A Major Project Report On

BIOGEOGRAPHY BASED OPTIMIZATION FOR COMPLEX SYSTEM

Submitted in partial fulfilment of the requirements

For the award of the degree of

MASTER OF TECHNOLOGY IN

SOFTWARE ENGINEERING

By

MANAS GAUR

(Roll No. 2K13/SWE/07)

Under the guidance of

DR. DAYA GUPTA

Professor

Department of Computer Engineering

Delhi Technological University, Delhi

Department of Computer Engineering

Delhi Technological University, Delhi

2013-2015

DELHI TECHNOLOGICAL UNIVERSITY CERTIFICATE

This is to certify that the project report entitled **BIOGEOGRAPHY BASED OPTIMIZATION FOR COMPLEX SYSTEM** is a bonafide record of work carried out by **Manas Gaur** (2K13/SWE/07) under my guidance and supervision, during the academic session 2013-2015 in partial fulfilment of the requirement for the degree of Master of Technology in Software Engineering from Delhi Technological University, Delhi.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to any other University/Institute for the award of any Degree or Diploma.

Dr. Daya Gupta
Professor
Department of Computer Engineering
Delhi Technological University
Delhi

DELHI TECHNOLOGICAL UNIVERSITY ACKNOWLEDGEMENT

I feel immense pleasure to express my heartfelt gratitude to **Dr. Daya Gupta** for her constant and consistent inspiring guidance and utmost co-operation at every stage which culminated in successful completion of my research work.

I also would like to thank the faculty of Software Engineering Department, DTU for their kind advice and help from time to time.

I owe my profound gratitude to my family which has been a constant source of inspiration and support.

MANAS GAUR

Roll No. 2K13/SWE/07

TABLE OF CONTENTS

LIST OF FIGURES	VÌ
LIST OF TABLES	
ABSTRACT	viii
CHAPTER 1. INTRODUCTION	1
1.1 General Idea	1
1.2 Motivation	2
1.3 Related Work	2
1.4 Problem Statement	3
1.5 Objective and Scope	4
1.6 Organization of Thesis	4
CHAPTER 2. LITERATURE SURVEY	6
CHAPTER 3. TEST SUITE OPTIMIZATION	9
3.1 Generic Biogeography Based Optimization [BBO]	9
3.1.1 Algorithm for Biogeography Based Optimization	10
3.1.2 Discussion	11
3.2 Generic Extended Biogeography Based Optimization	11
3.2.1 Algorithm for Extended BBO	11
3.2.2 Discussion	12
3.3 Test Suite Optimization [TSO]	13

CHAPTER 4. EARLY META-HEURISTIC ALGORITHM AND SUPPORT VECTOR MACHINE FOR TEST SUITE OPTIMIZATION	18
4.1 Ant Colony Optimization [ACO]	18
4.1.1 Algorithm of ACO for solving TSO	19
4.1.2 Discussion on ACO Algorithm	20
4.2 Firefly Algorithm	20
4.2.1 Algorithm of Firefly for solving TSO	21
4.2.2 Discussion on Firefly Algorithm	21
4.3 Support Vector Machine [SVM]	22
4.3.1 Algorithm of SVM for solving TSO	22
4.3.2 Discussion on SVM Algorithm	23
4.4 Harmony Search	23
4.4.1 Algorithm of Harmony Search for solving TSO	24
4.4.2 Discussion on Harmony Search	25
CHAPTER 5. RECENT APPROACHES TO TEST SUITE OPTIMIZATION	27
5.1 Biogeography Based Optimization [BBO]	27
5.1.1 Algorithm of Migration modified for TSO	28
5.1.2 Algorithm of Mutation modified for TSO	31
5.1.3 Pseudo Code of BBO for solving TSO	31
5.1.4 Discussion and Flow Chart of BBO for TSO	31
5.2 Extended Biogeography Based Optimization [EBBO]	32
5.2.1 Simulated Annealing	34
5.2.2 Pseudo Code of EBBO for solving TSO	34

5.2.3 Discussion and Flow Chart of BBO for TSO	34
CHAPTER 6. DATASET, SIMULATION ENVIRONMENT, RESULT AND	
ANALYSIS	35
6.1 About JBOSS Application Server	35
6.2 Simulation Environment	35
6.2.1 What is Rapid Miner?	35
6.2.2 What is R PROGRAMMING?	36
6.3 Results and Analysis	36
6.4 Discussion	42
CHAPTER 7. CONCLUSION AND FUTURE WORK	44
CHAPTER 8. LIST OF PUBLICATIONS FROM THE RESEARCH	45
CHAPTER 9. REFERENCES	46

LIST OF FIGURES

S.no	Name of Figure	Page No.
1.	The variation of immigration and emigration probabilities in BBO	9
2.	Test suite diagram	14
3.	Generic Flow Chart of Test Suite Optimization Problem	15
4.	Flow chart of Harmony Search for TSO, A: Is fitness > HM Best, B: Complete Coverage, C: Max Iteration	23
5.	Flow chart of BBO	29
6.	Flow Chart of Extended BBO	33
7.	Test Suite Priority after BBO	36
8.	Left figure shows test cases 2 and 9 after BBO while right shows test cases 2 and 9 before BBO	36
9.	Test data of JBOSS, FC: Fault Covered, ET: Execution Time	37
10.	Fault Detection Rate (FDR) after modified BBO	37
11.	Emigration and immigration probability transition in modified BBO	38
12.	Test suite minimization after modified BBO	38
13.	Harmony search module 5 was tested by test suite 1	38
14.	The individual in square box are redundant test cases created by harmony search	39
15.	Test Case Priority generated by Harmony Search	39
16.	Change in Attribute's weight after SVM	40

17.	Test Suite prioritization using SVM	40
18.	SVM Simulation model in Rapid Miner	42

LIST OF TABLES

S.no	Name of Table	Page No.
1.	Simulation Environment for the Research work	35
2.	Parameters modified during application of Meta-heuristic technique for TSO	35
3.	FDR Before and After BBO	37
4.	Performance Value of SVM (Classification)	41
5.	Comparison between various Heuristic Intelligence algorithms applied in TSO	42

ABSTRACT

Test Suite optimization is category of concern when it comes to reducing the time consumption during the testing process. During the software development life cycle, errors are tend to be noticed during the maintenance phase, for which regression testing is employed. For regression testing activity to be carried out in productive manner, it is crucial to select appropriate set of test cases that provide complete coverage and reducing time consumption during testing phase. Earlier work on test suite optimization employed various heuristic algorithms, Greedy algorithms and simulated annealing approach. A common drawback of these algorithm is that all are based on some gradient functions and are sensitive to differentiability and discontinuity in the problem domain. In order to improve the efficacy of test suite optimization process, we modified and tested a meta-heuristic algorithm, Biogeography based optimization (BBO) to minimize, prioritize and select efficient test cases from test suite. The algorithm was low on resource utilization, execution time and complexity when compared with other nature inspired algorithms viz. Harmony Search, Ant Colony Optimization and Firefly, which have been used for test suite optimization (TSO). Since traditional statistical technique like support vector machine have been used in the domain of software testing, hence, we compare support vector machine with extended BBO, for test suite prioritization to show the efficiency of computational intelligence over supervised learning classifier. The results proved that BBO for TSO has reached the state of the art when applied on real time software data.

Keywords – Biogeography Based Optimization (BBO), Harmony Search (HS), Ant Colony Optimization (ACO), Firefly Algorithm, Simulated Annealing, Test Suite Optimization (TSO), Support Vector Machine (SVM).