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ABSTRACT

Inefficient processes in industries can cost a lot of time, money and customer satisfaction. Quality assurance is a
very important aspect for industries. As a result, to improve their processes and become more efficient at the global
level, they have started to automate their certain tasks for which humans were generally considered to perform them.
And one such popular task is Industrial Inspection . As a result, intelligent visual inspection systems are developed
to ensure high quality of products in production lines. Advancement in image processing and computer vision
techniques has led to the development of Automated Visual Inspection Systems. These systems are required in
industries to inspect the manufactured products, so as to identify any discrepancies in them. Thus, they play an
important role in industries by ensuring that only good quality products enter into the market because selling
defective products in market can lead to large losses for goods manufacturing industry. One such industry is Textile
Industry where these systems are of great importance. They identify defects occurring in textile cloth. Several
algorithms have been developed based on different approaches so as to identify defects in texture patterns. Presence
of complex defects is a major hurdle for many such algorithms and that is why new ideas keep on emerging to
develop more efficient algorithms which can identify such type of defects in texture patterns. On the same lines, this
major project report presents a new algorithm based on a new approach to identify complex defects in texture in a

more efficient and accurate manner.
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CHAPTER 1

INTRODUCTION



1. Introduction

In modern industrial manufacturing, product inspection is an important feature. In order to maintain the fabric quality
in the textile industry, automatic texture inspection is crucial. Before automated inspection, industries were
dependent on human visual inspection, thus hiring skilled people for identifying defects in the fabric. This was an
inefficient method as well costly. Long hours of inspection would exhaust these people and thus reducing their
efficiency in their task of detecting defects. Therefore, for the whole process of inspection to be effective, there is
requirement of automated texture defect inspection for cost reduction. The texture defect detection algorithm has to
be efficient for an automated inspection system. One of the most intriguing and hardest areas of image processing is
complex texture defect detection. Therefore in order to develop an automatic visual inspection system for texture
images, analysing and studying texture patterns is important. [1].

Texture defects cause 80-84% of the defects in the textile industry [2]. Due to the presence of defects in texture,
production houses recover only 40-60% of profit from defective quality products [3]. To avoid such losses due to
defects, their identification and prevention is necessary. Therefore, there is very need of an automated inspection
system which detects the defects in texture patterns and thus helps in improving the product quality, so that
productions houses do not incur losses and customer satisfaction is also met. Apart from this, automated defect
detection systems reduce the cost of products of defective quality. Earlier, defect detection was done after a sufficient
amount of textile is produced. This amount of textile is removed and is sent for defect detection procedure. A better
approach would be to detect the defects in texture during the time of production from the machine and if required
inform the person in charge of the machine for repair. And this can be done using the image processing techniques
for detecting the texture defects. Therefore, it is quite economical to invest in the automatic texture inspection system

when we consider its cost and related benefits.

1.1 Fabric Defects

Yarn quality as well as irregular weaving machine operations generally affect the quality of textile. A low quality
yarn will lead to certain type of defects such as width inconsistencies, broken ends, hairiness, etc. Apart from poor
yarn quality, defects can also be generated by looming or weaving machines if their surrounding conditions are
changed. Change in surrounding temperature, humidity, etc can cause change in the normal working of the weaving
machines. This can lead to defects such as double yarn, missing yarn, variation of yarn etc. Variations in the tensile
strength of one or more strands of the yarn is generally misread as defect due to poor quality of yarn. There are
various categories of defects of texture and a minute change in the looming process can lead to the generation of a

new type of texture defect. Following diagram shows some basic types of fabric defects:

(a)Double yarn (b) Missing yarn (c) Broken Yarn (d) Variation of yarn
Figl.1. Some general fabric defects



1.2 Traditional Inspection

Texture defect detection can be done in two different ways. The first method involves the inspection of the weaving
process in which it is continuously overseen for the existence of defects. But as the weaving process is quite
complex, this kind of inspection is not followed in the textile production industries. The second method involves
inspection of the manufactured textile for the existence of defects. The weaving machines in the textile industry
manufacture textile at the speed of 0.2-0.4 meters per minute which is 1-2 meters wide. Due to the slow pace of
textile production by weaving machines, the textile inspection process cannot be performed efficiently because a
human inspector is bound to get distracted after some time and it is quite difficult to focus for a long time
continuously to detect defects. The surrounding environment of textile production [2] near the weaving machines is
also relatively hostile .In traditional inspection method, a sufficient amount of textile is removed from the weaving
machines and placed on the inspection table. When a defect is detected by the human inspector on the moving textile,

he stops the operation, registers the defect and its position, and starts the operation again.[3]
1.3 Automation for Inspection

Due to the high cost and inefficient human visual inspection process, there arises the very need for automating the
inspection process. The automated inspection system is quite complicated and requires integration of large number of
sub-systems and components[4]. Nickolay [5] have shown that utilizing an automated texture inspection system is
guite economical because it leads to reduction in personnel cost and labour. The basic architecture of an automated
fabric web inspection system is shown in Fig. 2. As we can see from the diagram, lightning conditions and image
acquisition is very important for such systems and that is why there is a series of cameras to scan the texture from
every angle. The following are the basic components of such a system: frame grabber , a lighting system, a computer
console accommodating processors, and electrical as well as mechanical interfaces for the inspection machine. Huge

parallelism is generally employed in image acquisition and defect detection[38].
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DIFFERENT TYPES OF
APPROACHES OF DEFECT
DETECTION



2. Different Types of Defect Detection Methods

Various techniques exist for identifying the defects in texture patterns. Some of the commonly used techniques are

discussed below:

2.1 Defect Detection using Co-occurrence Matrix Features

For the texture features to be characterized, spatial interactions among pixels in the neighbourhood are used due to
the reason that texture is considered a neighbourhood property. In order to study texture analysis, the co-occurrence
matrix method is widely used to study texture analysis and this method is also known as spatial gray-level
dependence method [37]. The repeated occurrences of several grey level values in a specific direction and distance is
the basis on which the method depends on. Generally computation of features of a texture is done through techniques
of visual inspection which are automated for images with textures in the spectral or spatial domain. The definition of
defect detection is defined in [40] using sub band domain co-occurrence matrices. The co-occurrence matrix is used
to derive features of a texture namely entropy, homogeneity, energy, contrast and correlation [6]. Following diagram

shows the basic concept of a GLCM formation from a matrix.
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Fig.2.1 Creation of GLCM
Haralick gave 14 texture features in [7] , which are computed from GLCM. These features characterize different
spatial aspects of a texture and give statistical measure of the different properties of a texture pattern. Following

table gives the 14 features which were given by Haralick.



Table. 2.1 Haralick’s 14 Features calculated from GLCM
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2.2 Defect Detection using Edge Detection

The amount of edge per unit area distribution is considered by the defect detection when the edge detection is used.
It is considered a feature important for the detection of any defect in textured images. Other spatial discontinuities
along with edges, lines and point defects represent for a texture image how much transitions of gray levels are
present. For detection of defects in texture the following features are used [8]-[10]. Conci and Proenca [9] used Sobel
operator for detection of defects in texture and comparison of results was done with thresholding based methods. In a
basic methodology, the transformation of the texture image into a gradient image is done using a set of operators
such as Sobel Operator, Prewitt Operator, etc. Now, in order to separate pixels which are defected from those pixels
which are defect-free, thresholding is applied on this gradient image. For further separation of pixels which are
detective from noise, the image result is dilated with the Structural Element. The blob analysis is finally done in the
last step, which labels the connected pixels as single object which is considered to be a defective region in the
texture. Use of edge detection with defect detection approaches [8]-[10], [11] is mostly suitable for low resolution
plain textured images. Major drawback of this technique occurs when the defects are not isolated correctly due to
generation of noise from structure of texture resulting in false detections at a high rate eventually making them less

suitable for textile inspection in real time.
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Fig. 2.2 Sobel operator

2.3 Defect Detection using Bi-Level Thresholding

A simple method of Bi-Level thresholding can be used for detection of defects with high contrast. The presence of a
texture defect causes the fall or rise of the signal level locally; thus a through or peak occurs which indicates a defect
easily detected by use of thesholding technique. In bi-level thresholding method, a threshold value is found out
which can be used to detect a defect in the sense that if t he value is greater than threshold, it may be considered as a
defect and if it is less than threshold, that region is defect free or vice versa. This kind of defect is detected mainly
when a decision threshold is crossed by the signal. Norton-Wayne et al. [12]-[13] made use of this approach for
detection of textile defects on moving at one meter per second speed. However, the method was not able suitable
enough because presence of noise in the image was also considered as a defect. The description of defect detected in
fabric is done by Bradshaw [14] and Cho et al. [15] with the use of bi-level thresholding. An improved version of bi-
level thresholding is developed in which adaptive thresholding is used for detection of defects with low contrasts in
galvanized metallic strips [16]. For detection of defect techniques using bi-level thresholding, the main advantage is
the implementation simplicity, but the techniques fail to detect those defects which appear without changing the

mean gray intensity level in defect-free areas. Though easy but this techniques fails in many textures in which

complex defect are there which does not change the gray-level values in the defect-free regions.

2.4 Defect Detection using Neural Networks

One of the fastest and most flexible classifier is the use of neural networks in fault detection due to their ability to
categorise complex data decision boundaries and also due to the fact that they do not require any parameter to be
passed upon. In [17], for the segmentation of local textile defects, a new approach using feed-forward neural network
(FFN) is described. In this method it is assumed that defect changes the gray-level distribution of neighbouring
pixels. So, using the neighbouring pixels, features of every pixel are calculated and the reduction of feature
dimension is done using Principal Component Analysis. And finally the classification of the pixel’s feature vectors

into defective and non defective categories is done using FFN. Following is the block diagram of this approach:
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Fig.2.3 Block diagram of a Fabric Defect Detection using FFN

Feature extraction of a pixel is basically based on the gray values of the neighbouring pixels rather than some
statistical measures. Though FFN is fastest among all the neural networks but implementing the detection of defect
using FFN in real time is costly in terms of. Therefore, a solution which is economic for detection of texture with the
use of a neural network which is of linear described in [17], [18]. Hung and Chen used the fuzzy technique and
backpropagation neural network together for the classification of eight different fabric defect types along with the
fabric which is defect-free[19]. Apart from FFN, Support Vector Machines (SVM) are another simple technique not
suffering from local minimum problem usually occurring in FFN. Therefore detection of defects in texture with the
use of SVM is proposed in [20]. Large intra-class diversity in a large number of classes of fabric defects remains a

major obstacle for the use of SVM [20] and FFN [21], [17] based approaches for the inspection of fabric online.

2.5 Defect Detection using Discrete Fourier Transform

Enhancement of features which are periodic and noise immunity are the two important features of the Fourier
transform (FT). The most important feature of FT is that it uses frequency components in describing the texture of an
image. The periodically occurring features can be observed quite easily from the degree of frequency components. In
order to detect the different types of defects in fabric, fourier transform is used. For extraction of seven significant
characteristic parameters, the central spatial frequency spectrum is used for detecting the defects. Warp and weft yarn
patterns together form the woven texture image. The yarns are basically 1-D are represented by a set of impulses
modulated using profile of one yarn [22]. Because of textured components which are stochastic in nature, the proper
localization of the local maxima peaks in the 2-D frequency plane is not done. Due to this reason, Goddard Sari-
Sarraf and [23] in order to include frequency components which are local used contiguous concentric rings having
constant width. However, use of local frequency components for texture defect identification is described by Chan
and Pang in [24]. Tsai and Hu in [25] presented Fourier Models of four different types for defects in texture; missing
pick missing end, oily fabric and broken fabric. Fourier features of the real defects in texture with the use of DFT are

extracted using these models.



2.6 Defect Detection using Morphological Operations

Use of morphological operations for detection of defects is described in [26]. Firstly histogram equalization of every
inspection image is done and to generate a binary image, thresholding of the resultant image is done. In the training
phase, optimal size of Structuring Element is determined using the binary image of defect-free texture by using
autocorrelation function. Now, in testing phase the size of SE which is optimal is used. Using SE, erosion and
dilation operations are applied on each binary test image. The distance between defective pixel results is used for
grouping defects into blob defects. The method is limited for practical application as most of the general defects in
texture will not be present in the binary image generated by a simple method of thresholding. Datta and Mallik-
Goswami [27] in order to detect defects performed laser-based morphological operations. Through this approach, the
structure of fabric in optical domain which is periodic is by introduction of Fouriers lens after proper spatial filtering.
Thus only on defective aperiodic images the morphological operations are performed. However, the defects are
obvious for the experimental results given in [27] and there is no suggestion of an advantage over other less complex

approaches which are available.

2.7 Defect Detection using Gabor Filters

The efficiency of methods based on WFT has shown importance of the conjoint analysis of the image texture in both
spatial and frequency domains. Due to this reason, features of textures representing the frequency components in
regions which are local in the spatial domain of texture pattern have led to a new area of research. The extraction of
these texture features from the inspection images can be done through local spatial filtering. For this filtering, the 2-
D Gabor filters are ideal in many ways [106]: firstly, they have axial frequency bandwidths and tunable angular,
tunable center frequencies, and can achieve optimal joint resolution in frequency and spatial domain. Gabor filter
parameters can be easily augmented for a known category of defects to be distinguished. Such texture defect
segmentation with the use of optimal Gabor filter is shown in [42]-[44], [45], [49]. The orientation and dimension of
local defects which are generated on the textile web varies in a random manner. As a result, a general web inspection
system which uses a bank of asymmetric and symmetric Gabors filters are shown in [49], [46]-[47] and [48]
respectively. The texture segmentation methodology in human visual system is explained in the retinal adaptions
with the sigmoidal shaped nonlinearity and the Real Gabor Functions. As a result, a set of multiresolution and
multiorientation RGF, followed by 20 inter-scale and intra- image fusion has suggested fabric defects segmentation
[51], [52]. Kumar [50], [18] also demonstrated that the FFT can be used in defect-free texture to calculate the

dominant spectral component which can be used for automatic selection of the Gabor filter’s center frequencies.
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3. Defect Detection Using Segmentation

The algorithm which | have implemented for defect detection using segmentation is described in [28.]. Compared to
the other algorithms, it is quite fast and simple. This algorithm has two basic steps: the first one is feature extraction
in which simple features are extracted and the second one is segmentation in which based on the extracted features,

defects are segmented. These steps are quite simple and easy to understand.
3.1 Feature Extraction

Initially the given image is preprocessed and after this, feature extraction is applied on it in order to extract features.
The first step is to convert the given image to gray scale image. And then, for each row of the image, we calculate
the median value
Consider an image Img(m,n) , the median for each row is calculated as follows:
1. fori=1tom
Median(i)=Xmg from X, Xa, ...Xmd, Xmd-+1,--Xn

where md = n7+l when n is odd.

We use the above equation to find the median value of a row in case when the number of elements in the row is odd.

2. fori=1to m

. « Xmd + Xmd +1
Median(i)= T from Xy, X2, ... Xmd, Xmd+1,--Xn

n .
where md = E when n is even

The above equation finds the median value of a row in the case when the number of elements in a row is even.
3.2 ldentification of Defected Area

The above calculated median value for each row and greyscale image I(m,n) are used for detecting the defective
region. In order to detect the defective region in the image, each pixel intensity is compared with the median value of
that row and the previous pixel value, if there is a sudden change in the intensity level, then that pixel is considered
to be in the defective region. If this sudden change in the intensity is atmost 60% of the previous pixel value or the
median value, then that pixel is identified to be in the defective region.

To identify the defected area, apply the following equation:

forx=1tom
for y=1ton-1
if (Img(x,y) < median(x)*0.6 OR Img(x,y+1) < Img(x,y)*0.6)

12



Img(x,y)=255

else

Img(x,y)=0
Display Img(m,n), which contains the defected area in white colour and rest is black.

13
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4. Texture Defect Detection using Regularity Approach

This section contains the two basic topics for texture defect detection described in [29] and [30]. These papers
explain two basic approaches for texture defect detection, i.e regularity and local orientation approach. The first one
defines texture defects to be as the regions where regularity falls suddenly, and the second one as disturbances in the

dominant orientation. Among these, the first approach is explained in the following sections.

4.1 Regularity Approach

The regularity approach searches for irregularities- here irregularities are defined as regions where regularity of a
texture pattern is considerably lower than its dominant value. For a set of windows, regularity features are
computed, then outliers occurring in the regularity feature space are identified as defects. The basic assumption of
this approach is that most of the basic region of defect free texture, has some periodicity. The first step of this
approach is to compute the regularity feature values for a set of windows spanning the texture image containing the
defect. From these regularity values, the one with maximum value is considered to be the maximal regularity, which
denotes that this is the dominant regularity value of the given texture . Maximal regularity is shown to be equivalent
to the human judgement of regularity and is used to detect defects in the texture. After this, the third step is outlier
detection. In this step , outlier points which fall outside the cluster of defect free pattern are detected as defective
regions.The algorithm described in this section is called StrucDef [29].

In StrucDef , pattern regularity is computed by calculating in-polar coordinates and the periodicity of autocorrelation
function. Maximal regularity feature is defined by the feature vector. Maximum value of the directional regularity
R(i) is called the Maximal Regularity. Regularity feature vector having four features is defined based on R(i).

Detailed steps StrucDef algorithm are mentioned below.

4.2 The Contrast Function

Consider a digital image I(m,n) of MXN size and a spacing vector of (dx, dy), where mis row and n is column. The

autocorrelation function of I1(m,n) when normalised is defined as:

1 M-1 N-1
pxy(dx,dy)zs—z Do 1(m,n)I(m-+dy,n+ k) 1)
2m=0 n=
Where k=0,1,2,....
M-1 N-1
Sc=>" > 1Xmn) 2
m=0 n=0

For faster calculation [31], fourier transform is used to calculate autocorrelation as:
Pry(mn)= IFFT[FFT[I(m,n)]*FFT[I(m,n)]] 3
where IFFT is the Inverse FFT.
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As the, pattern regularity needs to be computed for different directions ,a polar representation form of the
autocorrelation function is most suitable. This representation, Py,(a,d) is defined for magnitude (spacing) d an angle
a. Given a non-integer location (ox, dy) in Py, (dX, dy), ox=d cos a; dy = - d sin a; the value in this location is
obtained by the linear interpolation of the four neighbouring pixels. Using the interpolation, Ppy(a,d) is calculated
on the polar grid (ai, dj), where ai = Aa.i; dj = Ad:j. The resultant matrix is shown by Pyq(i,j). Generally, Ad =1is
set and we let the spacing d to the maximum value of N/2: It is supposed that N/2 will span over at least two if not
more periods of the texture pattern. Usually, we set Aa = 3°or 5° as it is task dependent.

The autocorrelation function is normalised: P ¢ [0,1]. Mostly, negated version of this function is used and is called
autocorrelation based interaction map:

Mpoi(1,))=1- Ppal(i,j)  from My=1- Py(m,n) (4)

where Dy (i ) is the polar representation of the autocorrelation function.

In an interaction map, the periodicity vectors of the structure are shown to be occurring as dark points. A single row

of Mpol(i, j) is known as contrast function. It shows the variation of contrast along a given direction i with spacing
d.

random
regular

weak regular

d d d

Fig. 4.1 Typical curves of contrast functions of a random, weak regular and a regular pattern

4.3 Computing Directional Regularity

The regularity measure for the direction i=1,2,...Na Where Na=21/Aa is the number of total directions considered is
grounded on contrast function F;(d). Generally, a structure with periodicity will have a contrast function having deep
and periodic minima. For an angle i, the directional regularity, R(i) can be defined as:

R()=[Rin(i)Roos(i)]’ (5)

Where Rix(i) is the intensity regularity and it shows how regular is the intensity of the pixels in the pattern. Ryes(i) is
the position regularity which indicates the periodic nature of the layout of the pixels in the pattern. While examining
the periodicity of the pattern, two cases are taken into consideration. The first case occurs when the depths of the
global minima decrease monotonically with d. The second is the unusual case which can lead to possible
inhomogeneity of the texture pattern, where the monotonicity may not hold. The algorithm involves three

procedures as follows:

Procedure 1 : Finding the extrema of F(d)
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Step 1: Firstly, to remove the noisy extremes, apply the median filter of width 3 to F(d). Original unfiltered function
is denoted by Fo(d).
Step 2: Find the extremes of the filtered function F(d), except for the points d = d.x and d = 0 . Denote the total

number of minima and maxima by N, and Ny, respectively.

Procedure 2 : Computing intensity regularity Ry,
Step 1: Calculate the amplitude of each maxima as follows: starting from the maximum, move right till a higher
value of maximum is found, then store the lowest minima in this interval, then store the difference between the
initial maxima and this lowest minima.
Step 2: Select the maximum (d’max , F'max) having the largest amplitude F’pax — Fmin where F’rin is the lowest
minimum assigned to F’ .
Step 3: Resolve F’ .« by searching Fo(d) for an even higher value in the +-2 neighbourhood of d’max. Set F’nax to the
highest value found in the neighbourhood.
Step 4: Similarly, resolve F’ i, but this time search for a smaller value.
Step 5: Calculate the intensity regularity
Rin=1— %
max (6)

Procedure 3 : Computing position regularity Ry
Step 1: If only one minima exists (N, = 1), find the position dy.x of the highest maxima and the position d; > dnax

of the lowest minima after d,,y , then set

1_ |d1— 2d max|
dil (7)

and stop. Else (Nmi, > 1), select the two lowest minimum values (d;, F;) and (d, , F,) , d; < d,, and continue.

Rpos =

Step 2: If there is no minima between d; and d, (normal case), calculate

Rpos :1—|1—2]/| (8)
where ;/:E, O<y<l
d:
Else, (special case), consider also
Rye= A= 113 ©)
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else

R'pos =0

and select the larger value from Rpesand R pos -

The regularities are normalized so that Riq € [0,1] and Ry € [0,1]. By default Rint = Rpos = 0 if Nipin = 0 0r Njpay = 0.

Though median filtering in procedure 1 removes false extrema, but it also shifts the true ones. The correction steps 3
and 4 in procedure 2 reinstate the original values of the amplitude.

4.4 Defining the regularity feature vector

The maximal regularity indicates prevailing direction within the texture pattern which display stronger periodicity.
Although affine transformations change the shape of this cyclical function, the order of the significant maxima, their
height and number remain quite stable. This is because regularity of a pattern in a principal direction is preserved.
Transformations which are affine in nature are able to preserve both periodicity and collinearity. The largest of the
maxima called the maximal regularity. It is the dominant feature of the texture pattern and it quantifies the regularity
as observed by a human.

Grounded on a sequence of the significant maxima of R(i), a regularity feature vector is defined
which are invariant to affine transformations. This affine invariance of these features is due to the transformational
properties of the autocorrelation function. The local maximum values of R(i), are denoted by Ty, where
k=1,2,3...... k is the index of the maximum in the sequence. Only the order of Ty in R(i) is relevant. To select a
significant maxima, the regularity is thresholded at a value Ty, and remove the low maxima Ty < Ty,. Earlier it was
experienced [3] that R(i) above Ry, = 0.25 indicated the presence of visually perceived periodicity in the texture

pattern. To deal with weak regular patterns there is some relaxation, now Ry, and Ty, is set to= 0.15 [39].

Thresholded maxima sequences are denoted by Tk' ,k=1,2,.....K’. The feature vector @; consists of four components:

the largest value Mg , the mean g , the variance o-é , and the density of maxima v, defined as:

2T
Mg = max{T.} S (10)
(:UR _Tkl)z '
o = ; | v=X (11)
K'(K -1) N,

Since R(i) € [0,1], 0 <= pr <= Mgr <=1 having value 0 indicates random and having value 1 indicates a highly

periodic texture pattern.

4.5 The Maximal Regularity
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Maximal regularity is denoted by Mg and it was first introduced in [30]. It is the most discriminating property to
structure of all the four regularity features. It associates both the layout and intensity regularities. It is also reliable
with the visually perceived sense of regularity. This feature is able to differentiate between patterns based on their
regularity. Random patterns thus have low maximal regularity value and highly periodic patterns have high value of

maximal regularity. Following figure shows some maximal regularity values of different kinds of patterns:

v eI PR
TN 5, ) S
3 . % s
g = 3
’ - < YA
y " S et
I~y ¢ ra ¥ v,

Fig. 4.2 Maximal regularity values of different kinds of patterns as in [2]
In the above figure, patterns are categorized in rows as four groupings according to their maximal regularity: random
[0, 0.25) , low [0.25, 0.50) , medium regularity [0.50, 0.75) , high regularity [0.75, 1.00]. In each row, the My value
grows from left to right. The layout and the intensity regularities are combined by the Maximal Regularity. The first
pattern being completely random has maximal regularity value to be 0 while the last pattern (mesh) has 1 value as it

has perfect periodic and regular structure.

4.6 Qutlier Detection

For a set of windows spanning the texture pattern image, we compute the maximal regularity for each window in the
set. As the defect is localized in the texture pattern, it is covered by only some windows, but most of the windows
span over non-defective area which has some regularity. When this is observed in the feature space, it shows that
most of the windows (defect free) form a cluster and the defective windows occur as outliers in the feature space as
their distance from the center of the cluster is larger than the radius of the cluster. Regions of sudden high regularity,
are called ‘positive outliers’ can also be present.

The basic principle of the algorithm to detect defects is based on outlier detection and robust regression [32]. We
denote the regularity feature vectors of the windows by p; . The regularity feature vectors of every window are
represented by points in the feature space. As most of the windows contain defect free pattern, most of them form a
cluster. Firstly, the central point p. of the cluster is found. It is done by finding the median distance of each point

from all other points. The one with the minimum value of median is the central point p.

Omed (C) < dmea(i) for all i =c (12)
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where

drea (i) = median| pi— pi| given i# ]

p. is the inmost point of the cluster. The distance between a point p; and the center p. is called the radius r; of p;,
ri=| pi— pef (13)

and denote by rmea, the mean radius of the cluster.

A point py is then considered as an outlier if its distance from the centre point is greater than the maximum of the
radius I max : 'k > I max .Based on whether the ground truth is available or not, the value of r, can be found in two
different ways. In the case of availability of the ground truth, ry. is learned from the distribution of the radius values
calculated for the corresponding defect free patterns. In case when the ground truth is not available, it is set as rpa =
Krmean Where K varies from 2-4. ‘Negative’ outliers i.e windows having low regularity values are only accepted as

defects.

A
Py

1. p\‘

Fig. 4.3 Concept of outlier detection. Gray and empty circles are outliers

Apart from thresholding factor K, StrucDef, has only two parameters: the detector window size W and the window
slide step S.W is an important parameter to be selected carefully. The window must cover several periods of the
pattern. At the same time, it should be as close to the expected defect size as possible. S is much less important.
Basically, one has to balance between more reliable detection and higher processing speed. The small number of
parameters reflects the simplification of the regularity approach. Any defect is viewed as just a significant decrease
in regularity. W and K are only needed to tune the algorithm to the period of structure and the spread of the cluster in

the feature space.
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4.7 Implementation of Paper

In this project, the above mentioned approach is used to find Maximal Regularity and then using it to detect the
defects in texture patterns. Values not given have been assumed. And instead of using Descending Component
Ananlysis in Procedure 1 of calculating Directional Regularity to calculate numbers of maxima and minima, | have
used a function called Peakdet which finds number of minima and maxima in a given Contrast Function. It takes a
single row of contrast function and threshold value as its input parameters. Results are discussed in the Results

section.
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5. A new statistical approach of defect detection using GLCM.

A new statistical method for defect detection is implemented in order to identify defects of complex nature occurring
in texture patterns. The method uses Grey Level Co-Occurrence Matrix in order to derive certain features of texture
patterns. Using those features and finding the Euclidean distance between template features and sample features,
defects are determined using a threshold value [35].

5.1 Definition of GLCM

Grey-level co-occurrence matrix (GLCM) can be defined as a statistical method of examining texture by considering
the spatial relationship of the pixels. GLCM is also known as the grey-level spatial dependence matrix. It is a second
order statistics. The GLCM is calculated by counting the number of times a pixel with the intensity value ‘i’ occur in

a specific spatial relationship to a pixel with the value ‘j> with different offsets and angles [36].
MATLAB provides a function called “graycomatrix” to calculate the GLCM.

glcm = graycomatrix(l);

The above command creates a GLCM of Image I.

Following figure shows the concept of GLCM. The figure shows how several values in the GLCM are calculated by
graycomatrix in a 4-by-5 image |. Element (1,1) in the GLCM has value 1 because in the image, two horizontally
adjacent pixels having values 1 and 1, occur only once. Similarly, element (1,2) in the GLCM contains the value 2
because in the image, two horizontally adjacent pixels having values 1 and 2 occur twice. Thus in a similar way, all

the values in GLCM are processed and filled by graycomatrix.
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Fig.5.1 Concept of GLCM

The offsets in graycomatrix function explain the pixel relationships of varying distance and direction. Four possible

spatial relationships with angles (0% 45° 90° and 135°) and distance (D=1) are specified in the following figure:
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Fig.5.2 Offset directions in GLCM

Similarly, we can find GLCMs in all the eight directions. The size of the GLCM matrix is dependent on the intensity
scale of an image. For ex. If the image is of grayscale, then its intensities will vary from 0 to 255. So, the size of
GLCM will be 256X256.

5.2 Features Calculated from GLCM

The algorithm evaluates five features from GLCM using which defects are identified in the defective image.
Following are features which are evaluated:

1) Contrast: It gives a measure of the intensity contrast between a pixel and its neighbour over the whole image.
For a constant image, contrast is 0.

c= X fi-if PG j) (14

ij

2) Energy: Also called Angular second moment, it gives us measure of the homogeneity of an image. Hence it is
suitable for detecting disorders in textures. It returns the sum of elements squared in the GLCM. For constant image,
1 is returned.

DN (¥ 4
ij

3) Entropy: It is a statistical measure of randomness which can be used to characterize the texture of an image. Also,
it gives a complexity measure of the image.

Et= > p(i.j)*log(p(i, i) (16)

4) Homogeneity: It returns a value to measure the closeness of the distribution of values in GLCM to the GLCM
diagonal. For a diagonal GLCM, homogeneity is 1.
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O= —
g |-

(17

5) Variance: It gives the measure of the distribution of values around the mean. For a constant image, variance is 0.

=1 .
V= 2P, ) - mean)’ (19
ij

5.3 Defect Detection Methodology

Steps:
Step 1: Input the defective Image of any size.

Step 2: Evaluate the GLCMs of the first 7X7 window in all the eight directions using graycomatrix function of
Matlab.

Step 3: Evaluate Grey Level Co-Occurrence Probabilities from GLCMs
Step 4: Calculate Contrast, Energy, Entropy, Homogeneity and Variance for each GLCPs.
Step 5: Evaluate average of all the 5 features and name it Template.
Step 6: For each window of 7X7
Step 6.1: Evaluate average GLCM from all 8 directions
Step 6.2: Evaluate GLCPs from GLCMs
Step 6.3: Calculate Contrast, Energy, Entropy, Homogeneity and Variance for each of the GLCPs.
Step 6.4: Evaluate average of all the 5 features and name it Sample.

Step 6.5: Find the Euclidean distancebetween these features of Template and Sample:

dist=/(C; —C,)* +(E; —E,)? +(Et; —Et)*+(O; —0,)* +(V; -V,)? (19)
Step 7:If(distance > threshold)
Then defective
Else

Not defective
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6. New Method of Defect Detection using Non-Extensive Entropy

6.1 Definition

The new method of defect detection in texture patterns uses Non-Extensive Entropy as an indicator of regularity in
order to detect defective regions in a texture pattern. This new Non-extensive entropy is based on Gaussian
Information measure which ensures that only the relevant and necessary info lying inside the bell shape of the
curve will be considered for calculating the entropy [33]. Since the proposed entropy has a non-additive property, it
is used for the representation of information in the non-extensive systems which contain some amount of regularity
or correlation. For the computation of entropy function, grey level co-occurrence probabilities (GLCP) are used. As
this new non-extensive entropy is based on Gaussian Information Gain, most of the information is inside the bell

curve and the outliers (in this case defects), lie outside 3*c. Here o represents standard deviation.

Let random variable X={x1,x2,...xn} has probabilities P={p1,p2,....pn}. Assuming complete probability distribution,
i.epie[0 1] and for i=1,2....n, (n is the number of probabilistic experiments).

The information gain on the ith event of X, with associated probability pi is defined by the Gaussian function as

follows:

(pi) = @ ™ (20)

Entropy of X can be defined as:

HP)=E0G) = Y pl(p)E  D.pe™ (21)
i=1 i=1

6.2 Implementation of Entropy Method

Following are the parameters which are used for this method:
1. Image Size: 256X256
2. Window Size: 7X7
3. Step size: 0
Steps:
Step 1 : Firstly the image is read

Step 2 : Then a 7X7 window is defined.
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Step 3 : For each window:
Step 3.1 : GLCM is found.
Step 3.2 : Using GLCM, we calculate GLCP
Step 3.3 : Non-extensive entropy calculated based on GLCP.
Step 4 : IF(abs(mean-entropy) > 3*stdeviation)
Then this area is defective (Central pixel of the window is equated to 255)
ELSE
Non-defective

We have used Entropy method in two different ways. The first way is by keeping the window size constant for all the
images. We have kept window size to be 7X7 in the first method and we call it Constant Window size Entropy
Method. The second way is by keeping the window size variable. Here, we first find the best window size for a
particular image which can detect defects in the best possible manner. So, for a certain image, there was a certain
window size which detected the defects accurately, this window size may or may not work for other images. So, our
first task was to find the window size for each image. We called this second approach as Variable Window size
Entropy Method. Constant window size Method is executed on Images with synthetic defects as well as complex

defects images. Variable window size Method is executed on complex defect images.
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7. Automated Defect Detection using Non-Extensive Entropy

Applying Non-Extensive Entropy with a constant window size for all images was not working and did not give
satisfactory results. But when tested manually, most of the images were showing good results for a specific window
size. So, we used the second approach of Variable Window size Entropy Method. Now the main goal of this
approach is to find that specific window size for which best result is coming out. So, to automate the complete
algorithm for defect detection using entropy, several methods were applied to find that window size for which defect
is correctly detected. These methods are applied on the image using window size 3 to the half of the minimum side
of the image. Finally, based on a certain criteria, the best window size is selected and the basic algorithm of defect
detection by entropy is run on the image for that particular window size which is found out. The automation process
has been defined using best four methods. These method find the most suitable window size for a specific image.
They are as follows:

7.1 Maximum Count Method

In this method, the number of values which are greater than 3o are counted for each of the window size. Finally, that
window size for which the maximum number of entropies qualify the 3o test is selected and considered to be the

best window size for which defects will be detected correctly.

7.2. Maximum Entropy Method

In this method, the entropies which qualify the 3o test are collected and their overall Non-Extensive Entropy is

computed. Finally, that window size is selected for which maximum entropy results.

7.3. Gaussian Mixture Distribution Method

In this, method, we try to fit the data of entropy values by a Gaussian Mixture distribution. ‘gmdistribution’ is a class
in Matlab. Gaussian Mixture distribution is defined by an object of this class. This model is called mixture model
because it consists one or more multivariate Gaussian distributions. Each of the Gaussian component is well-defined
by its covariance and mean, and the whole mixture is defined by a vector of mixing proportions. In order to fit a
Gaussian mixture distribution model to data, use gmdistribution.fit. fit is a function of the class gmdistribution. Here,
the returned object is of struct type. We minimize the entropy of PComponents which is one of the components of

this object. In the last step, we select that window size for there is minimum entropy of PComponents.

7.4. Combined Method of Gaussian Mixture Distribution and Maximum Counts:

This method combines the third and the first method to select the best window size. Firstly, the dummy window size
id found out by Gaussian Distribution Method. In the second step, we count the number of entropy values which are
falling outside 3o for window sizes which are in +10 and -10 vicinity of the dummy window size. Finally, from this

new range of window sizes, we select that window size, which has the maximum number of entropies outside 30.
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8. Experimental Results and Conclusion

8.1 Environmental Setup:

The following system configuration has been used while conducting the experiments:
Hardware Configuration

Processor Intel® Core™ i5-2450M CPU
Clock Speed 2.50GHz

Main Memory 4GB

Hard Disk Capacity 500GB

Software Configuration

Operating System Windows 7

Software Used MATLAB 7.9.0 (R2009b)

We calculate the performance of our algorithms on images from Brodatz Database as well as on images from the link
: http://athos.vision.sztaki.hu:8080/strucdef/strucdef.html

8.2 Measures

8.2.1 Measures for objective comparison of Regularity and Entropy Methods on images with
Synthetic Defects

In this section, both the methods are evaluated and an objective comparison between them is used to draw
conclusions which one is a better method. Both methods are compared by evaluating three parameters: Precision,
Recall and F-measure.

relevant _ pixels(\retrieved _ pixels
retrieved _ pixels

Precision =

OR
TruePositive
Precision = TryePositive + FalsePositive

High precision means that an algorithm gave more important results than less important ones.

relevant _ pixels(\retrieved _ pixels

Recall = -
relevant _ pixels
OR
Recall TruePositive
ecall = — -
TruePositive + FalseNegative

2*Precision*Recall

F-measure =

Precision + Recall
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8.2.3 Measures of objective comparison of Regularity, GLCM and Entropy Methods using
Ncorrect and Nfalse on images with complex defects

While subjective comparison shows that Regularity is a better method in detecting defects of complex nature in
texture patterns than Entropy and GLCM based method, but an objective comparison is better way to judge

comparison between both the methods.
So, we have used, 2 parameters for objective comparison of all the three methods:

1. Ncorrect : no. of pixels which are correctly detected. This is the total number of pixels which are having
255 intensity value at the same position in mask of defect detected image and ground truth. (Here,
defective region is considered to be white in the mask image).

2. Nfalse : no. of pixels which are incorrectly detected. This is the total number of pixels which are having
255 intensity value in the mask of defect detected image and 0 intensity value in the ground truth. (Here,
defective region is considered to be white in the mask image).

3. Ncorrect:Nfalse : ratio of Ncorrect and Nfalse. Higher the value of this ratio, better is the detection of

defect in the defective image.

8.2.4 CPU Time

CPU time is the amount of time taken by a CPU for processing instructions of a computer program. The CPU time is
generally measured in clock ticks or seconds. We have computed the CPU time in seconds for the running program
by using the standard MATLAB commands “tic toc”. Thus the CPU time computed using the tic toc commands on
the Variable window size Entropy Method is 6493.557952 seconds for a single image.

8.3 Results
8.3.1 Results of Segmentation Approach

Table 8.1 Results of Segmentation approach

Defective Image Defect Detected
Image

1. pattern19
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8.3.2 Results of Regularity Method (Chetverikov’s Method)

8.3.2.1 Results of calculating Maximal Regularity on four Images

Images shown here represent each of the four categories, i.e random, low, medium and high regularity value images.

1)

Img2 (0.463 (low))

(4)
Img3 (0.507 (medium)) Img4 (1.000(high))

Fig. 8.1 Maximal Regularity value of 4 categories of patterns
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8.3.2.2 Results of Images with Synthetic Defects

In this test, eight 256 X 256 pixel size brodatz/textile images are used [4]. The textures contain more or less obvious
imperfections. For each pattern, the threshold value is set manually. The window should be such that it includes at
least two periods of the pattern. Generally the size should be at least 40 X 40 pixels. In this project window size is
taken as 64 X 64. There is another parameter called step size which denotes the number of steps (pixels) to be left
when the window is moved to next position. Step size is used to balance between more reliable detection and higher
processing speed. In my implementation , | have taken step size to be 5. In these images defects are created

synthetically, Following are some of the brodatz/textile images with the defect detected identified:

Table 8.2 Result of Regularity Approach on synthetic images

Defective Image Defect Detected
Image

T

5. defect gpattern2
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_gpattern3

7. defect_pattern14

| 8. defect_patternl6

8.3.2.3 Results of Images with Complex Defects

,Chetverikov’s method is applied to such natural defects in order to evaluate its efficiency on natural or more

complex defects which are generally found in textile.

Table 8.3 Result of Regularity Approach on complex defects

Defectlve Image Defect Detected | Mask Image Ground Truth Regularity Plot
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8.3.3 Results of GLCM Method

8.3.3.1 Results of Images with complex defects

Table 8.4 Result of GLCM method on complex defects

Defective Image Defect Detected Mask Image Ground Truth
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8.3.4 Results of Entropy Method

8.3.4.1 Results of Images with synthetic defects
Here, images with synthetic defects are used for execution.

Table 8.5 Result of Entropy Method on synthetic defects

Defective Image Defect Detected
Image
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5. defect_gpattern?2

6. efect__gpatternB

7. defectl gpatternl

8. defectmesh21




8.3.4.2 Results of Images with complex defects

Here, Entropy Method, which uses a new Non-Extensive Entropy as a regularity measure is used to detect defects in
images having complex defects.

Here, the images used are of varying size, so the program is modified in such a way so that image of any size can be
run.

Table 8.6 Result of Entropy method on complex defects

Mask Image Ground Truth Entropy Plot
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8.3.5 Results of Automated Entropy Algorithm
8.3.5.1 Results of Max Count Method
Table 8.7 Result of Max count method
age | Defect Detected Mask Image Ground Truth Entropy Plot
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8.3.5.2 Results of Max Entropy Method

Table 8.8 Result of Max Entropy method

Defective Image

Defect Detected

Mask Image

Ground Truth

Entropy Plot
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8.3.5.3 Results of GM Distribution Method

Table 8.9 Result of GM distribution method

Defectlve Image Defect Detected Mask Image Ground Truth Entropy Graph
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8.3.5.4 Results of Combination of GM Distribution and Max Count Method

Table 8.10 Result of combination of GM distribution and max count method

Mask Image
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8.3.5.5 Results of Ideal Case

Table 8.11 Result of Ideal Case of Variable window size Entropy Method

Gr
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8.4 Results of Objective Comparison of Chetverikov’s and Entropy Method on Images
with synthetic defects

The following table shows comparison of Precision, Recall and F-measure for both the methods of defect detection:

Table 8.12 Precision, Recall and F-measure values for Chetverikov and Entropy Method on synthetic defects

CHETVERIKOV'S METHOD ENTROPY METHOD

S.no Image Name Precision Recall Fmeasure Precision Recall Fmeasure

a) brodatzD22 0.068103117 1 0.127521614  0.942028986 0.902777778 0.921985816
b) defect_gpattern2 0.096057681 1 0.175278515  0.204402516 0.631067961 0.3087885399
c) defect_gpattern3 0.070895522 1 0.132404181 0.252539913 0.783783784 0.381997805
d) brodatzD34 0.44950849 0.954459203 0.611178615  0.228658537 0.815217391 0.357142857
e) defect_brodatz100 0.050681676 1 0.166284404  0.171521036 0.92173513 0.289222374
f) defect1_gpattern1 0.046959826 1 0.089707026  0.098039216 0.948275862 0.177705977
g) defect_pattern14 0.802308073 0.975 0.880264244  0.975967957 0.906947891 0.840192926
h) defectmesh21 0.127283271 1 0.225823045 0.183870968 0.850746269 0.302387268

From the table we can conclude that Chetverikov’s Method performs better than Entropy Method in the case where

window size is kept same for all images for Entropy Method.
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8.5 Result of Comparison of all the three methods on images with complex defects

Table 8.13 Results of Comaprison of Regularity, Entropy and GLCM methods on complex defects

Regularity Method Entropy Method GLCM Method

S.no Image Name Ncorr:Nfalse Ncorr:Nfalse  Ncorr: Nfalse
1 defectl 0.3881 3.4062 2.860294118
2 defect2 0.3875 0.0854 0.106086957
3 defect3 0.1628 0.039 2.96
4 defect4 0.1999 0 0.636363636
5 defect6 0.1225 0 5.153846154
6 defect7 2.940705128 1.41509434 0.690340909
7 defect8 0.62138853 0 0.0625
8 dé 0.4223 0.0425 0.005348837
9 d7 0.3527 0.2869 0.274314214
10 df 0.2976 0.4806 1.050541516
11 dkl 0.1087 0.4246 0
12 dkil 0.1503 0.1042 0
13 gcuwei 0.2519 2.037 0.469635628
14 sap 0.007 0 0.063373064
15 texdef2 0.1969 0.0101 0.161392405
16 textile0 0.5432 0.0285 0.053225806
17 textilel 0.3259 0.0762 0.005637773
18 X 0.0988 : 1.7_142 0.003487358
19 YY1 22.1096 12.1917 0.93062201
20 d1i 0 0.0348 0.213675214

The coloured row indicates the best method for each image.

As we can see that, there are majority of yellow rows, which again indicates that Chetverikov’s Method is better
among all the three methods.
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8.6 Result of Comparison of four Automation Methods

Table 8.14 Result of Comparison of Max Count, Max Entropy, GM distribution and combination of GM distribution
and Max count method

Max Count Method Max Entropy Method GM Distribution MethodCombination of GM Distribution and Max Count Ideal Case
Image Name Ncorr:Nfalse Window size Ncorr:Nfalse Window size Ncorr:Nfalse Window size Ncorr:Nfalse Window size Ncorr:Nfalse Window Size
defectl 2.96082474 12 0.647993311 28 5.6121673 9 2.96082474 12 5.6121673 9
defect2 1.43227848 19 0.595072647 28 0.723655122 25 1.43227848 19 1.43227848 19
defect3 0.35993821 24 0.451842275 22 0.149507305 34 0.35993821 24 0.57356608 20
defecta 0.30056497 39 0.277083333 45 Inf 5 5.45132743 15 5.45132743 15
defect6 0.16073969 3 0 47 0 17 0.14149566 7 0.1414966 7
defect7 0.53164557 3 0.067610903 32 0.488284911 17 0.85714286 8 0.85714286 8
defect8 0.03130435 4 0.851203501 47 0.950659782 40 0.61893896 33 0.95065978 40
dé 0.02990654 4 0.022884673 31 0 10 0 13 0.07937262 20
d7 0.19141324 4 0.070807853 30 0.211281544 9 0.25397727 12 0.25397727 12
df 0.14110825 5 0 37 0.134890372 3 0.14110825 5 0.15839416 8
dk1 0 24 0 60 0.074074074 13 0 23 0.47272727 7
dki1 0 33 0.011835948 43 0.012903226 24 0 34 0.02565147 12
geuwei 0.65846995 12 0.001130902 50 1.8828125 8 0.65846995 12 1.39082278 9
sap 0.03304348 3 0.0065037 52 0.09557945 7 0.04082613 11 0.09557945 7
texdef2 0.02340953 6 0 53 0 12 0 12 0 15
textile0 0.06743869 3 0.055535521 42 0.088039867 17 0.07001239 18 0.16938998 14
textilel 0.13761929 9 0.035429142 21 23.375 8 0.13761929 9 23.375 8
X 0.06354335 32 0.488612836 15 0.650137741 13 0.22366864 3 1.3038674 9
YY1 1.94412607 8 Inf 42 1.617721519 3 1.94412607 8 1.94412607 8
dl 0.0168204 3 0.043407488 36 0.054189085 21 0.04430985 29 0.03107489 20

The coloured row indicates the best method for each image.

Starting from the Segmentation approach, let us discuss the results of each method. Segmentation method works
good only for images with dark coloured defects. As it can be seen from the Table 8.1, the algorithm detects defects
clearly only in first six images. In the last four images, the defects are not detected properly. This is because, the

algorithm assumes defects to be present only in the darker region which may not be the case always.

Fig. 8.1 shows the Maximal Regularity values for four images ranging from random to the most regular image. As
discussed in Chapter 4, Maximal Regularity quantifies the human visual perception of regularity, so accordingly,
Imgl which is random in nature shows very low value of Maximal Regularity. Img4 which is most regular shows

maximum value of Maximal Regularity. Maximal Regularity values is further used to identify defects in images.

Results of Chetverikov’s Regularity Method on synthetic defect images can be seen in Table 8.2 and on complex
defect images in Table 8.3 respectively. This method works good for both types of images, but defects are not
identified precisely as there is large non defective area is also shown to be as a defect.

Next, we can see results of Constant window size Entropy Method on synthetic defect images and on complex defect
images in Table 8.4 and Table 8.5 respectively. The results of Table 8.4 are much better in terms of precision than

results of Table 8.2. But the results of Table 8.5 are not good as compared to the results of Table 8.3.

Next, we come to the results of GLCM Method applied on complex images. As we can see from the Table 8.6,

textures like defectl, defect6 and df show good results but most of the images do not show satisfactory results.
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Next four tables discuss the four methods which are used in the Variable window size Entropy Method. Subsequent

paragraphs discuss their results and comparison.

As we can see, that, there are majority of orange rows in the Table 8.14 which indicates that if we use Variable
window size Entropy Method for defect detection, then to find the best window size for a certain image, we can use
GM Distribution Method. The table also shows the ideal case results of Variable window size Entropy Method.

These results have been manually calculated.

As we can see from the Table 8.12, Constant window size Entropy Method has better precision values than
Chetverikov’s Method (Regularity Method) in case of synthetic defect images. As it can be seen from the results of
Table 8.4, defects are very accurately detected by Entropy Method than Regularity Method by Chetverikov in Table
8.2.

Though Entropy Method wins in the case of synthetic images but if we apply the same method to complex defect
images, the Entropy Method fails for most of the images. Texture patterns like defect2, defect3 and defect4 from
Table 8.5 can be seen failing the Entropy Method. The defects are not identified correctly. Although, a small amount
of positive result can be seen in images like defectl, defect7, gcuwei and x. This failure results in the poor results of
Entropy Method in Table 8.13, where we can see that Chetverikov’s Regulaity Method has majority of yellow rows
amongst the three methods of defect detection, Chetverikov’s Regularity methods stands best.

Now, that the Constant window size Entropy Method was not working properly, we decided to follow a second
approach in which different textures work best for different window sizes This is because the defect size is different
in different images. So, if one window size works best for one image it may not work best for another image. If the
defect is small, a small window size is suitable for that image but if the defect is large, then a large window size is
required to detect that defect. So, we implemented the second approach called Variable window size Entropy
Method. Initially, we tested the texture images manually to find the best window size for which it was giving best
results. This process was done manually by selecting a window size and then executing the program for that window
size. The results of finding the best window size manually for all the images can be seen in the Table 8.11 and it is
termed as the Ideal Case results. Now, if we compare the results of Table 8.3 and Table 8.11, then we can see, that
except for few images, Entropy method can be seen working much better than Chetverikov’s Regularity Method.

There is good accuracy and precision in the results of Entropy Method as compared to Regularity Method.

But as we can see, there was a last step to automate this Variable window size Entropy Method and it was to find the
best window size which can provide the best result for a given image. This window size which was to be found out
should match the window size found in Ideal Case and if not match then, it should be as close as possible to the
window size found in Ideal Case. So, to find out the best window size, four methods have been employed which are
discussed in Chapter 7. The results of these four methods have been shown in Table 8.7, Table 8.8, Table 8.9 _and
Table 8.10. And Table 8.14 gives the objective comparison of all these four methods. Among these four methods,

GM Distribution has majority of coloured rows (orange), which indicate that it is the best method amongst all the
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four methods to find the most suitable window size for a given image. Now if we compare the ratio of Ncorr and
Nfalse for GM Distribution Method from Table 8.14 with the ratio of Ncorr and Nfalse of Regulaity Method from
Table 8.13, then we can see, that except for few images, our results are comparable with the results of Regularity
Method. For some images like defectl, defect2, defect8, gcuwei, sap, textilel, x and d1, our results are much better
than Regularity Method. For images like defect3, d7 and dk1, our results are comparable to that of results of
Regulaity Method. Although, for images like defect6, texdef2, dk11 and textileO Regularity results are better. All this
was not in the case when we kept the window size constant for Entropy Method. So, it becomes clear that Variable
window size Entropy Method is much better than Constant window size Entropy Method and if we use GM
Distribution Method for finding optimum window size, our results have better precision and accuracy as compared to
Chetverikov’s Regularity Method.
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CONCLUSION AND FUTURE

WORK



9. Conclusion and Future Work

Though Constant Window size Entropy Method did not give good results, but every image shows a very good result
for a certain window size. That means using the Variable window size Entropy Method gives much better results
than Chetverikov’s Regularity Method for some common images. To find this, four automation methods are used to
find the best window size and from among these four methods, the best method is selected in the Variable window
size Entropy Method. Each of these automation methods of defect detection by entropy runs good on some images
but not uniformly on all the images. Among these, GM Distribution is found to work best on most of them. Though
Variable window size Entropy Method using GM Distribution to identify the window size gives better results than
Regularity Method in many cases, there are still few drawbacks for which future work can be done to improve this
method and make it the best method for texture defect detection. There are cases of certain images where defects are
not identified by any of the four automation methods. Even GM Distribution does not give good results in certain
cases. Also, it does not find the exact matching window size as in the Ideal Case. So, the future scope of this work
would be to find a single best method which gives good results on all the images. There are some images which have
very small sized defect, this method was not able to identify those defects. And also, we can workout a better way to
identify a window size which matches with the window size found in Ideal Case. So, these are the few aspects on
which future work can be done in this direction to improve it so that it can detect all the types of defects with good

precision and accuracy.
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