version of the particle swarm. In this version, particles have data just

they could call their own and their neighbours bests, instead of that of the entire group.

Instead of moving toward a sort of stochastic average of pbest and gbest (the best area

of the entire group), particles move toward points characterized by pbest and "lbest",

which is the list of the particle with the best evaluation in the particle's neighbourhood.

On the off chance that the area size is characterized as two, for instance,

particle(i) compares its fitness esteem with particle(i-1) and particle(i+l). Neighbors are

17

characterized as topological neighbors; neighbors and neighbourhoods don't change in

a run. For the neighbourhood version, the main change to the process characterized in

the six steps before is the substitution of pld, the area of the neighbourhood best, for

Xgbest, the global best, in equation (2.1) . Early experience (once more, for the most

part experimentation) prompted neighbourhood sizes of around 15 percent of the

populace size being used for some applications. So, for a populace of 40 particles, an

area of six, or three topological neighbours on every side, was not unusual.

The populace size selected was issue problem dependent. Populace sizes of 20-

60 were presumably most common. It was found out from the get-go that smaller

populations than were normal for other evolutionary algorithms (such as hereditary

algorithms and evolutionary writing computer programs) were optimal for PSO in

terms of minimizing the aggregate number of evaluations (populace size times the

number of generations) expected to acquire a sufficient solution.

2.4 PSO ALGORITHM PARAMETERS

There are some parameters in PSO calculation that may influence its execution. For any

given optimization problem, some of these parameter's values and choices have

substantial effect on the efficiency of the PSO method, and different parameters have

small or no impact. The distinctive PSO parameters are number of particles or swarm

size, velocity components, acceleration coefficients and number of iterations illustrated

beneath.

2.4.1 Swarm size

Populace size or swarm size is the quantity of particles "s" in the swarm. Countless

number of size generates bigger parts of the search space to be secured per iteration.

Countless number of particles may decrease the quantity of iterations need to get a

superior optimization result. In contrast, large amounts of particles improve the

computational complexity per iteration, and additional lengthy. From an expansive

number of exact studies, it has been shown that most of the implementations in PSO

use an interval of s ε [10,60] for the size of swarm.

18

2.4.2 Velocity clamping

Starting PSO studies used Cp = Cg= 2.0. Although great results have been

accomplished, it was seen that velocities fastly blasted to substantial values, especially

for particles at an extensive distance from their global best (^y) and personal best (yi)

positions. Consequently, particles have vast no. of position updates, with particles

abandoning the boundaries of their search space. Velocities are braced to control the

increase in velocity.

vi
(k+1)

 = v'i
(k+1)

 if v'i
(k+1)

< Vmax

Vmax if v'ij
(t+1)

 ≥V max

Velocity clamping does not stay away from a particle from leaving the boundaries of its

search space, it limits the particle step sizes, in this way different behavior is restricted.

2.4.3 Iterationonumbers

The no. of iterations to acquire a best result depends on the problem. A low number of

iterations may end the search process rashly, while a substantial no. of iterations have

the consequence of unnecessary included computational complex nature and make the

convergence slow.

2.3.4 Accelerationocoefficients

The acceleration coefficients Cp and Cg, joined with the arbitrary values Rp and Rg,

keep up the stochastic impact on the cognitive and social segments of the particle's

velocity separately. The steady Cp demonstrates the amount of certainty a particle has

on itself, while Cg communicates the amount of certainty a particle has on its

neighbors. There are a few properties of Cp and Cg.

 Cp = Cg = 0 speaks to all particles keep flying at their present velocity until they hit

the limit of the search space. Subsequently, the redesign mathematical statement for

velocity is ascertained as

Vi(k+1)p= Vi(k)

19

Cp > 0 and Cg = 0 represents that all particles are autonomous. The velocity update

mathematical statement for this condition will be

Vi(k+1) = w * Vi(k) + Cp * Rp* (yi(k) – Xi(k)) ……. (2.3)

Unexpectedly, Cp > 0 and Cg = 0 represents that all particles are pulled in towards a

solitary point in the whole swarm and the redesign in the velocity will be as under:

Vi(k+1) = Vi(k) + Cp * Rp* (ŷi(k) –iXi (k)) ..…… (2.4)

Cp = Cg represents that every one of the particles are pulled in towards the average of

pbest and gbest .

Cp >> Cg represents that every particle is emphatically impacted by its own best

position, bringing about an increased wandering. Interestingly, when Cg >> Cp then the

majority of the particles are a great deal more affected by the global best position,

which causes all particles to converge rashly to the optima.

Ordinarily, Cp and Cg are static, with exactly discovering the optimized values. Wrong

initialization of Cp and Cg may result in cyclic or dissimilar conduct. From the diverse

experimental investigates, this has been suggested that the two acceleration constants

must be Cp = Cg =2.

2.4.5 Inertia weight

Shi and Eberhart[41] presented the inertia weight with take out the requirement for

velocity clamping and to still limit the dissimilar behaviour. The force of the particles

is controlled by the inertia weight (w) by measuring the commitment of the past

velocities, basically it is utilized to control the amount of memory of the last flight

bearing will influence the new velocity. The velocity mathematical statement altered to

Vi(k+1)i = w * Vi(k)i+ Cp * Rp * (yi(k) – Xi(k))i+ Cg * Rg *i(ŷi(k)i– Xi(k)) (2.5)(2((

Shi and Eberhart presented the idea of inertia weight in 1999 to decrease the velocities

after some time (or iterations), to control the misuse and investigation capacities of the

swarm and to unite the swarm all the more productively and precisely.

20

When w≥ 1 then the velocities increment with time and particles can scarcely redirect

their headings to return towards ideal, and the swarm diverges. When w ≤ 1 then little

force is just spared from the introductory step and speedy changes to directions are

situated simultaneously. When w =0 particles velocity vanishes and all particles move

without learning of the last velocity in every step.

The inertia weight may be actualized either as rapidly changing values or an fixed

values. Beginning usage of utilized a fixed value for the entire procedure for all

particles, however now progressively changing inertia values is utilized in light of the

fact that this parameter controls the exploration and exploitation of the search space.

Different methodologies were proposed time to time were mulled over in detail.

The inertia value is typically high at first, which permits all particles to freely

move in the search space in the introductory steps and decreases with time. In this way,

the procedure shifts from the exploratory mode to the exploitative mode. This

diminishing in inertia weight has delivered great results in a large portion of

optimization problems. To control the harmony in the middle of local and global

exploration and to acquire speedy joining and to achieve an ideal, the inertia weight

whose value decreases directly with the increment in iteration number is situated in like

manner by the accompanying mathematical statement.

w (i+1) = wmax – (((wmax - wmin) * k) / (itmax)) , wmax > wmin (2.6)

where, wmin and wmax are the final and initial values of the inertia weight respectively,

itmax is the maximum iteration no., „k‟ is the current iteration number. Regularly, the

inertia weight decreases straightly from 0.9 to 0.4 over the full run. Trelea have

characterized a condition that (w < ((Cp + Cg)/2)- 1) ensures the convergence.

Cyclic or Divergent conduct can happen in the process if this condition is not fulfilled.

The method of inertia weight is truly valuable to guarantee convergence. However

there is a disservice of the inertia weight system that once the inertia weight is

diminished, it can't build regardless of the possibility that the swarm needs to look new

zones. This technique is not ready to recover its exploration mode.

21

2.4.6 Neighbourhood Topologies

A neighbourhood must be characterized for every particle. This neighbourhood decides

the degree of social connection inside of the swarm and impacts a specific particle's

development. Less cooperation happens when the neighbourhoods in the swarm are

little. For little neighborhood, the meeting will be slower however it may enhance the

nature of arrangements. For bigger neighborhood, the merging will be speedier yet the

risk that occasionally meeting happens prior. To take care of this issue, the search

procedure begins with little neighborhoods size and after that the little neighborhoods

size is expanded over the long run. This procedure guarantees an at first high diversity

with speedier convergence as the particles move towards a promising pursuit region.

The PSO algorithm is social collaboration among the particles in the whole swarm.

Particles correspond with each other by trading data about the achievement of every

particle in the swarm. At the point when a particle in the entire swarm discovers a best

position, all particles move towards this particle. This execution of the particles is

dictated by the particle's neighborhood. Researchers have dealt with adding to this

execution by planning distinctive sorts of neighborhood structures. Some area

structures or topologies are talked about underneath:

Figure 1 Star or gbest

Figure 2 Ring or lbest

22

Figure 2.3 Wheel

Figure 2.4 Four Clusters

Figure 1 clarifies the star topology, where every particle is associated with each other

particle. This topology fundamentally prompts meeting at a quicker rate than different

topologies, yet there is an opportunity to be caught in local minima. Since all particles

are mindful about one another, this topology is known as the gbest PSO.

Figure 2 shows the ring topology, where every particle is related to its quick neighbors.

In this specific procedure, when better result is found by one particle then this molecule

offers it to its quick neighbors and these quick neighbors offers it to their individual

quick neighbors, until it picked up by the last particle. In this manner the best result

found is spreaded gradually in a ring made by all particles. Convergence is moderate,

yet an awesome piece of the inquiry space is secured than with the star topology. It is

known as the lbest PSO.

23

Figure 3 demonstrates the wheel topology, in this stand out of the particle (a focal

particle) partners to the others, and all information are imparted through this specific

particle. This focal particle thinks about the best execution of all the particles in the

swarm and changes its own position towards the best execution molecule break down

without anyone else's input lastly the new position of the central particle is imparted to

every one of the particles.

Figure 4 demonstrates four groups topology, where four coteries (or bunches) are

associated with one edge between inverse groups and two edges between neighboring

bunches. There are more diverse topologies or neighborhood structures (for occurrence,

Von Neumann topology, the pyramid topology etc), yet there is no single best topology

still known not the required optimum for all varieties of optimization problems.

2.5 MATHEMATICAL FORMULAS:

The modification of the particle‟s position can be numerically demonstrated

according the following mathematical equation:

Vi
k+1

 = W*Vi
k
 +Cp*Rp*(Xpbesti -Xi

k
) + Cg*Rg *(Xgbest-Xi

k
) …(2.1)

Where;

 Vi
k
 : velocity ofragent i atriteration k,

 W : inertia weightrfactor,

 C : weightingrfactor,

R :uniformlyrdistributed random numberrbetween 0 and 1,

 Xi
k
 : present position of agentri at iteration k,

 Xpbestr::best of agent i,

 Xgbest r: gbest of thergroup.

Vi
(k)

 which is the velocity of i
th

 particle at iteration „k‟ must lierin the range

Vmin ≤ Vi(k) ≤ Vmax

In the equation (1)

The term Rp *(Xpbesti -Xi
k
) is called particle memory influence,

24

The term Rg *(Xgbest-Xi
k
) is called swarm influence.

The Position of the Particles is updated by the following equation:

Xi
k+1

 = Xi
k

+ Vi
k+1

…………………(2.2)

The following inertia weight factor is usually utilized in (1)

W = Wmax-[(Wmax-Wmin) * k]/maxIter ………………….(2.7)

2.6 FLOWCHART:

The general computational system for the Particle Swarm Optimization is as per the

following:

1. Before to the iteration begins, initialize the particles with random position and

velocity vectors.

2. For each of the particle‟s position (Xi
k
) compute the value of objective function

(F: we likewise call it fitness function).

3. When F(Xi
k
) is not exactly (Xpbesti), then allocate the value of Xpbesti as Xi

k
 (do it

for every one of the particles).

4. Focus the best value of Xpbesti consider its fittest value. In the event that f(best

of Xpbesti)is not exactly f(Xgbesti), than allot the value of best of Xpbesti to the

Xgbesti.

5. Calculate the new velocity vector utilizing mathematical equation (2.1) and the

new position vector utilizing mathematical equation (2.2).

6. Repeats the circle until either the stopping criteria met or the maximum

iteration is achieved.

7. After iteration finishes, give Xgbesti as the optimal solution and the fitness

relating to it as the optimum value.

25

Fig 5 BPSO flowchart

2.6.1 Steps involved in particle swarm optimization in MATLAB

1 Using the zero command of MATLAB initialize all the variable matrices.

2 Set the values of the random no.‟s „Rp‟ & „Rg‟ assigned to the personal and global

best expressions respectively.

26

3 Set the values of acceleration constants „Cp‟ & „Cg‟ assigned to the personal and

global best expressions respectively.

4 Set the tolerance value.

5 Generate the random position values of particles for all the variables (eg. X1, X2)

and also generate the random velocities values of particles (eg. V1, V2) for all the

variable.

6 Calculate the fitness for the assumed values of the positions of the particles.

7 Using the above fitness personal best and global best values for all variables are

deduced.

8 Using the previous iteration values of personal best, global best and velocity

vectors new velocities are generated in the current iteration using the equation:

 Vi
k+1

 = W*Vi
k
 +Cp*Rp*(Xpbesti -Xi

k
) + Cg*Rg *(Xgbest-Xi

k
)

9 Using the new velocity vector and the old position vector, a new position vector is

generated for all the variables.

10 Calculate fitness using the new positions in the current iteration.

11 Using the new fitness values the personal and global best values are updated.

12 The difference between the past and the present fitness is calculated and check

against the tolerance value, if inside of the tolerance iteration stops and global best

value is the solution else iteration stream does a reversal to past step for further

updating.

3.7 ADVANTAGES AND DISADVANTAGES OF PSO

A PSO is considered as a standout amongst the most intense strategies for determining

the non-smooth global optimization problems and has numerous focal points when

contrasted with other heuristic optimization techniques, which are as take follow:

 PSO is a derivative-free technique just like as other heuristic optimization

techniques.

27

 PSO is easy in its concept and coding implementation.

 PSO is less sensitivity to the nature of the objective function compared to the

conventional mathematical approaches and other heuristic methods.

 PSO has limited number of parameters including only inertia weight factor and

two acceleration coefficients.

 PSO seems to be somewhat less dependent of a set of initial points compared to

other evolutionary methods, implying that convergence algorithm is robust.

 PSO techniques can generate high-quality solutions within shorter calculation

time and stable convergence characteristics.

The major drawback of PSO, like in other heuristic optimization techniques, is that it

lacks a solid mathematical foundation for analysis to be overcome in the future

development of relevant theories. Also, it can have some limitations for real-time ED

applications such as 5-minute dispatch considering network constraints since the PSO

is also a variant of stochastic optimization techniques requires relatively a longer

computation time than mathematical approaches. It has the problems of dependency on

initial point and parameters, difficulty in finding their optimal design parameters, and

the stochastic characteristic of the final outputs.

28

CHAPTER-3

SELECTION BASED PSO AND ITS APPLICATION TO

MATHEMATICAL BENCHMARK TEST FUNCTIONS

3.1 SELECTION BASED PSO:

 Basic PSO is an optimization technique which is used to get an optimize value

for any function. PSO is a modern heuristic optimization method which is the best

optimization technique known so far. In this thesis PSO is modified as a Selection

Based PSO (SBPSO).

 In Selection Based PSO or SBPSO, modification has been done in a basic PSO

method. The selection procedure in a basic PSO of size of particles is random. Size of

particles is specified in an algorithm and these particles remain same for the complete

problem till the optimization has been reached. E.g. if in an optimization problem size

of particles have been taken 20 to optimize the problem, then for the complete

optimization problem size of particles will remain the same as 20 and all the particles

will get optimize to a best possible value. In SBPSO, selection procedure of size of

particles has been changed. The size of particles is specified before any optimization

problem at random in the 0
th

iteration. In SBPSO the size of particles is decreased in

each iteration by some decrement factor. In the 1
st
 iteration the size of particle is same

as initial size and in subsequent iteration the size of particles decreases by some

decrement factor. The size of particle decrease to the „t‟ times of value in every

iteration. For example if the size of particles is taken as 160 and the factor by which it

decrease is 2. So in each iteration size of the particles will decrease 2 times of the size

of particles in previous iteration. In the 1
st
 iteration there will be 160 particles, in the 2

nd

iteration it will decrease 2 times and becomes 80, in 3
rd

 iteration it will become 40 and

so on.

 This decrement of particles in each iteration is being done in a way that particle

for which the value of function is less will be selected and the particles with higher

function values will get discarded. So, in each iteration the size of particles changes by

the factor „t‟. The particles are sorted according to their function value and the size

29

found by the factor „t‟ will select the top sorted particles (based on minimum function

value) for the next iteration and this procedure will be repeated in each iteration.

 In SBPSO, the particle size goes on decreasing in each iteration by p/t will

either become a fraction or less than the minimum number of particles required to

optimize a function. Therefore, the „q‟ has been fixed to minimum number of particles

required to optimize a function and for subsequent iteration the size of particles will be

forced to „q‟. For SBPSO, let

 p= total size of particles in 0
th

 iteration.

 t= decrement factor.

 q= minimum no. of particles to be selected.

 n= integer numbers.

From the conclusion one formula is determined so by which the value of kount can be

calculated. This formula helps in calculating the value of kount.

 (∑

) ()

 q ……… 3.1

where n=1,2,3,4…..k.

i = number of iteration in which problem converge.

With the values of all the variables in equations p, q, t, n and i the value of kount will

be calculated. This calculated value is similar to the value observed. All the result

obtained are satisfying this formula. All the kount values obtained are similar with the

values calculated by this kount formula.

30

3.2 STEPS FOR THE PROCEDURE OF SBPSO

The sequence for the solution of function by SBPSO is explained as follows:

1. Fix the size of particles „p‟ in swarm and set the no. of maximum iterations itmax

and tolerance value T.

2. Fix algorithm constants Cp, Cg, Rp, Rg, w.

3. Fix the factor of decrement „t‟ and a last size of particle is to be chosen say „q‟.

4. Generate Xi
k
 and Vi

k
, the initial random positions (i.e. generations) and velocity

(i.e. updation factor) respectively.

5. Set iteration kount = 0.

6. At 0
th

 iteration the personal and global best positions (i.e. generations) are same

as the initial random positions (i.e. generations).

7. Calculate the function for each particle.

8. Increase the iteration kount by 1 using kount = kount + 1 in the every evaluation

of function.

9. Calculate the velocity (i.e. positions updating factor) of each particle using

eq.(2.1).

10. Calculate the new positions (i.e. X) of the particles by evaluating eq.(2.2).

11. Sort the particles with accordance to their function values in increasing order.

12. Size of the particles is updated by the factor p/t say new „P‟, and the size of

particles updated is „P‟.

13. Save new P equal to p.

14. Select the top „p‟ number of particles from the sorted particles with accordance

to their function values in increasing order.

15. If p < q, make „p‟ equal to „q‟ and initialize the value of „t‟ equals to 1 and go to

next step.

16. Calculate ELD function for the new size of particles (P or p) and new positions

that has generated.

17. Update Xpbest and Xgbest values by comparing ELD function values.

18. Check if the stopping criteria are satisfied, if not then go to step 7, else stop.

19. Get output of function and variable value.

31

3.3 FLOWCHART OF SBPSO

Fig 6 SBPSO evaluation flowchart

32

3.4 MATHEMATICAL BENCHMARK FUNCTIONS:

Artificial landscapes the second name given to the Test functions, are

extremely helpful to assess characteristics of optimization algorithms. For this

situation of application of Particle Swarm Optimization to the mathematical

benchmark functions, the PSO algorithm can be connected specifically to the

specific mathematical function, i.e. with no change. As the mathematical

functions are single objective functions and no uniformity criteria on the fitness

functions values, no further plan for objective function is obliged and the

inequality constraints on the variables, if present, are dealt with in the PSO

algorithm itself. Utilizing particle swarm optimization the essential steps for

taking care of the optimization problem is same as talked about before yet in the

event that a few adjustments are given then we can utilize it for any kind of

objective function. Here, we have utilized PSO for the optimization of some

mathematical benchmark functions, which are as per the following:

 Rosenbrock‟s function

 f(X1,X2)=100*(X2- X1
2
)
2
+(X1-1)

2
 .……(3.2)

 Booth‟s function

 f(X1,X2) = (X1 + 2 * X2 – 7)
2
 + (2 * X1 + X2 – 5)

2
 …….(3.3)

 Beale‟s function

 f(X1,X2) =(1.5-X1+X1*X2)
2
 + (2.25-X1+X1*X2

2
)
2
+ (2.625-X1+X1*X2

3
)
2

 …….(3.4)

 Sphere‟s function

 f(X1, X2, X3)= X1
2
 + X2

2
 + X3

2
 …....(3.5)

 Rastrigin‟s function

 f(X1,X2) = 20 + (X1
2
) - (10 * cos (2*pi*X1))

 + (X2
2
) - (10 * cos (2*pi*X2)) …… (3.6)

33

3.5 VALUE OF PARAMETERS USED IN SELECTION BASED

PARTICLE SWARM OPTIMIZATION (SBPSO)

The various parameters of particle swarm optimization are as follows:

1. No. of particles in the swarm, p.

2. Max. no. of iteration, it.

3. Decrement factor, t.

4. Minimum no. of particles to be selected, q.

5. Random no. for personal and global factors Rp and Rg .

6. Acceleration constant for the personal and global factors, Cp and Cg.

7. Tolerance value, T.

8. Inertia weight, w.

The values of these parameters for optimizing various mathematical benchmark

functions were chosen as:

1. it= 1000

2. Rp=0.5 and Rg=0.6

3. Cp=2 and Cg=2

4. T= 10

5. w=0.6.

3.6 COMPUTATIONAL RESULTS

Various benchmark functions and results obtained after application of PSO has been

discussed as follows:

3.6.1 Rosenbrock Function

 n-1

f(x) = ∑ [100(Xk+1 - Xk
2
)
2
 + (1 -Xk)

2
]

 k=1

where , -2.048 < Xk < 2.048, k = 1,2,3....,n;

For two variables X1 and X2

34

F(X1,X2)=100*(X2- X1
2
)
2
+(X1-1)

2

Minimum value and range for the function are as follows:

 Min. Value: f(X1,X2)=0

 Range : -2.048 < X1,X2 < 2.048

 Optimal values of X1 = X2 = 0

Table 3.1 shows the application of SBPSO for the Rosenbrock function. Column (1) of

this table shows the numbers of particles „p‟. Column (2) shows decrement factor „t‟.

Column (3) of this table shows „q‟ which is minimum numbers of particles required to

optimize a function. Column (4), (5) and (6) show the function value, kount and

number of iterations respectively.

S.No. 1 of this table shows the result of Basic PSO (BPSO) for minimum particle size

of „10‟ required to optimize the Rosenbrock function. The remaining rows show the

result of SBPSO.

For S.No. 2 to 11, the decrement factor „t‟ is fixed to 2 for various values of initial

particle size varying from 20 to 640 in multiples of 2. It is observed that for particle

size 20 to 160, the number of iterations and the value of kount is less compared to

BPSO. It is observed that by taking t=2 (decrement factor) for a minimum value of 10

particles (i.e. q=10), the kount is being decreased in the range of 20 to 160 particles

(i.e. „p‟). There is a gradual decrease in iteration in the same range. It is observed that

by taking t=2 (decrement factor) for a minimum value of 5 particles (i.e. q=5), the

kount is being decreased in the range of 20 to 320 particles (i.e. „p‟). Although the

function value is not as accurate as that in basic PSO but it is optimum. There is a

gradual decrease in iteration in the same range.

For a minimum value of 10 particles (q=10), for initial size of 80, 160, 320 and 640 on

increasing decrement factor to 4 & 8, kounts decreases for 80 & 160 particles

compared to the result shown at S.No. 1 for Basic PSO (BPSO). It is to be noted that

BPSO didn‟t converge when particle size is chosen to „5‟. Similarly, for a minimum

value of 5 particles (q=5), for initial size of 80, 160 and 320 on increasing decrement

factor to 4 &8 , kounts decreases for all size of particles and iterations also decreases.

35

Table 3.1 Results of SBPSO to Rosenbrock’s Function by varying p, t and q

 1 2 3 4 5 6

S.No.

p

t

q

F

Kount

Iteration

1 10 1 10 -19 1210 121

2 20 2 10 -16 1150 112

3 20 2 5 -2 500 92

4 40 2 10 -14 1050 97

5 40 2 5 -7 550 91

6 80 2 10 -21 1210 102

7 80 2 5 -7 675 93

8 160 2 10 -15 1110 69

9 160 2 5 -11 885 88

10 320 2 10 -18 1770 88

11 320 2 5 -12 1270 70

12 80 4 10 -22 1200 104

13 80 4 5 -5 630 92

14 160 4 10 -16 1170 83

15 160 4 5 -7 805 90

16 320 4 10 -21 1640 93

17 320 4 5 -12 1100 75

18 160 8 10 -7 1130 81

19 160 8 5 -4 930 80

20 320 8 10 -21 1530 87

21 320 8 5 -7 1080 82

22 640 8 10 -16 2390 105

23 640 8 5 -12 1725 74

36

Table 3.2 Verification of kount formula by varying p, t and q

 1 2 3 4 5 6 7

S.No. P t q i n Count

observed

Count

calculated

1. 10 1 10 121 10 1220 1220

2. 20 2 10 112 2 1150 1150

3. 20 2 5 92 3 500 500

4. 40 2 10 97 3 1050 1050

5. 40 2 5 91 4 550 550

6. 80 2 10 102 4 1210 1210

7. 80 2 5 93 5 675 675

8. 160 2 10 69 5 1110 1110

9. 160 2 5 88 6 885 885

10. 320 2 10 88 6 1770 1770

11. 320 2 5 70 7 1270 1270

12. 80 4 10 104 2 1200 1200

13. 80 4 5 92 3 630 630

14. 160 4 10 83 3 1170 1170

15. 160 4 5 90 3 805 805

16. 320 4 10 93 3 1640 1640

17. 320 4 5 75 4 1100 1100

18. 160 8 10 81 2 1130 1130

19. 160 8 5 80 2 930 930

20. 320 8 10 87 2 1530 1530

21. 320 8 5 82 3 1080 1080

22. 640 8 10 105 3 2390 2390

23. 640 8 5 74 3 1725 1725

37

Table 3.2 shows the mathematically calculated value of kount by the formula in the

equation (3.1) for Rosenbrock function. Column (1) of this table shows the numbers of

particles „p‟. Column (2) shows decrement factor „t‟. Column (3) of this table shows „q‟

which is minimum numbers of particles required to optimize a function. Column (4),

shows „i‟ which is the value of iteration in which function converge. Column (5) shows

„n‟ which is an integer number for which the series is computing. Column (6) show the

obtained kount value from the PSO function evaluation and column (7) shows the

kount value calculated from equation (3.1).

Both the calculated kount value and observed kount value are same for all computed

arrangement. Same value for both kount verifies that the formula observed from the

computed result of rosenebrock function. The equation (3.1) is the verified formula for

the calculation of kount value for all the mathematical benchmark function taken in this

thesis.

38

3.6.2 Booth’s Function

F(X1,X2) = (X1 + 2 * X2 – 7)
2
 + (2 * X1 + X2 – 5)

2

Minimum value and range for the function are as follows:

 Optimal values of X1=1, X2=3.

Table 3.3 shows the application of SBPSO for the Booth‟s function. Column (1) of this

table shows the numbers of particles „p‟. Column (2) shows decrement factor „t‟.

Column (3) of this table shows „q‟ which is minimum numbers of particles required to

optimize a function. Column (4), (5) and (6) show the function value, kount and

number of iterations respectively.

S.No. 1 of this table shows the result of Basic PSO (BPSO) for minimum particle size

of „10‟ required to optimize the Booth‟s function. The remaining rows show the result

of SBPSO.

For S.No. 2 to 11, the decrement factor „t‟ is fixed to 2 for various values of initial

particle size varying from 20 to 640 in multiples of 2. It is observed that for particle

size 20 to 160, the number of iterations and the value of kount is less compared to

BPSO. It is observed that by taking t=2 (decrement factor) for a minimum value of 10

particles (i.e. q=10), the kount is being decreased in the range of 20 to 160 particles

(i.e. „p‟). There is a gradual decrease in iteration in the same range. It is observed that

by taking t=2 (decrement factor) for a minimum value of 5 particles (i.e. q=5), the

kount is being decreased in the range of 20 to 320 particles (i.e. „p‟). Although the

function value is not as accurate as that in basic PSO but it is optimum. There is a

gradual decrease in iteration in the same range. For a minimum value of 10 particles

(q=10), for initial size of 80, 160, 320 and 640 on increasing decrement factor to 4 & 8,

kounts decreases for 80 & 160 particles compared to the result shown at S.No. 1 for

Basic PSO(BPSO). It is to be noted that BPSO didn‟t converge when particle size is

chosen to „5‟. Similarly, for a minimum value of 5 particles (q=5), for initial size of 80,

160, 320 and 640 on increasing decrement factor to 4 &8 , kounts decreases for all size

of particles and iterations also decreases.

39

Table 3.3 Results of SBPSO to Booth’s Function by varying p, t and q

 1 2 3 4 5 6

S.No. p t q F Kount Iteration

1 10 1 10 -19 1300 129

2 20 2 10 -17 1020 99

3 20 2 5 -12 505 93

4 40 2 10 -19 950 87

5 40 2 5 -12 495 80

6 80 2 10 -18 1130 94

7 80 2 5 -11 640 86

8 160 2 10 -18 1280 86

9 160 2 5 -10 855 82

10 320 2 10 -19 1740 85

11 320 2 5 -13 1205 57

12 80 4 10 -15 1130 97

13 80 4 5 -8 695 105

14 160 4 10 -14 1230 89

15 160 4 5 -8 755 80

16 320 4 10 -16 1540 88

17 320 4 5 -11 1110 79

18 160 8 10 -16 1180 86

19 160 8 5 -5 870 108

20 320 8 10 -18 1480 82

21 320 8 5 -16 1070 80

22 640 8 10 -12 2220 88

23 640 8 5 -4 1835 96

40

3.6.3 Beale’s Function

 F(X1,X2) =(1.5-X1+X1*X2)
2
 + (2.25-X1+X1*X2

2
)
2
 + (2.625-X1+X1*X2

3
)
2

Minimum value and range for the function are as follows:

 Optimal values of X1=3,X2=0.5

Table 3.4 shows the application of SBPSO for the Beale‟s function. Column (1)of this

table shows the numbers of particles „p‟. Column (2) shows decrement factor „t‟.

Column (3) of this table shows „q‟ which is minimum numbers of particles required to

optimize a function. Column (4), (5) and (6) show the function value, kount and

number of iterations respectively.

S.No. 1 of this table shows the result of Basic PSO (BPSO) for minimum particle size

of „10‟ required to optimize the Beale‟s function. The remaining rows show the result

of SBPSO.

For S.No. 2 to 11, the decrement factor „t‟ is fixed to 2 for various values of initial

particle size varying from 20 to 640 in multiples of 2. It is observed that for particle

size 20 to 160, the number of iterations and the value of kount is less compared to

BPSO. It is observed that by taking t=2 (decrement factor) for a minimum value of 10

particles (i.e. q=10), the kount is being decreased in the range of 20 to 160 particles

(i.e. „p‟). There is a gradual decrease in iteration in the same range. It is observed that

by taking t=2 (decrement factor) for a minimum value of 5 particles (i.e. q=5), the

kount is being decreased in the range of 20 to 320 particles (i.e. „p‟). Although the

function value is not as accurate as that in basic PSO but it is optimum. There is a

gradual decrease in iteration in the same range. For a minimum value of 10 particles

(q=10), for initial size of 80, 160, 320 and 640 on increasing decrement factor to 4 & 8,

kounts decreases for 80 & 160 particles compared to the result shown at S.No. 1 for

Basic PSO(BPSO). It is to be noted that BPSO didn‟t converge when particle size is

chosen to „5‟. Similarly, for a minimum value of 5 particles (q=5), for initial size of 80,

160, 320 and 640 on increasing decrement factor to 4 &8 , kounts decreases for all size

of particles and iterations also decreases.

41

Table 3.4 Results of SBPSO to Beale’s Function by varying p, t and q

 1 2 3 4 5 6

S.No. p t q F Kount Iteration

1 10 1 10 -12 1250 124

2 20 2 10 -10 980 94

3 20 2 5 -9 450 81

4 40 2 10 -12 1090 100

5 40 2 5 -17 490 75

6 80 2 10 -10 1150 95

7 80 2 5 -8 655 88

8 160 2 10 -19 1300 87

9 160 2 5 -9 865 83

10 320 2 10 -11 1860 96

11 320 2 5 -10 1270 69

12 80 4 10 -20 940 77

13 80 4 5 -10 575 80

14 160 4 10 -20 1210 86

15 160 4 5 -7 775 83

16 320 4 10 -10 1760 104

17 320 4 5 -8 1100 74

18 160 8 10 -15 1190 86

19 160 8 5 -10 740 81

20 320 8 10 -14 1530 86

21 320 8 5 -14 485 62

22 640 8 10 -18 2240 89

23 640 8 5 -15 1790 86

42

3.6.4 Sphere’s Function

F(X1, X2, X3)= X1
2
 + X2

2
 + X3

2

Minimum value and range for the function are as follows:

 Optimal values of X1=0,X2=0,X3=0

Table 3.5 shows the application of SBPSO for the Sphere‟s function. Column (1)of this

table shows the numbers of particles „p‟. Column (2) shows decrement factor „t‟.

Column (3) of this table shows „q‟ which is minimum numbers of particles required to

optimize a function. Column (4), (5) and (6) show the function value, kount and

number of iterations respectively.

S.No. 1 of this table shows the result of Basic PSO (BPSO) for minimum particle size

of „10‟ required to optimize the Sphere‟s function. The remaining rows show the result

of SBPSO.

For S.No. 2 to 11, the decrement factor „t‟ is fixed to 2 for various values of initial

particle size varying from 20 to 640 in multiples of 2. It is observed that for particle

size 20 to 160, the number of iterations and the value of kount is less compared to

BPSO. It is observed that by taking t=2 (decrement factor) for a minimum value of 10

particles (i.e. q=10), the kount is being decreased in the range of 20 to 160 particles

(i.e. „p‟). There is a gradual decrease in iteration in the same range. It is observed that

by taking t=2 (decrement factor) for a minimum value of 5 particles (i.e. q=5), the

kount is being decreased in the range of 20 to 320 particles (i.e. „p‟). Although the

function value is not as accurate as that in basic PSO but it is optimum. There is a

gradual decrease in iteration in the same range. For a minimum value of 10 particles

(q=10), for initial size of 80, 160, 320 and 640 on increasing decrement factor to 4 & 8,

kounts decreases for 80 & 160 particles compared to the result shown at S.No. 1 for

Basic PSO(BPSO). It is to be noted that BPSO didn‟t converge when particle size is

chosen to „5‟. Similarly, for a minimum value of 5 particles (q=5), for initial size of 80,

160, 320 and 640 on increasing decrement factor to 4 &8 , kounts decreases for all size

of particles and iterations also decreases.

43

Table 3.5 Results of SBPSO to Sphere Function by varying p, t and q

 1 2 3 4 5 6

S.No. P t q F Kount Iteration

1 10 1 10 -9 1260 125

2 20 2 10 -7 890 85

3 20 2 5 -7 600 111

4 40 2 10 -10 1000 91

5 40 2 5 -6 530 86

6 80 2 10 -11 1040 84

7 80 2 5 -8 600 77

8 160 2 10 -10 1370 94

9 160 2 5 -8 840 78

10 320 2 10 -10 1620 72

11 320 2 5 -7 1330 81

12 80 4 10 -9 1140 97

13 80 4 5 -7 575 80

14 160 4 10 -9 1326 97

15 160 4 5 -7 750 78

16 320 4 10 -9 1630 97

17 320 4 5 -6 1100 74

18 160 8 10 -9 1260 93

19 160 8 5 -8 775 88

20 320 8 10 -15 1500 83

21 320 8 5 -7 1095 84

22 640 8 10 -11 2400 105

23 640 8 5 -5 1765 81

44

3.6.5 Rastrigin’s Function

 n

f(x) = ∑ (xi
2
 – 10 *cos(2* pi *xi))

 i=1

F(X1,X2) = 20 + (X1
2
) - (10 * cos (2*pi*X1)) + (X2

2
) - (10 * cos (2*pi*X2))

Minimum value and range for the function are as follows:

 Optimal values of X1=0,X2=0

Table 3.6 shows the application of SBPSO for the Rastrigin‟s function. Column (1)of

this table shows the numbers of particles „p‟. Column (2) shows decrement factor „t‟.

Column (3) of this table shows „q‟ which is minimum numbers of particles required to

optimize a function. Column (4), (5) and (6) show the function value, kount and

number of iterations respectively. S.No. 1 of this table shows the result of Basic PSO

(BPSO) for minimum particle size of „10‟ required to optimize the Rastrigin‟s function. The

remaining rows show the result of SBPSO.

For S.No. 2 to 11, the decrement factor „t‟ is fixed to 2 for various values of initial

particle size varying from 20 to 640 in multiples of 2. It is observed that for particle

size 20 to 160, the number of iterations and the value of kount is less compared to

BPSO. It is observed that by taking t=2 (decrement factor) for a minimum value of 10

particles (i.e. q=10), the kount is being decreased in the range of 20 to 160 particles

(i.e. „p‟). There is a gradual decrease in iteration in the same range. It is observed that

by taking t=2 (decrement factor) for a minimum value of 5 particles (i.e. q=5), the

kount is being decreased in the range of 20 to 320 particles (i.e. „p‟). Although the

function value is not as accurate as that in basic PSO but it is optimum. There is a

gradual decrease in iteration in the same range. For a minimum value of 10 particles

(q=10), for initial size of 80, 160, 320 and 640 on increasing decrement factor to 4 & 8,

kounts decreases for 80 & 160 particles compared to the result shown at S.No. 1 for

Basic PSO(BPSO). It is to be noted that BPSO didn‟t converge when particle size is

chosen to „5‟. Similarly, for a minimum value of 5 particles (q=5), for initial size of 80,

160, 320 and 640 on increasing decrement factor to 4 &8 , kounts decreases for all size

of particles and iterations also decreases.

45

Table 3.6 Results of SBPSO to Rastrigin’s Function by varying p, t and q

 1 2 3 4 5 6

S.No. p t q F Kount Iteration

1 10 1 10 -12 1300 129

2 20 2 10 -8 1030 99

3 20 2 5 -9 550 101

4 40 2 10 -19 1080 99

5 40 2 5 -7 595 92

6 80 2 10 -20 1280 108

7 80 2 5 -14 685 94

8 160 2 10 -22 1340 91

9 160 2 5 -9 900 92

10 320 2 10 -18 1730 83

11 320 2 5 -13 1240 63

12 80 4 10 -18 1040 87

13 80 4 5 -10 585 82

14 160 4 10 -8 1460 111

15 160 4 5 -7 645 89

16 320 4 10 -18 1680 96

17 320 4 5 -12 990 52

18 160 8 10 -17 1340 101

19 160 8 5 -6 900 113

20 320 8 10 -13 1450 78

21 320 8 5 -12 1030 71

22 640 8 10 -17 2250 90

23 640 8 5 -14 1760 80

46

3.7 DISCUSSION

SBPSO has been successfully applied to Mathematical Benchmark functions –

Rosenbrock, Beale, Sphere, Booth and Rastrigin function. The value of random

numbers Rp and Rg have been kept to fix value 0.5 and 0.6 respectively and the values

of constriction factor Cp and Cg have been fixed to 2 in velocity modification equation.

In SBPSO, size of the particles changes in every iteration based on function value. The

size of particles decreases by the factor „t‟ in every iteration. The various values of „t‟

tried are 2, 4 & 8 for various initial size of particles. The various initial sizes of

particles considered are 20, 40, 80, 160, 320 & 640. The present considered value of

particle size is double of its previous size.

SBPSO has been compared with Basic PSO (BPSO) based on kount and

number of iteration required to converge the function. It has been observed that the

minimum particles size required for optimizing a function in BPSO is „10‟. SBPSO

could optimize the function for particle size less than the minimum particle size of

BPSO i.e. SBPSO optimize the function for „5‟ particles.

Kount and number of iterations decreased for all the function for all initial size

of particle considered.

47

CHAPTER 4:

APPLICATION OF SBPSO TO ECONOMIC LOAD

DISPATCH

4.1 Introduction To Economic Load Dispatch

The economic load dispatch (ELD) problem is one of the important optimization

problems in the electric power system. The objective of the ELD of electric power

generation is to schedule the committed generating unit outputs so as to meet the

required load demand at minimum operating cost while satisfying all unit and system

equality and inequality constraints. This makes the ELD problem a large-scale highly

nonlinear constrained optimization problem. Improvements in scheduling the unit

outputs can lead to significant cost savings.

4.2 LIST OF SYMBOLS

a i , bi , ci are the cost coefficient of i
th

 generator

Pgi : the active power generation of the i
th

 generator

Pgmax,i Pgmin,i : are the maximum and minimum power generation limits of i
th

 thermal

unit

Ng : Total number of generators committed.

Pd : Total system demand

PL : Total system losses

Pg : Total power generated.

Bmn, B0m, B00 : Transmission losses B co-efficient

Z : penalty factor

Pgm, Pgn is the active power at the m
th

 and n
th

 generator.

NG is the total number of generators in the system.

Bmn, Bom, Boo are loss coefficients.

48

4.3 MATHEMATICAL FUNCTION

Objective function being used to minimize the cost of generation is given as :

 ∑ [()]

 (4.1)

Where cost function is defined as:

Ci(Pgi)=∑ (aiPgi
2 biPgi ci)

NG
i=1 (4.2)

The objective function used to find the system transmission losses is given as:

 PL=∑ ∑ PgmBmnPgn
NG
n=1

NG
m=1 ∑ BomPgm

NG
m=1 Boo (4.3)

Subject to the constraints:

Equality constraint

∑ Pgi
NG
i=1 =PD PL (4.4)

Inequality constraint

Pgimin ≤ Pgi ≤ Pgimaxi = 1, 2... NG (4.5)

Here:

F objective function to be optimized

FC cost of the generation

PL system transmission losses

4.4 COMPUTATIONAL PROCEDURE:

Selection Based Particle Swarm Optimization (SBPSO) has been used to perform the

optimization of ELD function. To consider the equality constraint of the problem, the

function has been modified by inclusion of a parameter Z. The objective function

becomes as follows:

49

F=FC+Z(PD+PL-PG) (4.6)

Where:

Parameter Z is fixed at 500 for all three IEEE 5, 14 and 30 bus systems. Different

values of Z were considered and it was observed that ELD problem converged when it

was fixed to 500 for all the systems.

Inequality constraints have been considered in the PSO programming which is done in

the MATLAB. The program checks the power output of each particle for each

generator in each iterations and the power is tied to the corresponding limit violated.

Logic to implement the inequality constraint is as shown below:

for i=1: NG

for m=1: p

 if Pgi< Pgimin

 Pgi = Pgimin

 end

 if Pgi> Pgimax

 Pgi = Pgimax

 end

 end

 end

The optimum solution is obtained when the

i. Change in the value of Economic Load Dispatch function during

successive iterations is less than the limit specified which is T=10
-6

 and

ii. The equality constraint is satisfied such that the absolute value of

difference between generation, demand and losses is less than T=10
-6

.

50

With the assistance of MATLAB, we generate randomly the initial position and

velocity of particles. To build the convergence rate, breaking points are forced on

position of particles. Here positions i.e. the generations are decision variables. The

most extreme and least points of confinement on the velocity have been allocated as

Vmin = –Pgimin/2 and Vmax = Pgimax/2 individually. The velocities are altered to the

values of corresponding limits if violated during the iterations. Initial estimations of

personal best and global best have been taken as the initial esteem randomly generated

by MATLAB.

The sequence for the solution of Economic Load Dispatch problem using Particle

Swarm Optimization technique is explained as follows:

1. Fix the no. of particles „p‟ in swarm and set the no. of maximum iterations itmax

and tolerance value T.

2. Fix the factor of decrement „t‟ and a last size of particle is to be chosen say

„q‟.

3. Fix the cost coefficients, loss coefficients, and load demand and generator

limits of all the generators.

4. Generate Pi
k
 and Vi

k
, the initial random positions (i.e. generations) and velocity

(i.e. updation factor) respectively.

5. Set iteration kount K = 0.

6. Calculate the losses for each particle, using the eq. (4.3).

7. Calculate the value of ELD function using eq. (4.6).

8. At 0
th

 iteration the personal and global best positions (i.e. generations) are

same as the initial random positions (i.e. generations).

9. Increase the iteration kount k by 1 using k=k+1 in the every run of ELD

function.

10. Calculate the velocity (i.e. positions updating factor) of each particle using

eq.(2.1).

11. Check if velocity is within the limits. Fix the velocity to the limit violated.

12. Calculate the new positions (i.e. generations) of the particles by evaluating

eq.(2.2).

13. Check if generations (i.e. positions) of each particle are within the generator

limits, if not fix the generation to the limit violated.

51

14. Sort the particles with accordance to their function values in increasing order.

15. Size of the particles is updated by the factor p/t say new „P‟, and the size of

particles updated is „P‟.

16. Save new P to p.

17. Select the top „p‟ no. of particles from the sorted particles with accordance to

their function values in increasing order.

18. If p < q, make „p‟ equal to „q‟ and initialize the value of „t‟ equals to 1 and go

to next step.

19. Calculate ELD function for the new size of particles (P or p) and new positions

(i.e. generations) that has generated.

20. Update Xpbest and Xgbest values by comparing ELD function values.

21. Check if both the stopping criteria are satisfied, if not then go to step 10, else

stop.

22. Output the values of cost of generation and system transmission losses.

52

4.5 Flowchart

Fig 7 ELD to SBPSO evaluation flowchart

53

4.6 COMPUTATIONAL RESULTS:

SBPSO has been applied to IEEE 5, 14 and 30 bus system and results are shown in

tables 4.1, 4.2 and 4.3 respectively.

TABLE 4.1 Results of IEEE 5-bus system by SBPSO varying p, t and q

 1 2 3 4 5 6 7

S.NO. p t q Cost Losses Kount Iteration

1. 10 1 10 765.25 5.11 1180 117

2. 40 2 10 762.33 5.11 950 87

3. 40 4 10 762.79 5.10 1150 108

4. 80 2 10 763.91 5.10 1180 99

5. 80 4 10 761.30 5.16 1070 91

6. 80 8 10 763.24 5.10 1140 99

7. 160 2 10 761.23 5.18 1350 93

8. 160 4 10 762.25 5.11 1320 98

9. 160 8 10 761.58 5.13 1200 88

10. 160 16 10 764.63 5.10 1200 89

11. 40 2 5 762.64 5.10 555 92

12. 40 4 5 762.34 5.11 580 100

13. 80 2 5 766.06 5.13 640 86

14. 80 4 5 762.44 5.10 600 86

15. 80 8 5 762.25 5.11 595 87

16. 160 2 5 761.79 5.12 930 97

17. 160 4 5 761.35 5.16 785 86

18. 160 8 5 764.90 5.11 750 84

19. 160 16 5 765.27 5.11 820 100

54

TABLE 4.2 Results of IEEE 14-bus system by SBPSO varying p, t and q

 1 2 3 4 5 6 7

S.NO. p t q Cost Losses Kount Iteration

1. 10 1 10 1192.97 7.47 1030 102

2. 40 2 10 1069.87 7.21 1010 93

3. 40 4 10 1177.33 6.99 920 85

4. 80 2 10 1162.69 7.5 1120 93

5. 80 4 10 1174.48 6.9317 980 82

6. 80 8 10 1168.00 7.14 1060 91

7. 160 2 10 1157.65 7.97 1290 87

8. 160 4 10 1162.01 743 1180 84

9. 160 8 10 1160.27 7.52 1270 95

10. 160 16 10 1163.27 7.23 1150 84

11. 40 2 5 1182.18 7.05 565 94

12. 40 4 5 1194.78 6.56 690 122

13. 80 2 5 1188.13 6.66 660 90

14. 80 4 5 1206.34 6.538 645 95

15. 80 8 5 1211.45 6.500 635 95

16. 160 2 5 1191.47 6.59 910 93

17. 160 4 5 1183.2 6.72 800 89

18. 160 8 5 1211.6 6.49 785 91

19. 160 16 5 1208.0 6.52 770 90

55

TABLE 4.3 Results of IEEE 30-bus system by SBPSO varying p, t and q

3

 1 2 3 4 5 6 7

S.NO. p t q Cost Losses Kount Iteration

1. 10 1 10 1286.33 8.46 1490 148

2. 40 2 10 1280.93 8.80 1200 112

3. 40 4 10 1279.3 8.86 1040 97

4. 80 2 10 1295.94 8.09 1250 106

5. 80 4 10 1294.46 8.14 1240 108

6. 80 8 10 1294.46 8.14 1100 95

7. 160 2 10 1288.96 8.34 1390 97

8. 160 4 10 1284 9.39 1410 107

9. 160 8 10 1292.83 9.78 1330 101

10. 160 16 10 1282.89 8.64 1480 117

11. 40 2 5 1279.5 8.85 825 146

12. 40 4 5 1275.7 9.18 575 99

13. 80 2 5 1287.4 8.41 695 97

14. 80 4 5 1285.3 8.5 645 95

15. 80 8 5 1280.13 8.5 690 106

16. 160 2 5 1280.13 8.8 915 94

17. 160 4 5 1286.5 8.45 1000 129

18. 160 8 5 1292.94 8.19 825 99

19. 160 16 5 1294.53 8.14 765 89

56

For IEEE 5 bus system, the number kounts is less than BPSO sizes 40 and 80 for the

decrement factor „t‟ as 2, 4 and 8 for the minimum number of 10 particles. Similarly,

the number kounts is decreasing for the particles 40, 80 and 160 for the decrement

factor as 2, 4, 8 and 16 for the minimum number of 5 particles. This is seen from the

result shown at S.No. 5 and 7 the cost being optimized and the losses are increased as

compared to the Basic PSO. These two quantities are inverse to each other with

increase in cost of generation, losses of transmission line decrease.

For IEEE 14 bus system, the number kounts is less than BPSO sizes 40 and 80 for the

decrement factor „t‟ as 2, 4 and 8 for the minimum number of 10 particles. Similarly,

the number kounts is decreasing for the particles 40, 80 and 160 for the decrement

factor as 2, 4, 8 and 16 for the minimum number of 5 particles. This is seen from the

result shown at S.No. 8 and 15 the cost being optimized and the losses are increased as

compared to the Basic PSO. These two quantities are inverse to each other with

increase in cost of generation, losses of transmission line decrease.

For IEEE 30 bus system, the number kounts is less than BPSO sizes 40 and 80 for the

decrement factor „t‟ as 2, 4 and 8 for the minimum number of 10 particles. Similarly,

the number kounts is decreasing for the particles 40, 80 and 160 for the decrement

factor as 2, 4, 8 and 16 for the minimum number of 5 particles. This is seen from the

result shown at S.No. 5, 9 and 11 the cost being optimized and the losses are increased

as compared to the Basic PSO. These two quantities are inverse to each other with

increase in cost of generation, losses of transmission line decrease.

It is observed that the result of SBPSO are better than BPSO in terms of kount and

number of iterations for IEEE 5, 14 & 30 bus systems.

57

CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

5.1CONCLUSION

Following are the definite contributions of the work:

1. Basic PSO has been implemented on mathematical benchmark function and

minimum number of particles required to optimise the function has been

determined. This size is 10 for all functions.

2. Selection Based PSO (SBPSO) has been developed in which a better population

of particle is selected in each iteration based on function value. Population in

each iteration is decreased by decrement factor „t‟.

3. SBPSO has been implemented to mathematical benchmark functions and

Economic Load Dispatch problem for IEEE 5, 14 and 30 bus system.

4. SBPSO is found to converge for minimum „5‟ particles for which BPSO fails to

converge.

5. For SBPSO kount value, a formula has been developed by considering

computational result of various function.

6. SBPSO is found to be computationally faster than BPSO.

7. With large increase in size of particles and decrement factor results are better

i.e. both cost of generation and transmission line losses decreases in the system

but the number of kounts increases.

8. The technique is applied to the particle size lying in the range 40 to 160 with

decrement factor of 2, 4, 8 and 16 for the minimum number of particle size 5

and 10. For the combination of parameters, the result are found to be better

interms of function value and kount value than that of BPSO for 10 particles for

both mathematical benchmark functions as well as Economic Load Dispatch

problem for IEEE 5, 14 and 30 bus system.

9. For p=80, t=4 and q=5 the function converge faster and are most accurate.

10. The ELD problem found to be converge faster and is more accurate for the

following combination of parameters 1) p=160, t=4 and q=5 for 5 bus system,

2) p=80, t=4 and q=10 for 14 bus system and 3) p=40, t=4 and q=5 for 30 bus

system.

58

5.2 FUTURE DIRECTION

1. The effect of variation of all the parameters such as random numbers (Rp & Rg)

and acceleration coefficient (Cp & Cg) and inertia weight. By varying one

parameter at a time on convergence of SBPSO should be studied.

2. Considering other objective of power system security, environmental

degradation due to pollution, stability, reliability, etc.

3. The convergence and accuracy of PSO should be increased

59

REFERENCES

[1]. J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization”, IEEE

International Conference on Neural Networks, vol. 4, pp. 1942-1948, Perth,

Australia, 1995.

[2]. Ajith Abraham,He Guo, and Hongbo Liu , “Swarm

Intelligence:Foundations,Perspectives and Applications” Studies in

Computational intelligence (SCI)26,3-25 (2006)

[3]. Karin Zielinski and ainer taur “Stopping Criteria for a Constrained Single

–Objective Particle Swarm Optimization Algorithm Informatica 31 (2007)

51-54.

[4]. W.B.Langdon,Riccardo Poli,Chirstopher R Stephens, “Kernel methods for

PSOs”20 December 2005.

[5]. Mark S. Voss. “Principal Component Particle Swarm Optimization

(PCPSO) 0-7803-8916-6/05 IEEE.

[6]. JACO F. SCHUTTE and ALBERT A.GROENWOLD, “A study of Global

Optimization Using Particle Swarms”Journal of Global Optimization

Springer 2005.

[7]. Wei-Bing Liu and Xian -Jia Wang, “An evolutionary game based particle

swarm optimization algorithm.”journal of computational and Applied

Mathematics214(2008)30-35.

[8]. Wei Zu and Yan-Ling Hao et al.(2008), “Enhancing the Particle Swarm

Optimization based on Equilibrium of Distribution.” 978-1-4244-1734-6/08

IEEE. 2008 Chinese Control and Decision Conference (CCDC 2008).

[9]. Serkan Kiranyaz, Jenni Pulkkinen and Moncef Gabbouj, “Multi-

dimensional Paricle Swarm Optimization for Dynamic Environments”978-

1-4244-3397-1/08/2008 IEEE.

[10]. Bilal Benmessahel, Mohamed Touahria, An improved Combinatorial

Particle Swarm Optimization Algorithm to Database Verticle Partition

”Journal of Emerging Trends in Computing and Information Sciences Vol 2

No.3 ISSN 2079-8407.

60

[11]. Huanhuan Ji,Jing Jie ,Junji Li and Ying Tan, “A Bi-swarm particle

swarm optimization with cooperative Co-evolution” International

Conference on Computational Aspects of Social Networks 978-0-7695-

4202-7/10 2010IEEE.

[12]. Zhi Li and Yong Chen , “Design and implementation for parallel

Particle Swarm Optimization Color Quantization Algorithm”International

Conference on Computer and Information Application 978-1-4244-8598-

7/10 IEEE

[13]. Weidong Jii and Keqi Wangi, “An Improved Particle Swarm

Optimization Algorithm” International Conference on Computer Science

and Network Technology,2011

[14]. Ismail Ibrahim, Zulkifli Md. Yusof, Sophan, Hamzah Ahmad, Zuwairie

Ibrahim, “A Novel Multi-State Particle Swarm Optimization for Discrete

Combinatorial Optimization Problems” Fourth International Conference on

Computational Intelligence, Modelling and Simulation, 2012

[15]. Kyle Robert Harrison, “GP- Based adaptable Evolutionary Particle

Swarm Optimization “ November 23,2012

[16]. Nikhil Padhye , Kalyanmoy Deb, and Pulkit Mittal, “Boundary

Handling Approaches in Particle Swarm Optimization”, KanGAL Report

Number 2012014 July 28, 2012.

[17]. Zahra Beheshti, Siti Mariyam Shamsuddin ,and Siti Sophiayati Yuhaniz,

“Binary Accelerated Particle Swarm Algorithm (BAPSA)for discrete

optimization problems.

[18]. Luis Miguel Rios · Nikolaos V. Sahinidis, “Derivative-free

optimization: a review of algorithms and comparison of software

implementations” J Glob Optim (2013) 56:1247–1293 DOI

10.1007/s10898-012-9951-y

[19]. Zhimin Chen1, Yuming Bo1, Panlong Wu1, Weijun Zhou1, “A new

particle filter based on organizational adjustment particle swarm

optimization” Appl. Math. Inf. Sci. 7, No. 1, 179-186 (2013)

[20]. Lin Lu, Qi Luo, Jun-yong Liu, and Chuan Long “An Improved Particle

Swarm Optimization Algorithm” Sichuan University, Chengdu, Sichuan,

China, 610065.

61

[21]. Kyle Robert Harrison, “GP- Based adaptable Evolutionary Particle

Swarm Optimization “ November 23,2012.

[22]. YAN Zhe-ping, DENG Chao, Zhou Jia-jia, Chi Dong-nan , “A Novel

Two-subpopulation Particle Swarm Optimization”Proceedings of the

10thWorld Congress on Intelligent Control and Automation July 6-8, 2012,

Beijing, China.

[23]. Nikhil Padhye , Kalyanmoy Deb, and Pulkit Mittal, “Boundary

Handling Approaches in Particle Swarm Optimization”, KanGAL Report

Number 2012014 July 28, 2012.

[24]. Zahra Beheshti, Siti Mariyam Shamsuddin ,and Siti Sophiayati Yuhaniz,

“Binary Accelerated Particle Swarm Algorithm (BAPSA)for discrete

optimization problems.

[25]. Luis Miguel Rios · Nikolaos V. Sahinidis, “Derivative-free

optimization: a review of algorithms and comparison of software

implementations” J Glob Optim (2013) 56:1247–1293 DOI

10.1007/s10898-012-9951-y

[26]. Zhimin Chen1, Yuming Bo1, Panlong Wu1, Weijun Zhou1, “A new

particle filter based on organizational adjustment particle swarm

optimization” Appl. Math. Inf. Sci. 7, No. 1, 179-186 (2013)

[27]. Lin Lu, Qi Luo, Jun-Yong Liu, And Chuan Long “An Improved Particle

Swarm Optimization Algorithm” Sichuan University, Chengdu, Sichuan,

China, 610065

[28]. Megahed I., Abou-Taleb N. and Iskandrani M. , “A modified method for

solving the economic dispatching problem”, IEEEE Transactions on Power

Apparatus and Systems, Vol. PAS-96 (I), pp. 124-133, January/February,

1977.

[29]. Happ H. H., “Optimal power dispatch - a comprehensive survey”, IEEE

Transactions on Power Apparatus an8 Systems, Vol. PAS-96, no. 3, May /

june1977.

[30]. Kwatny H. G. and Athay T. A., "Coordination of economic dispatch and

load frequency control in electric power systems," Proceedings, 18th IEEE

Conference on Decision and Control, 1979.

62

[31]. Aoki K. and Satoh T., “ Economic dispatch with network security

constraints using parametric quadratic programming”, IEEE Transactions on

Power Apparatus and Systems, Vol. PAS-101, No. 12 December 1982

[32]. Lin C. E. and Viviani G. L., “Hierarchical Economic Dispatch for

Piecewise Quadratic Cost Functions”, IEEE Transactions on Power

Apparatus and Systems, Vol. PAS-103, No. 6, June 1984.

[33]. Ramanathan R., “Fast economic dispatch based on the penalty factors

from Newton' s method”, IEEE Transactions on Power Apparatus and

Systems, Vol. PAS-104, No. 7, July 1985.

[34]. Walters David C. and Sheble Gerald B., “Genetic algorithm solution of

economic dispatch with valve point loading”, IEEE Transactions on Power

Systems, Vol. 8, No. 3, August 1993.

[35]. Abdullah and Bakar ,”Implementation of Hybrid Particle Swarm

Optimization for Combined Economic-Emission Load Dispatch Problem”

IEEE 8th International Power Engineering and Optimization Conference

24-25 March 2014, pp 402-409.

[36]. Bhattacharya and Chattopadhyay, “A Modified Particle Swarm

Optimization for Solving the Non-Convex Economic Dispatch” Proc. of the

IEEE Conference Evolutionary Computation, 2009.

[37]. Dasgupta and Banerjee, “An Analysis of Economic Load Dispatch using

Different Algorithms” 1st International Conference on Non Conventional

Energy (ICONCE 2014), pp 216-219

[38]. N.K.Jain and Uma Nangia, “Analysis of Economic Load Dispatch Using

Improved Partical Swarm Optimization” IEEE 2014.

[39]. Liu, Han and Zhou, “Hierarchical Economic Load Dispatch Based on

Chaotic-particle Swarm Optimization”, Ninth International Conference on

Natural Computation (ICNC) 2013, pp 517-521.

[40]. Mark M. Millonas, “Swarms, Phase Transitions, and Collective

Intelligence”, Complex Systems Group, Theoretical Division and Center for

Nonlinear Studies, MS B258 Los Alamos National Laboratory, Los Alamos,

NM 87545 & Santa Fe Institute, Santa Fe, NM, pp. 1-32.

[41]. R. C. Eberhart and Y. Shi, “Comparison between genetic algorithms and

particle swarm optimization,” IEEE International Conference on

Evolutionary Computation, pp. 611-616, May 1998.

63

APPENDIX- I

1) IEEE 5 BUS SYSTEM

Fig. 8: BUS-CODE DIAGRAM OF 5 BUS SYSTEM

TABLE I-A: LINE DATA OR IMPEDANCE DATA (5 BUS SYSTEM)

LINE DESIGNATION *R(p.u.) *X(p.u.) LINE CHARGING

1-2 0.10 0.4 0.0

1-4 0.15 0.6 0.0

1-5 0.05 0.2 0.0

2-3 0.05 0.2 0.0

2-4 0.10 0.4 0.0

3-5 0.05 0.2 0.0

*The impedance are based on MVA as 100

TABLE I-B: BUS DATA or OPERATING CONDITIONS (5 BUS SYSTEM)

 GENERATION LOAD

BUS NO. MW VOLTAGE MAGNITUDE MW MVAR

1* - - - 1.02 - - - - - -

2 - - - - - - 60 30

3 100 1.04 - - - - - -

4 - - - - - - 40 10

5 - - - - - - 60 20

*Slack Bus

64

TABLE I-C: REGULATED BUS DATA (5 BUS SYSTEM)

BUS VOLTAGE MVAR CAPACITY MW CAPACITY

NO. MAGNITUDE MINIMUM MAXIMUM MINIMUM MAXIMUM

1 1.02 0.0 60 30 120

3 1.04 0.0 60 30 120

The nodal load voltage inequality constraints are 0.9≤Vi≤1.05

Cost characteristics of IEEE 5 bus system

The cost characteristics of the IEEE 5 Bus System are as

follows: C1=50p1
2
+351p1+44.4 $/hr.

C3=50p3
2
+389p3+40.6 $/hr.

Here, the total load demand of the system is 160 MW. Maximum and minimum

active power constraint on the generator bus for the given system is 120 MW and 30

MW respectively. Voltage magnitude constraint for generator at bus 3 is 1.04 pu.

M-file For Calculating B- Coefficients:

Clear
basemva=100
accuracy=0.0001
maxiter=10
busdata=[1 1 1.02 0 0 0 0 0 0 60 0;2 0 1 0 60 30 0 0 0 0 0;3 2 1.04 0 0 0 82 0 0 60
0;4 0 1 0 40 10 0 0 0 0 0;5 0 1 0 60 20 0 0 0 0 0];
Linedata=[1 2 0.10 0.4 0 1;1 4 0.15 0.6 0 1; 1 5 0.05 0.2 0 1;2 3 0.05 0.2 0 1;2 4 0.10
0.4 0 1;3 5 0.05 0.2 0 1];
disp(busdata)
disp(linedata)
mwlimit=[30 120;30
120]; Ifybus
Ifnewton
busout
bloss

B-Coefficient Calculated is as:

B11 = 0.00035336 B12 = 0.0000103196

B21 = 0.0000103196 B22 = 0.000368992

65

2) IEEE 14 BUS SYSTEM

Fig. 9: BUS-CODE DIAGRAM OF 14 BUS SYSTEM

TABLE I-D: IMPEDANCE & LINE-CHARGING DATA (14 BUS SYSTEM)

Line Resistance Reactance Line Tap Setting

Designation p.u. * p.u. * Charging

1-2 0.019379 0.059170 0.0264 1

1-5 0.054029 0.223040 0.0264 1

2-3 0.046980 0.197970 0.0219 1

2-4 0.058110 0.176320 0.0187 1

2-5 0.056950 0.173880 0.0170 1

3-4 0.067010 0.171030 0.0173 1

4-5 0.013350 0.042110 0.0064 1

4-7 0 0.20912 0 1

4-9 0 0.55618 0 1

5-6 0 0.25202 0 1

6-11 0.09498 0.19890 0 1

6-12 0.12291 0.25581 0 1

6-13 0.06615 0.13027 0 1

7-8 0 0.17615 0 1

7-9 0 0.11001 0 1

9-10 0.03181 0.08450 0 1

9-14 0.12711 0.27038 0 1

10-11 0.08205 0.19207 0 1

12-13 0.22092 0.19988 0 1

13-14 0.17093 0.34802 0 1

* Impedance and line-charging susceptance in p.u. on a 100 MVA base.

66

TABLE I-E: BUS DATA or OPERATING CONDITIONS (14 BUSSYSTEM)

Bus Voltage Generation Load

No. Magnitude Phase angle MW MVAR MW MVAR

 (in pu) (deg.)

1* 1.06 0 0 0 0 0

2 1 0 40 0 21.7 12.7

3 1 0 0 0 94.2 19.0

4 1 0 0 0 47.8 -3.9

5 1 0 0 0 7.6 1.6

6 1 0 0 0 11.2 7.5

7 1 0 0 0 0 0

8 1 0 0 0 0 0

9 1 0 0 0 29.5 16.6

10 1 0 0 0 9.0 5.8

11 1 0 0 0 3.5 1.8

12 1 0 0 0 6.1 1.6

13 1 0 0 0 13.5 5.8

14 1 0 0 0 14.9 5.0

*Slack Bus

TABLE I-F: REGULATED BUS DATA (14 BUS SYSTEM)

Bus no. Voltage magnitude Minimum MVAR Maximum MVAR

 (in pu) capability capability

2 1.05 -40 50

3 1.010 0 40

6 1.070 -6 24

8 1.090 -6 24

Cost characteristics of IEEE 14 bus system

The cost characteristics of the IEEE 14 Bus System are as

follows: C1 = 50p1
2
+245p1+105 $/hr.

C2 = 50p2
2
+351p2+44.4 $/hr.

C6 = 50p6
2
+389p6+40.6 $/hr.

Here, the total load demand of the system is 259 MW. The maximum active

power constraint is 200 MW, 100MW and 100 MW for the generators of bus no. 1, 2

and 6 respectively. The minimum active power constraint is 50 MW, 20MW and 20

MW for the generators of bus no. 1, 2 and 6 respectively. Voltage magnitude

67

constraint for generator at bus 2 is 1.045, for bus no. 6 is 1.070, for bus no. 3 is 1.010

& for bus no. 8 is 1.090.

M-file For Calculating B- Coefficients:

Clear
basemva=100
accuracy=0.0001
maxiter=10
busdata=[1 1 1.06 0 0 150 0 0 0 0 0;2 2 1.045 0 21.7 12.7 63.11 0 -40 50 0;3 0 1.01 0
94.2 19 0 0 0 40 0;4 0 1 0 47.8 -3.9 0 0 0 0 0;5 0 1 0 7.6 1.6 0 0 0 0 0;6 2 1.07 0 11.2
7.5 77.12 0 -6 24 0;7 0 1 0 0 0 0 0 0 0 0;8 0 1.09 0 0 0 0 0 -6 24 0 ;9 0 1 0 29.5 16.6 0
0 0 0 0; 10 0 1 0 9 5.8 0 0 0 0 0;11 0 1 0 3.5 1.8 0 0 0 0 0;12 0 1 0 6.1 1.6 0 0 0 0
0;13 0 1 0 13.5 5.8 0 0 0 0 0;14 0 1 0 14.9 5 0 0 0 0 0];
linedata=[1 2 0.01938 0.05917 0.0264 1;1 5 0.05403 0.22304 0.0246 1; 2 3 0.04699
0.19797 0.0219 1; 2 4 0.05811 0.17632 0.0170 1; 2 5 0.05695 0.17388 0.0173 1; 3 4
0.06701 0.17103 0.0064 1; 4 5 0.01335 0.04211 0.0 1; 4 7 0.0 0.20912 0.0 0.978; 4 9
0.0 0.55618 0.0 0.969;5 6 0.0 0.25202 0.0 0.932; 6 11 0.09498 0.19890 0.0 1;6 12
0.12291 0.25581 0.0 1;6 13 0.06615 0.13027 0.0 1;7 8 0.0 0.17615 0.0 1; 7 9 0.0
0.11001 0.0 1; 9 10 0.03181 0.08450 0.0 1;9 14 0.12711 0.27038 0.0 1; 10 11
0.08205 0.19207 0.0 1;12 13 0.22092 0.19988 0.0 1;13 14 0.17093 0.34802 0.0 1];
disp(busdata)
disp(linedata)
mwlimit=[50 200;20 100;20
100] Ifybus
Ifnewton
busout
bloss

B-Coefficient Calculated is as:

B11 = 0.0231 B12 = 0.0078 B13 = -0.0007

B21 = 0.0078 B22=0.0182 B23= 0.0022

B31=-0.0007 B32= 0.0022 B33= 0.0329

68

C) IEEE 30 BUS SYSTEM

Fig. 10: BUS-CODE DIAGRAM OF 30 BUS SYSTEM

TABLE I-G: IMPEDANCE & LINE-CHARGING DATA (30 BUS SYSTEM)

Line Resistance Reactance Line Tap Setting

Designation p.u.* p.u.* Charging

1-2 0.0192 0.0575 0.0264 1

1-3 0.0452 0.1852 0.0204 1

2-4 0.0570 0.1737 0.0184 1

3-4 0.0132 0.0379 0.0042 1

2-5 0.0472 0.1983 0.0209 1

2-6 0.0581 0.1763 0.0187 1

4-6 0.0119 0.0414 0.0045 1

5-7 0.0460 0.1160 0.0102 1

6-7 0.0267 0.0820 0.0085 1

6-8 0.0120 0.0420 0.0045 1

6-9 0 0.2080 0 0.978

6-10 0 0.5560 0 0.969

9-11 0 0.2080 0 1

9-10 0 0.1100 0 1

4-12 0 0.2560 0 0.932

12-13 0 0.1400 0 1

12-14 0.1231 0.2559 0 1

12-15 0.0662 0.1304 0 1

69

12-16 0.0945 0.1987 0 1

14-15 0.2210 0.1997 0 1

16-17 0.0824 0.1923 0 1

15-18 0.1070 0.2185 0 1

18-19 0.0639 0.1292 0 1

19-20 0.0340 0.0680 0 1

10-20 0.0936 0.2090 0 1

10-17 0.0324 0.0845 0 1

10-21 0.0348 0.0749 0 1

10-22 0.0727 0.1499 0 1

21-22 0.0116 0.0236 0 1

15-23 0.1000 0.2020 0 1

22-24 0.1150 0.1790 0 1

23-24 0.1320 0.2700 0 1

24-25 0.1885 0.3292 0 1

25-26 0.2544 0.3800 0 1

25-27 0.1093 0.2087 0 1

27-28 0 0.3960 0 0.968

27-29 0.2198 0.4153 0 1

27-30 0.3202 0.6027 0 1

29-30 0.2399 0.4533 0 1

8-28 0.0636 0.2000 0.0214 1

6-28 0.0169 0.0599 0.0065 1

*Impedance and line-charging susceptance in p.u. on a 100 MVA base.

TABLE I-H: BUS DATA or OPERATING CONDITIONS (30 BUS SYSTEM)

Bus Voltage Generation Load

No. Magnitude Phase angle MW MVAR MW MVAR

 (in pu) (deg.)

1* 1.06 0 0 0 0 0

2 1 0 40 0 21.7 12.7

3 1 0 0 0 2.4

4 1 0 0 0 7.6

5 1 0 0 0 94.2

6 1 0 0 0 0 0

7 1 0 0 0 22.8 10.9

8 1 0 0 0 30.0 30.0

9 1 0 0 0 0 0

10 1 0 0 0 5.8 2.0

11 1 0 0 0 0 0

12 1 0 0 0 11.2 7.5

13 1 0 0 0 0 0

14 1 0 0 0 6.2 1.6

15 1 0 0 0 8.2 2.5

16 1 0 0 0 3.5 1.8

17 1 0 0 0 9.0 5.8

18 1 0 0 0 3.2 0.9

70

19 1 0 0 0 9.5 3.4

20 1 0 0 0 2.2 0.7

21 1 0 0 0 17.5 11.2

22 1 0 0 0 0 0

23 1 0 0 0 3.2 1.6

24 1 0 0 0 8.7 6.7

25 1 0 0 0 0 0

26 1 0 0 0 3.5 2.3

27 1 0 0 0 0 0

28 1 0 0 0 0 0

29 1 0 0 0 2.4 0.9

30 1 0 0 0 10.6 1.9

*Slack Bus

TABLE I-I: REGULATED BUS DATA (30 BUS SYSTEM)

Bus no. Voltage magnitude Minimum MVAR Maximum MVAR

 (in pu) capability capability

2 1.045 -40 50

5 1.01 -40 40

8 1.01 -10 40

11 1.082 -6 24

13 1.071 -6 24

TABLE I-J: TRANSFORMER DATA (30 BUS SYSTEM)

Transformer designation Tap setting*

4-12 0.932

6-9 0.978

6-10 0.969

28-27 0.968
*Off nominal turns ratio, as determined by the actual transformer-tap position and the
voltage bases. In the case of nominal turns ratio, this would equal to 1.

TABLE I-K: STATIC CAPACITOR DATA (30 BUS SYSTEM)

Bus no Susceptance*p.u.

10 0.19

24 0.043

*Susceptance in p.u. on 100 MVA base.

Cost characteristics of IEEE 30 bus system:
The cost characteristics of the IEEE 30 Bus System are as follows:

C1 = 50p1
2
+245p1+105 $/hr

C2 = 50p2
2
+351p2+44.4 $/hr

C8 = 50p8
2
+389p8+40.6 $/hr

71

The total load demand of the IEEE 30 bus system is 283.4 MW. The maximum

active power constraint is 250 MW, 100MW and 100 MW for the generators of bus no.

1, 2 and 8 respectively. The minimum active power constraint is 50 MW, 30MW and 30

MW for the generators of bus no. 1, 2 and 8 respectively. Voltage magnitude constraint

for generator at bus 2 is 1.045, for bus no. 5 is 1.01, for bus no. 8 is 1.010, for bus no. 11

is 1.082 &for bus no. 13 is 1.071.

M-file For Calculating B- Coefficients:

Clear basemva=100
accuracy=0.0001
maxiter=10
busdata=[1 1 1.06 0 0 0 0 0 0 0 0;2 2 1.045 0 21.7 12.7 90 0 -40 50 0; 3 0 1 0 2.4 1.2 0 0 0 0
0;4 0 1 0 7.6 1.6 0 0 0 0 0;5 0 1.01 0 94.2 19 0 0 -40 40 0; 6 0 1 0 0 0 0 0 0 0 0; 7 0 1 0 22.8
10.9 0 0 0 0 0;8 2 1.010 30 30150 0 -10 40 0; 9 0 1 0 0 0 0 0 0 0 0; 10 0 1 0 5.8 2 0 0 0 0
0.19; 11 0 1.082 0 0 0 0 0 -6 24 0; 12 0 1 0 11.2 7.5 0 0 0 0 0; 13 0 1.071 0 0 0 0 0 -6 24 0; 14
0 1 0 6.2 1.6 0 0 0 0 0;15 0 1 0 8.2 2.5 0 0 0 0 0;16 0 1 0 3.5 1.8 0 0 0 0 0; 17 0 1 0 9 5.8 0 0 0
0 0; 18 0 1 0 3.2 0.9 0 0 0 0 0; 19 0 1 0 9.5 3.4 0 0 0 0 0; 20 0 1 0 2.2 0.7 0 0 0 0 0;21 0 1 0
17.5 11.2 0 0 0 0 0;22 0 1 0 0 0 0 0 0 0 0;23 1 0 3.2 1.6 0 0 0 0 0; 24 0 1 0 8.7 6.7 0 0 0 0
0.043; 25 0 1 0 0 0 0 0 0 0 0;26 0 1 0 3.5 2.3 0 0 0 0 0; 27 0 1 0 0 0 0 0 0 0 0; 28 0 1 0 0 0 0 0
0 0 0;29 0 1 0 2.4 0.9 0 0 0 0 0; 30 0 1 0 10.6 1.9 0 0 0 0 0]; linedata=[1 2 0.0192 0.0575
0.0264 1;1 3 0.0452 0.1852 0.0204 1; 2 4 0.0570 0.19797 0.0219 1; 2 4 0.05811 0.17632

0.0170 1; 2 5 0.05695 0.17388 0.0173 1; 3 4 0.06701 0.17103 0.0064 1; 4 5 0.01335 0.04211
0.0 1; 4 7 0.0 0.20912 0.0 0.978; 4 9 0.0 0.55618 0.0 0.969;5 6 0.0 0.25202 0.0 0.932; 6 11
0.09498 0.19890 0.0 1;6 12 0.12291 0.25581 0.0 1;6 13 0.06615 0.13027 0.0 1;7 8 0.0
0.17615 0.0 1; 7 9 0.0 0.11001 0.0 1; 9 10 0.03181 0.08450 0.0 1;9 14 0.12711 0.27038 0.0
1; 10 11 0.08205 0.19207 0.0 1;12 13 0.22092 0.19988 0.0 1;13 14 0.17093 0.34802 0.0 1];
disp(busdata)

disp(linedata)
mwlimit=[50 150;50 150;50 150]
Ifybus
Ifnewton
busout bloss

B-Coefficient Calculated is as:

B11 = 0.0307 B12 = 0.0129 B13 = -0.0002

B21 = 0.0129 B22=0.0152 B23= - 0.0011

B31= -0.0002 B32=- 0.0011 B33= 0.0190

72

APPENDIX II

MATLAB Program for optimization of benchmark functions using PSO

ROSENBROCK FUNCTION:
clc;
clear all;
disp(' we have to minimize f = 100(x1^2-x2)^2+(1-x1)^2 i.e. rosenbrock…

function')
p=input('Enter the no. of particles in a swarm:'); %no. of particles
t=input('Enter the no. to divide in each iteration:'); %no. of particles
pn=p;
ss=t;
%it=input('Enter the no. of iterations:');
it=500;
x1=zeros(p,it+1);
x2=zeros(p,it+1);
v1=zeros(p,it+1);
v2=zeros(p,it+1);
f=zeros(p,it+1);
fp=zeros(1,p);
df=zeros(1,(it));
rp=1;
rg=1;
cp=1;
cg=1;
kount=0;
lemb=1;
T=10;
% T=input('Enter the tolerance value');
tt = input('min no of particles');
% lemb=input('Enter the value of retardationfactor');
x1(:,1)=unifrnd(0,2,1,p);
x2(:,1)=unifrnd(0,2,1,p);
v1(:,1)=unifrnd(0,0.5,1,p);
v2(:,1)=unifrnd(0,0.5,1,p);

for j=1:p
 f(j,1)= 100*(x1(j,1)^2-x2(j,1))^2+(1-x1(j,1))^2 ;
 kount=kount+1;
end
%Initial personal besst values
x1p=x1(:,1);
x2p=x2(:,1);

%for Initial Global best values updation
fmin=min(f(:,1));
for k=1:p
 if f(k,1)==fmin
 gb=k;
 else
 end
end
%Initial global best value
x1g=zeros(p,it+1);
x2g=zeros(p,it+1);
for k=1:p
x1g(k,1) = x1(gb,1);
x2g(k,1) = x2(gb,1);
end

73

fgm = min(f(:,1));

% fig=zeros(1,485);
%t=zeros(1,485);
disp(sprintf('This is %d no. of iteration',0));
print = [x1(1:p,1) x2(1:p,1) v1(1:p,1) v2(1:p,1) f(1:p,1)];
 disp(' x1 x2 v1 v2 f')
 disp(print)
fp=f;
for g=1:it
 disp(sprintf('This is %d no. of iteration',g));

w=0.60;
 for j=1:p
 v1(j,(g+1)) = w*v1(j,g) + rp*cp*(x1p(j)-x1(j,g)) + rg*cg*(x1g(j,g)-

x1(j,g));
 v2(j,(g+1)) = w*v2(j,g) + rp*cp*(x2p(j)-x2(j,g)) + rg*cg*(x2g(j,g)-

x2(j,g));
 x1(j,(g+1)) = x1(j,g) + lemb*v1(j,(g+1));
 x2(j,(g+1)) = x2(j,g) + lemb*v2(j,(g+1));
 f(j,(g+1))= 100*(x1(j,g+1)^2-x2(j,g+1))^2+(1-x1(j,g+1))^2 ;
 kount=kount+1;
 end

%To find change in the values of f
 for j=1:p
 df(j,g)= abs(f(j,(g+1))-f(j,g)) ;
 end

%personal best values updation
 for k=1:p
 if f(k,g+1)< fp(k)
 x1p(k)=x1(k,g+1);
 x2p(k)=x2(k,g+1);
 fp(k,1)= f(k,g+1);
 else
 end
 end

%for Global best values updation
 if min(f(1:p,(g+1)))<fgm
 fgm=min(f(1:p,(g+1)));
 X=f(1:p,(g+1));
 k=find(X==min(X));
 x1g(1:p,g+1) = x1(k,g+1); %global best values
 x2g(1:p,g+1) = x2(k,g+1);
 else
 x1g(1:p,g+1) = x1g(1:p,g); %global best values
 x2g(1:p,g+1) = x2g(1:p,g);
 end
 print = [x1(1:p,g+1) x2(1:p,g+1) v1(1:p,g+1) v2(1:p,g+1) f(1:p,g+1)];
 disp(' x1 x2 v1 v2 f')
 disp(print)

% Stoping criterion
 ki=0;
 for j=1:p
 if (df(j,g)<=10^(-T))
 ki=ki+1;
 end
 end

74

 if ki >= p
 break
 end

D=[x1(1:p,g+1) x2(1:p,g+1) v1(1:p,g+1) v2(1:p,g+1) x1p(1:p)…

x2p(1:p) x1g(1:p,g+1) x2g(1:p,g+1) f(1:p,g+1)];
 B=sortrows(D,9);

 p=p/t;

 if p<=tt
 p=tt;
 t=1;
 end

 C=B(1:p,1:9);
 x1(1:p,g+1)=C(:,1);
 x2(1:p,g+1)=C(:,2);
 v1(1:p,g+1)=C(:,3);
 v2(1:p,g+1)=C(:,4);
 x1p(1:p)=C(:,5);
 x2p(1:p)=C(:,6);
 x1g(1:p,g+1)=C(:,7);
 x2g(1:p,g+1)=C(:,8);

 f(1:p,g+1)=C(:,9);
 sn=g;

end
minf=100*(x1g(1,sn).^2-x2g(1,sn)).^2+(1-x1g(1,sn)).^2;
disp (sprintf (' i=%d kount=%d p=%d q=%d T=%d it=%d',g,

kount, pn, ss, T, it))
disp(sprintf('F = %d x1=%d x2=%d ',minf,x1g(1,sn),x2g(1,sn)))

BEALE FUNCTION:

clc;
clear all;
disp(' we have to minimize f=((1.5-x1+x1*x2)^2)+((2.25-

x1+x1*(x2^2))^2)+((2.625-x1+x1*(x2^3))^2) i.e. Beales function')
p=input('Enter the no. of particles in a swarm:'); %no. of particles
t=input('Enter the no. of particles to be eliminated in each iteration:');

%no. of particles
pn=p;
ss=t;
it=500;
tt=input('enter the no of particle to select :');
%it=input('Enter the no. of iterations:');
x1=zeros(p,it+1);
x2=zeros(p,it+1);
v1=zeros(p,it+1);
v2=zeros(p,it+1);
f=zeros(p,it+1);
fp=zeros(1,p);
df=zeros(1,(it));
rp=1;
rg=1;
cp=1;
cg=1;
kount=0;

75

T=10;
lemb=1;
x1(:,1)=unifrnd(0,2,1,p);
x2(:,1)=unifrnd(0,2,1,p);
v1(:,1)=unifrnd(0,0.5,1,p);
v2(:,1)=unifrnd(0,0.5,1,p);

for j=1:p
 f(j,1)=((1.5-x1(j,1)+x1(j,1)*x2(j,1))^2)+((2.25-

x1(j,1)+x1(j,1)*(x2(j,1).^2))^2)+((2.625-x1(j,1)+x1(j,1)*(x2(j,1).^3))^2);
 kount=kount+1;
end
%Initial personal besst values
x1p=x1(:,1);
x2p=x2(:,1);

%for Initial Global best values updation
fmin=min(f(:,1));
for k=1:p
 if f(k,1)==fmin
 gb=k;
 else
 end
end
%Initial global best value
x1g=zeros(p,it+1);
x2g=zeros(p,it+1);
for k=1:p
x1g(k,1) = x1(gb,1);
x2g(k,1) = x2(gb,1);
end
fgm = min(f(:,1));

disp(sprintf('This is %d no. of iteration',0));
print = [x1(1:p,1) x2(1:p,1) v1(1:p,1) v2(1:p,1) f(1:p,1)];
 disp(' x1 x2 v1 v2 f')
 disp(print)
fp=f;
for g=1:it
 disp(sprintf('This is %d no. of iteration',g));

w=0.60;
 for j=1:p
 v1(j,(g+1)) = w*v1(j,g) + rp*cp*(x1p(j)-x1(j,g)) + rg*cg*(x1g(j,g)-

x1(j,g));
 v2(j,(g+1)) = w*v2(j,g) + rp*cp*(x2p(j)-x2(j,g)) + rg*cg*(x2g(j,g)-

x2(j,g));
 x1(j,(g+1)) = x1(j,g) + lemb*v1(j,(g+1));
 x2(j,(g+1)) = x2(j,g) + lemb*v2(j,(g+1));
 f(j,g+1)=((1.5-x1(j,g+1)+x1(j,g+1)*x2(j,g+1))^2)+((2.25-

x1(j,g+1)+x1(j,g+1)*(x2(j,g+1).^2))^2)+((2.625-

x1(j,g+1)+x1(j,g+1)*(x2(j,g+1).^3))^2);
 kount=kount+1;
 end

%To find change in the values of f
 for j=1:p
 df(j,g)= abs(f(j,(g+1))-f(j,g)) ;
 end

76

%personal best values updation

 for k=1:p
 if f(k,g+1)< fp(k)
 x1p(k)=x1(k,g+1);
 x2p(k)=x2(k,g+1);
 fp(k,1)= f(k,g+1);
 else
 end
 end

%for Global best values updation
 if min(f(1:p,(g+1)))<fgm
 fgm=min(f(1:p,(g+1)));
 X=f(1:p,(g+1));
 k=find(X==min(X));
 x1g(1:p,g+1) = x1(k,g+1); %global best values
 x2g(1:p,g+1) = x2(k,g+1);
 else
 x1g(1:p,g+1) = x1g(1:p,g); %global best values
 x2g(1:p,g+1) = x2g(1:p,g);
 end
 print = [x1(1:p,g+1) x2(1:p,g+1) v1(1:p,g+1) v2(1:p,g+1) f(1:p,g+1)];
 disp(' x1 x2 v1 v2 f')
 disp(print)

% Stoping criterion
 ki=0;
 for j=1:p
 if (df(j,g)<=10^(-T))
 ki=ki+1;
 end
 end
 if ki >= p
 break
 end
 D=[x1(1:p,g+1) x2(1:p,g+1) v1(1:p,g+1) v2(1:p,g+1) x1p(1:p)

x2p(1:p) x1g(1:p,g+1) x2g(1:p,g+1) f(1:p,g+1)];
 B=sortrows(D,9);
 p=p/t;
 if p<=tt
 p=tt;
 t=1;
 end

 C=B(1:p,1:9);
 x1(1:p,g+1)=C(:,1);
 x2(1:p,g+1)=C(:,2);
 v1(1:p,g+1)=C(:,3);
 v2(1:p,g+1)=C(:,4);
 x1p(1:p)=C(:,5);
 x2p(1:p)=C(:,6);
 x1g(1:p,g+1)=C(:,7);
 x2g(1:p,g+1)=C(:,8);

 f(1:p,g+1)=C(:,9);
 sn=g;

end

77

minf=((1.5-x1g(1,sn)+x1g(1,sn)*x2g(1,sn))^2)+((2.25-

x1g(1,sn)+x1g(1,sn)*(x2g(1,sn).^2))^2)+((2.625-

x1g(1,sn)+x1g(1,sn)*(x2g(1,sn).^3))^2);
disp (sprintf (' i=%d kount=%d p=%d t=%d q=%d T=%d

it=%d',g, kount, pn, ss, tt, T, it))
disp(sprintf('F = %d x1=%d x2=%d ',minf,x1g(1,sn),x2g(1,sn)))

MATLAB Program for the solution of IEEE 30-bus system using PSO

clc;
clear all;
disp(' we have to minimize ELD 30 BUS SYSTEM ')
p=input('Enter the no. of particles in a swarm:'); %no. of particles
t=input('Enter the no. to divide in each iteration:') %no. of particles
a=10^(-4)*[50 50 50];
b=10^(-2)*[245 351 389];
c=[105 44.4 40.6];
B=10^(-2)*[0.0307 0.0129 -0.0002; 0.0129 0.0152 -0.0011; -0.0002 -0.0011

0.0190];
pn=p;
ss=t;
%it=input('Enter the no. of iterations:');
it=1000;
p1=zeros(p,it);
p2=zeros(p,it);
p3=zeros(p,it);
v1=zeros(p,it);
v2=zeros(p,it);
v3=zeros(p,it);
f=zeros(p,it);
fp=zeros(1,p);
df=zeros(1,(it));
sp=zeros(p,it);
csp=zeros(p,it);
pl=zeros(p,it);
c1=zeros(p,it);
c2=zeros(p,it);
c3=zeros(p,it);
C=zeros(p,it);

rp=1;
rg=1;
cp=1;
cg=1;
kount=0;
lemb=1;
T=6;
pd=283.4;

 plp=zeros(1,p);
 z=500;
% T=input('Enter the tolerance value');
tt = input('min no of particles');
% lemb=input('Enter the value of retardationfactor');
n=1;
while n==1
 for j=1:p

78

 p1(j,1)=unifrnd(50,250,1);
 p2(j,1)=unifrnd(30,100,1);
 p3(j,1)=pd-p1(j,1)-p2(j,1);
 if p3(j,1)<30&&p3(j,1)>100
 n=1;
 break;
 else
 n=0;
 end
 end
end
v1(:,1)=unifrnd(0,0.5,1,p);
v2(:,1)=unifrnd(0,0.5,1,p);
v3(:,1)=unifrnd(0,0.5,1,p);

 for j=1:p
 c1(j,1) = a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1);
 c2(j,1) = a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2);
 c3(j,1) = a(3)*(p3(j,1))^2 + b(3)*p3(j,1) + c(3);
 C(j,1) = c1(j,1) + c2(j,1) + c3(j,1);
 end
%To calculate initial value of cost function we need PL
for j=1:p
 pl(j,1)= [p1(j,1) p2(j,1) p3(j,1)]*B*[p1(j,1) p2(j,1) p3(j,1)]';
% kount=kount+1;
end
%To calculate initial value of cost function
for j=1:p
 f(j,1)=((a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1)) + (a(2)*(p2(j,1))^2 +

b(2)*p2(j,1) + c(2)) ...
 + (a(3)*(p3(j,1))^2 + b(3)*p3(j,1) + c(3))) + z*abs(pd+pl(j,1)-

p1(j,1)-p2(j,1)-p3(j,1));
 kount=kount+1;
end
%0th iteration data display
 disp('this is the 0th iteration')
 print0 = [p1(:,1) p2(:,1) p3(:,1) v1(:,1) v2(:,1) v3(:,1) f(:,1)

c1(:,1) c2(:,1) c3(:,1) C(:,1)];
 disp(' P1 P2 P3 V1 v2 V3

f c1 c2 c3 C ')
 disp(print0)
%Initial personal besst values
p1p=p1(:,1);
p2p=p2(:,1);
p3p=p3(:,1);
%for Initial Global best values updation
fmin=min(f(:,1));
for k=1:p
 if f(k,1)==fmin
 gb=k;
 else
 end
end
%Initial global best value
p1g=zeros(p,it);
p2g=zeros(p,it);
p3g=zeros(p,it);

for k=1:p
p1g(k,1) = p1(gb,1);
p2g(k,1) = p2(gb,1);
p3g(k,1) = p3(gb,1);

79

end
fgm = min(f(:,1));

fp=f;
for g=1:it
 disp(sprintf('This is %d no. of iteration',g));

w=0.60;
 for j=1:p
 v1(j,(g+1)) = w*v1(j,g) + rp*cp*(p1p(j)-p1(j,g)) + rg*cg*(p1g(j,g)-

p1(j,g));
 v2(j,(g+1)) = w*v2(j,g) + rp*cp*(p2p(j)-p2(j,g)) + rg*cg*(p2g(j,g)-

p2(j,g));
 v3(j,(g+1)) = w*v3(j,g) + rp*cp*(p3p(j)-p3(j,g)) + rg*cg*(p3g(j,g)-

p3(j,g));
 end
%V(min) and V(max) constraint
 for j=1:p
 if v1(j,(g+1))< -15
 v1(j,(g+1))= -15;
 end
 if v2(j,(g+1))< -15
 v2(j,(g+1))= -15;
 end
 if v3(j,(g+1))< -15
 v3(j,(g+1))= -15;
 end
 if v1(j,(g+1))> 60
 v1(j,(g+1))= 60;
 end
 if v2(j,(g+1))> 60
 v2(j,(g+1))= 60;
 end
 if v3(j,(g+1))> 60
 v3(j,(g+1))= 60;
 end
 end
for j=1:p
 p1(j,(g+1)) = p1(j,g) + lemb*v1(j,(g+1));
 p2(j,(g+1)) = p2(j,g) + lemb*v2(j,(g+1));
 p3(j,(g+1)) = p3(j,g) + lemb*v3(j,(g+1));
end
%Pmin and Pmax constraint
 for j=1:p
 if p1(j,(g+1))< 50
 p1(j,(g+1))= 50;
 end
 if p2(j,(g+1))< 20
 p2(j,(g+1))= 20;
 end
 if p3(j,(g+1))< 20
 p3(j,(g+1))= 20;
 end
 if p1(j,(g+1))> 250
 p1(j,(g+1))= 250;
 end
 if p2(j,(g+1))>100
 p2(j,(g+1))= 100;
 end
 if p3(j,(g+1))> 100
 p3(j,(g+1))= 100;
 end

80

 end
 %For losses formulation (PL)
 for j=1:p
 pl(j,(g+1))= [p1(j,(g+1)) p2(j,(g+1)) p3(j,(g+1))]*B*[p1(j,(g+1))

p2(j,(g+1)) p3(j,(g+1))]';
 % kount=kount+1;
 end

%Main objective function
 for j=1:p
 f(j,(g+1))= (a(1)*(p1(j,(g+1)))^2 + b(1)*p1(j,(g+1)) + c(1)) +...
 (a(2)*(p2(j,(g+1)))^2 + b(2)*p2(j,(g+1)) + c(2))+...
 (a(3)*(p3(j,(g+1)))^2 + b(3)*p3(j,(g+1)) + c(3)) +...
 + z*abs(pd+pl(j,(g+1))-p1(j,(g+1))-p2(j,(g+1))-

p3(j,(g+1)));
 kount=kount+1;
 end

%personal best values updation
 for k=1:p
 if f(k,g+1)< fp(k)
 p1p(k)=p1(k,g+1);
 p2p(k)=p2(k,g+1);
 p3p(k)=p3(k,g+1);
 fp(k,1)= f(k,g+1);
 else
 end
 end

%for Global best values updation
 if min(f(1:p,(g+1)))<fgm
 fgm=min(f(1:p,(g+1)));
 X=f(1:p,(g+1));
 k=find(X==min(X));
 p1g(1:p,g+1) = p1(k,g+1); %global best values
 p2g(1:p,g+1) = p2(k,g+1);
 p3g(1:p,g+1) = p3(k,g+1);
 else
 p1g(1:p,g+1) = p1g(1:p,g); %global best values
 p2g(1:p,g+1) = p2g(1:p,g);
 p3g(1:p,g+1) = p3g(1:p,g);
 end
 for j=1:p
 c1(j,(g+1)) = a(1)*(p1(j,(g+1)))^2 + b(1)*p1(j,(g+1)) + c(1);
 c2(j,(g+1)) = a(2)*(p2(j,(g+1)))^2 + b(2)*p2(j,(g+1)) + c(2);
 c3(j,(g+1)) = a(3)*(p3(j,(g+1)))^2 + b(3)*p3(j,(g+1)) + c(3);
 C(j,(g+1)) = c1(j,(g+1)) + c2(j,(g+1))+c3(j,(g+1));

 end
 for j=1:p
 df(j,g)= abs(f(j,(g+1))-f(j,g));

 sp(j,g)= abs(pd+pl(j,(g+1))-p1(j,(g+1))-p2(j,(g+1)));

csp(j,g)= abs(C(j,(g+1))-C(j,g));
 end

 print = [p1(1:p,(g+1)) p2(1:p,(g+1)) p3(1:p,(g+1)) v1(1:p,(g+1))…

v2(1:p,(g+1)) v3(1:p,(g+1)) f(1:p,(g+1)) c1(1:p,(g+1)) c2(1:p,(g+1))…

c3(1:p,(g+1)) C(1:p,(g+1))];
 disp(' P1 P2 P3 V1 V2 V3 …

f c1 c2 c3 C ')

81

 disp(print)
 %Stoping criterion
 ki=0;
 for j=1:p
 if ((df(j,g)<=10^(-T)))
 ki=ki+1;
 end
 end
 if ki >= p
 break
 end

 D=[p1(1:p,g+1) p2(1:p,g+1) p3(1:p,g+1) v1(1:p,g+1) v2(1:p,g+1)…

v3(1:p,g+1) p1p(1:p) p2p(1:p) p3p(1:p) p1g(1:p,g+1) p2g(1:p,g+1)…

p3g(1:p,g+1) f(1:p,g+1)];
 G=sortrows(D,13);

 p=p/t;

 if p<=tt
 p=tt;
 t=1;
 end

 Y=G(1:p,1:13);
 p1(1:p,g+1)=Y(:,1);
 p2(1:p,g+1)=Y(:,2);
 p3(1:p,g+1)=Y(:,3);
 v1(1:p,g+1)=Y(:,4);
 v2(1:p,g+1)=Y(:,5);
 v3(1:p,g+1)=Y(:,6);
 p1p(1:p)=Y(:,7);
 p2p(1:p)=Y(:,8);
 p3p(1:p)=Y(:,9);
 p1g(1:p,g+1)=Y(:,10);
 p2g(1:p,g+1)=Y(:,11);
 p3g(1:p,g+1)=Y(:,12);
 f(1:p,g+1)=Y(:,13);
 sn=g;

end
disp(' we have to minimize the cost function of a 3 machine system')
disp (sprintf (' i=%d kount=%d p=%d q=%d it=%d',g, kount, pn,

ss, it))
disp(sprintf('Total demand of power Pd = %d \n',pd))
disp(sprintf('Total loses in the lines Pl = %d \n',pl(1,sn)))
disp(sprintf('Minimum cost incured = %d \n',C(1,sn)))

disp('Final values of generations of the three generators')
disp(sprintf('\nP1=%d',p1(1,sn)))
disp(sprintf('P2=%d',p2(1,sn)))
disp(sprintf('P3=%d',p3(1,sn)))
disp(sprintf('\nPD+Pl = %d',pd+pl(1,sn)))
disp(sprintf('\nP1+P2+P3=%d\n',p1(1,sn)+p2(1,sn)+p3(1,sn)))

disp(sprintf('Z taken = %d',z))

