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CHAPTER-1 

INTRODUCTION 

1.1 OVERVIEW 

Electrical power systems are composed and worked to meet the nonstop variety of power 

demand. With the increment in energy demand, the size of our electrical power system is 

additionally expanding day by day and making electrical power system muddled. Rebuilding 

of the power sector has motivated new improvements in power system operation and 

arranging. To satisfy the energy need, amounts of power plants are joined in parallel to supply 

the system load by interconnection of systems. These days, real test is to satisfy the 

consumer's demand for power at least cost. Any given power system consisting of various 

generating stations, having their own particular characteristic operating parameters, are 

utilized to take care of the total consumer demand. Generally, the cost of operating these 

generators is not proportional with their output, therefore the test for power utilities is to 

attempt to adjust the total load among generators. It gets complicated when utilities attempt to 

represent the transmission loss and seasonal changes. Rebuilding of the power sector has 

motivated new improvements in power system operation and arranging. Although distributed 

generation (D.G) and demand response projects are not extremely recent, the present power 

system operational requirements is to give electricity in a conservative and proficient way, for 

the expanding rate of demand growth. 

Economic Load Dispatch (ELD) is a technique to plan the power generator outputs as 

for the load demands, and to work the power system most economically, or as such, we can 

say that primary target of economic load dispatch is to designate the optimal power generation 

from distinctive units at the least cost conceivable while meeting all system constraints. The 

unpredictability of ELDprelies on upon the components like size of the system, generator 

attributes and system constraints. 

Generating the definite measure of power as demanded meeting all of the losses is 

crucial and takes after a complex methodology. ELD can be used to figure and to plan the 

obliged amount of power to be generated among the different generating units in the system . 

The operation of the different generating systems in a economical way is constantly viewed as 

a important factor in power industry while considering different enhanced type of limitations 

with respect to power generation, power demand and operational limits of the generating 

units. 

This thesis is concerned with the ELD of all thermal system only. It is to be note that 
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all the generating units in a system don't took part in the economic dispatch. Nuclear units and 

huge steam units are keep running at consistent MW setting as it is desirable (because of some 

specialized reasons) to keep up the yield of such units at as consistent a level as could 

reasonably be expected. Rest of the units those partake in economic dispatch will be called 

controllable units. Fuel costs in base-load units then show up as an altered cost and don't show 

up in the economic dispatch issue. We consider the minimisation of those costs that, by fitting 

proper methodology, we can control it, i.e. the fuel costs in the controllable units. 

The issue of economic operation of a power system or ideal power flow can be state 

as: Allocating the load (MW) among the different units of generating stations and among the 

different generating stations in such ways that, the general cost of generation for the given 

load demand is least. 

This is an optimization problem, the objective of which is to minimize the generation cost 

function subject as per the general inclination of a given arrangement of straight and non-

direct equality and inequality constraints. The issue is dissected, solved and afterward 

executed under online state of the power system. The information for the issue originates from 

conventional power flow study. For a given load demand, power flow study can be utilized to 

compute of active and reactive power generations, line flows and losses. The answer for this 

issue can't be ideal unless generally every one of the limitations of the system are fulfilled. 

We examine the economic scheduling issue in the following sections, however first we 

consider the requirements that should be addressed. 

The majority of the industrial practices known so far consider a quadratic function of 

real power output generated for the working fuel cost of generators and valve point loading 

effect if considered in the event of thermal power plants calls for brokenness in the 

optimization problem. Accordingly, ELD problem show non-linear and non-convex elements 

because of the presence of valve point loading effects. Established optimization techniques 

incorporate constantly differentiable functions which are hard to handle and now and again, 

does not converge to optimum solution. The evolutionary computational techniques can 

handle such non-convex and non-differential objective functions effectively and give a 

practically ideal solution in an interval of time. Numerous meta-heuristic calculations can 

proficiently understand non-continuous, non-linear and non-convex optimization problems as 

being what is indicated techniques don't force any requirements on the given problem. Like 

these evolutionary algorithms, randomly took after artificial intelligence techniques, for 

example, say Particle Swarm Optimization (PSO) is likewise connected to numerous 

complicated optimization fields. 

In this thesis work one of great heuristic method PSO is utilized. This strategy is in 
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view of the experience picked up from the investigation of artificial life and psychological 

exploration. Eberhart and Kennedy created PSO, in light of the similarity of the swarm of 

birds and the school of fish. One of the principle objectives is to look at how natural creatures 

carry on as a swarm and to reconfigure the swarm model computationally. It is understood 

that the PSO methods can give a top notch arrangement with basic implementation and quick 

convergence. PSO algorithm has been produced for the nonlinear consistent optimization 

issue to accomplish the best compromise arrangement. In this work the expense of generation 

is taken as the objective which is should have been be minimized. Adjustments in PSO have 

been indicated in some recent research papers. These changes makes PSO algorithm to 

demonstrates more preferable result over the Basic PSO. In this thesis work modifications 

have been done in PSO which is named as MPSO (Modified Particle Swarm Optimization). 

This change is done to enhance the speed and it gives better results. 

 

1.2 AIM AND APPROACH 

Our fundamental thought process in this thesis work is to solve the ELD (economic load 

dispatch) problem by the utilization of Modified Particle Swarm Optimization (MPSO) 

recognizing the cost of generation and the transmission line losses of the system for which 

IEEE 5, 14, & 30 bus system have been studied. The optimum point or the best compromise 

arrangement have been completed by utilizing MPSO as a part of which we take the best 

esteem result from the particles by which we figure out the cost of generation and the 

transmission line losses of the system. 

The work has been done in the following way: 

a. Analysing about Particle Swarm Optimization and organizing its algorithm in MATLAB 

R2013a. 

b. Explanation of distinct mathematical benchmark functions using SBPSO. 

c. Formulation of Economic Load Dispatch (ELD) recognizing the cost of generation and 

the transmission line losses of the system for IEEE 5, 14, & 30 Bus System utilizing 

SBPSO. 

d. Generation of non-inferior sets of IEEE 5, 14, & 30 bus systems. 

e. Accomplishment of optimum point for IEEE 5,i14 and 30 bus system with  lesser no of 

kount acknowledging the cost of generation and the transmission line losses of the system
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1.3 LITERATURE REVIEW 

Basic PSO: Eberhart and Kennedy [1] described a concept for the optimization of nonlinear 

functions using particle swarm methodology is introduced. The evolution Benchmark of the 

paradigm is described, and applications, including nonlinear function optimization and neural 

network training, was proposed. The relationships between particle swarm optimization and 

both artificial life and genetic algorithms was described. 

Ajith Abraham ,Hi Guo and Hanpo Liu[2] implemented PSO and ACO algorithms on same 

mathematical benchmark function as Griewank function ,Schwefel function, Quadratic 

function and  also an real world applications as travelling sales man problem and data mining 

. They also analysed and discussed the results in detail. 

Karin Zielinski and Rainer Laum [3]evaluated various stopping criteria‟s on the basis of 

movements made by the particles ,improvements based criteria‟s and distribution based 

criterion for a constrained single – objective particle swarm optimisation algorithm. In this 

paper ,optimisation of power allocated scheme for code division multiple Access (CDMA) 

system has been considered : Improvement based  movement based and distribution based 

stopping criterion .these criterions have been compared on the basis of convergence rate and 

success performance. It was further observed that there was no use of combining different 

criteria‟s on this incorporates adjustments of more parameters. 

MODIFIED: 

W.B. Laydon et al [4] used kernel to provide the values for each particle of a swarm which 

guides the unit as a whole. They solved one- dimensional multi-model 3-peaks and rastrigin 

function problem using kernel. 

Marks S. Voss[5] introduced principal component PSO I e PCPSO in which particles are 

made to fly in two separate spaces simultaneously, one in traditional n- dimentional space 

and a rotated m-dimensional z- spaces. Where m≤n.PCPSO algorithm has been introduced 

using Greiewank function.  

Jaco F.Schutte and Albert A. Grroenwold [6] studied the variants of PSO algorithms and 

applied to Dixan – Szego test set. The variations studied were –constant inertia weight, linear 

inertia reduction, limit on maximum velocity, construction factor, dynamic inertia and 

maximum velocity reduction. It was observed that constriction and dynamic inertia weight 
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both affect reliability and cost. Dynamic inertia reduction was found to be less sensitive than 

constriction factor. 

Wei-Bing Liu and Xian Jia Wang [7]introduced Evolutionary game (EGPSO) in which the 

behaviour of particles are modelled using Replicator dynamics and multi –start technique. 

This technique overcomes premature convergence and has better convergence property than 

traditional pso. 

Wei Zu et al [8] proposed a new technique PSOED based on particle equilibrium distribution 

in which a sub-optimum trap i.e. clustering of particles within a subarea of problem scope is 

avoided.This technique is applied to various benchmark functions and is shown to be better 

than basic pso and GA. 

Sevkan et al [9] introduced multi-dimensional pso (MD-PSO)where swarm particles can seek 

both positional and dimentional optima. They also proposed FGBF(Fractional Global Best 

Function) technique to avoid premature convergence. This technique is then applied to multi 

model dynamic environment and is shown to track the global optima with minimum error.  

Touahria[10] illustrated the effect of excluding the redundant particle from current iteration. 

Huanhuan Ji et al [11] proposed a bi-swarm particle swarm optimization with cooperative co-

evolution (BPSO-CC).In this model second swarm was generated from the first swarm which 

conducts the local search. The proposed technique was implemented on size benchmark 

functions in dimensions of 100 to 500. 

Zhe Li and Yong chen [12] have introduced a new pso with parallel processing and color 

quantization. 

Weidong Ji and keai Wang[13] combined PSO with gradient method, which avoids immature 

convergence.  

Ismail et al [14] proposed a novel multi –state particle swarm optimization (MSPSO) to solve 

discrete problems. It was applied to two benchmark instances of travelling salesman problem. 

(TSP). The proposed technique was compared with Binary Particle swarm optimization (Bin-

PSO). It was observed that the proposed technique gave better solution compared Bin-PSO 

and was found to be simple in complexity. 

Kyle Robert Harison [15] hybridized GA with PSO. They also claimed new version of pso 

avoids premature convergence. 
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Nikhil Padhya et al [16] suggested three different PSOs with boundary handling approaches 

in this paper ,the authors have proposed two boundary handling methods- Inverse parabolic 

spread Distribution and Inverse parabolic confined Distribution. These were compared with 

existing boundary handling methods- Random, Periopdic, Set on boundary, SHR and 

Exponential Distribution for four test functions.  

Zahara Beheshti et al [17] proposed binary accelerated PSO. They have shown that new pso 

requires only common controlling parameters viz no. of genewrations and population size. 

Luis Miguel Rios and Nikolaos Sahinidias[18] presented a review of derivative free 

algorithms including PSO for constrained problems.They combined twenty – two(22) such 

algorithm and implemented on a test set of 502 problems. It was observed that all solvers 

provided the best solution for at least some of the test problems and there is no single solver 

which provides best result for all the problems. 

Zhimin chen et al [19] presented an organizational adjustment PSO based particle filter 

(OAPSO-PF) algorithm which allowed the particles to adopt to environment and reach the 

global optimum. 

Lin Lu et. al. [20] developed a hierarchical structure poly –particle swarm 

optimization(HSPPSO). Approach using the hierarchical structure concept of control theory. 

This algoritm was implemented on four benchmark functions –Spherical, Rosenbrock, 

Griewank and Rastrigin and was also compared with PSO. HSPPSO was found to search 

better for global optimum, and converged faster. 

Kyle Robert Harison [21] hybridized GA with PSO. They also claimed new version of pso 

avoids premature convergence. 

Xan Zhe ping et al [22] also presented a pso with two sub population. Liu  Jin –yue et al [62] 

proposed linearly decreasing weight PSO (LDWPSO) algorithm. And introduced mutation 

operator to improve the global and local search . Ability of the algorithm was tested on two 

non linear functions- Ackeley and Rastrigin functions and compared the performance with 

standard pso. It was observed that this improved algorithm increased the convergence speed 

as well as the global search capability. 

Nikhil Padhya et al [23] suggested three different PSOs with boundary handling approaches 

in this paper ,the authors have proposed two boundary handling methods- Inverse parabolic 

spread Distribution and Inverse parabolic confined Distribution. These were compared with 
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existing boundary handling methods- Random, Periopdic, Set on boundary, SHR and 

Exponential Distribution for four test functions . Inverse parabolic spread Distribution was 

found to be the most robust and consistent method. 

Zahara Beheshti et al [24] proposed binary accelerated PSO. They have shown that new pso 

requires only common controlling parameters viz no. of genewrations and population size. 

Luis Miguel Rios and Nikolaos Sahinidias[25] presented a review of derivative free 

algorithms including PSO for constrained problems.They combined twenty – two(22) such 

algorithm and implemented on a test set of 502 problems. It was observed that all solvers 

provided the best solution for at least some of the test problems and there is no single solver 

which provides best result for all the problems. 

Zhimin chen et al [26] presented an organizational adjustment PSO based particle filter 

(OAPSO-PF)algorithm which allowed the particles to adopt to environment and reach the 

global optimum. 

Lin Lu et. al. [27] developed a hierarchical structure poly –particle swarm 

optimization(HSPPSO) 

Approach using the hierarchical structure concept of control theory. This algoritm was 

implemented on four benchmark functions –Spherical, Rosenbrock, Griewank and Rastrigin 

and was also compared with PSO.HSPPSO was found to search better for global optimum, 

and converged faster. 

 

ELD: 

Megahed et al. [28] developed a method for solving the economic load dispatching problem 

by changing it from constrained nonlinear programming problem to a sequence of 

constrained linear programming problems. The formulation of the load scheduling is exact in 

the sense that all the system voltages, active and reactive generation, as well as the phase 

angles are considered as independent variables. In addition, the effect of bus voltages on the 

loads is taken into consideration 

Happ [29] reviewed the progress of optimal dispatch, also called economic load dispatch, 

since its inception to the present in chronological sequence. The classic single area as well as 

multi area cases is summarized, and the important theoretical work in optimal load flows 
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suggested to date reviewed. Approaches to the optimal load flow taken by industry are also 

reported, as well as an itemization of problems that still remain to be solved. 

 

Kwatny and Athay [30] presented the coordination of the economic load dispatch and 

regulation functions of automatic generation control in electric power systems. The point of 

view taken is that such coordination appropriately takes place at the regulation or load 

frequency control level. Thus, the coordinating controller is obtained through the formulation 

of a suitably extended load frequency control problem in the context of linear multivariable 

control theory. 

 

Aoki and Satoh [31] presented an efficient method to solve an economic load dispatch 

problem with dc load flow type network security constraints. The conventional linear 

programming and quadratic programming methods cannot deal with transmission losses as a 

quadratic form of generator outputs. In order to overcome this defect, the extension of the 

quadratic programming method is proposed, which is designated as the parametric quadratic 

programming method. The upper bounding technique and the relaxation method are coupled 

with the proposed method for the purpose of computational efficiency. The test results show 

that the proposed method is practical for real-time applications. 

 

Lin and Viviani [32] presented a method to solve the economic power dispatch problem with 

piecewise quadratic cost functions. The solution approach is hierarchical, which allows for 

decentralized computations. An advantage of this approach is the capability to optimize over 

a greater variety of operating conditions. Traditionally, one cost function for each generator 

is assumed. In this formulation multiple intersecting cost functions are assumed. This method 

has application to fossil generation units capable of burning gas and oil, as well as other 

problems which result in multiple intersecting cost curves for a particular unit. The results 

show that the solution method is practical and valid for real-time application. 

 

Ramanathan [33] presented an extremely fast, simple, efficient and reliable economic load 

dispatch algorithm. The algorithm utilizes a closed form expression for the calculation of the 

Lambda, as well' as taking care of total transmission loss changes due to generation change, 

thereby- avoiding ,any iterative processes in the calculations. The closed form expression 
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presented for Lambda can be used with 'any type of incremental transmission loss 

calculation. For this algorithm, penalty factors are derived based upon the Newton's method. 

 
Walters and Sheble [34] used genetics-based algorithm to solve an economic dispatch 

problem for valve point discontinuities. The algorithm utilizes payoff information of 

candidate solutions to evaluate their optimality. Thus, the constraints of classical Lagrange 

techniques on unit curves are circumvented. The formulations of an economic dispatch 

computer program using genetic algorithms are presented and the program's performance 

using two different encoding techniques is compared. The results are verified for a sample 

problem using a dynamic programming technique. 

 

Abdullah and Bakar [35] presented  the implementation of hybrid particle swarm 

optimization for solving Economic-Emission Load Dispatch Problem (EELD). They studied, 

the hybrid Evolutionary programming (EP) and Particle Swarm Optimization (PSO) named 

Evolutionary Particle Swarm Optimization (EPSO) was proposed. The effectiveness of the 

EPSO algorithm has been tested on the IEEE 30 bus system and the results obtained were 

compared with the other reported algorithms. The results also reveal the capability of the 

proposed EPSO for obtaining the best fuel cost compared to PSO. 

 

Bhattacharya and Chattopadhyay [36] presented a novel Particle Swarm Optimizer combined 

with Roulette selection operator to solve the economic load dispatch (ELD) problem of 

thermal generators of a power system. Several factors such as quadratic cost functions with 

valve point loading, transmission Loss, generator ramp rate limits and prohibited operating 

zone were considered in the computation models. The experimental results showed that the 

proposed modified PSO method is indeed capable of obtaining solution in less time and in 

fewer numbers of iterations. 

 

Dasgupta and Banerjee [37] explains different techniques has used to solve these problems. 

Recently, the soft computing techniques has widely used in practical applications. They 

showed successful implementation of four evolutionary algorithms, namely particle swarm 

optimization (PSO), particle swarm optimization with constriction factor approach 

(PSOCFA), particle swarm optimization with inertia weight factor approach (PSOIWA) and 
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particle swarm optimization with constriction factor and inertia weight factor approach 

(PSOCFIWA) algorithms to economic load dispatch problem. Power output of each 

generating unit and optimum fuel cost obtained using all four algorithms has been compared. 

 

N.K.Jain and Uma Nangia [38] explained Particle Swarm Optimization converges to local 

optima, especially in some complex issue like optimization of high dimension function. They 

observed that the traditional particle swarm optimization algorithms converses rapidly during 

the initial stage of a search, but in course of time becomes steady considerable and gets 

trapped in a local optima.  They presented four evolutionary optimization models (IPSO 1, 2, 

3, 4) based on the particle swarm optimization algorithms for Economic Load Dispatch 

considering cost of generation. Their analysis suggests that IPSO (Improved Particle Swarm 

Optimization) significantly improves the performance with less no of iteration. They 

implemented different IPSO to ECONOMIC LOAD DISPATCH to get optimum value of 

cost with less no of iteration. 

 

Liu, Han and Zhou [39] explained chaotic particle swarm optimization (CPSO) algorithm to 

solve the optimal dispatch problem, adopting the adaptive inertia weight to accelerate the 

convergence speed. They improved hybrid optimization algorithm from particle swarm 

optimization (PSO) algorithm by chaotic searching in the neighborhood to avoid getting into 

the local optimum, with the algorithm steps listed in the paper. They considered a numerical 

example and analyzed, verifed the validity of the hierarchical optimization mode and CPSO.  

 

1.4    PLAN OF THESIS 

 

This thesis has been arranged in five chapters. The contents of the chapters are briefly 

outlined as indicated below: 

Chapter 1 is an introduction chapter. It describes the overview of thesis, aim and approach of 

the problem taken up for thesis work and literature review. 
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Chapter 2 describes the introduction, algorithm, flowchart and mathematical formulas of 

Particle Swarm Optimization. 

Chapter 3: Explores the concepts of  Selection Based Particle Swarm Optimization algorithm 

in MATLAB R2013a and its application on various mathematical benchmark functions. 

Analysis of various parameters in SBPSO algorithm has also been carried out. 

Chapter 4: Discusses the solution of Economic Load Dispatch by SBPSO for IEEE 5, 14 and 

30 bus systems. 

Chapter 5: Conclusion and the future work directions have been discussed.  

References and Appendix are at the end of the thesis. 
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CHAPTER-2 

PARTICLE SWARM OPTIMIZATION 

2.1 INTRODUCTION 

A modern heuristic optimization method, for example, simulated annealing, evolutionary 

algorithms, neural networks, and ant colony have been given much consideration by 

numerous specialists because of their capacity to find a practically global optimal solution in 

EDPs. One of these modern heuristic optimization ideal models is the particle swarm 

optimization (PSO). 

PSO is a kind of evolutionary algorithm taking into account a populace of individuals 

and roused by the simulation of social conduct instead of the survival of the fittest individual. 

It is a populace based evolutionary algorithm. Like the other populace based evolutionary 

algorithms, PSO is initialized with a populace of random solutions. Not at all like a large 

portion of the evolutionary algorithm is solution (individual) in PSO likewise connected with 

a randomized velocity, and the potential solutions, called particles, are then "flown" through 

the problem space. PSO algorithm has been produced for the nonlinear consistent 

optimization issue to accomplish the best compromise arrangement. In this work the expense 

of generation is taken as the objective which is should have been be minimized. Adjustments 

in PSO have been indicated in some recent research papers. 

The most striking distinction in the middle of PSO and the other evolutionary algorithms 

is that PSO picks the way of collaboration over rivalry. The other algorithms normally utilize 

some type of annihilation, survival of the fittest. Interestingly, the PSO populace is steady 

and individuals are not crushed or made. Individuals are influenced by the best execution 

does not have hereditary operators like crossover in the middle of individuals and of their 

neighbors. Individuals inevitably meet on optimal points in the problem domain. Also, the 

PSO traditions transformation, and other individuals never substitute particles during the run. 

Instead, the PSO refines its pursuit by attracting the particles to positions with great 

solutions. 

Additionally, contrasted with genetic algorithms (GAs), the information sharing 

mechanism in PSO is significantly diverse. In GAs, chromosomes offer information with one 
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another. So the entire population moves like an one gathering towards an optimal zone. It is a 

restricted information sharing component. The advancement searches for the best solution. In 

PSO, every one of the particles have a tendency to converge to the best solution rapidly, 

comparing with GA, even in the local version in most cases. 

 

Particle swarm advancement is fundamentally a population-based searching procedure 

which searches in parallel and does not prompting elimination of any of the arrangement. It is 

a sort of searching method which follows its movement taking into account the advancing 

development of birds rushing or fish schooling search for nourishment. It introduces particles 

randomly into the predetermined search space and these particles accumulate data through 

their corresponding positions. The alteration in position of every molecule in the swarm is in 

light they could call their own personal best experience and their neighbor's experiences. In 

PSO, just gbest (or pbest) gives out the data to others. The inertia weight presented at the 

velocity updating step is responsible for the energy of every molecule. It was presented by 

Shi and Eberhart and it meets expectations by weighing the inclusion of the past for the 

purpose of dispensing with the necessity for velocity clamping. Estimation of w chooses the 

particle velocity overhauling and in this manner entire framework bearing is taking into 

account its quality. With w having a quality more prominent than 0, divergent behavior of the 

framework come about because of expansion in framework's velocity and accordingly 

particles neglect to acquire the best position. With w being under 0, deceleration of particles 

happens which bring about moderate convergence to the best solution. Static inertia qualities 

or versatile qualities may lead to convergent solution.  

PSO has various key elements that turn out to be extremely dependable in distinctive 

applications where conventional optimization techniques may come up short when compared 

with other evolutionary optimization algorithms. Following are a advantages of the PSO over 

other conventional algorithms: 

 It makes use of basic logical and mathematical functions which are easy to 

handle and operate with a succession of methodology. 

 It has less working parameters which are easy to work.

 It uses real esteemed operational integers which dispenses with the requirement 

of converting binary form to real coded structure as in GA.

 It is better in terms of time utilized for computation and memory storage 

requirement.
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2.2 CONCEPT OF SWARM AND PARTICLE 
 
The term swarm has a premise in the literature. Specifically, the authors utilize the term 

as per a paper by Millonas [40], who added to his models for applications in artificial 

life, and enunciated five fundamental standards of swarm intelligence. 

 Proximity principle: As per this standard, the population ought to have the 

capacity to do basic space and time computations. 



 Quality principle: As per this standard, the population ought to have the 

capacity to react to quality factors in nature. 



 Principle of diverse response: As per this standard, the population ought not to 

confer its activities along unreasonably narrow channels. 



 Principle of stability: As per this standard, the population ought not change its 

method of conduct each time the environment changes. 



 Principle of adaptability: As per this standard, the population must have the 

capacity to change conduct mode when it's justified the computational cost.. 



 

3.3 BASIC PARTICLE SWARM OPTIMIZATION 
 

 

Particle Swarm Optimization has establishes in two fundamental segment strategies. 

Maybe more clear are its binds to artificial life and to bird flocking, fish schooling, and 

swarming hypothesis specifically. It is likewise related, be that as it may, to 

evolutionary computation, and has binds to both genetic algorithms and evolution 

strategies. Particle swarm optimization contains an exceptionally straightforward idea, 

and standards are executed in a couple lines of PC code. It requires just primitive 

mathematical logic, and is computationally reasonable as far as both memory need and 

speed. Early testing has discovered the execution to be powerful with a few sorts of 

problems. PSO has likewise been exhibited to perform well on genetic algorithm test 
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functions, and it has all the earmarks of being a promising methodology for robot task 

learning. 

PSO is initialized with a gathering of random particles (solutions) and then 

scans for optima by redesigning generations. In every iteration, every molecule is 

overhauled by taking after two "best" values. The first is the best solution (fitness) it 

has accomplished in this way. The fitness quality is additionally put away. This quality 

is called pbest. Another "best" esteem that is followed by the particle swarm optimizer 

agent is the best esteem, got so far by any particle in the populace or it is the best 

esteem among every one of the estimations of pbest. This best esteem is a global best 

and called gbest. At the point when a particle participates of the populace as its 

topological neighbors, the best esteem is a local best and is called pbest..  

The PSO idea comprises of, at every single time step, changing the velocity 

(accelerating) every particle toward its pbest and gbest areas (global adaptation of 

PSO). Acceleration is weighted by a random term, with isolated random numbers being 

created for acceleration toward pbest and gbest areas. There is likewise a local form of 

PSO in which, in addition to pbest, every particle stays informed regarding the best 

solution, called lbest, achieved inside of a topological neighbourhood of particles. 

 

The (original) process for actualizing the global variant of PSO is as per the following: 

1) Initialize a population (array) of particles with random positions and velocities 

on d dimensions in the problem space. 

2)  For every particle, assess the desired optimization fitness function in d 

dimensions. 

3)  Compare particle's fitness assessment with particle's pbest. In the event that 

present value is superior to pbest, then set pbest worth equivalent to the present 

value, and the pbest location equivalent to the present location in d-dimensional 

space. 

4) Compare fitness evaluation and the populace's general previous best. On the off 

chance that present quality is superior to gbest, then reset gbest to the present 

particle's array record and values. 

5)  Modifies the velocity and position of the particle according to equations (2.1) 

and (2.2), respectively:  

Vi
k+1

 = W*Vi
k
 +Cp* Rp *(Xpbesti  - Xi

k
) + Cg* Rg *(Xgbest - Xi

k
)     …..(2.1) 
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Xi
k+1

 = Xi
k 

+ Vi
k+1                         

…..(2.2) 

6) Circle to step 2 until a criterion is met, usually a sufficiently best fitness or a 

most extreme number of iterations reaches. 

 

Particles' velocities on every single dimension are clipped to a most extreme 

velocity Vmax. On the off chance that the sum of accelerations would cause the 

velocity on that dimension to surpass Vmax, which is a parameter specified by the user, 

then the velocity on that dimension is constrained to Vmax. 

Vmax is hence a vital parameter. It determines the resolution, or fineness, with 

which regions between the current position and the objective (best so far) position are 

searched. On the off chance that Vmax is too high, particles may fly past great 

solutions. On the off chance that Vmax is too small, then again, particles may not 

investigate sufficiently past generally great regions. Truth be told, they could get to be 

caught in local optima, not able to move sufficiently far to achieve a superior position 

in the problem space. 

The acceleration constants Cp and Cg in mathematical eqn. (2.1) represent the 

weighting of the stochastic acceleration terms that force every particle toward pbest and 

gbest positions. Thus, adjustment of these constants modifies the measure of "tension" 

in the system. Low values permit particles to meander a long way from target regions 

before being pulled back, while high values result in sudden development toward, or 

past, target regions. Early involvement with particle swarm optimization 

(experimentation, mostly) drove us to set the acceleration speed constants Cp and Cg 

every equivalent to 2.0 for almost all applications. Vmax was thus the main parameter 

we routinely adjusted, and we regularly set it at about 10-20% of the dynamic scope of 

the variable on every dimension. 

Based, in addition to other things, on findings from social simulations, it was chosen to 

design a "local" version of the particle swarm. In this version, particles have data just 

they could call their own and their neighbours bests, instead of that of the entire group. 

Instead of moving toward a sort of stochastic average of pbest and gbest (the best area 

of the entire group), particles move toward points characterized by pbest and "lbest", 

which is the list of the particle with the best evaluation in the particle's neighbourhood. 

On the off chance that the area size is characterized as two, for instance, 

particle(i) compares its fitness esteem with particle(i-1) and particle(i+l). Neighbors are 
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characterized as topological neighbors; neighbors and neighbourhoods don't change in 

a run. For the neighbourhood version, the main change to the process characterized in 

the six steps before is the substitution of pld, the area of the neighbourhood best, for 

Xgbest, the global best, in equation ( 2.1 ) . Early experience (once more, for the most 

part experimentation) prompted neighbourhood sizes of around 15 percent of the 

populace size being used for some applications. So, for a populace of 40 particles, an 

area of six, or three topological neighbours on every side, was not unusual. 

The populace size selected was issue problem dependent. Populace sizes of 20-

60 were presumably most common. It was found out from the get-go that smaller 

populations than were normal for other evolutionary algorithms (such as hereditary 

algorithms and evolutionary writing computer programs) were optimal for PSO in 

terms of minimizing the aggregate number of evaluations (populace size times the 

number of generations) expected to acquire a sufficient solution. 

 

2.4 PSO ALGORITHM PARAMETERS 

There are some parameters in PSO calculation that may influence its execution. For any 

given optimization problem, some of these parameter's values and choices have 

substantial effect on the efficiency of the PSO method, and different parameters have 

small or no impact. The distinctive PSO parameters are number of particles or swarm 

size, velocity components, acceleration coefficients and number of iterations illustrated 

beneath.    

2.4.1 Swarm size  

Populace size or swarm size is the quantity of particles "s" in the swarm. Countless 

number of size generates bigger parts of the search space to be secured per iteration. 

Countless number of particles may decrease the quantity of iterations need to get a 

superior optimization result. In contrast, large amounts of particles improve the 

computational complexity per iteration, and additional lengthy. From an expansive 

number of exact studies, it has been shown that most of the implementations in PSO 

use an interval of s ε [10,60] for the size of swarm. 

 



18 

 

2.4.2 Velocity clamping  

Starting PSO studies used Cp = Cg= 2.0. Although great results have been 

accomplished, it was seen that velocities fastly blasted to substantial values, especially 

for particles at an extensive distance from their global best (^y) and personal best (yi) 

positions. Consequently, particles have vast no. of position updates, with particles 

abandoning the boundaries of their search space. Velocities are braced to control the 

increase in velocity. 

vi
(k+1)

 =   v'i
(k+1)

                   if   v'i
(k+1)

< Vmax                                                                 

Vmax           if   v'ij
(t+1)

 ≥V max 

Velocity clamping does not stay away from a particle from leaving the boundaries of its 

search space, it limits the particle step sizes, in this way different behavior is restricted. 

2.4.3 Iterationonumbers  

The no. of iterations to acquire a best result depends on the problem. A low number of 

iterations may end the search process rashly, while a substantial no. of iterations have 

the consequence of unnecessary included computational complex nature and make the 

convergence slow. 

2.3.4 Accelerationocoefficients  

The acceleration coefficients Cp and Cg, joined with the arbitrary values Rp and Rg, 

keep up the stochastic impact on the cognitive and social segments of the particle's 

velocity separately. The steady Cp demonstrates the amount of certainty a particle has 

on itself, while Cg communicates the amount of certainty a particle has on its 

neighbors. There are a few properties of Cp and Cg. 

 Cp = Cg = 0 speaks to all particles keep flying at their present velocity until they hit 

the limit of the search space. Subsequently, the redesign mathematical statement for 

velocity is ascertained as 

Vi(k+1)p= Vi(k)                                                                
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Cp > 0 and  Cg = 0 represents that all particles are autonomous. The velocity update 

mathematical statement for this condition will be                         

Vi(k+1) = w * Vi(k) + Cp * Rp* (yi(k) – Xi(k))                                              ……. (2.3) 

Unexpectedly, Cp > 0 and Cg = 0 represents that all particles are pulled in towards a 

solitary point in the whole swarm and the redesign in the velocity will be as under: 

Vi(k+1) = Vi(k) + Cp * Rp* ( ŷi(k) –iXi (k ))                                                    ..…… (2.4) 

Cp = Cg represents that every one of the particles are pulled in towards the average of 

pbest and gbest .  

Cp >> Cg represents that every particle is emphatically impacted by its own best 

position, bringing about an increased wandering. Interestingly, when Cg >> Cp then the 

majority of the particles are a great deal more affected by the global best position, 

which causes all particles to converge rashly to the optima.  

Ordinarily, Cp and Cg are static, with exactly discovering the optimized values. Wrong 

initialization of Cp and Cg may result in cyclic or dissimilar conduct. From the diverse 

experimental investigates, this has been suggested that the two acceleration constants 

must be Cp = Cg =2. 

2.4.5 Inertia weight 

Shi and Eberhart[41] presented the inertia weight with take out the requirement for 

velocity clamping and to still limit the dissimilar behaviour. The force of the particles 

is controlled by the inertia weight (w) by measuring the commitment of the past 

velocities, basically it is utilized to control the amount of memory of the last flight 

bearing will influence the new velocity. The velocity mathematical statement altered to 

 

Vi(k+1)i = w * Vi(k)i+ Cp * Rp * (yi(k) – Xi(k))i+ Cg * Rg *i( ŷi(k)i– Xi(k))  ....(2.5)(2((                           

 

Shi and Eberhart presented the idea of inertia weight in 1999 to decrease the velocities 

after some time (or iterations), to control the misuse and investigation capacities of the 

swarm and to unite the swarm all the more productively and precisely.  
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When w≥ 1 then the velocities increment with time and particles can scarcely redirect 

their headings to return towards ideal, and the swarm diverges. When w ≤ 1 then little 

force is just spared from the introductory step and speedy changes to directions are 

situated simultaneously. When w =0 particles velocity vanishes and all particles move 

without learning of the last velocity in every step. 

The inertia weight may be actualized either as rapidly changing values or an fixed 

values. Beginning usage of utilized a fixed value for the entire procedure for all 

particles, however now progressively changing inertia values is utilized in light of the 

fact that this parameter controls the exploration and exploitation of the search space. 

Different methodologies were proposed time to time were mulled over in detail.  

The inertia value is typically high at first, which permits all particles to freely 

move in the search space in the introductory steps and decreases with time. In this way, 

the procedure shifts from the exploratory mode to the exploitative mode. This 

diminishing in inertia weight has delivered great results in a large portion of 

optimization problems. To control the harmony in the middle of local and global 

exploration and to acquire speedy joining and to achieve an ideal, the inertia weight 

whose value decreases directly with the increment in iteration number is situated in like 

manner by the accompanying mathematical statement. 

 

w (i+1) = wmax – ( ( ( wmax - wmin) * k ) / ( itmax ) ) ,    wmax > wmin                         (2.6) 

where, wmin and wmax are the final and initial values of the inertia weight respectively, 

itmax is the maximum iteration no., „k‟ is the current iteration number. Regularly, the 

inertia weight decreases straightly from 0.9 to 0.4 over the full run. Trelea have 

characterized a condition that ( w < ( (Cp + Cg)/2 )- 1 ) ensures the convergence. 

Cyclic or Divergent conduct can happen in the process if this condition is not fulfilled. 

The method of inertia weight is truly valuable to guarantee convergence. However 

there is a disservice of the inertia weight system that once the inertia weight is 

diminished, it can't build regardless of the possibility that the swarm needs to look new 

zones. This technique is not ready to recover its exploration mode. 
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2.4.6 Neighbourhood Topologies  

 

A neighbourhood must be characterized for every particle. This neighbourhood decides 

the degree of social connection inside of the swarm and impacts a specific particle's 

development. Less cooperation happens when the neighbourhoods in the swarm are 

little. For little neighborhood, the meeting will be slower however it may enhance the 

nature of arrangements. For bigger neighborhood, the merging will be speedier yet the 

risk that occasionally meeting happens prior. To take care of this issue, the search 

procedure begins with little neighborhoods size and after that the little neighborhoods 

size is expanded over the long run. This procedure guarantees an at first high diversity 

with speedier convergence as the particles move towards a promising pursuit region. 

The PSO algorithm is social collaboration among the particles in the whole swarm. 

Particles correspond with each other by trading data about the achievement of every 

particle in the swarm. At the point when a particle in the entire swarm discovers a best 

position, all particles move towards this particle. This execution of the particles is 

dictated by the particle's neighborhood. Researchers have dealt with adding to this 

execution by planning distinctive sorts of neighborhood structures. Some area 

structures or topologies are talked about underneath: 

 

 

 

 

 

 

Figure 1 Star or gbest 

 

 

 

 

 

 

Figure 2 Ring or lbest 
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Figure 2.3 Wheel 

 

 

 

 

 

 

 

 

 

 

Figure 2.4  Four Clusters 

Figure 1 clarifies the star topology, where every particle is associated with each other 

particle. This topology fundamentally prompts meeting at a quicker rate than different 

topologies, yet there is an opportunity to be caught in local minima. Since all particles 

are mindful about one another, this topology is known as the gbest PSO. 

Figure 2 shows the ring topology, where every particle is related to its quick neighbors. 

In this specific procedure, when better result is found by one particle then this molecule 

offers it to its quick neighbors and these quick neighbors offers it to their individual 

quick neighbors, until it picked up by the last particle. In this manner the best result 

found is spreaded gradually in a ring made by all particles. Convergence is moderate, 

yet an awesome piece of the inquiry space is secured than with the star topology. It is 

known as the lbest PSO.  
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Figure 3 demonstrates the wheel topology, in this stand out of the particle (a focal 

particle) partners to the others, and all information are imparted through this specific 

particle. This focal particle thinks about the best execution of all the particles in the 

swarm and changes its own position towards the best execution molecule break down 

without anyone else's input lastly the new position of the central particle is imparted to 

every one of the particles.  

 

Figure 4 demonstrates four groups topology, where four coteries (or bunches) are 

associated with one edge between inverse groups and two edges between neighboring 

bunches. There are more diverse topologies or neighborhood structures (for occurrence, 

Von Neumann topology, the pyramid topology etc), yet there is no single best topology 

still known not the required optimum for all varieties of optimization problems. 

 

2.5 MATHEMATICAL FORMULAS: 

The modification of the particle‟s position can be numerically demonstrated 

according the following mathematical equation: 

Vi
k+1

 = W*Vi
k
 +Cp*Rp*(Xpbesti -Xi

k
) + Cg*Rg *(Xgbest-Xi

k
)       …(2.1) 

Where;  

  Vi
k
      : velocity ofragent i atriteration k, 

  W        : inertia weightrfactor, 

  C         : weightingrfactor, 

R   :uniformlyrdistributed random numberrbetween 0 and 1,                                          

  Xi
k
       : present  position of agentri at iteration k, 

  Xpbestr::best of agent i, 

  Xgbest r: gbest of thergroup.  

Vi 
(k)

  which is the velocity of i
th

 particle at iteration „k‟ must lierin the range 

Vmin ≤ Vi(k) ≤ Vmax 

In the equation (1) 

The term Rp *( Xpbesti -Xi
k
) is called particle memory influence, 
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The term Rg *( Xgbest-Xi
k
) is called swarm influence. 

 

The Position of the Particles is updated by the following equation: 

Xi
k+1

 = Xi
k 

+ Vi
k+1                              

…………………(2.2) 

  

The following inertia weight factor is usually utilized in (1) 

W = Wmax-[(Wmax-Wmin) * k]/maxIter                ………………….(2.7) 

 

2.6 FLOWCHART: 

The general computational system for the Particle Swarm Optimization is as per the 

following: 

1. Before to the iteration begins, initialize the particles with random position and 

velocity vectors. 

2. For each of the particle‟s position (Xi
k
) compute the value of objective function 

(F: we likewise call it fitness function). 

3. When F(Xi
k
) is not exactly (Xpbesti), then allocate the value of Xpbesti as Xi

k
 (do it 

for every one of the particles). 

4. Focus the best value of Xpbesti consider its fittest value. In the event that f(best 

of Xpbesti)is not exactly f(Xgbesti), than allot the value of best of Xpbesti to the 

Xgbesti. 

5. Calculate the new velocity vector utilizing mathematical equation (2.1) and the 

new position vector utilizing mathematical equation (2.2). 

6. Repeats the circle until either the stopping criteria met or the maximum 

iteration is achieved. 

7. After iteration finishes, give Xgbesti as the optimal solution and the fitness 

relating to it as the optimum value. 
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Fig 5  BPSO flowchart 

 

 

2.6.1 Steps involved in particle swarm optimization in MATLAB 

 
1       Using the zero command of MATLAB initialize all the variable matrices. 

2 Set the values of the random no.‟s „Rp‟ & „Rg‟ assigned to the personal and global 

best expressions respectively. 
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3 Set the values of acceleration constants „Cp‟ & „Cg‟ assigned to the personal and 

global best expressions respectively. 

4 Set the tolerance value. 

5 Generate the random position values of particles for all the variables (eg. X1, X2) 

and also generate the random velocities values of particles (eg. V1, V2) for all the 

variable. 

6 Calculate the fitness for the assumed values of the positions of the particles. 

7 Using the above fitness personal best and global best values for all variables are 

deduced. 

8 Using the previous iteration values of personal best, global best and velocity 

vectors new velocities are generated in the current iteration using the equation: 

        Vi
k+1

 = W*Vi
k
 +Cp*Rp*(Xpbesti -Xi

k
) + Cg*Rg *(Xgbest-Xi

k
) 

   

9 Using the new velocity vector and the old position vector, a new position vector is 

generated for all the variables.  

10 Calculate fitness using the new positions in the current iteration. 

11  Using the new fitness values the personal and global best values are updated. 

12  The difference between the past and the present fitness is calculated and check 

against the tolerance value, if inside of the tolerance iteration stops and global best 

value is the solution else iteration stream does a reversal to past step for further 

updating. 

 

3.7 ADVANTAGES AND DISADVANTAGES OF PSO 

 

A PSO is considered as a standout amongst the most intense strategies for determining 

the non-smooth global optimization problems and has numerous focal points when 

contrasted with other heuristic optimization techniques, which are as take follow: 

 

 PSO is a derivative-free technique just like as other heuristic optimization 

techniques. 
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 PSO is easy in its concept and coding implementation. 



 PSO is less sensitivity to the nature of the objective function compared to the 

conventional mathematical approaches and other heuristic methods. 



 PSO has limited number of parameters including only inertia weight factor and 

two acceleration coefficients. 



 PSO seems to be somewhat less dependent of a set of initial points compared to 

other evolutionary methods, implying that convergence algorithm is robust. 



 PSO techniques can generate high-quality solutions within shorter calculation 

time and stable convergence characteristics. 

 

 

The major drawback of PSO, like in other heuristic optimization techniques, is that it 

lacks a solid mathematical foundation for analysis to be overcome in the future 

development of relevant theories. Also, it can have some limitations for real-time ED 

applications such as 5-minute dispatch considering network constraints since the PSO 

is also a variant of stochastic optimization techniques requires relatively a longer 

computation time than mathematical approaches. It has the problems of dependency on 

initial point and parameters, difficulty in finding their optimal design parameters, and 

the stochastic characteristic of the final outputs. 
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CHAPTER-3 

SELECTION BASED PSO AND ITS APPLICATION TO 

MATHEMATICAL BENCHMARK TEST FUNCTIONS 

3.1 SELECTION BASED PSO: 

 Basic PSO is an optimization technique which is used to get an optimize value 

for any function. PSO is a modern heuristic optimization method which is the best 

optimization technique known so far. In this thesis PSO is modified as a Selection 

Based PSO (SBPSO). 

 In Selection Based PSO or SBPSO, modification has been done in a basic PSO 

method. The selection procedure in a basic PSO of size of particles is random. Size of 

particles is specified in an algorithm and these particles remain same for the complete 

problem till the optimization has been reached. E.g. if in an optimization problem size 

of particles have been taken 20 to optimize the problem, then for the complete 

optimization problem size of particles will remain the same as 20 and all the particles 

will get optimize to a best possible value. In SBPSO, selection procedure of size of 

particles has been changed. The size of particles is specified before any optimization 

problem at random in the 0
th 

iteration. In SBPSO the size of particles is decreased in 

each iteration by some decrement factor. In the 1
st
 iteration the size of particle is same 

as initial size and in subsequent iteration the size of particles decreases by some 

decrement factor. The size of particle decrease to the „t‟ times of value in every 

iteration. For example if the size of particles is taken as 160 and the factor by which it 

decrease is 2. So in each iteration size of the particles will decrease 2 times of the size 

of particles in previous iteration. In the 1
st
 iteration there will be 160 particles, in the 2

nd
 

iteration it will decrease 2 times and becomes 80, in 3
rd

 iteration it will become 40 and 

so on. 

 This decrement of particles in each iteration is being done in a way that particle 

for which the value of function is less will be selected and the particles with higher 

function values will get discarded. So, in each iteration the size of particles changes by 

the factor „t‟. The particles are sorted according to their function value and the size 
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found by the factor „t‟ will select the top sorted particles (based on minimum function 

value) for the next iteration and this procedure will be repeated in each iteration. 

 In SBPSO, the particle size goes on decreasing in each iteration by p/t will 

either become a fraction or less than the minimum number of particles required to 

optimize a function. Therefore, the „q‟ has been fixed to minimum number of particles 

required to optimize a function and for subsequent iteration the size of particles will be 

forced to „q‟. For SBPSO, let  

 p= total size of particles in 0
th

 iteration. 

 t= decrement factor. 

 q= minimum no. of particles to be selected. 

 n= integer numbers. 

From the conclusion one formula is determined so by which the value of kount can be 

calculated. This formula helps in calculating the value of kount. 

       (    ∑
 

  

 

   
)    (     ) 

 

  
  q  ……… 3.1 

where n=1,2,3,4…..k. 

i = number of iteration in which problem converge. 

With the values of all the variables in equations p, q, t, n and i the value of kount will 

be calculated. This calculated value is similar to the value observed. All the result 

obtained are satisfying this formula. All the kount values obtained are similar with the 

values calculated by this kount formula.  
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3.2 STEPS FOR THE PROCEDURE OF SBPSO 

The sequence for the solution of function by SBPSO is explained as follows: 

1. Fix the size of particles „p‟ in swarm and set the no. of maximum iterations itmax 

and tolerance value T.  

2. Fix algorithm constants Cp, Cg, Rp, Rg, w. 

3. Fix the factor of decrement „t‟ and a last size of particle is to be chosen say „q‟. 

4. Generate Xi
k
 and Vi

k
, the initial random positions (i.e. generations) and velocity 

(i.e. updation factor) respectively.  

5. Set iteration kount = 0. 

6. At 0
th

 iteration the personal and global best positions (i.e. generations) are same 

as the initial random positions (i.e. generations). 

7. Calculate the function for each particle. 

8. Increase the iteration kount by 1 using kount = kount + 1 in the every evaluation 

of function. 

9. Calculate the velocity (i.e. positions updating factor) of each particle using 

eq.(2.1). 

10. Calculate the new positions (i.e. X) of the particles by evaluating eq.(2.2). 

11. Sort the particles with accordance to their function values in increasing order. 

12. Size of the particles is updated by the factor p/t say new „P‟, and the size of 

particles  updated is „P‟. 

13. Save new P equal to p. 

14. Select the top „p‟ number of particles from the sorted particles with accordance 

to their function values in increasing order. 

15. If p < q, make „p‟ equal to „q‟ and initialize the value of „t‟ equals to 1 and go to 

next step. 

16. Calculate ELD function for the new size of particles (P or p) and new positions  

that has generated. 

17. Update Xpbest and Xgbest values by comparing ELD function values. 

18. Check if the stopping criteria are satisfied, if not then go to step 7, else stop. 

19. Get output of function and variable value. 
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3.3 FLOWCHART OF SBPSO 

 

Fig 6 SBPSO evaluation flowchart 
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3.4 MATHEMATICAL BENCHMARK FUNCTIONS: 

Artificial landscapes the second name given to the Test functions, are 

extremely helpful to assess characteristics of optimization algorithms. For this 

situation of application of Particle Swarm Optimization to the mathematical 

benchmark functions, the PSO algorithm can be connected specifically to the 

specific mathematical function, i.e. with no change. As the mathematical 

functions are single objective functions and no uniformity criteria on the fitness 

functions values, no further plan for objective function is obliged and the 

inequality constraints on the variables, if present, are dealt with in the PSO 

algorithm itself. Utilizing particle swarm optimization the essential steps for 

taking care of the optimization problem is same as talked about before yet in the 

event that a few adjustments are given then we can utilize it for any kind of 

objective function. Here, we have utilized PSO for the optimization of some 

mathematical benchmark functions, which are as per the following: 

 Rosenbrock‟s function 

        f(X1,X2)=100*(X2- X1
2
)
2
+(X1-1)

2
                     .……(3.2)                                

 Booth‟s function 

              f(X1,X2) = (X1 +  2 * X2  – 7 )
2
  +  ( 2 * X1  + X2 – 5 )

2
             …….(3.3) 

 

 Beale‟s function 

  f(X1,X2) =(1.5-X1+X1*X2)
2
 + (2.25-X1+X1*X2

2
)
2
+ (2.625-X1+X1*X2

3
)
2
 

                                                              …….(3.4)                                                                      

 

 Sphere‟s function 

   f(X1, X2, X3)= X1
2
 + X2

2
 + X3

2
                                                …....(3.5) 

 

 Rastrigin‟s function 

    f(X1,X2) = 20 + (X1
2
) - (10 * cos (2*pi*X1) )  

   + (X2
2
) - (10 * cos (2*pi*X2) )            …… (3.6)  
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3.5 VALUE OF PARAMETERS USED IN SELECTION BASED 

PARTICLE SWARM OPTIMIZATION (SBPSO) 

The various parameters of particle swarm optimization are as follows: 

1. No. of particles in the swarm, p. 

2. Max. no. of iteration, it. 

3. Decrement factor, t. 

4.  Minimum no. of particles to be selected, q. 

5. Random no. for personal and global factors Rp and Rg . 

6. Acceleration constant for the personal and global factors, Cp and Cg. 

7. Tolerance value, T. 

8. Inertia weight, w. 

The values of these parameters for optimizing various mathematical benchmark 

functions were chosen as: 

1. it= 1000 

2. Rp=0.5 and Rg=0.6 

3. Cp=2 and Cg=2 

4. T= 10 

5. w=0.6. 

3.6 COMPUTATIONAL  RESULTS  

Various benchmark functions and results obtained after application of PSO has been 

discussed as follows: 

3.6.1 Rosenbrock Function 

                                                        n-1 

f(x) =    ∑    [100(Xk+1 - Xk 
2
)
2
 + (1 -Xk)

2
] 

                                                        k=1 

                                                               

where , -2.048 < Xk < 2.048, k = 1,2,3....,n; 

For two variables X1 and X2  
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F(X1,X2)=100*(X2- X1
2
)
2
+(X1-1)

2
 

 

Minimum value and range for the function are as follows: 

 Min. Value:   f(X1,X2)=0 

 Range :     -2.048 < X1,X2 < 2.048 

 Optimal values of  X1 =  X2 = 0 

Table 3.1 shows the application of SBPSO for the Rosenbrock function. Column (1) of 

this table shows the numbers of particles „p‟. Column (2) shows decrement factor „t‟. 

Column (3) of this table shows „q‟ which is minimum numbers of particles required to 

optimize a function. Column (4), (5) and (6) show the function value, kount and 

number of iterations respectively. 

S.No. 1 of this table shows the result of Basic PSO (BPSO) for minimum particle size 

of „10‟ required to optimize the Rosenbrock function. The remaining rows show the 

result of SBPSO. 

For S.No. 2 to 11, the decrement factor „t‟ is fixed to 2 for various values of initial 

particle size varying from 20 to 640 in multiples of 2. It is observed that for particle 

size 20 to 160, the number of iterations and the value of kount is less compared to 

BPSO. It is observed that by taking t=2 (decrement factor) for a minimum value of 10 

particles (i.e. q=10), the kount is being decreased in the range of 20 to 160 particles 

(i.e. „p‟). There is a gradual decrease in iteration in the same range. It is observed that 

by taking t=2 (decrement factor) for a minimum value of 5 particles (i.e. q=5), the 

kount is being decreased in the range of 20 to 320 particles (i.e. „p‟). Although the 

function value is not as accurate as that in basic PSO but it is optimum. There is a 

gradual decrease in iteration in the same range.  

For a minimum value of 10 particles (q=10), for initial size of 80, 160, 320 and 640 on 

increasing decrement factor to 4 & 8, kounts decreases for 80 & 160 particles 

compared to the result shown at S.No. 1 for Basic PSO (BPSO). It is to be noted that 

BPSO didn‟t converge when particle size is chosen to „5‟. Similarly, for a minimum 

value of 5 particles (q=5), for initial size of 80, 160 and 320 on increasing decrement 

factor to 4 &8 , kounts decreases for all size of particles and iterations also decreases. 



35 

 

Table 3.1 Results of SBPSO to Rosenbrock’s Function by varying p, t and q 

 

 

 

 

 1 2 3 4 5 6 

 

S.No. 

 

p 

 

t 

 

q 

 

F 

 

Kount 

 

Iteration 

1 10 1 10 -19 1210 121 

2 20 2 10 -16 1150 112 

3 20 2 5 -2 500 92 

4 40 2 10 -14 1050 97 

5 40 2 5 -7 550 91 

6 80 2 10 -21 1210 102 

7 80 2 5 -7 675 93 

8 160 2 10 -15 1110 69 

9 160 2 5 -11 885 88 

10 320 2 10 -18 1770 88 

11 320 2 5 -12 1270 70 

12 80 4 10 -22 1200 104 

13 80 4 5 -5 630 92 

14 160 4 10 -16 1170 83 

15 160 4 5 -7 805 90 

16 320 4 10 -21 1640 93 

17 320 4 5 -12 1100 75 

18 160 8 10 -7 1130 81 

19 160 8 5 -4 930 80 

20 320 8 10 -21 1530 87 

21 320 8 5 -7 1080 82 

22 640 8 10 -16 2390 105 

23 640 8 5 -12 1725 74 
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Table 3.2 Verification of kount formula by varying p, t and q 

 

 

 

 

 

 

 1 2 3 4 5 6 7 

S.No. P t q i n Count 

observed 

Count 

calculated 

1. 10 1 10 121 10 1220 1220 

2. 20 2 10 112 2 1150 1150 

3. 20 2 5 92 3 500 500 

4. 40 2 10 97 3 1050 1050 

5. 40 2 5 91 4 550 550 

6. 80 2 10 102 4 1210 1210 

7. 80 2 5 93 5 675 675 

8. 160 2 10 69 5 1110 1110 

9. 160 2 5 88 6 885 885 

10. 320 2 10 88 6 1770 1770 

11. 320 2 5 70 7 1270 1270 

12. 80 4 10 104 2 1200 1200 

13. 80 4 5 92 3 630 630 

14. 160 4 10 83 3 1170 1170 

15. 160 4 5 90 3 805 805 

16. 320 4 10 93 3 1640 1640 

17. 320 4 5 75 4 1100 1100 

18. 160 8 10 81 2 1130 1130 

19. 160 8 5 80 2 930 930 

20. 320 8 10 87 2 1530 1530 

21. 320 8 5 82 3 1080 1080 

22. 640 8 10 105 3 2390 2390 

23. 640 8 5 74 3 1725 1725 
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Table 3.2 shows the mathematically calculated value of kount by the formula in the 

equation (3.1) for Rosenbrock function. Column (1) of this table shows the numbers of 

particles „p‟. Column (2) shows decrement factor „t‟. Column (3) of this table shows „q‟ 

which is minimum numbers of particles required to optimize a function. Column (4), 

shows „i‟ which is the value of iteration in which function converge. Column (5) shows 

„n‟ which is an integer number for which the series is computing. Column (6) show the 

obtained kount value from the PSO function evaluation and column (7) shows the 

kount value calculated from equation (3.1). 

Both the calculated kount value and observed kount value are same for all computed 

arrangement. Same value for both kount verifies that the formula observed from the 

computed result of rosenebrock function. The equation (3.1) is the verified formula for 

the calculation of kount value for all the mathematical benchmark function taken in this 

thesis. 
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3.6.2 Booth’s Function 
  

F(X1,X2) = (X1 +  2 * X2  – 7 )
2
  +  ( 2 * X1  + X2 – 5 )

2
 

Minimum value and range for the function are as follows: 

 Optimal values of   X1=1, X2=3.  

Table 3.3 shows the application of SBPSO for the Booth‟s function. Column (1) of this 

table shows the numbers of particles „p‟. Column (2) shows decrement factor „t‟. 

Column (3) of this table shows „q‟ which is minimum numbers of particles required to 

optimize a function. Column (4), (5) and (6) show the function value, kount and 

number of iterations respectively. 

S.No. 1 of this table shows the result of Basic PSO (BPSO) for minimum particle size 

of „10‟ required to optimize the Booth‟s function. The remaining rows show the result 

of SBPSO.  

For S.No. 2 to 11, the decrement factor „t‟ is fixed to 2 for various values of initial 

particle size varying from 20 to 640 in multiples of 2. It is observed that for particle 

size 20 to 160, the number of iterations and the value of kount is less compared to 

BPSO. It is observed that by taking t=2 (decrement factor) for a minimum value of 10 

particles (i.e. q=10), the kount is being decreased in the range of 20 to 160 particles 

(i.e. „p‟). There is a gradual decrease in iteration in the same range. It is observed that 

by taking t=2 (decrement factor) for a minimum value of 5 particles (i.e. q=5), the 

kount is being decreased in the range of 20 to 320 particles (i.e. „p‟). Although the 

function value is not as accurate as that in basic PSO but it is optimum. There is a 

gradual decrease in iteration in the same range. For a minimum value of 10 particles 

(q=10), for initial size of 80, 160, 320 and 640 on increasing decrement factor to 4 & 8, 

kounts decreases for 80 & 160 particles compared to the result shown at S.No. 1 for 

Basic PSO(BPSO). It is to be noted that BPSO didn‟t converge when particle size is 

chosen to „5‟. Similarly, for a minimum value of 5 particles (q=5), for initial size of 80, 

160, 320 and 640 on increasing decrement factor to 4 &8 , kounts decreases for all size 

of particles and iterations also decreases. 
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Table 3.3 Results of SBPSO to Booth’s Function by varying p, t and q 

 

 

 

 1 2 3 4 5 6 

S.No. p t q F Kount Iteration 

1 10 1 10 -19 1300 129 

2 20 2 10 -17 1020 99 

3 20 2 5 -12 505 93 

4 40 2 10 -19 950 87 

5 40 2 5 -12 495 80 

6 80 2 10 -18 1130 94 

7 80 2 5 -11 640 86 

8 160 2 10 -18 1280 86 

9 160 2 5 -10 855 82 

10 320 2 10 -19 1740 85 

11 320 2 5 -13 1205 57 

12 80 4 10 -15 1130 97 

13 80 4 5 -8 695 105 

14 160 4 10 -14 1230 89 

15 160 4 5 -8 755 80 

16 320 4 10 -16 1540 88 

17 320 4 5 -11 1110 79 

18 160 8 10 -16 1180 86 

19 160 8 5 -5 870 108 

20 320 8 10 -18 1480 82 

21 320 8 5 -16 1070 80 

22 640 8 10 -12 2220 88 

23 640 8 5 -4 1835 96 
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3.6.3 Beale’s Function 

                   F(X1,X2) =(1.5-X1+X1*X2)
2
 + (2.25-X1+X1*X2

2
)
2
 + (2.625-X1+X1*X2

3
)
2
 

Minimum value and range for the function are as follows: 

 Optimal values of     X1=3,X2=0.5 

Table 3.4 shows the application of SBPSO for the Beale‟s function. Column (1)of this 

table shows the numbers of particles „p‟. Column (2) shows decrement factor „t‟. 

Column (3) of this table shows „q‟ which is minimum numbers of particles required to 

optimize a function. Column (4), (5) and (6) show the function value, kount and 

number of iterations respectively. 

S.No. 1 of this table shows the result of Basic PSO (BPSO) for minimum particle size 

of „10‟ required to optimize the Beale‟s function. The remaining rows show the result 

of SBPSO.  

For S.No. 2 to 11, the decrement factor „t‟ is fixed to 2 for various values of initial 

particle size varying from 20 to 640 in multiples of 2. It is observed that for particle 

size 20 to 160, the number of iterations and the value of kount is less compared to 

BPSO. It is observed that by taking t=2 (decrement factor) for a minimum value of 10 

particles (i.e. q=10), the kount is being decreased in the range of 20 to 160 particles 

(i.e. „p‟). There is a gradual decrease in iteration in the same range. It is observed that 

by taking t=2 (decrement factor) for a minimum value of 5 particles (i.e. q=5), the 

kount is being decreased in the range of 20 to 320 particles (i.e. „p‟). Although the 

function value is not as accurate as that in basic PSO but it is optimum. There is a 

gradual decrease in iteration in the same range. For a minimum value of 10 particles 

(q=10), for initial size of 80, 160, 320 and 640 on increasing decrement factor to 4 & 8, 

kounts decreases for 80 & 160 particles compared to the result shown at S.No. 1 for 

Basic PSO(BPSO). It is to be noted that BPSO didn‟t converge when particle size is 

chosen to „5‟. Similarly, for a minimum value of 5 particles (q=5), for initial size of 80, 

160, 320 and 640 on increasing decrement factor to 4 &8 , kounts decreases for all size 

of particles and iterations also decreases. 
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Table 3.4 Results of SBPSO to Beale’s Function by varying p, t and q 

 

 

 1 2 3 4 5 6 

S.No. p t q F Kount Iteration 

1 10 1 10 -12 1250 124 

2 20 2 10 -10 980 94 

3 20 2 5 -9 450 81 

4 40 2 10 -12 1090 100 

5 40 2 5 -17 490 75 

6 80 2 10 -10 1150 95 

7 80 2 5 -8 655 88 

8 160 2 10 -19 1300 87 

9 160 2 5 -9 865 83 

10 320 2 10 -11 1860 96 

11 320 2 5 -10 1270 69 

12 80 4 10 -20 940 77 

13 80 4 5 -10 575 80 

14 160 4 10 -20 1210 86 

15 160 4 5 -7 775 83 

16 320 4 10 -10 1760 104 

17 320 4 5 -8 1100 74 

18 160 8 10 -15 1190 86 

19 160 8 5 -10 740 81 

20 320 8 10 -14 1530 86 

21 320 8 5 -14 485 62 

22 640 8 10 -18 2240 89 

23 640 8 5 -15 1790 86 
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3.6.4 Sphere’s Function 

 

F(X1, X2, X3)= X1
2
 + X2

2
 + X3

2
                                                                                                                 

                                                                                                         

Minimum value and range for the function are as follows: 

 Optimal values of   X1=0,X2=0,X3=0 

Table 3.5 shows the application of SBPSO for the Sphere‟s function. Column (1)of this 

table shows the numbers of particles „p‟. Column (2) shows decrement factor „t‟. 

Column (3) of this table shows „q‟ which is minimum numbers of particles required to 

optimize a function. Column (4), (5) and (6) show the function value, kount and 

number of iterations respectively. 

S.No. 1 of this table shows the result of Basic PSO (BPSO) for minimum particle size 

of „10‟ required to optimize the Sphere‟s function. The remaining rows show the result 

of SBPSO.  

For S.No. 2 to 11, the decrement factor „t‟ is fixed to 2 for various values of initial 

particle size varying from 20 to 640 in multiples of 2. It is observed that for particle 

size 20 to 160, the number of iterations and the value of kount is less compared to 

BPSO. It is observed that by taking t=2 (decrement factor) for a minimum value of 10 

particles (i.e. q=10), the kount is being decreased in the range of 20 to 160 particles 

(i.e. „p‟). There is a gradual decrease in iteration in the same range. It is observed that 

by taking t=2 (decrement factor) for a minimum value of 5 particles (i.e. q=5), the 

kount is being decreased in the range of 20 to 320 particles (i.e. „p‟). Although the 

function value is not as accurate as that in basic PSO but it is optimum. There is a 

gradual decrease in iteration in the same range. For a minimum value of 10 particles 

(q=10), for initial size of 80, 160, 320 and 640 on increasing decrement factor to 4 & 8, 

kounts decreases for 80 & 160 particles compared to the result shown at S.No. 1 for 

Basic PSO(BPSO). It is to be noted that BPSO didn‟t converge when particle size is 

chosen to „5‟. Similarly, for a minimum value of 5 particles (q=5), for initial size of 80, 

160, 320 and 640 on increasing decrement factor to 4 &8 , kounts decreases for all size 

of particles and iterations also decreases. 
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Table 3.5 Results of SBPSO to Sphere Function by varying p, t and q 

 

 

 

 1 2 3 4 5 6 

S.No. P t q F Kount Iteration 

1 10 1 10 -9 1260 125 

2 20 2 10 -7 890 85 

3 20 2 5 -7 600 111 

4 40 2 10 -10 1000 91 

5 40 2 5 -6 530 86 

6 80 2 10 -11 1040 84 

7 80 2 5 -8 600 77 

8 160 2 10 -10 1370 94 

9 160 2 5 -8 840 78 

10 320 2 10 -10 1620 72 

11 320 2 5 -7 1330 81 

12 80 4 10 -9 1140 97 

13 80 4 5 -7 575 80 

14 160 4 10 -9 1326 97 

15 160 4 5 -7 750 78 

16 320 4 10 -9 1630 97 

17 320 4 5 -6 1100 74 

18 160 8 10 -9 1260 93 

19 160 8 5 -8 775 88 

20 320 8 10 -15 1500 83 

21 320 8 5 -7 1095 84 

22 640 8 10 -11 2400 105 

23 640 8 5 -5 1765 81 
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3.6.5 Rastrigin’s     Function                                                                                                                                                                   

                                                         n 

f(x) =   ∑  ( xi
2
 – 10 *cos( 2* pi *xi)) 

                                         i=1 

F(X1,X2) = 20 + (X1
2
) - (10 * cos (2*pi*X1) ) + (X2

2
) - (10 * cos (2*pi*X2) ) 

Minimum value and range for the function are as follows: 

 Optimal values of   X1=0,X2=0 

Table 3.6 shows the application of SBPSO for the Rastrigin‟s function. Column (1)of 

this table shows the numbers of particles „p‟. Column (2) shows decrement factor „t‟. 

Column (3) of this table shows „q‟ which is minimum numbers of particles required to 

optimize a function. Column (4), (5) and (6) show the function value, kount and 

number of iterations respectively. S.No. 1 of this table shows the result of Basic PSO 

(BPSO) for minimum particle size of „10‟ required to optimize the Rastrigin‟s function. The 

remaining rows show the result of SBPSO.  

For S.No. 2 to 11, the decrement factor „t‟ is fixed to 2 for various values of initial 

particle size varying from 20 to 640 in multiples of 2. It is observed that for particle 

size 20 to 160, the number of iterations and the value of kount is less compared to 

BPSO. It is observed that by taking t=2 (decrement factor) for a minimum value of 10 

particles (i.e. q=10), the kount is being decreased in the range of 20 to 160 particles 

(i.e. „p‟). There is a gradual decrease in iteration in the same range. It is observed that 

by taking t=2 (decrement factor) for a minimum value of 5 particles (i.e. q=5), the 

kount is being decreased in the range of 20 to 320 particles (i.e. „p‟). Although the 

function value is not as accurate as that in basic PSO but it is optimum. There is a 

gradual decrease in iteration in the same range. For a minimum value of 10 particles 

(q=10), for initial size of 80, 160, 320 and 640 on increasing decrement factor to 4 & 8, 

kounts decreases for 80 & 160 particles compared to the result shown at S.No. 1 for 

Basic PSO(BPSO). It is to be noted that BPSO didn‟t converge when particle size is 

chosen to „5‟. Similarly, for a minimum value of 5 particles (q=5), for initial size of 80, 

160, 320 and 640 on increasing decrement factor to 4 &8 , kounts decreases for all size 

of particles and iterations also decreases. 
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Table 3.6 Results of SBPSO to Rastrigin’s Function by varying p, t and q 

 

 

 

 1 2 3 4 5 6 

S.No. p t q F Kount Iteration 

1 10 1 10 -12 1300 129 

2 20 2 10 -8 1030 99 

3 20 2 5 -9 550 101 

4 40 2 10 -19 1080 99 

5 40 2 5 -7 595 92 

6 80 2 10 -20 1280 108 

7 80 2 5 -14 685 94 

8 160 2 10 -22 1340 91 

9 160 2 5 -9 900 92 

10 320 2 10 -18 1730 83 

11 320 2 5 -13 1240 63 

12 80 4 10 -18 1040 87 

13 80 4 5 -10 585 82 

14 160 4 10 -8 1460 111 

15 160 4 5 -7 645 89 

16 320 4 10 -18 1680 96 

17 320 4 5 -12 990 52 

18 160 8 10 -17 1340 101 

19 160 8 5 -6 900 113 

20 320 8 10 -13 1450 78 

21 320 8 5 -12 1030 71 

22 640 8 10 -17 2250 90 

23 640 8 5 -14 1760 80 
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3.7 DISCUSSION 

SBPSO has been successfully applied to Mathematical Benchmark functions – 

Rosenbrock, Beale, Sphere, Booth and Rastrigin function. The value of random 

numbers Rp and Rg have been kept to fix value 0.5 and 0.6 respectively and the values 

of constriction factor Cp and Cg have been fixed to 2 in velocity modification equation. 

In SBPSO, size of the particles changes in every iteration based on function value. The 

size of particles decreases by the factor „t‟ in every iteration. The various values of „t‟ 

tried are  2, 4 & 8 for various initial size of particles. The various initial sizes of 

particles considered are 20, 40, 80, 160, 320 & 640. The present considered value of 

particle size is double of its previous size. 

SBPSO has been compared with Basic PSO (BPSO) based on kount and 

number of iteration required to converge the function. It has been observed that the 

minimum particles size required for optimizing a function in BPSO is „10‟. SBPSO 

could optimize the function for particle size less than the minimum particle size of 

BPSO i.e. SBPSO optimize the function for „5‟ particles.  

Kount and number of iterations decreased for all the function for all initial size 

of particle considered. 
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CHAPTER 4: 

APPLICATION OF SBPSO TO ECONOMIC LOAD 

DISPATCH 

 

4.1 Introduction To Economic Load Dispatch 

The economic load dispatch (ELD) problem is one of the important optimization 

problems in the electric power system. The objective of the ELD of electric power 

generation is to schedule the committed generating unit outputs so as to meet the 

required load demand at minimum operating cost while satisfying all unit and system 

equality and inequality constraints. This makes the ELD problem a large-scale highly 

nonlinear constrained optimization problem. Improvements in scheduling the unit 

outputs can lead to significant cost savings. 

 

4.2 LIST OF SYMBOLS 

 

a i , bi  , ci    are the cost coefficient of i
th

 generator 

Pgi   :  the active power generation of the i
th

 generator 

Pgmax,i Pgmin,i : are the maximum and minimum power generation limits of i
th

 thermal 

unit 

Ng  :  Total number of generators committed. 

Pd    : Total system demand 

PL    : Total system losses 

Pg    : Total power generated. 

Bmn, B0m, B00 : Transmission losses B co-efficient 

Z : penalty factor 

Pgm, Pgn   is the active power at the m
th

 and n
th

 generator. 

NG     is the total number of generators in the system. 

Bmn, Bom, Boo    are loss coefficients.  
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4.3 MATHEMATICAL FUNCTION 

Objective function being used to minimize the cost of generation is given as : 

   ∑  [  (   )]
  
                                            (4.1)  

Where cost function is defined as: 

Ci(Pgi)=∑ (aiPgi
2  biPgi ci)

NG
i=1                             (4.2) 

The objective function used to find the system transmission losses is given as: 

                     PL=∑ ∑ PgmBmnPgn
NG
n=1

NG
m=1  ∑ BomPgm

NG
m=1  Boo                   (4.3) 

                                                                     

Subject to the constraints: 

Equality constraint 

∑ Pgi
NG
i=1 =PD PL                                                                                          (4.4) 

Inequality constraint 

Pgimin ≤ Pgi ≤ Pgimaxi = 1, 2... NG                                                                    (4.5) 

Here: 

F  objective function to be optimized 

FC  cost of the generation 

PL  system transmission losses 

 

4.4 COMPUTATIONAL PROCEDURE: 
 

Selection Based Particle Swarm Optimization (SBPSO) has been used to perform the 

optimization of ELD function. To consider the equality constraint of the problem, the 

function has been modified by inclusion of a parameter Z. The objective function 

becomes as follows: 
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F=FC+Z(PD+PL-PG)                                                 (4.6) 

Where: 

Parameter Z is fixed at 500 for all three IEEE 5, 14 and 30 bus systems. Different 

values of Z were considered and it was observed that ELD problem converged when it 

was fixed to 500 for all the systems. 

Inequality constraints have been considered in the PSO programming which is done in 

the MATLAB. The program checks the power output of each particle for each 

generator in each iterations and the power is tied to the corresponding limit violated. 

Logic to implement the inequality constraint is as shown below: 

for i=1: NG 

for m=1: p 

   if Pgi< Pgimin 

 Pgi = Pgimin 

    end 

    if Pgi> Pgimax 

     Pgi = Pgimax 

    end 

   end 

  end 

The optimum solution is obtained when the 

i. Change in the value of Economic Load Dispatch function during 

successive iterations is less than the limit specified which is T=10
-6

 and 

ii. The equality constraint is satisfied such that the absolute value of 

difference between generation, demand and losses is less than T=10
-6

.  
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With the assistance of MATLAB, we generate randomly the initial position and 

velocity of particles. To build the convergence rate, breaking points are forced on 

position of particles. Here positions i.e. the generations are decision variables. The 

most extreme and least points of confinement on the velocity have been allocated as 

Vmin = –Pgimin/2 and Vmax = Pgimax/2 individually. The velocities are altered to the 

values of corresponding limits if violated during the iterations. Initial estimations of 

personal best and global best have been taken as the initial esteem randomly generated 

by MATLAB. 

The sequence for the solution of Economic Load Dispatch problem using Particle 

Swarm Optimization technique is explained as follows: 

1. Fix the no. of particles „p‟ in swarm and set the no. of maximum iterations itmax 

and tolerance value T. 

2.  Fix the factor of decrement „t‟ and a last size of particle is to be chosen say 

„q‟. 

3. Fix the cost coefficients, loss coefficients, and load demand and generator 

limits of all the generators. 

4. Generate Pi
k
 and Vi

k
, the initial random positions (i.e. generations) and velocity 

(i.e. updation factor) respectively. 

5. Set iteration kount K = 0. 

6. Calculate the losses for each particle, using the eq. (4.3). 

7. Calculate the value of ELD function using eq. (4.6). 

8. At 0
th

 iteration the personal and global best positions (i.e. generations) are 

same as the initial random positions (i.e. generations). 

9. Increase the iteration kount k by 1 using k=k+1 in the every run of ELD 

function. 

10. Calculate the velocity (i.e. positions updating factor) of each particle using 

eq.(2.1). 

11. Check if velocity is within the limits. Fix the velocity to the limit violated. 

12. Calculate the new positions (i.e. generations) of the particles by evaluating 

eq.(2.2). 

13. Check if generations (i.e. positions) of each particle are within the generator 

limits, if not fix the generation to the limit violated. 
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14. Sort the particles with accordance to their function values in increasing order. 

15. Size of the particles is updated by the factor p/t say new „P‟, and the size of 

particles  updated is „P‟. 

16. Save new P to p. 

17. Select the top „p‟ no. of particles from the sorted particles with accordance to 

their function values in increasing order. 

18. If p < q, make „p‟ equal to „q‟ and initialize the value of „t‟ equals to 1 and go 

to next step. 

19. Calculate ELD function for the new size of particles (P or p) and new positions 

(i.e. generations) that has generated. 

20. Update Xpbest and Xgbest values by comparing ELD function values. 

21. Check if both the stopping criteria are satisfied, if not then go to step 10, else 

stop. 

22. Output the values of cost of generation and system transmission losses. 
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4.5 Flowchart 

 

Fig 7 ELD to SBPSO evaluation flowchart 
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4.6 COMPUTATIONAL RESULTS: 

 
SBPSO has been applied to IEEE 5, 14 and 30 bus system and results are shown in 

tables 4.1, 4.2 and 4.3 respectively. 

 

 

TABLE  4.1 Results of IEEE 5-bus system by SBPSO varying p, t and q 

 

 

 1 2 3 4 5 6 7 

S.NO. p t q Cost Losses Kount Iteration 

1. 10 1 10 765.25 5.11 1180 117 

2. 40 2 10 762.33 5.11 950 87 

3. 40 4 10 762.79 5.10 1150 108 

4. 80 2 10 763.91 5.10 1180 99 

5. 80 4 10 761.30 5.16 1070 91 

6. 80 8 10 763.24 5.10 1140 99 

7. 160 2 10 761.23 5.18 1350 93 

8. 160 4 10 762.25 5.11 1320 98 

9. 160 8 10 761.58 5.13 1200 88 

10. 160 16 10 764.63 5.10 1200 89 

11. 40 2 5 762.64 5.10 555 92 

12. 40 4 5 762.34 5.11 580 100 

13. 80 2 5 766.06 5.13 640 86 

14. 80 4 5 762.44 5.10 600 86 

15. 80 8 5 762.25 5.11 595 87 

16. 160 2 5 761.79 5.12 930 97 

17. 160 4 5 761.35 5.16 785 86 

18. 160 8 5 764.90 5.11 750 84 

19. 160 16 5 765.27 5.11 820 100 
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TABLE 4.2 Results of IEEE 14-bus system by SBPSO varying p, t and q 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 1 2 3 4 5 6 7 

S.NO. p t q Cost Losses Kount Iteration 

1. 10 1 10 1192.97 7.47 1030 102 

2. 40 2 10 1069.87 7.21 1010 93 

3. 40 4 10 1177.33 6.99 920 85 

4. 80 2 10 1162.69 7.5 1120 93 

5. 80 4 10 1174.48 6.9317 980 82 

6. 80 8 10 1168.00 7.14 1060 91 

7. 160 2 10 1157.65 7.97 1290 87 

8. 160 4 10 1162.01 743 1180 84 

9. 160 8 10 1160.27 7.52 1270 95 

10. 160 16 10 1163.27 7.23 1150 84 

11. 40 2 5 1182.18 7.05 565 94 

12. 40 4 5 1194.78 6.56 690 122 

13. 80 2 5 1188.13 6.66 660 90 

14. 80 4 5 1206.34 6.538 645 95 

15. 80 8 5 1211.45 6.500 635 95 

16. 160 2 5 1191.47 6.59 910 93 

17. 160 4 5 1183.2 6.72 800 89 

18. 160 8 5 1211.6 6.49 785 91 

19. 160 16 5 1208.0 6.52 770 90 
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TABLE 4.3 Results of IEEE 30-bus system by SBPSO varying p, t and q 

 

 

 

 

3  

 1 2 3 4 5 6 7 

S.NO. p t q Cost Losses Kount Iteration 

1. 10 1 10 1286.33 8.46 1490 148 

2. 40 2 10 1280.93 8.80 1200 112 

3. 40 4 10 1279.3 8.86 1040 97 

4. 80 2 10 1295.94 8.09 1250 106 

5. 80 4 10 1294.46 8.14 1240 108 

6. 80 8 10 1294.46 8.14 1100 95 

7. 160 2 10 1288.96 8.34 1390 97 

8. 160 4 10 1284 9.39 1410 107 

9. 160 8 10 1292.83 9.78 1330 101 

10. 160 16 10 1282.89 8.64 1480 117 

11. 40 2 5 1279.5 8.85 825 146 

12. 40 4 5 1275.7 9.18 575 99 

13. 80 2 5 1287.4 8.41 695 97 

14. 80 4 5 1285.3 8.5 645 95 

15. 80 8 5 1280.13 8.5 690 106 

16. 160 2 5 1280.13 8.8 915 94 

17. 160 4 5 1286.5 8.45 1000 129 

18. 160 8 5 1292.94 8.19 825 99 

19. 160 16 5 1294.53 8.14 765 89 
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For IEEE 5 bus system, the number kounts is less than BPSO sizes 40 and 80 for the 

decrement factor „t‟ as 2, 4 and 8 for the minimum number of 10 particles. Similarly, 

the number kounts is decreasing for the particles 40, 80 and 160 for the decrement 

factor as 2, 4, 8 and 16 for the minimum number of 5 particles. This is seen from the 

result shown at S.No. 5 and 7 the cost being optimized and the losses are increased as 

compared to the Basic PSO. These two quantities are inverse to each other with 

increase in cost of generation, losses of transmission line decrease. 

For IEEE 14 bus system, the number kounts is less than BPSO sizes 40 and 80 for the 

decrement factor „t‟ as 2, 4 and 8 for the minimum number of 10 particles. Similarly, 

the number kounts is decreasing for the particles 40, 80 and 160 for the decrement 

factor as 2, 4, 8 and 16 for the minimum number of 5 particles. This is seen from the 

result shown at S.No. 8 and 15 the cost being optimized and the losses are increased as 

compared to the Basic PSO. These two quantities are inverse to each other with 

increase in cost of generation, losses of transmission line decrease. 

For IEEE 30 bus system, the number kounts is less than BPSO sizes 40 and 80 for the 

decrement factor „t‟ as 2, 4 and 8 for the minimum number of 10 particles. Similarly, 

the number kounts is decreasing for the particles 40, 80 and 160 for the decrement 

factor as 2, 4, 8 and 16 for the minimum number of 5 particles. This is seen from the 

result shown at S.No. 5, 9 and 11 the cost being optimized and the losses are increased 

as compared to the Basic PSO. These two quantities are inverse to each other with 

increase in cost of generation, losses of transmission line decrease. 

It is observed that the result of SBPSO are better than BPSO in terms of kount and 

number of iterations for IEEE 5, 14 & 30 bus systems. 
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CHAPTER 5 

CONCLUSION AND FUTURE DIRECTIONS 

5.1CONCLUSION 

Following are the definite contributions of the work: 

1. Basic PSO has been implemented on mathematical benchmark function and 

minimum number of particles required to optimise the function has been 

determined. This size is 10 for all functions. 

2. Selection Based PSO (SBPSO) has been developed in which a better population 

of particle is selected in each iteration based on function value. Population in 

each iteration is decreased by decrement factor „t‟. 

3. SBPSO has been implemented to mathematical benchmark functions and 

Economic Load Dispatch problem for IEEE 5, 14 and 30 bus system. 

4. SBPSO is found to converge for minimum „5‟ particles for which BPSO fails to 

converge. 

5. For SBPSO kount value, a formula has been developed by considering 

computational result of various function.  

6. SBPSO is found to be computationally faster than BPSO. 

7. With large increase in size of particles and decrement factor results are better 

i.e. both cost of generation and transmission line losses decreases in the system 

but the number of kounts increases. 

8. The technique is applied to the particle size lying in the range 40 to 160 with 

decrement factor of 2, 4, 8 and 16 for the minimum number of particle size 5 

and 10. For the combination of parameters, the result are found to be better 

interms of function value and kount value than that of BPSO for 10 particles for 

both mathematical benchmark functions as well as Economic Load Dispatch 

problem for IEEE 5, 14 and 30 bus system. 

9. For p=80, t=4 and q=5  the function converge faster and are most accurate. 

10. The ELD problem found to be converge faster and is more accurate for the 

following combination of parameters 1) p=160, t=4 and q=5 for 5 bus system, 

2) p=80, t=4 and q=10 for 14 bus system and 3) p=40, t=4 and q=5 for 30 bus 

system. 
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5.2 FUTURE DIRECTION                                                                                         

1. The effect of variation of all the parameters such as random numbers (Rp & Rg) 

and acceleration coefficient (Cp & Cg) and inertia weight. By varying one 

parameter at a time on convergence of SBPSO should be studied. 

2. Considering other objective of power system security, environmental 

degradation due to pollution, stability, reliability, etc. 

3. The convergence and accuracy of PSO should be increased 
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APPENDIX- I 

 

1) IEEE 5 BUS SYSTEM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8: BUS-CODE DIAGRAM OF 5 BUS SYSTEM 
 
 
 

TABLE I-A: LINE DATA OR IMPEDANCE DATA (5 BUS SYSTEM) 
 

LINE DESIGNATION *R(p.u.) *X(p.u.) LINE CHARGING 

1-2 0.10 0.4 0.0 

1-4 0.15 0.6 0.0 

1-5 0.05 0.2 0.0 

2-3 0.05 0.2 0.0 

2-4 0.10 0.4 0.0 

3-5 0.05 0.2 0.0 
    

*The impedance are based on MVA as 100 
 

 

TABLE I-B: BUS DATA or OPERATING CONDITIONS (5 BUS SYSTEM) 

  GENERATION  LOAD 

BUS NO. MW VOLTAGE MAGNITUDE MW  MVAR 

1* - - - 1.02 - - -  - - - 

2 - - - - - - 60  30 

3 100 1.04 - - -  - - - 

4 - - - - - - 40  10 

5 - - - - - - 60  20 

*Slack Bus      
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TABLE I-C: REGULATED BUS DATA (5 BUS SYSTEM) 

BUS VOLTAGE MVAR CAPACITY MW CAPACITY 

NO. MAGNITUDE MINIMUM MAXIMUM MINIMUM MAXIMUM 

1 1.02 0.0 60 30 120 
      

3 1.04 0.0 60 30 120 
      

 
The nodal load voltage inequality constraints are 0.9≤Vi≤1.05 

 

Cost characteristics of IEEE 5 bus system 
 
The cost characteristics of the IEEE 5 Bus System are as 

follows: C1=50p1
2
+351p1+44.4 $/hr. 

 

C3=50p3
2
+389p3+40.6 $/hr. 

 
Here, the total load demand of the system is 160 MW. Maximum and minimum 

 
active power constraint on the generator bus for the given system is 120 MW and 30 

 
MW respectively. Voltage magnitude constraint for generator at bus 3 is 1.04 pu. 

 
 
 

M-file For Calculating B- Coefficients: 
 
Clear 
basemva=100 
accuracy=0.0001 
maxiter=10  
busdata=[1 1 1.02 0 0 0 0 0 0 60 0;2 0 1 0 60 30 0 0 0 0 0;3 2 1.04 0 0 0 82 0 0 60 
0;4 0 1 0 40 10 0 0 0 0 0;5 0 1 0 60 20 0 0 0 0 0];  
Linedata=[1 2 0.10 0.4 0 1;1 4 0.15 0.6 0 1; 1 5 0.05 0.2 0 1;2 3 0.05 0.2 0 1;2 4 0.10 
0.4 0 1;3 5 0.05 0.2 0 1];  
disp(busdata)  
disp(linedata) 
mwlimit=[30 120;30 
120]; Ifybus  
Ifnewton 
busout 
bloss 

 

B-Coefficient Calculated is as: 
 
B11 = 0.00035336 B12 = 0.0000103196 

B21 = 0.0000103196 B22 = 0.000368992 
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2) IEEE 14 BUS SYSTEM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 9: BUS-CODE DIAGRAM OF 14 BUS SYSTEM 
 
 

TABLE I-D: IMPEDANCE & LINE-CHARGING DATA (14 BUS SYSTEM) 

Line Resistance Reactance Line Tap Setting 

Designation p.u. * p.u. * Charging  

1-2 0.019379 0.059170 0.0264 1 

1-5 0.054029 0.223040 0.0264 1 

2-3 0.046980 0.197970 0.0219 1 

2-4 0.058110 0.176320 0.0187 1 

2-5 0.056950 0.173880 0.0170 1 

3-4 0.067010 0.171030 0.0173 1 

4-5 0.013350 0.042110 0.0064 1 

4-7 0 0.20912 0 1 

4-9 0 0.55618 0 1 

5-6 0 0.25202 0 1 

6-11 0.09498 0.19890 0 1 

6-12 0.12291 0.25581 0 1 

6-13 0.06615 0.13027 0 1 

7-8 0 0.17615 0 1 

7-9 0 0.11001 0 1 

9-10 0.03181 0.08450 0 1 

9-14 0.12711 0.27038 0 1 

10-11 0.08205 0.19207 0 1 

12-13 0.22092 0.19988 0 1 

13-14 0.17093 0.34802 0 1 

* Impedance and line-charging susceptance in p.u. on a 100 MVA base. 
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TABLE I-E: BUS DATA or OPERATING CONDITIONS (14 BUSSYSTEM) 

 

Bus   Voltage Generation  Load 

No.  Magnitude Phase angle MW MVAR MW  MVAR 

   (in pu) (deg.)       

1*  1.06 0 0 0 0  0  

2  1 0 40 0 21.7  12.7  

3  1 0 0 0 94.2  19.0  

4  1 0 0 0 47.8  -3.9  

5  1 0 0 0 7.6  1.6  

6  1 0 0 0 11.2  7.5  

7  1 0 0 0 0  0  

8  1 0 0 0 0  0  

9  1 0 0 0 29.5  16.6  

10  1 0 0 0 9.0  5.8  

11  1 0 0 0 3.5  1.8  

12  1 0 0 0 6.1  1.6  

13  1 0 0 0 13.5  5.8  

14  1 0 0 0 14.9  5.0  

*Slack Bus        

TABLE I-F: REGULATED BUS DATA (14 BUS SYSTEM)    

      

Bus no.  Voltage magnitude Minimum MVAR Maximum MVAR  

   ( in pu)  capability  capability  
           

2   1.05  -40  50    

3   1.010  0  40    
           

6   1.070  -6  24    
           

8   1.090  -6  24    
           

 

 

Cost characteristics of IEEE 14 bus system 

 

The cost characteristics of the IEEE 14 Bus System are as 

follows: C1 = 50p1
2
+245p1+105 $/hr. 

 

C2 = 50p2
2
+351p2+44.4 $/hr. 

 

C6 = 50p6
2
+389p6+40.6 $/hr. 

 
Here, the total load demand of the system is 259 MW. The maximum active 

power constraint is 200 MW, 100MW and 100 MW for the generators of bus no. 1, 2 

and 6 respectively. The minimum active power constraint is 50 MW, 20MW and 20 

MW for the generators of bus no. 1, 2 and 6 respectively. Voltage magnitude 
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constraint for generator at bus 2 is 1.045, for bus no. 6 is 1.070, for bus no. 3 is 1.010 
 
& for bus no. 8 is 1.090. 

M-file For Calculating B- Coefficients: 

Clear 
basemva=100 
accuracy=0.0001 
maxiter=10  
busdata=[1 1 1.06 0 0 150 0 0 0 0 0;2 2 1.045 0 21.7 12.7 63.11 0 -40 50 0;3 0 1.01 0 
94.2 19 0 0 0 40 0;4 0 1 0 47.8 -3.9 0 0 0 0 0;5 0 1 0 7.6 1.6 0 0 0 0 0;6 2 1.07 0 11.2 
7.5 77.12 0 -6 24 0;7 0 1 0 0 0 0 0 0 0 0;8 0 1.09 0 0 0 0 0 -6 24 0 ;9 0 1 0 29.5 16.6 0 
0 0 0 0; 10 0 1 0 9 5.8 0 0 0 0 0;11 0 1 0 3.5 1.8 0 0 0 0 0;12 0 1 0 6.1 1.6 0 0 0 0 
0;13 0 1 0 13.5 5.8 0 0 0 0 0;14 0 1 0 14.9 5 0 0 0 0 0];  
linedata=[1 2 0.01938 0.05917 0.0264 1;1 5 0.05403 0.22304 0.0246 1; 2 3 0.04699 
0.19797 0.0219 1; 2 4 0.05811 0.17632 0.0170 1; 2 5 0.05695 0.17388 0.0173 1; 3 4 
0.06701 0.17103 0.0064 1; 4 5 0.01335 0.04211 0.0 1; 4 7 0.0 0.20912 0.0 0.978; 4 9 
0.0 0.55618 0.0 0.969;5 6 0.0 0.25202 0.0 0.932; 6 11 0.09498 0.19890 0.0 1;6 12 
0.12291 0.25581 0.0 1;6 13 0.06615 0.13027 0.0 1;7 8 0.0 0.17615 0.0 1; 7 9 0.0 
0.11001 0.0 1; 9 10 0.03181 0.08450 0.0 1;9 14 0.12711 0.27038 0.0 1; 10 11 
0.08205 0.19207 0.0 1;12 13 0.22092 0.19988 0.0 1;13 14 0.17093 0.34802 0.0 1]; 
disp(busdata)  
disp(linedata)  
mwlimit=[50 200;20 100;20 
100] Ifybus  
Ifnewton 
busout 
bloss 

 

B-Coefficient Calculated is as: 
 
B11 = 0.0231 B12 = 0.0078 B13 = -0.0007 

B21 = 0.0078 B22=0.0182 B23= 0.0022 

B31=-0.0007 B32= 0.0022 B33= 0.0329 
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C) IEEE 30 BUS SYSTEM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10: BUS-CODE DIAGRAM OF 30 BUS SYSTEM 
 
TABLE I-G: IMPEDANCE & LINE-CHARGING DATA (30 BUS SYSTEM) 

Line Resistance Reactance Line Tap Setting 

Designation p.u.* p.u.* Charging  

1-2 0.0192 0.0575 0.0264 1 

1-3 0.0452 0.1852 0.0204 1 

2-4 0.0570 0.1737 0.0184 1 

3-4 0.0132 0.0379 0.0042 1 

2-5 0.0472 0.1983 0.0209 1 

2-6 0.0581 0.1763 0.0187 1 

4-6 0.0119 0.0414 0.0045 1 

5-7 0.0460 0.1160 0.0102 1 

6-7 0.0267 0.0820 0.0085 1 

6-8 0.0120 0.0420 0.0045 1 

6-9 0 0.2080 0 0.978 

6-10 0 0.5560 0 0.969 

9-11 0 0.2080 0 1 

9-10 0 0.1100 0 1 

4-12 0 0.2560 0 0.932 

12-13 0 0.1400 0 1 

12-14 0.1231 0.2559 0 1 

12-15 0.0662 0.1304 0 1 
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12-16 0.0945 0.1987 0 1 

14-15 0.2210 0.1997 0 1 

16-17 0.0824 0.1923 0 1 

15-18 0.1070 0.2185 0 1 

18-19 0.0639 0.1292 0 1 

19-20 0.0340 0.0680 0 1 

10-20 0.0936 0.2090 0 1 

10-17 0.0324 0.0845 0 1 

10-21 0.0348 0.0749 0 1 

10-22 0.0727 0.1499 0 1 

21-22 0.0116 0.0236 0 1 

15-23 0.1000 0.2020 0 1 

22-24 0.1150 0.1790 0 1 

23-24 0.1320 0.2700 0 1 

24-25 0.1885 0.3292 0 1 

25-26 0.2544 0.3800 0 1 

25-27 0.1093 0.2087 0 1 

27-28 0 0.3960 0 0.968 

27-29 0.2198 0.4153 0 1 

27-30 0.3202 0.6027 0 1 

29-30 0.2399 0.4533 0 1 

8-28 0.0636 0.2000 0.0214 1 

6-28 0.0169 0.0599 0.0065 1 

*Impedance and line-charging susceptance in p.u. on a 100 MVA base. 

 

TABLE I-H: BUS DATA or OPERATING CONDITIONS (30 BUS SYSTEM) 

Bus Voltage Generation  Load 

No. Magnitude Phase angle MW MVAR MW  MVAR 

 (in pu) (deg.)      

1* 1.06 0 0 0 0  0 

2 1 0 40 0 21.7  12.7 

3 1 0 0 0 2.4   

4 1 0 0 0 7.6   

5 1 0 0 0 94.2   

6 1 0 0 0 0  0 

7 1 0 0 0 22.8  10.9 

8 1 0 0 0 30.0  30.0 

9 1 0 0 0 0  0 

10 1 0 0 0 5.8  2.0 

11 1 0 0 0 0  0 

12 1 0 0 0 11.2  7.5 

13 1 0 0 0 0  0 

14 1 0 0 0 6.2  1.6 

15 1 0 0 0 8.2  2.5 

16 1 0 0 0 3.5  1.8 

17 1 0 0 0 9.0  5.8 

18 1 0 0 0 3.2  0.9 
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19 1 0 0 0 9.5 3.4 

20 1 0 0 0 2.2 0.7 

21 1 0 0 0 17.5 11.2 

22 1 0 0 0 0 0 

23 1 0 0 0 3.2 1.6 

24 1 0 0 0 8.7 6.7 

25 1 0 0 0 0 0 

26 1 0 0 0 3.5 2.3 

27 1 0 0 0 0 0 

28 1 0 0 0 0 0 

29 1 0 0 0 2.4 0.9 

30 1 0 0 0 10.6 1.9 

*Slack Bus 

 

TABLE I-I: REGULATED BUS DATA (30 BUS SYSTEM) 

Bus no. Voltage magnitude Minimum MVAR Maximum MVAR 

 ( in pu) capability capability 

2 1.045 -40 50 

5 1.01 -40 40 

8 1.01 -10 40 

11 1.082 -6 24 

13 1.071 -6 24 

 

TABLE I-J: TRANSFORMER DATA (30 BUS SYSTEM) 

Transformer designation Tap setting* 

4-12 0.932 

6-9 0.978 

6-10 0.969 

28-27 0.968  
*Off nominal turns ratio, as determined by the actual transformer-tap position and the 
voltage bases. In the case of nominal turns ratio, this would equal to 1. 

 

TABLE I-K: STATIC CAPACITOR DATA (30 BUS SYSTEM) 

Bus no Susceptance*p.u. 

10 0.19 

24 0.043 

*Susceptance in p.u. on 100 MVA base. 
 
 

Cost characteristics of IEEE 30 bus system:  
The cost characteristics of the IEEE 30 Bus System are as follows: 

C1 = 50p1
2
+245p1+105 $/hr 

 

C2 = 50p2
2
+351p2+44.4 $/hr 

 

C8 = 50p8
2
+389p8+40.6 $/hr 
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The total load demand of the IEEE 30 bus system is 283.4 MW. The maximum 
 
active power constraint is 250 MW, 100MW and 100 MW for the generators of bus no. 
 
1, 2 and 8 respectively. The minimum active power constraint is 50 MW, 30MW and 30 
 
MW for the generators of bus no. 1, 2 and 8 respectively. Voltage magnitude constraint 
 
for generator at bus 2 is 1.045, for bus no. 5 is 1.01, for bus no. 8 is 1.010, for bus no. 11 
 
is 1.082 &for bus no. 13 is 1.071. 
 

 

M-file For Calculating B- Coefficients: 

 
Clear basemva=100 
accuracy=0.0001 
maxiter=10  
busdata=[1 1 1.06 0 0 0 0 0 0 0 0;2 2 1.045 0 21.7 12.7 90 0 -40 50 0; 3 0 1 0 2.4 1.2 0 0 0 0 
0;4 0 1 0 7.6 1.6 0 0 0 0 0;5 0 1.01 0 94.2 19 0 0 -40 40 0; 6 0 1 0 0 0 0 0 0 0 0; 7 0 1 0 22.8 
10.9 0 0 0 0 0;8 2 1.010 30 30150 0 -10 40 0; 9 0 1 0 0 0 0 0 0 0 0; 10 0 1 0 5.8 2 0 0 0 0 
0.19; 11 0 1.082 0 0 0 0 0 -6 24 0; 12 0 1 0 11.2 7.5 0 0 0 0 0; 13 0 1.071 0 0 0 0 0 -6 24 0; 14 
0 1 0 6.2 1.6 0 0 0 0 0;15 0 1 0 8.2 2.5 0 0 0 0 0;16 0 1 0 3.5 1.8 0 0 0 0 0; 17 0 1 0 9 5.8 0 0 0 
0 0; 18 0 1 0 3.2 0.9 0 0 0 0 0; 19 0 1 0 9.5 3.4 0 0 0 0 0; 20 0 1 0 2.2 0.7 0 0 0 0 0;21 0 1 0 
17.5 11.2 0 0 0 0 0;22 0 1 0 0 0 0 0 0 0 0;23 1 0 3.2 1.6 0 0 0 0 0; 24 0 1 0 8.7 6.7 0 0 0 0 
0.043; 25 0 1 0 0 0 0 0 0 0 0;26 0 1 0 3.5 2.3 0 0 0 0 0; 27 0 1 0 0 0 0 0 0 0 0; 28 0 1 0 0 0 0 0 
0 0 0;29 0 1 0 2.4 0.9 0 0 0 0 0; 30 0 1 0 10.6 1.9 0 0 0 0 0]; linedata=[1 2 0.0192 0.0575 
0.0264 1;1 3 0.0452 0.1852 0.0204 1; 2 4 0.0570 0.19797 0.0219 1; 2 4 0.05811 0.17632 

0.0170 1; 2 5 0.05695 0.17388 0.0173 1; 3 4 0.06701 0.17103 0.0064 1; 4 5 0.01335 0.04211 
0.0 1; 4 7 0.0 0.20912 0.0 0.978; 4 9 0.0 0.55618 0.0 0.969;5 6 0.0 0.25202 0.0 0.932; 6 11 
0.09498 0.19890 0.0 1;6 12 0.12291 0.25581 0.0 1;6 13 0.06615 0.13027 0.0 1;7 8 0.0 
0.17615 0.0 1; 7 9 0.0 0.11001 0.0 1; 9 10 0.03181 0.08450 0.0 1;9 14 0.12711 0.27038 0.0 
1; 10 11 0.08205 0.19207 0.0 1;12 13 0.22092 0.19988 0.0 1;13 14 0.17093 0.34802 0.0 1];  
disp(busdata) 

disp(linedata)  
mwlimit=[50 150;50 150;50 150] 
Ifybus  
Ifnewton 
busout bloss 

 

B-Coefficient Calculated is as: 
 
B11 = 0.0307 B12 = 0.0129 B13 = -0.0002 

B21 = 0.0129 B22=0.0152 B23= - 0.0011 

B31= -0.0002 B32=- 0.0011 B33= 0.0190 
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APPENDIX II 

MATLAB Program for optimization of benchmark functions using PSO 

 

ROSENBROCK FUNCTION: 
clc; 
clear all; 
disp(' we have to minimize f = 100(x1^2-x2)^2+(1-x1)^2 i.e. rosenbrock… 

function') 
p=input('Enter the no. of particles in a swarm:');       %no. of particles 
t=input('Enter the no. to divide in each iteration:');    %no. of particles 
pn=p; 
ss=t; 
%it=input('Enter the no. of iterations:'); 
it=500; 
x1=zeros(p,it+1);  
x2=zeros(p,it+1); 
v1=zeros(p,it+1); 
v2=zeros(p,it+1); 
f=zeros(p,it+1); 
fp=zeros(1,p); 
df=zeros(1,(it)); 
rp=1; 
rg=1; 
cp=1; 
cg=1; 
kount=0; 
lemb=1; 
T=10; 
% T=input('Enter the tolerance value'); 
tt = input('min no of particles'); 
% lemb=input('Enter the value of retardationfactor'); 
x1(:,1)=unifrnd(0,2,1,p); 
x2(:,1)=unifrnd(0,2,1,p); 
v1(:,1)=unifrnd(0,0.5,1,p); 
v2(:,1)=unifrnd(0,0.5,1,p); 

 
for j=1:p 
    f(j,1)= 100*(x1(j,1)^2-x2(j,1))^2+(1-x1(j,1))^2 ; 
    kount=kount+1; 
end 
%Initial personal besst values 
x1p=x1(:,1); 
x2p=x2(:,1); 

  
%for Initial Global best values updation 
fmin=min(f(:,1)); 
for k=1:p 
    if f(k,1)==fmin 
        gb=k; 
    else 
    end 
end 
%Initial global best value 
x1g=zeros(p,it+1); 
x2g=zeros(p,it+1); 
for k=1:p 
x1g(k,1) = x1(gb,1); 
x2g(k,1) = x2(gb,1); 
end 
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fgm = min(f(:,1)); 

  
% fig=zeros(1,485); 
%t=zeros(1,485); 
disp(sprintf('This is %d no. of iteration',0)); 
print = [x1(1:p,1) x2(1:p,1) v1(1:p,1) v2(1:p,1) f(1:p,1)]; 
    disp('     x1        x2        v1        v2        f') 
    disp(print) 
fp=f;     
for g=1:it 
    disp(sprintf('This is %d no. of iteration',g)); 

  
w=0.60; 
    for j=1:p 
        v1(j,(g+1)) = w*v1(j,g) + rp*cp*(x1p(j)-x1(j,g)) + rg*cg*(x1g(j,g)-

x1(j,g)); 
        v2(j,(g+1)) = w*v2(j,g) + rp*cp*(x2p(j)-x2(j,g)) + rg*cg*(x2g(j,g)-

x2(j,g)); 
        x1(j,(g+1)) = x1(j,g) + lemb*v1(j,(g+1)); 
        x2(j,(g+1)) = x2(j,g) + lemb*v2(j,(g+1)); 
        f(j,(g+1))= 100*(x1(j,g+1)^2-x2(j,g+1))^2+(1-x1(j,g+1))^2 ; 
        kount=kount+1; 
    end 

  
%To find change in the values of f 
    for j=1:p 
        df(j,g)= abs(f(j,(g+1))-f(j,g)) ; 
    end 

    
%personal best values updation 
    for k=1:p 
        if f(k,g+1)< fp(k) 
            x1p(k)=x1(k,g+1); 
            x2p(k)=x2(k,g+1); 
            fp(k,1)= f(k,g+1); 
        else 
        end 
    end 

     
%for Global best values updation 
    if min(f(1:p,(g+1)))<fgm 
        fgm=min(f(1:p,(g+1))); 
        X=f(1:p,(g+1)); 
        k=find(X==min(X)); 
        x1g(1:p,g+1) = x1(k,g+1);     %global best values 
        x2g(1:p,g+1) = x2(k,g+1); 
    else 
        x1g(1:p,g+1) = x1g(1:p,g);     %global best values 
        x2g(1:p,g+1) = x2g(1:p,g); 
    end 
    print = [x1(1:p,g+1) x2(1:p,g+1) v1(1:p,g+1) v2(1:p,g+1) f(1:p,g+1)]; 
    disp('     x1        x2        v1        v2        f') 
    disp(print) 

     
% Stoping criterion 
    ki=0; 
    for j=1:p 
        if (df(j,g)<=10^(-T)) 
            ki=ki+1; 
        end 
    end 
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    if ki >= p 
        break 
    end 

D=[x1(1:p,g+1) x2(1:p,g+1) v1(1:p,g+1) v2(1:p,g+1) x1p(1:p)…  

x2p(1:p) x1g(1:p,g+1) x2g(1:p,g+1) f(1:p,g+1)];  
        B=sortrows(D,9); 

        
        p=p/t; 

         
        if p<=tt 
            p=tt; 
            t=1; 
        end     

  
        C=B(1:p,1:9); 
       x1(1:p,g+1)=C(:,1); 
       x2(1:p,g+1)=C(:,2); 
       v1(1:p,g+1)=C(:,3); 
       v2(1:p,g+1)=C(:,4); 
       x1p(1:p)=C(:,5); 
       x2p(1:p)=C(:,6); 
       x1g(1:p,g+1)=C(:,7); 
       x2g(1:p,g+1)=C(:,8); 

        
      f(1:p,g+1)=C(:,9); 
      sn=g; 

    
end 
minf=100*(x1g(1,sn).^2-x2g(1,sn)).^2+(1-x1g(1,sn)).^2; 
disp (sprintf (' i=%d    kount=%d     p=%d    q=%d   T=%d   it=%d',g, 

kount, pn, ss, T, it)) 
disp(sprintf('F = %d   x1=%d   x2=%d ',minf,x1g(1,sn),x2g(1,sn))) 

 

 

BEALE FUNCTION: 

clc; 
clear all; 
disp(' we have to minimize f=((1.5-x1+x1*x2)^2)+((2.25-

x1+x1*(x2^2))^2)+((2.625-x1+x1*(x2^3))^2) i.e. Beales function') 
p=input('Enter the no. of particles in a swarm:');       %no. of particles 
t=input('Enter the no. of particles to be eliminated in each iteration:');           

%no. of particles 
pn=p; 
ss=t; 
it=500; 
tt=input('enter the no of particle to select :'); 
%it=input('Enter the no. of iterations:'); 
x1=zeros(p,it+1);  
x2=zeros(p,it+1); 
v1=zeros(p,it+1); 
v2=zeros(p,it+1); 
f=zeros(p,it+1); 
fp=zeros(1,p); 
df=zeros(1,(it)); 
rp=1; 
rg=1; 
cp=1; 
cg=1; 
kount=0; 
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T=10; 
lemb=1; 
x1(:,1)=unifrnd(0,2,1,p); 
x2(:,1)=unifrnd(0,2,1,p); 
v1(:,1)=unifrnd(0,0.5,1,p); 
v2(:,1)=unifrnd(0,0.5,1,p); 

 
for j=1:p 
    f(j,1)=((1.5-x1(j,1)+x1(j,1)*x2(j,1))^2)+((2.25-

x1(j,1)+x1(j,1)*(x2(j,1).^2))^2)+((2.625-x1(j,1)+x1(j,1)*(x2(j,1).^3))^2); 
    kount=kount+1; 
end 
%Initial personal besst values 
x1p=x1(:,1); 
x2p=x2(:,1); 

  
%for Initial Global best values updation 
fmin=min(f(:,1)); 
for k=1:p 
    if f(k,1)==fmin 
        gb=k; 
    else 
    end 
end 
%Initial global best value 
x1g=zeros(p,it+1); 
x2g=zeros(p,it+1); 
for k=1:p 
x1g(k,1) = x1(gb,1); 
x2g(k,1) = x2(gb,1); 
end 
fgm = min(f(:,1)); 

  
disp(sprintf('This is %d no. of iteration',0)); 
print = [x1(1:p,1) x2(1:p,1) v1(1:p,1) v2(1:p,1) f(1:p,1)]; 
    disp('     x1        x2        v1        v2        f') 
    disp(print) 
fp=f; 
for g=1:it 
    disp(sprintf('This is %d no. of iteration',g)); 

  

 
w=0.60; 
    for j=1:p 
        v1(j,(g+1)) = w*v1(j,g) + rp*cp*(x1p(j)-x1(j,g)) + rg*cg*(x1g(j,g)-

x1(j,g)); 
        v2(j,(g+1)) = w*v2(j,g) + rp*cp*(x2p(j)-x2(j,g)) + rg*cg*(x2g(j,g)-

x2(j,g)); 
        x1(j,(g+1)) = x1(j,g) + lemb*v1(j,(g+1)); 
        x2(j,(g+1)) = x2(j,g) + lemb*v2(j,(g+1)); 
        f(j,g+1)=((1.5-x1(j,g+1)+x1(j,g+1)*x2(j,g+1))^2)+((2.25-

x1(j,g+1)+x1(j,g+1)*(x2(j,g+1).^2))^2)+((2.625-

x1(j,g+1)+x1(j,g+1)*(x2(j,g+1).^3))^2); 
        kount=kount+1; 
    end 

  
%To find change in the values of f 
    for j=1:p 
        df(j,g)= abs(f(j,(g+1))-f(j,g)) ; 
    end 
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%personal best values updation 

     
    for k=1:p 
        if f(k,g+1)< fp(k) 
            x1p(k)=x1(k,g+1); 
            x2p(k)=x2(k,g+1); 
            fp(k,1)= f(k,g+1); 
        else 
        end 
    end 

     
%for Global best values updation 
    if min(f(1:p,(g+1)))<fgm 
        fgm=min(f(1:p,(g+1))); 
        X=f(1:p,(g+1)); 
        k=find(X==min(X)); 
        x1g(1:p,g+1) = x1(k,g+1);     %global best values 
        x2g(1:p,g+1) = x2(k,g+1); 
    else 
        x1g(1:p,g+1) = x1g(1:p,g);     %global best values 
        x2g(1:p,g+1) = x2g(1:p,g); 
    end 
    print = [x1(1:p,g+1) x2(1:p,g+1) v1(1:p,g+1) v2(1:p,g+1) f(1:p,g+1)]; 
    disp('     x1        x2        v1        v2        f') 
    disp(print) 

     
% Stoping criterion 
    ki=0; 
    for j=1:p 
        if (df(j,g)<=10^(-T)) 
            ki=ki+1; 
        end 
    end 
    if ki >= p 
        break 
    end 
        D=[x1(1:p,g+1) x2(1:p,g+1) v1(1:p,g+1) v2(1:p,g+1) x1p(1:p) 

x2p(1:p) x1g(1:p,g+1) x2g(1:p,g+1) f(1:p,g+1)];  
        B=sortrows(D,9); 
        p=p/t; 
        if p<=tt 
            p=tt; 
            t=1; 
        end 

  
        C=B(1:p,1:9); 
       x1(1:p,g+1)=C(:,1); 
       x2(1:p,g+1)=C(:,2); 
       v1(1:p,g+1)=C(:,3); 
       v2(1:p,g+1)=C(:,4); 
       x1p(1:p)=C(:,5); 
       x2p(1:p)=C(:,6); 
       x1g(1:p,g+1)=C(:,7); 
       x2g(1:p,g+1)=C(:,8); 

        
      f(1:p,g+1)=C(:,9); 
      sn=g; 

    
end 
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minf=((1.5-x1g(1,sn)+x1g(1,sn)*x2g(1,sn))^2)+((2.25-

x1g(1,sn)+x1g(1,sn)*(x2g(1,sn).^2))^2)+((2.625-

x1g(1,sn)+x1g(1,sn)*(x2g(1,sn).^3))^2); 
disp (sprintf (' i=%d    kount=%d     p=%d    t=%d   q=%d   T=%d   

it=%d',g, kount, pn, ss, tt, T, it)) 
disp(sprintf('F = %d   x1=%d   x2=%d ',minf,x1g(1,sn),x2g(1,sn))) 

 

 

 

MATLAB Program for the solution of IEEE 30-bus system using PSO 

 

clc; 
clear all; 
disp(' we have to minimize ELD 30 BUS SYSTEM ') 
p=input('Enter the no. of particles in a swarm:');       %no. of particles 
t=input('Enter the no. to divide in each iteration:')    %no. of particles 
a=10^(-4)*[50 50 50]; 
b=10^(-2)*[245 351 389]; 
c=[105 44.4 40.6]; 
B=10^(-2)*[0.0307 0.0129 -0.0002; 0.0129 0.0152 -0.0011; -0.0002 -0.0011 

0.0190]; 
pn=p; 
ss=t; 
%it=input('Enter the no. of iterations:'); 
it=1000; 
p1=zeros(p,it);  
p2=zeros(p,it); 
p3=zeros(p,it); 
v1=zeros(p,it); 
v2=zeros(p,it); 
v3=zeros(p,it); 
f=zeros(p,it); 
fp=zeros(1,p); 
df=zeros(1,(it)); 
sp=zeros(p,it); 
csp=zeros(p,it); 
pl=zeros(p,it); 
c1=zeros(p,it); 
c2=zeros(p,it); 
c3=zeros(p,it); 
C=zeros(p,it); 

  
rp=1; 
rg=1; 
cp=1; 
cg=1; 
kount=0; 
lemb=1; 
T=6; 
pd=283.4; 

  
    plp=zeros(1,p); 
    z=500; 
% T=input('Enter the tolerance value'); 
tt = input('min no of particles'); 
% lemb=input('Enter the value of retardationfactor'); 
n=1; 
while n==1 
    for j=1:p 
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    p1(j,1)=unifrnd(50,250,1); 
    p2(j,1)=unifrnd(30,100,1); 
    p3(j,1)=pd-p1(j,1)-p2(j,1); 
    if p3(j,1)<30&&p3(j,1)>100 
        n=1; 
        break; 
    else 
        n=0; 
    end 
    end 
end 
v1(:,1)=unifrnd(0,0.5,1,p); 
v2(:,1)=unifrnd(0,0.5,1,p); 
v3(:,1)=unifrnd(0,0.5,1,p); 

 
    for j=1:p 
         c1(j,1) = a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1); 
         c2(j,1) = a(2)*(p2(j,1))^2 + b(2)*p2(j,1) + c(2); 
         c3(j,1) = a(3)*(p3(j,1))^2 + b(3)*p3(j,1) + c(3); 
         C(j,1) = c1(j,1) + c2(j,1) + c3(j,1); 
    end 
%To calculate initial value of cost function we need PL 
for j=1:p 
    pl(j,1)= [p1(j,1) p2(j,1) p3(j,1)]*B*[p1(j,1) p2(j,1) p3(j,1)]'; 
%    kount=kount+1; 
end 
%To calculate initial value of cost function 
for j=1:p 
    f(j,1)=((a(1)*(p1(j,1))^2 + b(1)*p1(j,1) + c(1)) + (a(2)*(p2(j,1))^2 + 

b(2)*p2(j,1) + c(2)) ... 
            + (a(3)*(p3(j,1))^2 + b(3)*p3(j,1) + c(3))) + z*abs(pd+pl(j,1)-

p1(j,1)-p2(j,1)-p3(j,1)); 
        kount=kount+1; 
end 
%0th iteration data display 
    disp('this is the 0th iteration') 
    print0 = [p1(:,1) p2(:,1) p3(:,1) v1(:,1) v2(:,1) v3(:,1) f(:,1) 

c1(:,1) c2(:,1) c3(:,1) C(:,1)]; 
    disp('      P1         P2        P3        V1         v2        V3       

f        c1        c2        c3        C ') 
    disp(print0) 
%Initial personal besst values 
p1p=p1(:,1); 
p2p=p2(:,1); 
p3p=p3(:,1); 
%for Initial Global best values updation 
fmin=min(f(:,1)); 
for k=1:p 
    if f(k,1)==fmin 
        gb=k; 
    else 
    end 
end 
%Initial global best value 
p1g=zeros(p,it); 
p2g=zeros(p,it); 
p3g=zeros(p,it); 

  
for k=1:p 
p1g(k,1) = p1(gb,1); 
p2g(k,1) = p2(gb,1); 
p3g(k,1) = p3(gb,1); 
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end 
fgm = min(f(:,1)); 

  
fp=f;     
for g=1:it 
    disp(sprintf('This is %d no. of iteration',g)); 

  
w=0.60; 
    for j=1:p 
        v1(j,(g+1)) = w*v1(j,g) + rp*cp*(p1p(j)-p1(j,g)) + rg*cg*(p1g(j,g)-

p1(j,g)); 
        v2(j,(g+1)) = w*v2(j,g) + rp*cp*(p2p(j)-p2(j,g)) + rg*cg*(p2g(j,g)-

p2(j,g)); 
        v3(j,(g+1)) = w*v3(j,g) + rp*cp*(p3p(j)-p3(j,g)) + rg*cg*(p3g(j,g)-

p3(j,g)); 
    end 
%V(min) and V(max) constraint 
    for j=1:p 
        if v1(j,(g+1))< -15 
            v1(j,(g+1))= -15; 
        end 
        if v2(j,(g+1))< -15 
            v2(j,(g+1))= -15; 
        end 
        if v3(j,(g+1))< -15 
            v3(j,(g+1))= -15; 
        end 
        if v1(j,(g+1))> 60 
            v1(j,(g+1))= 60; 
        end 
        if v2(j,(g+1))> 60 
            v2(j,(g+1))= 60; 
        end 
        if v3(j,(g+1))> 60 
            v3(j,(g+1))= 60; 
        end 
    end 
for j=1:p 
        p1(j,(g+1)) = p1(j,g) + lemb*v1(j,(g+1)); 
        p2(j,(g+1)) = p2(j,g) + lemb*v2(j,(g+1)); 
        p3(j,(g+1)) = p3(j,g) + lemb*v3(j,(g+1)); 
end 
%Pmin and Pmax constraint 
    for j=1:p 
        if p1(j,(g+1))< 50 
            p1(j,(g+1))= 50; 
        end 
        if p2(j,(g+1))< 20 
            p2(j,(g+1))= 20; 
        end 
        if p3(j,(g+1))< 20 
           p3(j,(g+1))= 20; 
        end 
        if p1(j,(g+1))> 250 
            p1(j,(g+1))= 250; 
        end 
        if p2(j,(g+1))>100 
            p2(j,(g+1))= 100; 
        end 
        if p3(j,(g+1))> 100 
            p3(j,(g+1))= 100; 
        end 
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    end 
    %For losses formulation (PL) 
    for j=1:p 
        pl(j,(g+1))= [p1(j,(g+1)) p2(j,(g+1)) p3(j,(g+1))]*B*[p1(j,(g+1)) 

p2(j,(g+1)) p3(j,(g+1))]'; 
       % kount=kount+1; 
    end 

     
%Main objective function 
   for j=1:p 
        f(j,(g+1))= (a(1)*(p1(j,(g+1)))^2 + b(1)*p1(j,(g+1)) + c(1)) +... 
                     (a(2)*(p2(j,(g+1)))^2 + b(2)*p2(j,(g+1)) + c(2))+... 
                     (a(3)*(p3(j,(g+1)))^2 + b(3)*p3(j,(g+1)) + c(3)) +... 
                     + z*abs(pd+pl(j,(g+1))-p1(j,(g+1))-p2(j,(g+1))-

p3(j,(g+1))); 
        kount=kount+1; 
   end 

     
%personal best values updation 
    for k=1:p 
        if f(k,g+1)< fp(k) 
            p1p(k)=p1(k,g+1); 
            p2p(k)=p2(k,g+1); 
            p3p(k)=p3(k,g+1); 
            fp(k,1)= f(k,g+1); 
        else 
        end 
    end 

     
%for Global best values updation 
    if min(f(1:p,(g+1)))<fgm 
        fgm=min(f(1:p,(g+1))); 
        X=f(1:p,(g+1)); 
        k=find(X==min(X)); 
        p1g(1:p,g+1) = p1(k,g+1);     %global best values 
        p2g(1:p,g+1) = p2(k,g+1); 
        p3g(1:p,g+1) = p3(k,g+1); 
    else 
        p1g(1:p,g+1) = p1g(1:p,g);     %global best values 
        p2g(1:p,g+1) = p2g(1:p,g); 
        p3g(1:p,g+1) = p3g(1:p,g); 
    end 
    for j=1:p 
         c1(j,(g+1)) = a(1)*(p1(j,(g+1)))^2 + b(1)*p1(j,(g+1)) + c(1); 
         c2(j,(g+1)) = a(2)*(p2(j,(g+1)))^2 + b(2)*p2(j,(g+1)) + c(2); 
         c3(j,(g+1)) = a(3)*(p3(j,(g+1)))^2 + b(3)*p3(j,(g+1)) + c(3); 
         C(j,(g+1)) = c1(j,(g+1)) + c2(j,(g+1))+c3(j,(g+1)); 

          

 
    end 
    for j=1:p 
        df(j,g)= abs(f(j,(g+1))-f(j,g)); 

  sp(j,g)= abs(pd+pl(j,(g+1))-p1(j,(g+1))-p2(j,(g+1)));              

csp(j,g)= abs(C(j,(g+1))-C(j,g)); 
     end 

     
    print = [p1(1:p,(g+1)) p2(1:p,(g+1)) p3(1:p,(g+1)) v1(1:p,(g+1))… 

v2(1:p,(g+1)) v3(1:p,(g+1)) f(1:p,(g+1)) c1(1:p,(g+1)) c2(1:p,(g+1))… 

c3(1:p,(g+1))  C(1:p,(g+1))]; 
    disp('      P1         P2         P3        V1         V2        V3 …        

f        c1        c2         c3        C ') 
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    disp(print) 
   %Stoping criterion 
    ki=0; 
    for j=1:p 
        if ((df(j,g)<=10^(-T))) 
            ki=ki+1; 
        end 
    end 
    if ki >= p 
        break 
    end 

  
        D=[p1(1:p,g+1) p2(1:p,g+1) p3(1:p,g+1) v1(1:p,g+1) v2(1:p,g+1)…     

v3(1:p,g+1) p1p(1:p) p2p(1:p) p3p(1:p) p1g(1:p,g+1) p2g(1:p,g+1)… 

p3g(1:p,g+1) f(1:p,g+1)];  
        G=sortrows(D,13); 

        
        p=p/t; 

         
        if p<=tt 
            p=tt; 
            t=1; 
        end     

  
        Y=G(1:p,1:13); 
       p1(1:p,g+1)=Y(:,1); 
       p2(1:p,g+1)=Y(:,2); 
       p3(1:p,g+1)=Y(:,3); 
       v1(1:p,g+1)=Y(:,4); 
       v2(1:p,g+1)=Y(:,5); 
       v3(1:p,g+1)=Y(:,6); 
       p1p(1:p)=Y(:,7); 
       p2p(1:p)=Y(:,8); 
       p3p(1:p)=Y(:,9); 
       p1g(1:p,g+1)=Y(:,10); 
       p2g(1:p,g+1)=Y(:,11); 
       p3g(1:p,g+1)=Y(:,12); 
       f(1:p,g+1)=Y(:,13); 
      sn=g; 

    
end 
disp(' we have to minimize the cost function of a 3 machine system') 
disp (sprintf (' i=%d    kount=%d     p=%d    q=%d   it=%d',g, kount, pn, 

ss, it)) 
disp(sprintf('Total demand of power Pd = %d \n',pd)) 
disp(sprintf('Total loses in the lines Pl = %d \n',pl(1,sn))) 
disp(sprintf('Minimum cost incured = %d \n',C(1,sn))) 

  
disp('Final values of generations of the three generators') 
disp(sprintf('\nP1=%d',p1(1,sn))) 
disp(sprintf('P2=%d',p2(1,sn))) 
disp(sprintf('P3=%d',p3(1,sn))) 
disp(sprintf('\nPD+Pl = %d',pd+pl(1,sn))) 
disp(sprintf('\nP1+P2+P3=%d\n',p1(1,sn)+p2(1,sn)+p3(1,sn))) 

  
disp(sprintf('Z taken = %d',z)) 


