ECONOMIC LOAD DISPATCH USING SELECTION BASED PARTICLE SWARM OPTIMIZATION

DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

POWER SYSTEM

(Electrical Engineering)

Submitted by:

RAJAT MEGHVANSHI

(2K13/PSY/13)

Under the supervision of

Dr. Uma Nangia and Dr. N.K. Jain

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

2015

CERTIFICATE

I, RAJAT MEGHVANSHI, Roll No. 2K13/PSY/13 student of M. Tech. (Power

System), hereby declare that the dissertation titled "ECONOMIC LOAD DISPATCH USING

SELECTION BASED PARTICLE SWARM OPTIMIZATION" under the supervision of

Dr. Uma Nangia and Dr. N.K. Jain of Electrical Engineering Department, Delhi Technological

University in partial fulfillment of the requirement for the award of the degree of Master of

Technology has not been submitted elsewhere for the award of any Degree.

Place: Delhi

Date:

RAJAT MEGHVANSHI

2K13/PSY/13 M.Tech (PS)

Dr. N.K. Jain Professor

EE Dept., DTU

Dr. Uma Nangia Professor EE Dept., DTU

ii

ACKNOWLEDGEMENT

Any project is a team work, successful completion of which is possible only through cooperation

and sincere efforts of the team mates. This is of great pleasure for me to avail the opportunity of

expressing my gratefulness to all those who were of immense help to me in completing this

Major Project.

Firstly I want to show my sincere and profound thanks to **Dr. UMA NANGIA** (project guide)

& Dr. N K JAIN (co-guide), Who are the constant source of inspiration throughout the

development of this Major Project and provided me with all the requisite guidance and

information from time to time .I also thank Almighty for the entire blessings he has bestowed

upon me. Last but not least I express my sincere thanks to my family members, colleagues,

friends, college staff and all those who have contributed directly and indirectly through

suggestions, thoughts, support, and presence for the completion of the Major Project, they have

remained a source of encouragement and inspiration for me.

RAJAT MEGHVANSHI

2K13/PSY/13

iii

ABSTRACT

The Economic power dispatch problem is one of the most important problems to be solved in the operations of power system. It is basically a non-linear optimization problem having linear and non-linear equality and inequality constraints. This is a real time problem for properly allocating the real power output among the committed generators such that fuel cost is minimized while the demand requirement is met and the constraints imposed are satisfied.

The main objective of this thesis is to study the performance of Selection Based Particle Swarm Optimization (SBPSO) technique to solve economic load dispatch problems. SBPSO performance is compared with the Basic Particle Swarm Optimization (BPSO). In this thesis, selection procedure of size of particles in BPSO is changed to new selection criteria. This selection is based on the function value of the particles. The size of particles is decreased in each iteration by some decrement factor. In the 1st iteration the size of particle is same as initial size and in subsequent iteration the size of particles decreases by some decrement factor for the remaining evolution. This decrement of particles in each iteration is being done in a way that particle for which the value of function is less will be selected and the particles with higher function values will get discarded. In this thesis, the particle size goes on decreasing in each iteration which will become very less than the minimum number of particles required to optimize a function has been fixed and for subsequent iteration the size of particles will be the minimum value for the optimization.

A MATLAB program has been developed for SELECTION BASED PARTICLE SWARM OPTIMIZATION to Economic Load Dispatch problem. Program is tested on IEEE 5, 14 and 30 bus system and the results are compared with Basic PSO technique.

LIST OF FIGURES

FIG 1: STAR OR GBEST TOPOLOGY

FIG 2: RING OR LBEST TOPOLOGY

FIG 3: WHEEL TOPOLOGY

FIG 4: FOUR CLUSTER TOPOLOGY

FIG 5: PSO EVALUTION FLOWCHART

FIG 6: SBPSO EVALUATION FLOWCHART

FIG 7: ELD TO SBPSO EVALUATION FLOWCHART

FIG 8: BUS-CODE DIAGRAM OF 5 BUS SYSTEM

FIG 9: BUS-CODE DIAGRAM OF 14 BUS SYSTEM

FIG 10: BUS-CODE DIAGRAM OF 30 BUS SYSTEM

LIST OF TABLES

- TABLE 1: RESULTS OF SBPSO TO ROSENBROCK'S FUNCTION.
- TABLE 2: VERIFICATION OF KOUNT FORMULA.
- TABLE 3: RESULTS OF SBPSO TO BOOTH'S FUNCTION.
- TABLE 4: RESULTS OF SBPSO TO BEALE'S FUNCTION.
- TABLE 5: RESULTS OF SBPSO TO SPHERE'S FUNCTION.
- TABLE 6: RESULTS OF SBPSO TO RASTRIGIN'S FUNCTION.
- TABLE 7: RESULTS OF IEEE 5-BUS SYSTEM BY SBPSO.
- TABLE 8: RESULTS OF IEEE 14-BUS SYSTEM BY SBPSO.
- TABLE 9: RESULTS OF IEEE 30-BUS SYSTEM BY SBPSO.
- TABLE 10: LINE DATA OR IMPEDANCE DATA (5 BUS SYSTEM).
- TABLE 11: BUS DATA OR OPERATING CONDITIONS (5 BUS SYSTEM).
- TABLE 12: IMPEDANCE & LINE-CHARGING DATA (14 BUS SYSTEM).
- TABLE 13: BUS DATA OR OPERATING CONDITIONS (14 BUSSYSTEM).
- TABLE 14: REGULATED BUS DATA (14 BUS SYSTEM).
- TABLE 15: IMPEDANCE & LINE-CHARGING DATA (30 BUS SYSTEM).
- TABLE 16: BUS DATA OR OPERATING CONDITIONS (30 BUS SYSTEM).
- TABLE 17: REGULATED BUS DATA (30 BUS SYSTEM).
- TABLE 18: TRANSFORMER DATA (30 BUS SYSTEM).
- TABLE 19: STATIC CAPACITOR DATA (30 BUS SYSTEM).

LIST OF ABBREVIATIONS

PSO Particle Swarm Optimization

SBPSO Selection Based Particle Swarm Optimization

ELD Economic Load Dispatch

GA Genetic Algorithm

BPSO Basic Particle Swarm Optimization

CONTENTS

CERTIFICATE	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
LIST OF FIGURE	v
LIST OF TABLE	vi
LIST OF ABBREVIATIONS	vii
CONTENTS	viii
CHAPTER-1	1
INTRODUCTION	1
1.1 OVERVIEW	1
1.2 AIM AND APPROACH	3
1.3 LITERATURE REVIEW	4
1.4 PLAN OF THESIS	11
CHAPTER-2	12
PARTICLE SWARM OPTIMIZATION	12
2.1 INTRODUCTION	12
2.2 CONCEPT OF SWARM AND PARTICLES	14
2.3 BASIC PARTICLE SWARM OPTIMIZATION	14
2.4 PSO ALGORITHM PARAMETERS.	17
2.4.1 SWARM SIZE	17
2.4.2 VELOCITY CLAMPING	18
2.4.3 ITERATION NUMBERS	18
2.4.4 ACCELERATION COEFFICIENTS	18
2.4.5 INERTIA WEIGHT	19
2.4.6 NEIGHBOURHOOD TOPOLOGIES	21
2.5 MATHEMATICAL FORMULAS	23
2.6 FLOW CHART	24
2.6.1STEPS INVOLVED IN PARTICLE SWARM OPTIMIZATION IN MATLA	AB 25
2.7 ADVANTAGES AND DISADVANTAGES OF PSO	26
CHAPTER-3	28

BENCHMARK TEST FUNCTIONSBENCHMARK TEST FUNCTIONS	
3.1 SELECTION BASED PSO	28
3.2 STEPS FOR THE PROCEDURE OF SBPSO	30
3.3 FLOWCHART OF SBPSO.	32
3.4 MATHAMATICAL BENTCHMARK FUNCTION	33
3.5 VALUE OF PARAMETERS USED IN SBPSO	33
3.6 COMPUTATIONAL RESULTS	33
3.6.1 ROSENBROCK FUNCTION	33
3.6.2 BOOTH'S FUNCTION	38
3.6.3 BEALE FUNCTION	40
3.6.4 SPHERE'S FUNCTION	42
3.6.5RASTRIGIN'S FUNCTION	44
3.7 DISCUSSION	46
CHAPTER 4:	47
APPLICATION OF SBPSO ON ECONOMIC LOAD DISPATCH	47
4.1 INTRDUCTION TO ELD	47
4.2 LIST OF SYMBOLS	47
4.3 MATHAMATICAL FUNTION.	48
4.4COMPUTATIONAL PROCEDURE	48
4.5 FLOWCHART	51
4.6 COMPUTATIONAL RESULTS	53
CHAPTER 5	57
CONCLUSION AND FUTURE DIRECTIONS	57
5.1CONCLUSION	57
5.2 FUTURE DIRECTION	58
REFERENCES.	59
APPENDIX- I	63
1) IEEE 5 BUS SYSTEM	63
2) IEEE 14 BUS SYSTEM	65
C) IEEE 30 BUS SYSTEM	68

A	PPENDIX- II	. 72
	1) ROSENBROCK FUNCTION	. 72
	2) BEALE FUNCTION	. 74
	3) IEEE 30 BUS SYSTEM ELD.	77