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CHAPTER 1 - INTRODUCTION 

1.1 Background 

Advancements in software and hardware infrastructure has made it easier to gather data from 

almost all aspects of our daily lives; from web user behaviors, sensor networks, body organ 

monitoring devices, astronomical monitoring to millions of conversations on social media. Data 

is no longer ordinary data as it has moved from gigabytes to petabytes. Data is now called Big 

Data. Since the advent of the big data era, the technological playing field has taken a new look. 

Almost all areas in the Information Communication and Technology have been massively 

impacted; some negatively and others positively. The data mining field has become increasingly 

important as companies, governments and big multinational organizations have been presented 

with the complication of analyzing tones of meaningless raw data. Most operations have moved 

from being centralized to distributed and the Internet has become an integral part of most 

operations. This has also brought about the invention of Cloud Computing which has gained 

popularity due to its mobility, huge availability and low cost. Data mining nowadays is in 

essence performed in the cloud.  

1.2 Big Data 

Big data is a relatively new term which refers to large volumes of data which comes from 

various sources at different velocity, different formats (text, audio, video, images) and with 

different layout or structure (structured, semi-structured and unstructured). 

According to BigDataPlanet.com [11], “Dataset whose volume, velocity, variety and 

complexity are beyond the ability of commonly used tools to capture, process, store, 

manage and analyze them can be termed as BIGDATA” 

The size of Big data is ever-changing since the data is gathered continuously for instance from 

sensors used to gather climate information, posts to social media sites such as Facebook and 

Twitter, digital pictures and videos, retail transaction records, and mobile phone GPS signals just 
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to name a few. Big data has become an integral part of most recent researches. The graph below 

outlines the various dimensions by which big data can be approached from.  

 

Figure 1: Dimensions of Big Data [13] 

 

 

Figure 2:Characteristics of Big Data [13] 
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1.2.1 Characteristics of Big Data 

Big data is characterized it by the following attributes: 

1.2.1.1 Volume 

This refers to the amount of data that is generated. Big Data is not measured in Gigabytes but 

rather in the order of Petabytes. Data may be generated from various sources and combined to 

increase the volume of data that has to be analyzed or stored. This data may grow to the tune of 

several Yotabytes, Exabyte and Zettabyte in the near future. The volume also includes numerous 

data sources each of which may be holding very large quantities of data which when combined 

contributes to substantial volumes of data. Conventional data storage methods can no longer 

cope with such enormous volumes. 

1.2.1.2 Variety 

This aspect refers to the diversity of data formats. Since data may come from various sources it is 

highly likely that the forms will be different. Traditionally data used to be structured and textual. 

This is no longer the case; data now includes audio, video, images and also text. The data may 

also be static or streams. In relation to the variety of data, Big Data can also be categorized as: 

 

 Structured data: This type describes data which can fit well into a fixed relational schema 

within a standard SQL database. Structured data can be easily stored, manipulated and 

analyzed.  

 Semi-structured data: This is a form of structured data that does not conform to an 

explicit and fixed schema. Examples include weblogs and social media feeds.  

 Unstructured data: This type of data consists of formats which cannot easily be indexed 

into relational tables for manipulation such as social media interactions, audios and 

videos of recorded meetings, text documents, fax transfers, emails, medical information 

such as X-ray imagines and more [9 

1.2.1.3 Velocity 

The term ‘velocity’ refers to the speed with which the data is generated, gathered and processed 

to meet the demands of a particular domain. Many big data sources are dynamic and gather data 
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continuously for instance sensor networks for weather monitoring. Below is a research carried 

out by Hewlett-Packard which shows the speed with which global data is growing per minute. 

 

Figure 3: Rate at which data is accumulating [11] 
 

1.2.1.4 Variability 

This refers to the inconsistency and unpredictability which can be shown by the data. Since data 

comes from several sources in so many different formats, it is most likely that the data will be 

inconsistent that is same type of data can be interpreted differently by different sources or may 

have some missing attributes.  

1.2.1.5 Veracity 

Since big data is collected from a diverse number of sources and/or sites the data quality being 

captured can vary greatly; this phenomenon is called veracity. The credibility and the reliability 

of the analysis largely depend on the veracity of the data sources. 

1.2.1.6 Value 

Data has become a valued asset for most companies. This is mainly because from the heaps of 

data they can derive some business intelligence which can give them a competitive edge over 

their competitors. Hence data now has a value attached to it. The quality of information that can 
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be derived from the data depends on the quality of the data. The higher the quality, the higher the 

value. 

1.2.2 Categories of Big Data 

There are several categories of Big Data mainly differentiated by the sources. Some have been 

summarized in Table 1 below. 

Table 1: Categories of Big Data 

Categories Example 

Web and social media data Facebook and Twitter posts.  

Machine-to-machine data Sensor networks, ad-hoc networks, Personal Area Networks 

(PAN) 

Big transaction data Health care claims, billing records, online product reviews. 

Biometric data Fingerprints, genetics, handwriting, retinal scans, X-rays, blood 

pressure, pulse and pulse-oximetry readings 

Human-generated data Unstructured and semi-structured data such as electronic 

medical records (EMRs), physicians’ notes, email, and paper 

documents 

 

1.3 Data mining with big data 

In essence, data mining is the process of discovering or finding some new, valid, understandable 

and potentially useful forms of data. The form of data refers to a discovered regularity among the 

data variables. If the detected regularity applies to all data, then it is about discovered model, if, 

however, the regularity can be correlated with the extent of data – it is a pattern or template. Data 

mining is carried out over large volumes of data in order to “pull“new information out of them 

that will be the basis for making (better) business decisions [14]. 
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The most prominent challenge for Big Data applications is to search the enormous volumes of 

data and extract desired intelligence and patterns necessary for decision making. Before one can 

start mining big data he has to understand the characteristics of the data.  

1.3.1 HACE Theorem [12]. 

According to [12] the HACE theorem explains the characteristics of big data that give birth to 

challenges in mining big data. Big Data starts with enormous data volumes, Heterogeneous; 

Autonomous sources which are usually distributed and do not have centralized control, and 

intends to explore Complex and Evolving relationships among data [12].  

1.3.1.1 Heterogeneity 

Big data does not emanate from a single source but rather collected by several data collectors 

who are different. Diverse information collectors prefer their own data structure or rules and 

procedures for data gathering. The design and structure of different applications also results in a 

variety data representation [12]. For example in collecting information about a patient; one might 

opt to use simple demographic information such as gender, race, age or family disease history 

others may go for biometric signatures. This presents different ways of capturing information 

about the same entity.  

1.3.1.2 Autonomous Sources with Distributed and Decentralized Control  

Distributed and autonomous data source is the norm in big data. Data sources usually have 

decentralised control; this implies that each data source is able to work independently and 

generate and collect information on its own without relying on any centralized control. This 

exposes the data to external attacks since the points of entry are increased. 

1.3.1.3 Complex and Evolving Relationships 

This challenge is brought about by the ever pouring streams of data. As the data volumes 

increase so does the complexity and relationships underneath. Data relations are no longer as 

straight forward as they used to be in traditional systems. In big data the heterogeneity and 

vastness of data makes it difficult to discover patterns. 
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1.3.2 Challenges in mining big data 

For any system to successfully discover useful information from big data it has to meticulously 

address the characteristics outlined in the HACE Theorem. According to [12] a big data 

processing framework requires three tiers to produce desired outcome. These tiers are: Tier 1-

data accessing and computing, Tier II- data privacy and domain knowledge and Tier III -Big 

Data mining algorithms. Each tier possesses its own challenges that need to be addressed in order 

to effectively mine the data. 

 

 

Figure 4: A Big Data processing framework [12] 

 

1.3.2.1 Big Data Mining Platform [12] 

Big Data are usually distributed across various geographical locations and data volumes 

constantly grow. For a computing platform to be effective, it has to take into account distributed 

large-scale data storage. A clear technical barrier that exists for conventional data mining 

algorithms is that all data is required to be loaded into the main memory. Another prohibitive 
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factor is that of moving data across different locations; this activity is expensive and risky. 

Sensitive data requires extra security for it to be transmitted across a network. [12] 

Data involved in medium scale data mining tasks, are typically large and mostly distributed 

hence cannot be accommodated in main memory. Parallel computing and collective mining are 

the most common solutions to this challenge. They are used to sample and integrate data from 

different sources [12]. 

The data scale involved in Big Data Mining is far beyond the threshold capacity that a 

mainframe computer can handle, therefore Big Data processing framework normally rely on 

cluster computers connected on a high-performance computing platform. The clusters usually 

have some parallel programming tools, of which the far most popular is MapReduce. [12] 

1.3.2.2 Big Data Semantics and Application Knowledge [12] 

In Big Data, semantics and application knowledge refer to several aspects related to the rules and 

regulations, protocols and policies, user knowledge and domain information. Two issues of 

paramount importance at this tier are:  

i. Data sharing and privacy: how data are maintained, accessed, and shared; [12] 

Big data involves multiple parties which automatically imply information sharing. Information 

sharing brings data privacy and protection into play. As information is shared among users it has 

to be protected from unauthorized access and malicious attacks. Security measures such as 

certificates and other authenticating mechanisms have to be put in place. Anonymization of data 

fields such that data fields are not easy to pinpoint can also help to protect the data from attacks. 

The thrust behind data anonymization, is to introduce randomness into the data to achieve a 

number of privacy goals. Common anonymization approaches are to use perturbation, 

generalization, suppression and permutation to generate a modified version of the data. Once 

data is anonymized, it can be shared across several parties without hesitation or involving strict 

or restrictive access controls such as encryption. 

ii.   Domain and application knowledge: answers questions like “what are the underlying 

applications?” and “what are the knowledge or trends users intend to discover from the 

data?” [12]. 
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1.3.2.3 Big Data Mining Algorithms 

Data mining algorithms for big data have to be designed differently from traditional data mining 

algorithms. There are three fundamental challenges that big data mining algorithms have to 

overcome. 

i. Local Learning and Model Integration for Multiple Information Sources 

Since Big Data applications comprise of autonomous sources and decentralized controls, 

integrating dispersed data sources to a central workstation for mining is systematically a toll 

order because of the potential transmission cost and privacy issues [12]. Data mining 

activities can be carried out at each distributed site; but this result in a biased view of the 

data gathered at each individual site and consequently leads to biased decisions or models. A 

Big Data mining system should therefore allow for cost effective exchange of information 

and aggregation mechanism to ensure that all distributed information sources/sites can 

coordinate so as to achieve a global optimization goal. The global mining can however be 

carried out in two-steps namely local mining and global aggregation and correlation. This 

two-step process can be carried out at data, model, and knowledge levels.  

ii. Mining from Sparse, Uncertain, and Incomplete Data  

The most defining features for Big Data are Sparseness, uncertainty (inconsistent), and 

incompleteness. 

 Sparse: Being sparse means that the number of crucial data points is not adequate for 

drawing reliable conclusions. This is normally as a result of data in a high-dimensional 

space failing exhibit clear trends or distributions. Normally data that are sparse 

significantly deteriorate the reliability of the findings derived from the data. To alleviate 

this dimension reduction or feature selection are commonly employed to reduce the data 

dimensions. Another way is to cautiously include additional samples to lessen the data 

scarcity. [12] 

 

 Uncertain: Uncertain data means that each data field is no longer consistent and 

deterministic but is subject to some variable random or error distributions. The main 
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cause is linked to domain specific applications with data readings and collections that are 

inaccurate [12]. Common solutions to this problem are to estimate model parameters.  

 

 Incomplete Data:  Data that are missing data field values for some samples are referred 

to as incomplete data. The missing values can be as a result of different realities, such as 

sensor node malfunction, or some systematic protocol to intentionally omit some data 

values (e.g., dropping some packets to save power for transmission) [12]. Solutions to 

this problem include; ignoring data fields with missing values and data imputation. Data 

imputation seeks to insert missing values to the data so as to produce improved models. 

Two major data imputation methods are; to append most frequently observed values and 

to build learning models to predict the best possible values for each data field, by 

adopting the observed values of a given instance. 

 

iii. Extracting Complex and Dynamic Data 

The rapid increasing of complex data and their evolution in volumes and in nature has fueled the 

rise of Big Data. The complexity of the data is in twofold; the structure of the data that is data is 

in numerous formats and the dependencies of the data in these structures. 

 

 Complex heterogeneous data types: Data types available in Big Data include 

unstructured data, semi-structured data and unstructured data.  

 

 Complex inherent semantic associations in data. Online news, comments on social 

media, pictures on Instagram, and video clips on YouTube may discuss about a similar 

event at the same time. There is obvious that these greatly diverse platforms contain 

information that is closely associated to each other. It is therefore important to be able to 

create a connection to these platforms and associate data fields from different data 

formats. Application system performance such as recommender systems and search 

engines will significantly be enhanced by the mining of these complex semantic 

associations across different data formats (“text-image-video”). However, with regards to 

Big Data, it is challenging to efficiently define semantic features and to build meaningful 
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association models to eliminate the semantic gap of several heterogeneous data sources 

[12]. 

 

1.4 Structure of thesis 

This thesis report is structured as follows: 

 Chapter1- Introduction: this section seeks to introduce the area of study; in this case 

data mining of big data. It defines data mining and big data separately and then briefly 

outlines the challenges found in mining big data. 

 Chapter 2 -Literature Review: this chapter provides a context for the proposed study 

and demonstrates why it is important and timely. This chapter outlines the already 

existing data mining techniques and algorithms. It also highlights the challenges faced in 

designing parallel/distributed algorithms.  

 

 Chapter 3- Problem Definition: this part of the report explains the need for this project. 

It outlines the motivation behind the project, that is, what prompted us to propose the 

project in the first place. In this chapter we expose the gap that this project intents to 

bridge. 

 

 

 Chapter 4 – Proposed Methodology: this chapter explains how we tackled the problem. 

It explains the original RDB-Miner algorithm and the strategy used to enhance it to 

Parallel RDB-Miner. In this chapter we also explain the experimental set up, the 

environment in which the algorithm was tested and the assumptions that were made for 

proposed algorithm. 

 

 Chapter 5 – Results and Analysis: this chapter displays the observations made in the 

experiments and makes an explanation of each observation. Each result is accompanied 

with an analysis and a comparison to previous work. Each result is presented in a 

graphical manner. 
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 Chapter 6 – Conclusion and Future work: this is the final and last chapter of the thesis. 

It seeks to conclude the thesis and in this chapter make our own statement of how we feel 

about the project. We also outline the future work we intent to do, some further 

enhancements that could be done on the new proposed algorithm.   
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CHAPTER 2-LITERATURE REVIEW 

2.1 Cloud Computing 

It is difficult to talk about big data and not talk about Cloud computing. The Internet has played 

the catalyst role in big data. Most businesses are now carried out over the internet and hence this 

necessitated the need for business intelligence on the same platform. Cloud computing has 

enabled the businesses to have a flexible, portable, agile and cost effective platform for internet 

business intelligence. Cloud Computing can provide infrastructure to massive and complex data of 

data mining. 

 

NIST (National Institute of Standards and Technology) defines Cloud Computing as a model that 

provides a ubiquitous, simple and on-demand network access to a shared set of resources (e.g. 

network resources, servers, data storage, applications and services) that can be readily available 

for use, or, if necessary, shut down, and all with minimal intervention of service providers [14]. 

 

Influential Gartner & Forrester provides the following definition: "CC is the area of computing 

in which scalable and highly resilient IT facilities provide in the form of services delivered via 

the Internet to numerous external customers." [14] 

 

The cloud model is composed of five essential characteristics, three service models, and four 

deployment models. The essential characteristics of cloud computing are: 

 On-demand self-service,  

 Broad network access,  

 Resource pooling,  

 Rapid elasticity and 

 Measured service. [15] 

Providing CC services is divided into three elementary architectural models and different 

derivative combinations of the basic models. These three basic classifications are known as SPI: 

(Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS)) 

model.  
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 SaaS (software as a service) - a technology platform that allows access to applications via 

the Internet in the form of services that are hired as needed, instead of buying a separate 

software programs that must be installed on the user’s computers; [15] 

 PaaS (Platform as a Service) - model is a variation of SaaS structure that, as a service 

delivers environment development. Allows the user to build his own applications that run 

on the provider’s infrastructure. Applications are delivered to users through the servers’ 

interface accessible via the Internet. [15] 

 IaaS (Infrastructure as a Service) - provides the ability to use computer infrastructure 

(mainly virtual platforms). Users do not buy servers, software, data storage or network 

equipment, but they buy these resources as an external service. [15] 

 

 

Figure 5: Classifications of cloud computing services 

 

Regardless of the type of service delivery models (SaaS, PaaS, or IaaS), there are four basic 

models of implementing Cloud Computing services, including: 

 

 Public Cloud - platform available and open to the public, regardless of whether they are 

individuals or organizations; 

 Private Cloud - CC infrastructure accessible to only one organization. It can be managed 

by the organization itself or someone else who is doing that for the organization 

(outsourcing); 

 Community Cloud - model of implementation that provides the ability for more 

organizations to share the same CC structure. Infrastructure supports special communities 

that have common interests, needs and security requirements; 
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 Hybrid Cloud - Model, which consists of two or more previously, discussed types of the 

establishment of CC structure which remain unique and independent entities, but with a 

certain kind of reciprocal link, in order to achieve mobility of data between them. 

 

Advantages of Cloud Computing     

 

i. Possibility for significant cost reduction 

ii. Reducing the need for maintenance software support 

iii. Reduction of IT departments in companies 

iv. Scalability 

v. Companies can now focus on their primary business 

vi. Availability and independence of the unit 

vii. Saving energy and contribution to the conservation of the environment 

 

Disadvantages of Cloud Computing 

 

i. Problem of availability (lack of availability) safety problem 

ii. Management problem 

iii. The possibility of sudden termination of the provider 

 

The advent of cloud computing has brought about new technologies and techniques to aid 

storage, processing and analysis of large quantities of data that are produced. Cloud computing 

did not only provide users with a common parallel programming model and big data processing 

capacity, but also provides users with an open computing services platform. A series of cloud 

computing service platforms have been developed to provide data mining services for the public. 

Below are some of the major technologies that have come cloud computing; 
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2.1.1 Apache Hadoop 

Apache Hadoop, an open source project, is seen as a framework for the development of 

distributed and scalable applications that work with very large amounts of data (measured in 

petabytes). It is based on Google's MapReduce algorithm and a special data management system 

HDFS (Hadoop Distributed File System), which also derived from Google's File System. 

Hadoop was developed in Java, so it is about a cross-platform product [16]. It is used by most 

cloud computing service providers because is a highly scalable analytics platform for processing 

large volumes of structured and unstructured data. It offers analytics at a low cost and high speed 

that some analysts say can't be achieved any other way. The low cost is as a result of using 

commodity hardware and the speed because of distribution of data and tasks.  

 

Hadoop technology is not a single entity but rather, it consists of two main components namely 

Hadoop Distributed File System, HDFS and MapReduce.  

 

Hadoop Distributed File System 

 

HDFS (Hadoop Distributed File System. HDFS) is a File System designed for storing very large 

files with streaming data access patterns, running on clusters on commodity hardware. HDFS 

follows the master/slave architecture. The master node is called the Namenode which manages 

the file system namespace and regulates client accesses to the data. There are a number of 

worker nodes, called Datanodes, which store actual data in units of blocks. The Namenode 

maintains a mapping table which maps data blocks to Datanodes in order to process write and 

read requests from HDFS clients. It is also in charge of file system namespace operations 

such as closing, renaming, and opening files and directories. HDFS allows a secondary 

Namenode to periodically save a copy of the metadata stored on the Namenode in case of 

Namenode failure. The Datanode stores the data blocks in its local disk and executes instructions 

like data replacement, creation, deletion, and replication from the Namenode. The namenode is 

very essential for accessing files thus it is very important to make it resilient to failure as it 

constitutes a single point of failure [17]. Figure 6 gives the architecture of the HDFS. 
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Figure 6: HDFS Architecture [6] 

MapReduce 

 

MapReduce is the programming paradigm/model allowing massive scalability and high 

performance in data processing. The MapReduce basically performs two different tasks i.e. Map 

Task and Reduce Task [17]. These are two separate but complimentary tasks. A map-reduce 

computation execution, Map tasks are given input from distributed file system. The map tasks 

produce a sequence of key-value pairs from the input and this is done according to the code 

written for map function. These value generated are collected by master controller and are sorted 

by key and divided among reduce tasks. The sorting basically assures that the same key values 

ends with the same reduce tasks. The Reduce tasks combine all the values associated with a key 

working with one key at a time. Again the combination process depends on the code written for 

reduce job [17]. 

 

2.1.2 Apache Hive 

Hive is a data warehouse infrastructure built on the top of Hadoop framework and allows 

analyzing data and generating queries in a way similar to SQL queries in RDBMS [14]. Hive 

provides a means of running MapReduce job through an SQL-like scripting language, called 

HiveQL, that can be applied towards summarization, querying, and analysis of large volumes of 

data. HiveQL enables anyone already familiar with SQL to query the data.  

Hive also allows programmers who are knowledgeable in the MapReduce framework to be able 

to plug in their custom mappers and reducers to perform more sophisticated analysis that may 
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not be supported by the built-in capabilities of the language. Hive is best suited for batch 

processing of large amounts of immutable data (such as web logs). It is not appropriate for 

transaction applications that need very fast response times, such as database management 

systems. Hive is optimized for scalability (more machines can be added dynamically to the 

Hadoop cluster), extensibility (with MapReduce framework and other programming interfaces), 

and fault-tolerance. Latency is not a key design consideration. [19] 

2.1.3 NoSQL Databases 

Not Only Structured Query Language (NoSQL) is a class of “schema-less” database 

management systems that have been designed with more relaxed data models as compared to 

RDBMS. The term is not meant to discredit SQL but rather to indicate that these databases can 

provide additional solutions where relational models fall short. They neither use SQL nor 

relational data model. Such non-relational databases, do not support the ACID (Atomicity, 

Consistency, Isolation, and Durability) properties in full; actually they represent pure data 

warehouses with simple mechanisms of data control and transactions.  

NoSQL concept relies on the following grounds: [14] 

i. Scalability - ability to automatically respond (giving the required major resources) in 

accordance with the increase in the application; 

ii. Replication - data in the case of distributed databases is stored in multiple nodes; 

iii. Partitioning Data – means data sharing in a way that the different parts of the 

database are in different nodes. The goal of the partitioning data is to improve 

performance when reading and writing data  

Compromises in terms of ACID properties are necessary in cloud computing environment 

because they can overcome certain limitations of relational databases and provide better 

performance in the following areas of application that is Storage and processing of very large 

amounts of semi-structured and unstructured data, all with low latency reading operations and 

automatic scalability. [14] 

Although there is no single definition which defines what is included in the term NoSQL, in 

practice there are the following classes of NoSQL databases: 
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i. Key Value Stores 

Provide a way of storing schema-less data by means of a distributed index for object storage. The 

key (data-type) will be displayed on the left and the corresponding value (actual data) on the 

right. Key/Value store is best applicable where write performance is of highest priority since its 

schema-less structure allows for fast storage of data. 

 

ii. Column Oriented Databases 

The data store provided by column oriented databases is similar to that of relational tables; the 

only difference is that column oriented also adds a dynamic number of fields/attributes to the 

model. The keys used in this model point to more than one table. 

 

iii. Document Oriented Databases 

In this model data is treated as autonomous objects whose attributes are stored as separate 

documents. A document contains information which uniquely identifies a single object. This 

model is flexible and agile because it has a schema-less structure and also read and write 

operations can be accomplished.  

 

iv. Graph Databases 

These are databases are more applicable to intelligent agencies as well as in social networks 

because they effectively outline relationships between objects and present a way to access 

overloaded sites through predominant reads. Their structure and representations are based on the 

graph theory. Data is stored in graph structure where nodes, edges and properties represent the 

data. The nodes represent entities in the database. Edges represent a connection or relationship 

between nodes/entities. The properties describe the nature of the nodes or relationship between 

nodes. 

2.1.4 Apache Pig 

Pig was originally developed at Yahoo Research around 2006 for researchers to have an ad-hoc 

way of creating and executing map-reduce jobs on very large data sets. In 2007, it was moved 

into the Apache Software Foundation. It is a platform designed for high levels of Hadoop, which 
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is responsible for making MapReduce programs. Pig makes it easy to write MapReduce code 

introducing a special language - Pig Latin and the environment for the execution of such code. 

Pig translates the code from higher-level language (Pig Latin) into MapReduce code that is then 

executed in a cluster computer [14]. 

2.1.5 HBase 

HBase is an open source, non-relational, distributed database modeled after Google’s Big Table 

and written in Java.  It is part of Apache Software Foundation's Apache Hadoop project and runs 

on top of HDFS in order to provide a fault-tolerant way of storing large quantities of sparse data 

(bits and pieces of information thrown in large pool of unimportant data) [20]. 

HBase features include compression, in-memory operation, and Bloom filters on a per-column 

basis. Tables in HBase can serve as the input and output for MapReduce jobs run in Hadoop, and 

may be accessed through the Java API but also through REST, Avro or Thrift gateway APIs. 

HBase is not intended to replace classic SQL database, however its performance has massively 

improved, and it is now been used in several data-driven websites, including Facebook's 

Messaging Platform [20]. 

 

2.1.6 Hybrids of Hadoop 

Hadoop has been the most successful technology to grace the big data era. However, it is not 

ideal for all types of data and all organisations. As such several extensions of Hadoop have been 

developed so that they bridge the gap that Hadoop failed to cover. Below are some of the most 

popular extensions or hybrids. 

1. HadoopDB is a hybrid system that has the best features of both parallel databases and 

Map/Reduce. HadoopDB approaches parallel database in performance and efficiency. 

[16] 

 

2. Hadoop ++  is Hadoop with Trojan Index and Trojan Join. In terms of query processing 

Hadoop++ matches and improves the query run times of HadoopDB. Indexing 

capabilities can be achieved in Hadoop using Trojan index. [16] 
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The basic notion behind using Trojan index is that the schema and query workload is 

known already. The main features of Trojan index are non- invasiveness, no need to 

create a distributed SQL engine on top of Hadoop, optional index access path, possibility 

to create multiple index in the same split and seamless splitting. 

The goal behind Trojan join is to avoid reduce phase since the data were already pre-

partitioned. The algorithm access each input split and collects records of the same co-

group.Both Trojan indices and joins are created during data loading. [16] 

 

3. Co-Hadoop provides a solution for co-locating related files in Hadoop Distributed File 

System (HDFS). HDFS is extended to provide co-location at the system level. A new file 

property is used to identify related files and modify the placement policy of HDFS. This 

modification retains the benefits of Hadoop including load balancing and fault tolerance. 

The default block placement policy provides load balancing through even data 

distribution across the Data Nodes. [16] 

 

4. Trojan HDFS: a new data layout called Trojan Layout is used which internally 

organizes data blocks intodifferent attribute groups according to the workload to improve 

the access performance. It creates the data layout without affecting the fault tolerance 

properties of Hadoop. Hadoop stores multiple replicas in different Data Nodes without 

changing the layout. Trojan HDFS creates different Trojan layouts for replicas and so the 

incoming requests can be forwarded to the replica with the most suitable layout. [16] 

 

5. Elastic Replica Management System for HDFS: The data access patterns in HDFS 

vary heavily and the current replication strategy of creating a fixed number of replicas 

may be inadequate. Based on the data access patterns, data in Hadoop can be classified 

into different types. Hot data – data having a large number of concurrent access and high 

intensity of access, cold data - unpopular and rarely accessed data, normal data – rest of 

the data other than hot and cold. In a large and busy HDFS network, hot data will have 

concurrent and intense access. Replicating hot data only on three different nodes is not 

adequate to avoid contention. Also for cold data, three replicas may produce unnecessary 
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overhead. To tackle these issues ERMS is proposed which introduces an active/standby 

storage model which takes advantage of a high performance complex event processing 

engine to distinguish the real time data types and brings an elastic replication policy for 

the different types of data. [16] 

6. SQL-on-Hadoop: technologies include a SQL layer or even a full SQL database over 

Hadoop. SQL-on-Hadoop solutions solve the data management issues of Hadoop and 

provide a scale-out alternative for traditional RDBMSs. They include, among others:  

 HAWQ (Hadoop With Query) is a commercial product developed by Pivotal HD which 

enables enterprises to benefit from tried and tested Massively Parallel Processing (MPP) 

based analytic features and its query performance while harnessing the power of the 

Apache Hadoop stack [28]. 

 Spark SQL: Apache's Spark project is for real-time, in-memory, parallelized processing 

of Hadoop data.  Spark SQL builds on top of it to allow SQL queries to be written against 

data.  

Other tools that help support SQL-on-Hadoop include BigSQL, Apache Drill, Hadapt, H-SQL, 

Cloudera’s Impala, JethroData, Polybase, Presto, Shark (Hive on Spark),  Splice Machine, 

Stinger, and Tez (Hive on Tez). 

 

2.2 An Overview of HadoopDB 

 

HadoopDB is a project that was carried out in 2009 at Yale University. It aimed to combine the 

desired properties of MapReduce (scalability) with the performance and efficiency of parallel 

databases [3]. The thrust behind HadoopDB is to connect multiple single-node database systems 

using Hadoop as the task coordinator and network communication layer. Queries are parallelized 

across nodes using the MapReduce framework. HadoopDB runs on a shared-nothing architecture 

using commodity hardware. Any Open Database Connectivity (ODBC) compliant database can 

be used for example MySQL or PostgreSQL. 
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Figure 7: Idea behind HadoopDB [3] 

2.2.1 HadoopDB Architecture 

The figure below shows the architecture of HadoopDB. Shaded components are the 

modifications to the generic Hadoop architecture. 

 

Figure 8: The architecture of HadoopDB [3] 

 

2.2.1.1 Database Connector [3] 

It is the interface between node database instances and TaskTrackers. It is responsable for the 

following:  
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a) Connect to the node database 

b) Execute the SQL query 

c) Return the results as key-value pairs 

2.2.1.2 Catalog [3] 

It is stored as an XML file in the HDFS. It is responsible for the following: 

1. Maintain information about database 

2. Database location, driver class  

3. Datasets in cluster, replica or  partitioning  

2.2.1.3 SQL to MapReduce to SQL (SMS) Planner [3] 

SMS planner is a parallel database front-end provided by HadoopDB to data analysts which 

enables them to execute SQL queries. The SMS planner is an extension of Hive. It accepts SQL 

queries and transforms them to MapReduce tasks and returns the results as SQL. It does this in 

the following steps: 

i. The parser converts the query into an Abstract Syntax Tree. 

ii. In order to retrieve the structure of the table(s) involved the Semantic Analyzer hooks up 

to the MetaStore. It also populates different data structures with meta-information such as 

the Deserializer and InputFormat classes required to scan the table and extract the 

necessary fields. 

iii. The logical plan generator then creates a DAG of relational operators i.e. the query plan. 

iv. The optimizer restructures the query plan to create a more optimized plan. For example, it 

pushes filter operators closer to the table scan operators. 

v. Finally, the physical plan generator converts the logical query plan into a physical plan 

executable by one or more MapReduce jobs. The first and every other Reduce Sink 

operator marks a transition from a Map phase to a Reduce phase of a MapReduce job and 

the remaining Reduce Sink operators mark the start of new MapReduce jobs.  
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2.2.1.4 Node Database 

This is any JDBC or ODBC compliant relational database that is set up on top of Hadoop. Single 

node databases are installed on all nodes. Open source database system are mostly used e.g. 

MySQL or PostgreSQL to reduce project costs. 

 

2.3 Data Mining Techniques for Big Data 

For any data mining technique to be able to successfully produce desired results, it has to address 

the three challenges outlined in point 1.3.1 HACE Theorem. Heterogeneity of data, autonomous 

and decentralised sources of data and the complexity of data relationships had to be considered 

when choosing a data mining technique for big data. In this section we look at the most common 

techniques used when mining big data. 

 

2.3.1 Distributed Data Mining (DDM) 

Distributed Data Mining (DDM) is a subdivision of the data mining field that offers a 

mechanism to mine dispersed data giving careful awareness to the distributed data as well as 

computing resources [21]. Distributed and autonomous data source is the norm in big data. Data 

sources usually have decentralised control; this implies that each data source is able to generate 

and collect information without involving or relying on any centralized control hence the most 

natural way to mine big data is to distribute the mining activities to all the sites. Traditional ways 

of collecting the data into a central location such as warehouse is no longer feasible. This is 

attributed to the fact that it is expensive to transmit data over the network and also the bottleneck 

involved during transfer, integration and extraction of the data.  

 

Data mining environments consist of users (usually management or analysts), data (stored in a 

persistent storage which cannot be modified), hardware and the mining software. The mining 

software normally includes the mining algorithms and their associated programs. Distributed 

data mining tackles the impact of distribution of the aforementioned entities that make up a data 

mining environment on the actual data mining activity. There is general agreement that DDM is 
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the process of extracting useful knowledge from data that has been fragmented into one or more 

geographically or physically distributed subsets [21]. There are two ways in which data can be 

distributed across sites; homogeneous and heterogeneous. Both approached assume the 

conceptual viewpoint that the data tables at each site are fragments of a single global table.  

In the homogeneous case tables at each site have exactly the same attributes as the global 

conceptual table. These tables are regarded as sub tables of the global table, which can also be 

viewed as horizontal partitions of the global table. In the heterogeneous case sites do not have 

the similar attributes. The global table is vertically partitioned; each site contains a different 

collection of fields. However, each table instance at each site is assumed to contain a primary 

key or unique id to aid matching. It is not necessary to physically realize the global table; it is 

just a conceptual idea. 

The bulk of DDM methods in the literature operate over an abstract architecture which includes 

multiple sites having independent computing power and storage capability. Local computation is 

done on each of the sites and either a central site communicates with each distributed site to 

compute the global models or a peer-to-peer architecture is used. In the latter case, individual 

nodes might communicate with a resource rich centralized node, but they perform most of the 

tasks by communicating with neighboring nodes by message passing over an asynchronous 

network. Below is the general framework for distributed data mining. 

 

 

Figure 9: Distributed data mining framework [24] 
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According to [23] some features of a distributed scenario where DDM is applicable are as 

follows. 

o The system consists of multiple independent sites of data and computation .which 

communicate only through message passing. 

o Communication between the sites is expensive. 

o Sites have resource constraints e.g. battery power. 

o Sites have privacy concerns. 

 

2.3.1.1 Software Agents in Distributed Data Mining 

According to Shoham 1997; an agent is a software entity which functions continuously and 

autonomously in a particular environment, often inhabited by other agents and processes. Agents 

are also defined in [21] as software or hardware entities that perform some set of tasks on behalf 

of users with some degree of autonomy. In order to work for somebody as an assistant, an agent 

has to include a certain amount of intelligence, which is the ability to choose among various 

courses of action, plan, communicate, adapt to changes in the environment, and learn from 

experience.  

Consistent with the requirements of a particular problem, each agent might possess to a greater 

or lesser degree attributes like the ones [23]: 

 Reactivity: the ability to selectively sense and act 

 Autonomy: goal-directedness, proactive and self-starting behavior 

 Collaborative behavior: can work in concert with other agents to achieve a common 

goal 

 “Knowledge-level” communication ability: the ability to communicate with persons 

and other agents with language more resembling human like “speech acts” than typical 

symbol-level program-to-program protocols 

 Inferential capability: can act on abstract task specification using prior knowledge of 

general goals and preferred methods to achieve flexibility; goes beyond the information 

given, and may have explicit models of self, user, situation, and/or other agents. 

 Temporal continuity: persistence of identity and state over long periods of time 
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 Personality: the capability of manifesting the attributes of a “believable” character such 

as emotion 

 Adaptivity: being able to learn and improve with experience 

 Mobility: being able to migrate in a self-directed way from one host platform to another. 

 

2.3.1.2 Architecture of Agents 

An intelligent agent can be described as consisting of a sensing element that can receive events, a 

recognizer or classifier that determines which event occurred, a set of logic ranging from hard-

coded programs to rule-based inferencing, and a mechanism for taking action. The agents’ 

intelligence can range from rudimentary sensor monitoring and data reporting, to more advanced 

forms of decision making and autonomous behavior. 

Agent-based distributed data mining systems employ one or more agents to analyze and model 

local datasets, which generate local models. These local models generated by individual agents 

can then be composed into one or more new 'global models' based on different learning 

algorithms, for instance, JAM and BODHI. 

BODHI is a Java and agent based distributed data mining system. BODHI also notes the 

importance of mobile agent technology. As all of agents are extensions of a basic agent object, 

BODHI can easily transfer an agent from one site to another site, along with the agent's 

environment, configuration, current state and learned knowledge. Figure 10 shows the BODHI 

architecture. 
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Figure 10: BODHI: Agent-based distributed data mining system [21] 

 

2.3.2 Parallel Data Mining 

Due to the large volumes of data associated with big data, traditional systems are no longer 

sufficient. Because data mining in big data is a compute-intensive exercise, the most obvious and 

natural means for enhancing performance and achieving scalability is parallelization. 

Parallelization involves the use of more than one processor to accomplish a particular task. A 

large task is broken down into smaller tasks and each processor assigned certain tasks.  

There are two dominant approaches to parallelization namely; shared-memory and shared-

nothing. In shared memory all processors access common memory [25]. Shared memory 

architecture has many desirable properties. Each processor has direct and equal access to all 

memory in the system. In distributed memory or shared-nothing architecture each processor has 

its own local memory that can only be accessed directly by that processor [25]. For a processor 

to have access to data in the local memory of another processor a copy of the desired data 

element must be sent from one processor to the other through message passing. 

There are several approaches which can be used to distribute workload across the environment in 

question. According to [21] there are four major classes of parallel implementations. The figure 

below illustrates this distinction.  
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Figure 11: Methods of Parallelism [21] 

 

i. Task Parallelism: In task-parallel algorithms portions of the search space are assigned to 

separate processors. The task parallel approach can be further divided into two groups 

namely; 

- Divide and Conquer strategy partitions the search space and assigns each 

fragment/partition to a specific processor.  

- Task queue dynamically assigns partitions of the search space to any available processor. 

The main problem of task parallelism is that of load balancing which is caused by irregular 

distributions of records between nodes. The structure of the data set is the main determinant 

factor for the success of a task parallel implementation. The data set structure should be in a 

way that makes load balancing easy.  

ii. Data parallelism: This approach distributes the data across available processors. This 

approach is further subdivided into two categories. 

-  Record Based Approach: Non-overlapping sets of records are assigned to each of the 

processors.  

- Attribute Based Approach: In this approach, sets of attributes are assigned to each of the 

processors. The motivation behind attribute based approaches is the observation that 

many algorithms can be expressed in terms of primitives that consider every attribute in 

turn. If attributes are distributed over multiple processors, these primitives may be 

executed in parallel.  
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2.3.3 Algorithms for parallel and distributed data mining 

 

In this project we narrow our scope to association rule mining (ARM) algorithms only. 

Association rule mining is a popular and well researched technique for discovering interesting 

relationships between variables in large data sets. It is anticipated to identify strong rules 

discovered in data sets using different metrics of interestingness. Two most popular 

interestingness metrics are support and confidence. They respectively reflect the usefulness and 

certainty of discovered rules. For example Rule 1: A=>B [support=2%, confidence=60%]; this 

means that 2% of all transactions under analysis show that A and B exist together; and 60% 

confidence means 60% of transactions containing A also contains B. 

Most algorithms for association rule discovery mimic the same general modus operandi, based 

on the Apriori algorithm. The basic idea is to make multiple passes over the database, building 

larger and larger groups of associations on each pass. Thus, the first pass determines the "items" 

that occur most frequently in all the transactions in the database; each subsequent pass builds a 

list of possible frequent item tuples based on the results of the previous pass, and then scans the 

database, discarding those tuples that do not occur frequently in the database. The intuition is 

that for any set of items that occurs frequently, all subsets of that set must also occur frequently 

[21]. Apriori algorithm runs so many database scans in order to generate the rules; however if the 

database size is big the performance degrades significantly hence it has been parallelized to 

enhance performance when dealing with bigger datasets. 

The basic approach to parallelizing association-discovery data mining is via database 

partitioning. Each available workstation in the networking environment is allocated a subset of 

the database records, and executes independently on that subset. Parallel data mining algorithms 

require some amount of intelligent communication among the independent network nodes to 

coordinate them [21].  
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2.3.3.1 Apriori Based Algorithms  

2.3.3.1.1 Count Distribution:  

This algorithm achieves parallelism by partitioning data. The data is horizontally partitioned 

such that each of N workstations gets 1/Nth of the database. Each workstation performs an 

Apriori-like algorithm on the subset. At the end of each iteration, the local counts will be 

summed up across all workstations into the global counts so that frequent itemsets can be found. 

Thus, this algorithm trades off I/O and duplication for minimal communication and good load-

balance: each workstation must scan its database partition multiple times (causing a huge I/O 

load) and maintains a full copy of the (poor-locality) data structures used (causing duplicated 

data structure maintenance), but only requires a small amount of per-iteration communication (an 

asynchronous broadcast of frequency counts) and has a good distribution of work [21]. 

2.3.3.1.2 Data Distribution:  

This algorithm is designed to minimize computational redundancy and maximize use of the 

memory bandwidth of each workstation. It works by partitioning the current maximal-frequency 

itemset candidates (like those generated by Apriori) amongst work stations. Thus, each 

workstation examines a disjoint set of possibilities; however, each workstation must scan the 

entire database to examine its candidates. Thus this algorithm trades off a huge amount of 

communication (to fetch the database partitions stored on other workstations) for better use of 

machine resources and to avoid duplicated work [21]. 

2.3.3.1.3 Candidate Distribution:  

This algorithm is similar to data distribution in that it partitions the candidates across 

workstations, but it attempts to minimize communication by selectively partitioning the database 

such that each workstation has locally the data needed to process its candidate set. It does this 

after a fixed (small) number of passes of the standard data distribution algorithm. This trades off 

duplication (the same data may need to be replicated on more than one node) and poor load-

balancing (after redistributing the data, the workload of each workstation may not be balanced) 

in order to minimize communication and synchronization. The effects of poor load balancing are 

mitigated somewhat, since global barriers at the end of each pass are not required [21].  
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2.3.3.2 Vertical Mining 

The Eclat algorithm avoids most of the tradeoffs above by using an initial clustering step to pre-

process the data before partitioning it between workstations. It thus achieves many of the 

benefits of candidate distribution without the costs. Little synchronization or communication is 

needed, since each node can process its partitioned dataset independently. A transformation of 

the data during partitioning allows the use of simple database intersections (rather than hash 

trees), maximizing cache locality and memory bandwidth usage. 

To further optimize the Eclat algorithm it was further parallelized in [26]. It makes use of a 

vertical data layout by transforming the horizontal database transactions into vertical tid-lists of 

itemsets. By name, the tid-list of an itemset is a sorted list of ID’s for all transactions that contain 

the itemset. Frequent k-itemsets are organized into mutually exclusive equivalence classes by 

common (k-1)-prefixes, in order that candidate (k+1)-itemsets can be generated by concatenating 

pairs of frequent k-itemsets from the same classes. The support of a candidate itemset can then 

be computed simply by intersecting the tid-lists of the two component subsets. Task parallelism 

is employed by dividing the mining tasks for different classes of itemsets among the available 

processes [26]. The equivalence classes of all frequent 2-itemsets are assigned to processes and 

the associated tid-lists are distributed accordingly. Each process then mines frequent itemsets 

generated from its assigned equivalence classes independently, by scanning and intersecting the 

local tid-lists. The steps for the parallel Eclat algorithm are presented below for distributed-

memory multiprocessors [26]. 

1. Divide the database evenly into horizontal partitions among all processes; 

2. Each process scans its local database partition to collect the counts for all 1-itemsets and 

2-itemsets; 

3. All processes exchange and sum up the local counts to get the global counts of all 1-

itemsets and 2-itemsets, and find frequent ones among them; 

4. Partition frequent 2-itemsets into equivalence classes by prefixes; 

5. Assign the equivalence classes to processes; 

6. Each process transforms its local database partition into vertical tid-lists for all frequent 

2-itemsets; 
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7. Each process exchanges the local tid-lists with other processes to get the global ones for 

the assigned equivalence classes; 

8. For each assigned equivalence class on each process, recursively mine all  

 

Figure 12: Mining frequent itemsets using the parallel Eclat algorithm. 

2.3.4 Challenges in developing parallel algorithms for distributed 

environment 

The development of parallel association rule mining algorithms for a distributed environment is 

graced by so many challenges. The following are some of them: 

1. Data distribution: One of the major benefits of distributed/parallel data mining is 

“division of labor”. This means that each node will be tasked to work with just a fraction 

of the total database. For each node to make noticeable independent progress the parallel 

algorithm must effectively distribute data across the underlined environment. 

 

2. I/O minimization: Good data distribution must be supported with minimized I/O 

operations on the database. A lot of I/O operations significantly degrade the performance 

of an algorithm hence a good algorithm should minimize them. 
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3. Load balancing: In order to have the best results of parallelism, each workstation must 

be assigned approximately the same share of work to do. Normally if data distribution 

was carried out properly, it can help provide load-balancing. However some algorithms 

require periodic data redistribution to obtain excellent overall load-balancing. 

 

4. Avoiding duplication: Ideally, no workstation should perform work that is already being 

executed by another node. This is in essence a waste of environmental resources (CPU 

time, memory, network etc). 

  

5. Minimizing communication: A good parallel data mining algorithm should allow all 

workstations to smoothly and continuously operate asynchronously, without having to 

wait for global bureaucratic protocols or for communication delays. 

 

6. Maximizing locality: A well designed data mining algorithms is one that fully harnesses 

performance potential of hardware. This involves maximizing locality for good cache 

behavior, utilizing as much of the machine's memory bandwidth as possible, etc.  

Achieving all of the above goals in one algorithm is nearly impossible, as there are tradeoffs 

between several of the above points. Existing algorithms for parallel data mining attempt to 

achieve an optimal balance between these factors. 
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CHAPTER 3 – PROBLEM DEFINITION 

3.1 Motivation 

3.1.1 Misconception of big data 

As the world’s view of data transitions from just data to big data, there is a false impression that 

all big data is unstructured or semi-structured. There is a notion that only unstructured data is on 

the rise and only it requires new handling techniques. This is not true. The heat map below 

shows that all sectors still produce more semi-structured or structured data than unstructured data 

in terms of the number of units. 

Figure 13: Heat Map for types of data generated by various sectors [12] 
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According to an article on IBM Data Magazine by Cristian Molaro et al [28], structured data still 

constitutes approximately 10% of the overall volume of big data. He also claims that this 10% is 

the one that matters the most because most of the 90% of the unstructured data are “cutie selfies” 

which in most cases have no business value. Most organizations, decision makers, and business 

analysts and other information consumers, can derive better business intelligence from big data–

derived information when it is organized in a defined and structured manner rather than an 

unstructured one. This proves that as much as most of the big data (in terms of size) is 

unstructured, we cannot afford to ignore the structured data in big data. This 10% of big data 

requires new techniques and technologies because it is too big for traditional methods. There is 

therefore need for new platforms that can efficiently manage the enormous volumes of structured 

and semi-structured data being produced. The algorithms that are currently in existence are 

mainly intended to handle unstructured data and may not be as efficient in handling structured 

data. This has however motivated us to design a new algorithm by enhancing an already existing 

one. 

3.1.2 Market Basket data format 

Traditionally, research in the area of frequent itemset mining has focused on mining market 

basket data. Several algorithms and techniques have been introduced in the literature for mining 

data represented in basket data format. The primary objective of these algorithms has been to 

improve the performance of the mining process. Unlike basket data representation, no algorithms 

exist for mining frequent itemsets and association rules in relational databases that are 

represented using the formal relational data model. Typical relational data cannot be easily 

converted to basket data representation for the purpose of applying frequent itemset mining 

algorithms.  

Therefore, a need arises for algorithms that can directly be applied to data represented using the 

formal relational data model and for a conceptual framework for mining such data. However 

Abdallah Alashqur et al [4] developed an algorithm called RDB-Miner which can be directly 

applied to relational data model. In this paper we propose to parallelize this algorithm such it can 

be applied on big data. 
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3.1.3 Results from previous work 

In our previous work the results indicated that RDB-Miner algorithm can be implemented on 

HadoopDB. These experiments were carried out on a single cluster environment. The data was 

not distributed but still the performance was encouraging. These results have motivated us into 

proposing a parallel algorithm that will be implemented on a multi-cluster environment. It is 

most likely that the parallel algorithm will perform even better since there will be multi-tasking; 

work will be distributed over to more nodes.   

The results below show that HadoopDB executes the algorithm faster than MySQL. Figures are 

in seconds.  

 

Figure 14: Results for Volume of Data 
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Figure 15: Results for various minSup 

 

3.2 Problem Statement 

This project proposes to enhance the RDB-Miner developed in [4]. We aim to parallelize the 

algorithm such that it can be applied on structured data in big data and implemented on a multi-

cluster HadoopDB environment. The algorithm is intended to bridge the gap between 

unstructured data mining algorithms and structured data mining in big data. We aim to address 

the challenges outlined in section 2.3.4 of this report. 
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CHAPTER 4 – PROPOSED METHODOLOGY 

4.1 Proposed Implementation Environment 

In this paper we propose to design an algorithm that will be implemented on a multi-cluster 

HadoopDB that runs on a shared-nothing architecture. A shared nothing architecture (SN) is 

a distributed computing architecture in which each node is independent and self-sufficient, and 

there is no single point of contention across the system. More specifically, none of the nodes 

share memory or disk storage. [3] For simplicity reasons only three nodes will be used. Below is 

the proposed configuration. 

 

Figure 16:  Proposed multi-cluster HadoopDB configuration 

 

Since results will need to be consolidated at some point, one of the three nodes will act as a 

coordinator. The coordinator will be responsible for displaying the results collated from the other 



41 | P a g e  

 

Enhancement of RDB-Miner Algorithm for multi-cluster HadoopDB environment 

nodes. The coordinator will also be the point of entry for the query where the user submits the 

PRDB-Miner algorithm. The coordinator will also act as the master node which will host the 

NameNode and JobTracker which are important components for the Hadoop framework.  

The user interface will be a web page designed using PHP. The user will be able to specify the 

minimum support from the proposed user interface. The proposed relational database to be used 

on top of Hadoop is MySQL because it is ODBC compliant and also open source. Below is the 

proposed network topology. The laptop will act as the master node from which the user of the 

algorithm will be submitting queries to the cluster.  

 

Figure 17: Proposed cluster network topology 
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There will be an agent at each node. The agent will be response for communicating with the 

coordinator. The agent will receive instructions to execute each iteration.  

4.2 Proposed Parallel RDB-Miner Algorithm 

4.2.1 The original RDB-miner algorithm 

RDB-MINER is an algorithm for association rule mining on relational databases represented 

using the relational data model as opposed to basket data format. Therefore, this algorithm can 

be viewed as representing a new class of mining algorithms that is orthogonal to the class of 

algorithms represented by the Apriori algorithm. Viewed from a different perspective, we can 

think of RDB-MINER as an algorithm that performs inter-attribute frequent itemset mining, 

whereas existing algorithms perform intra-attribute mining. [4] 

 

Algorithm RDB-MINER [4] 

Input 

R: a database relation 

exclude_set: a subset of the attributes of R 

0 Begin 

1 Varchar SQL_str (512) 

2 Compute_N (N, R, exclude_set) 

3 Compute_PowerSet ( P (A) , R, exclude_set) ; 

4 For c = 1 to N do 

5 Extract_Ec (Ec , P (A) ); 

 

/* Ec ⊂   P (A) and each ISI ∈  Ec has a cardinality of c. */ 

 

6 For each itemset intension ISI ∈   Ec do 

7 Generate_SQL (SQL_Str, ISI, Relation_Name); 

8 Execute SQL_Str; 

9 SQL_str = “”; 

10 End 
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 Line 1 of the algorithm declares a variable called SQL_str, which is used to hold the SQL 

statement to be generated by the algorithm.  

 Line 2 calls the procedure compute_N, that returns N, the number of attributes of relation 

R after excluding the attributes in exclude_set. The input arguments to Compute_N are 

relation R and exclude_set. Exclude_set is the set of attributes (normally primary key 

attributes) to be excluded from the computation of N. Exclude_set is left empty if all the 

attributes of R are to be included in the computation. 

 Line 3 Compute_powerset procedure returns the power set, P (A), of relation R after 

excluding the attributes of exclude_set.  

 Line 5 extracts the equi-cardinality subset Ec from P (A). For example, in the 2nd 

iteration of the for loop, where c=2, this step returns the subset E2 = {{X,Y}, {X,Z}, {Y, 

Z} }, assuming we have the three attributes X, Y, and Z.  

 The for loop between lines 6 and 10 extracts the ISIs (An itemset intension (ISI) is a 

subset of the attributes of a relation)  from the equi-cardinality subset and generates and 

executes a SQL statement that computes the support of each such itemset. [4] 

 

Below is the basic flow chart for RDB-Miner algorithm. 
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Figure 18: RDB-Miner Flow Chart 

4.2.2 Improvement strategy 

To parallelize the RDB-Miner algorithm we will follow the logic in the Count Distribution 

algorithm outlined in [26]. However the proposed algorithm will not broadcast the consolidated 

global frequent itemsets; instead each node will transmit its local frequent itemsets to the 

coordinator which in turn consolidates the local findings of each node to construct the global 

frequent itemsets.  

  

Each iteration of the outer for loop that starts at line 4 extracts an equi-cardinality subset Ec from 

P (A). Each iteration of the inner for loop that starts at line 6 extracts an itemset intension ISI 

from Ec and generates and executes a SQL statement for that ISI. The generated SQL query 



45 | P a g e  

 

Enhancement of RDB-Miner Algorithm for multi-cluster HadoopDB environment 

computes the support count for a set of itemsets at once. Therefore, the net effect of the two 

nested for loops is to first compute 1-itemsets along with their support count. [4] 

 

Since the transaction data is horizontally divided into N data subsets which are sent to N nodes. 

We seek to modify the second for loop of the algorithm; such that before it moves to k-itemsets 

it has to consolidate the (k-1)-itemsets from all the nodes. The logic is as follows: 

 

1. Each node scans its data subset to generate the set of candidate itemset C p (candidate k-

itemset);  

2. The candidate itemset C p is divided into N different partitions, which are sent to N nodes 

with their support count. 

3. N nodes respectively accumulate the support count of the same itemset to produce the 

final practical support, and determine the set of frequent itemset Lp in the partition. At 

this point the nodes will not use the minSupport parameter to filter the frequent itemsets. 

4. Each node then sends its computations to the coordinator for aggregation/consolidation.  

5. The coordinator merges the output of the N nodes to generate the set of global frequent 

itemset Lp based on the set min_Sup. 

6. Do the same for (k+1) –itemsets until c=N (number of attributes in the relation). 

7. Output the final results. 

 

4.2.3 Pseudo Code for the proposed PRDB-Miner Algorithm 

 

Input at each node 

R: a partition of database relation  

exclude_set: a subset of the attributes of R 

0  Begin 

1  Varchar SQL_str (512) 

2  Compute_N (N, R, exclude_set) 

3  Compute_PowerSet ( P (A) , R, exclude_set) ; 

4  c = 1 

5  While c < (N+1) do 
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6   Extract_Ec (Ec , P (A) ); 

7   For each itemset intension ISI ∈   Ec do 

8   Generate_SQL (SQL_Str, ISI, Relation_Name); 

9   Execute SQL_Str = Cp; 

10   Send_Results(Cp);       

11  End For 

 

12       If CheckNodeCount() = TRUE then ConsolidateResults();  

13      c ++  

14      GOTO 5  

15 End While 

16 OutputResult() 

 

 

The improvements were put on lines 4 through 12. The explanations are as follows: 

 Lines 1 to 3 remain the same but they are executed at the master/coordinator node, 

 Line 4: a counter, c is initialized to 1, 

 The commands in line 5 to line 10 are executed at the slave nodes, 

 Line 5: the while loop checks to see if the counter c which counts the number of 

attributes in the relation/table has reached the total number of the attributes in the 

relation. If it true then it exits the loop and goes to line 16 and lets the master display the 

results, 

 Lines 6 to 9 are the same as in the original algorithm, 

 Line 10: SendResults() is a function that sends node results to the coordinator node. Its 

argument is the result generated by the Execute_SQL function in line 9. 

 Line 12: CheckNodeCount function is executed by the coordinator only to check if all 

slave nodes have sent their results to it. It returns TRUE if all nodes have sent else it 

returns FALSE. 

 Line 12: ConsolidateResults function is also used by the coordinator only to combine the 

results from all nodes and filters for frequent itemsets using minSup 

 Line 13 increments the counter c 
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 Line 14 triggers the agent at each node to execute the mining function at each node. It 

passes the counter c as an argument. 

 Line 16 outputs the results. The results are displayed at the master node. 

 

The basic flow chart of the proposed algorithm is shown below. 

 

 

 

Figure 19: Proposed PRDB-Miner Flow Chart 
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4.2.4 Assumption made for the proposed algorithm 

 

The scope of this project is to enhance the RDB-Miner algorithm such that it works in a parallel 

environment. There are therefore some assumptions that had to be made in order to narrow the 

scope of the project. The assumptions are as follows: 

 

1. The nodes in the cluster are connected by a high speed network and they are close to each 

other, that is, they are on the same local area network. This enables us to make a further 

assumption that there is no delay in relaying of information from one node to the other. 

2. The high speed network connecting the nodes will not fail during the data mining 

activity. This allows us to ignore handling of ‘dead’ nodes. If one node in the cluster is 

down, the algorithm will output an error and terminates. The master node will be 

responsible for monitoring response time for the nodes. If a node does not respond within 

a given timeframe, the master will assume that the node has failed, hence output an error. 

 

4.3 Test Data 

In this paper we will be using processed Multi-Domain Sentiment Dataset which contains 

product reviews taken from Amazon.com from many product types (domains). We downloaded 

the data from (http://snap.stanford.edu/data/web-Amazon-links.html) the same data that was used 

by J. McAuley and J. Leskovec “Hidden factors and hidden topics: understanding rating 

dimensions with review text, RecSys, 2013” [27]. 

We used reviews for Amazon Instant videos, Automotive, Beauty and Baby categories. Some 

domains have hundreds of thousands of reviews; others have only a few hundred. We mixed the 

reviews such that each node can have a variety of reviews. The reviews contain star ratings 1 to 5 

stars. The data is in a structured format and consists of four columns namely; ProductID – a 

string that uniquely identifies a product, ClientID – a string that uniquely identifies the reviewer, 

DateReviewed – date of review and the Rating – an integer between 1 and 5 which shows the 

review. The total number of records in the combined dataset is approximately 1.7million records. 

http://snap.stanford.edu/data/web-Amazon-links.html
http://i.stanford.edu/~julian/pdfs/recsys13.pdf
http://i.stanford.edu/~julian/pdfs/recsys13.pdf
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4.4 Performance Factors to be considered 

In this paper we will observe Execution time as a performance indicator. Execution time 

denotes the time taken (in seconds) by the algorithm to produce all association rules with the 

specified support. The execution time will be displayed and observed on the master node of the 

cluster. Three variables will be altered as the performance will be observed. The variables to be 

altered are minSup, number of cluster nodes and volume of data being worked on.  

4.5 Algorithm Implementation  

In this paper we intend to use the proposed algorithm to develop a simple Recommender System. 

The algorithm will extract rules that allow the user to make the following conclusion: 

Product X => Product Y, Product Z; this means that customers who liked Product X also liked 

products Y and Z. The minSup variable to be used is absolute support count. For instance if 

support for rule X=>Y is 5 it means that 5 customers who liked product X also liked product Y. 

A simple interface was developed using PHP. The screenshot below shows the simple user 

interface developed. The user will be able to select the nodes which he wants to use as well as 

specify the minSup from the interface. 
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Figure 20: User Interface 

 

Some chunks of the algorithm will be installed on each node. These chunks will be invoked from 

the master node/laptop. Each node will extract local frequent item sets and store them into a table 

called localAssociations. Federated tables for each localAssociation table will be created at the 

master node. The master node will aggregate the frequent item sets from nodes and eventually 

display the results depending on the specified minSup. The execution time taken to generate the 

rules will then be displayed at the end of the list of rules. Below is a screenshot that depicts this. 
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Figure 21: Rules and execution time 

 

Below is a portion of the code for the proposed Parallel RDB-Miner algorithm: 

<?php 

require "database.php"; 

/** Miner class to perform data mining operations  */ 

class Miner { 

    private $db;  // database object     

    /*** Miner constructor    */ 

    public function Miner() { 

        // get database object 

        $this->db = Database::getDBO(); 

    } /** * select all the reviews for product X and count them (number of reviews = 

NumOfProdReviews)   */ 

    public function process_reviews() { 
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        $sql = "SELECT productid, SUM(rating) as numOfReviews FROM reviews GROUP BY 

productid"; 

        $result = $this->db->query($sql); 

        if ($result->num_rows > 0) {           // output data of each row 

            while ($row = $result->fetch_assoc()) { 

                //echo "productid: " . $row["productid"] . " - Total Rating: " . $row["numOfReviews"] 

. "<br>"; 

                //insert product reviews in the database 

                $this->set_prod_reviews($row["productid"], $row["numOfReviews"]); 

                //set rules 

                $this->set_rules($row["productid"]); 

            } 

        } else { 

            echo "0 results"; 

        } 

    }    /** * insert productID & NumOfProdReviews into ProdReviews 

     * @param varchar $productID  

     * @param int $numOfReviews  

         public function set_prod_reviews($productID, $numOfReviews) { 

        $sql = "INSERT INTO prodreviews(productid,totalrating) 

VALUES($productID,$numOfReviews)"; 

        if ($this->db->query($sql) === FALSE) { 

            die("Error: " . $sql . "<br>" . $this->db->error); 

        } 

    } 
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    /** 

     * find the most reviewed product (besides productX) by these users  

     * (which product was reviewed the most by this set of users as a whole; lets call it Product Y)  

     * insert into Rules values productX (LHS field) ,ProductY (RHS field) 

     */ 

    public function set_rules($productid) { 

        $sql = "SELECT productid, SUM(rating) as numOfReviews FROM reviews  WHERE 

userid IN(SELECT userid FROM reviews WHERE productid=$productid)GROUP BY 

productid ORDER BY numOfReviews DESC"; 

        $result = $this->db->query($sql); 

 

        if ($result === FALSE) { 

            die("Error: " . $sql . "<br>" . $this->db->error); 

        } 

 

        if ($result->num_rows > 0) { 

            $row = $result->fetch_assoc(); 

            $sql = "INSERT INTO rules(lhs,rhs) VALUES($productid,{$row['productid']})"; 

            if ($this->db->query($sql) === FALSE) { 

                die("Error: " . $sql . "<br>" . $this->db->error); 

            } 

        } 

    } 

 

} 
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CHAPTER 5 – RESULTS AND ANALYSIS 

After the implementation of the PRDB-Miner algorithm, its performance was tested and 

compared to the results obtained from the previous experiment carried out for the original RDB-

Miner. The execution time is the time taken by the simple application to generate the rules and 

display them on the user interface as illustrated in Figure 20 in the previous chapter. The results 

obtained are as follows: 

 

5.1 Results for varying minSup 

This experiment was carried out with 1.7 million records horizontally partitioned and uploaded 

into three cluster nodes. The minSup variable used is the absolute count. The graphical results 

are shown below. 

 

Figure 22: Results for varying minSup for PRDB-Miner 

5.1.1 Observation 

The execution time gradually declined as the minSup increased. The execution time had a steady 

decent from minSup of 0 to 25 but it eventually became constant as the minSup continued to 

increase.  
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5.1.2 Explanation 

Low minSup value means that the algorithm will have to deal with a lot of data hence the longer 

execution times. The master node is responsible for filtering for frequent itemsets using the 

minSup value; if the value is low it means a lot of itemsets will qualify as frequent itemsets. If 

the number of records remains high for most cycles of the algorithm, it results in longer 

execution time. However as the minSup increases, it means that the algorithm filters out most of 

the records and disqualifies them as infrequent itemsets. As the algorithm continues to scan the 

node databases it will be left with just a few records to deal with hence it becomes faster to 

generate the rules.  

As the minSup continues to increase, the execution time becomes constant because the effects of 

all big minSup values will be the same. For example if there is no frequent itemset with a support 

of 30 in the whole cluster, if we put a minSup of 31 and if we put 50, the results will the same 

because no frequent itemset will be found in both scenarios. 

 

5.1.3 Comparison to RDB-Miner 

Below is the graph from our previous project. Both RDB-Miner and PRDB-Miner behaves in a 

similar way; the execution time declined as the minSup values increased. The above explanation 

for PRDB-Miner fits well for the original RDB-Miner. However execution times on a single 

cluster environment are significantly higher than in a multi-cluster environment. 

 

 

Figure 23: Results for varying minSup for original RDB-Miner 
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5.2 Results for varying data volumes 

The algorithm was also tested for varying volumes of data. This experiment was carried out 

using three nodes. Each node was allocated an equal potion of the whole data. The records in 

each partition were equally increased by 1 000 000 records during each experiment. The total 

number of records used in the three experiments was, 1.2 million, 1.5 million and 1.8 million 

respectively. The minSup was set to default 5 during the whole experiment. Below is the graph 

for the execution time. 

 

 

Figure 24: Results for varying volumes of data for PRDB-Miner 

 

5.2.1 Observation 

The execution time gradually increased as the volumes of data increased. However the increase 

was not very significant; an average of 2 to 3 seconds between experiments was observed.   

5.2.2 Explanation 

As the volume of data increases it means more data items and consequently more frequent 

itemsets. The more data there is the higher the execution time because the number of records 

remains high for most cycles of the algorithm. More records imply that large volumes of data 

will be exchanged between slave nodes and the master node resulting in some overheads. Also 

there will be strain on the master node as it will be having more data to filter and aggregate. 
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5.2.3 Comparison to RDB-Miner 

 

Both RDB-Miner and PRDB-Miner behaves in a similar way when subjected to increasing 

volumes of data; the execution time increases as the data volumes increased. The above 

explanation for PRDB-Miner fits well for the original RDB-Miner. However execution times on 

a single cluster environment are significantly higher than in a multi-cluster environment. Below 

is the graph for RDB-Miner algorithm. 

 

 

Figure 25: Results for varying data volumes for original RDB-Miner 

 

5.3 Results for varying number of cluster nodes 

The algorithm was also tested on varying number of nodes in the cluster. The maximum number 

of nodes we could use was four. The number of records and minSup remained constant in this 

experiment. 1.7 million records and minSup of 5 was used in this experiment. Below is the graph 

of results observed: 
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Figure 26: Results for varying number of cluster nodes for PRDB-Miner 

 

5.3.1 Observation 

The execution time gradually decreased as the number of nodes increased.  

 

5.3.2 Explanation 

The steady and gradual decrease of the execution time is as a result of increased “division of 

labor”. Since the number of records remained constant as the number of nodes increased; it 

means each node received a smaller portion of the data than in the preceding run. Consequently 

this resulted in a shorter processing time for each node.  

 

5.3.3 Optimum number of nodes 

It is our hope that there exist an optimum number of nodes for the algorithm. The optimum point 

is where we can get the best performance of the algorithm. As the number of nodes continues to 

increase after reaching this point, it is most likely that the performance of the algorithm will start 

to fall because the data will be continually partitioned into smaller and smaller chunks such that 

each node will have very few records. Each node will have very little to do. The major task will 

be that of filtration and aggregation. This will result in a bottleneck at the master node since it 

will be faced with a lot of records to deal with. In such cases parallelization will be of no effect 

as one node will be left with much of the work. The optimum number of nodes is dependent on 
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the number of records being acted upon. For fewer records the optimum number will be smaller. 

Below is an illustration of this scenario: 

 

Figure 27: Optimum number of nodes 
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CHAPTER 6: CONCLUSION AND FUTURE 

WORK 

The proposed algorithm, Parallel RDB-Miner performed remarkably and better than the original 

RDB-miner in the experiments carried out. It was also concluded that Parallel RDB-miner works 

well for relations that have a few number of attributes but have a large number of records. A high 

number of attributes results in a higher number of iterations thereby resulting in poor 

performance.  

In future we hope to find a formula that calculates the optimum number of cluster nodes given 

the number of records. We also desire to further enhance the algorithm such that it becomes 

more resilient to node failure since this is a reality we cannot afford to ignore. Also we intend to 

test the algorithm on other open source SQL-on-Hadoop platforms such as Hive.  
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CHAPTER 7: PUBLICATIONS FROM THESIS 

This chapter briefly highlights the publications that have been worked out during this research 

work. 

7.1 Research paper accepted by journal 

 

The research paper entitled “ASSOCIATION RULE MINING FOR STRUCTURED DATA 

IN BIG DATA USING PARALLEL RDB-MINER ALGORITHM” by Tererai Tinashe 

Maposa and Manoj Sethi, has been accepted for publication by the International Journal of 

Computer Science and Mobile Computing in Volume 4, Issue 6. The Paper ID is 

V4I6201599a64. The paper discusses the new algorithm designed in this thesis and the results 

obtained from the implementation. 
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