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ABSTRACT 

Inefficient processes in industries can cost a lot of  time, money and customer satisfaction. Quality assurance is a 

very important aspect for industries. As a result, to improve their processes and become more efficient at the global 

level, they have started to automate their certain tasks for which humans were generally considered to perform them. 

And one such popular task is Industrial Inspection .  As a result, intelligent visual inspection systems are developed  

to ensure high quality of products in production lines. Advancement in image processing and computer vision 

techniques has led to the development of  Automated Visual Inspection Systems. These systems are required in 

industries to inspect the manufactured products, so as to identify any discrepancies in them. Thus, they play an 

important  role in industries by ensuring that only good quality products enter into the market because selling 

defective products in market can lead to large losses for goods manufacturing industry. One  such industry is Textile 

Industry where these systems are of great importance. They identify defects occurring in textile cloth. Several 

algorithms have been developed based on different approaches so as to identify defects in texture patterns. Presence 

of complex defects is a major hurdle for many such algorithms and that is why new ideas keep on emerging  to 

develop more efficient algorithms which can identify such type of defects in texture patterns. On the same lines, this 

major project report presents a new algorithm based on a new approach to identify complex defects in texture in a 

more efficient and accurate manner. 
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1. Introduction 

In modern industrial manufacturing, product inspection is an important feature. In order to maintain the fabric quality 

in the textile industry, automatic texture inspection is crucial. Before automated inspection, industries were 

dependent on human visual inspection, thus hiring skilled people for identifying defects in the fabric. This was an 

inefficient method as well costly. Long hours of inspection would exhaust these people and thus reducing their 

efficiency in their task of detecting defects. Therefore, for the whole process of inspection to be effective, there is 

requirement of automated texture defect inspection for cost reduction. The  texture defect detection algorithm has to 

be efficient for an automated inspection system. One of the most intriguing and hardest areas of image processing is 

complex texture defect detection. Therefore in order to develop an automatic visual inspection system for texture 

images, analysing and studying texture patterns is important. [1]. 

Texture defects cause 80-84% of the defects in the textile industry [2]. Due to the presence of defects in texture, 

production houses recover only 40-60% of profit from defective quality products [3]. To avoid such losses due to 

defects, their identification and prevention is necessary. Therefore, there is very need of an automated inspection 

system which detects the defects in texture patterns and thus helps in improving the product quality, so that 

productions houses do not incur losses and customer satisfaction is also met. Apart from this, automated defect 

detection systems reduce the cost of products of defective quality. Earlier, defect detection was done after a sufficient 

amount of textile is produced. This amount of textile is removed and is sent for defect detection procedure. A better 

approach would be to detect the defects in texture  during the time of production from the machine and if required 

inform the person in charge of the machine for repair. And this can be done using the image processing techniques  

for detecting the texture defects. Therefore, it is quite economical to invest in the automatic texture inspection system 

when we consider its cost and related benefits. 

1.1 Fabric Defects 

Yarn quality as well as irregular weaving machine operations generally affect the quality of textile. A low quality 

yarn will lead to certain type of defects such as width inconsistencies, broken ends, hairiness, etc. Apart from poor 

yarn quality, defects can also be generated by looming or weaving machines if their surrounding conditions are 

changed. Change in surrounding temperature, humidity, etc can cause change in the normal working of the weaving 

machines. This can lead to defects such as double yarn, missing yarn, variation of yarn etc. Variations in the tensile 

strength of one or more strands of the yarn is generally misread as defect due to poor quality of yarn. There are 

various categories of defects of texture and a minute change in the looming process can lead to the generation of a 

new type of texture defect. Following diagram shows some basic types of fabric defects: 

 

                                       (a)Double yarn  (b) Missing yarn  (c) Broken Yarn  (d) Variation of yarn 

Fig1.1. Some general fabric defects 
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1.2 Traditional Inspection 

Texture defect detection can be done in two different ways. The first method involves  the inspection of the  weaving 

process in which it is continuously overseen for the existence of defects. But as the weaving process is quite 

complex, this kind of inspection is not followed in the textile production industries. The second method involves 

inspection of the manufactured textile for the existence of defects. The weaving machines in the textile industry 

manufacture textile at the speed of 0.2-0.4 meters per minute which is 1-2 meters wide. Due to the slow pace of 

textile production by weaving machines, the textile inspection process cannot be performed efficiently because a 

human inspector is bound to get distracted after some time and it is quite difficult to focus for a long time 

continuously to detect defects. The surrounding environment of textile production [2] near the weaving machines is 

also relatively hostile .In traditional inspection method, a sufficient amount of textile is removed from the weaving 

machines and placed on the inspection table. When a defect is detected by the human inspector on the moving textile, 

he stops the operation, registers the defect and its position, and starts the operation again.[3]  

1.3 Automation for Inspection 

Due to the high cost and inefficient human visual inspection process, there arises the very need for automating the 

inspection process. The automated inspection system is quite complicated and requires integration of large number of 

sub-systems and components[4]. Nickolay [5] have shown that utilizing an automated texture inspection system is 

quite economical because it leads to reduction in personnel cost and labour. The  basic architecture of an automated 

fabric web inspection system is shown in Fig. 2. As we can see from the diagram, lightning conditions and image 

acquisition is very important for such systems and that is why there is a series of cameras to scan the texture from 

every angle. The following are the basic components of such a system: frame grabber , a lighting system, a computer 

console accommodating processors, and electrical as well as mechanical interfaces for the inspection machine. Huge 

parallelism is generally employed in image acquisition and defect detection[38].  
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Fig.1.2 Architecture of a typical fabric inspection system 
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2.  Different Types of Defect Detection Methods 

Various techniques exist for identifying the defects in texture patterns. Some of the commonly used techniques are 

discussed below: 

 

2.1 Defect Detection using Co-occurrence Matrix Features 

For the texture features to be characterized, spatial interactions among pixels in the neighbourhood are used due to 

the reason that texture is considered a neighbourhood property. In order to study texture analysis, the co-occurrence 

matrix method is widely used to study texture analysis and this method is also known as spatial gray-level 

dependence method [37]. The repeated occurrences of several grey level values in a specific direction and distance is 

the basis on which the method depends on. Generally computation of features of a texture is done through techniques 

of visual inspection which are automated for images with textures in the spectral or spatial domain. The definition of 

defect detection is defined in [40] using sub band domain co-occurrence matrices. The co-occurrence matrix is used 

to derive features of a texture namely entropy, homogeneity, energy, contrast and correlation [6]. Following diagram 

shows the basic concept of a GLCM formation from a matrix. 

 

 

  Fig.2.1 Creation of GLCM 

Haralick gave 14 texture features in [7] , which are computed from GLCM. These features characterize different 

spatial aspects of a texture and give statistical measure of the different properties of  a texture pattern. Following 

table gives the 14 features which were given by Haralick. 
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Table. 2.1 Haralick’s 14 Features calculated from GLCM 

 

 

2.2 Defect Detection using Edge Detection 

The amount of edge per unit area distribution is considered by the defect detection when the edge detection is used.  

It is considered a feature important for the detection of any defect in textured images. Other spatial discontinuities 

along with edges, lines and point defects represent for a texture image how much transitions of gray levels are 

present. For detection of defects in texture the following features are used [8]-[10]. Conci and Proença [9] used Sobel 

operator for detection of defects in texture and comparison of results was done with thresholding based methods. In a 

basic methodology, the transformation of the texture image into a gradient image is done using a set of operators 

such as Sobel Operator, Prewitt Operator, etc. Now, in order to separate pixels which are defected from those pixels 

which are defect-free, thresholding is applied on this gradient image. For further separation of pixels which are 

detective from noise, the image result is dilated with the Structural Element. The blob analysis is finally done in the 

last step, which labels the connected pixels as single object which is considered to be a defective region in the 

texture. Use of edge detection with defect detection approaches [8]-[10], [11] is mostly suitable for low resolution 

plain textured images. Major drawback of this technique occurs when the defects are not isolated correctly due to 

generation of noise from structure of texture resulting in false detections at a high rate eventually making them less 

suitable for textile inspection in real time.  
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Fig. 2.2 Sobel operator 

 

2.3 Defect Detection using Bi-Level Thresholding 

A simple method of Bi-Level thresholding can be used for detection of defects with high contrast. The presence of a 

texture defect causes the fall or rise of the signal level locally; thus a through or peak occurs which indicates a defect 

easily detected by use of thesholding technique. In bi-level thresholding method, a threshold value is found out 

which can be used to detect a defect in the sense that if t he value is greater than threshold, it may be considered as a 

defect and if it is less than threshold, that region is defect free or vice versa. This kind of defect is detected mainly 

when a decision threshold is crossed by the signal. Norton-Wayne et al. [12]-[13] made use of this approach for 

detection of textile defects on moving at one meter per second speed. However, the method was not able suitable 

enough because presence of noise in the image was also considered as a defect. The description of defect detected in 

fabric is done by Bradshaw [14] and Cho et al. [15] with the use of bi-level thresholding. An improved version of bi-

level thresholding is developed in which adaptive thresholding is used for detection of defects with low contrasts in 

galvanized metallic strips [16]. For detection of defect techniques using bi-level thresholding, the main advantage is 

the implementation simplicity, but the  techniques fail to detect those defects which appear without changing the 

mean gray intensity level in defect-free areas. Though easy but this techniques fails in many textures in which 

complex defect are there which does not change the gray-level values in the defect-free regions. 

 

2.4 Defect Detection using Neural Networks 

One of the fastest and most flexible classifier is the use of neural networks in fault detection due to their ability to 

categorise complex data decision boundaries and also due to the fact that they do not require any parameter to be 

passed upon. In [17], for the segmentation of local textile defects, a new approach using feed-forward neural network 

(FFN) is described. In this method it is assumed that defect changes the gray-level distribution of neighbouring 

pixels. So, using the neighbouring pixels, features of every pixel are calculated and the reduction of feature 

dimension is done using Principal Component Analysis. And finally the classification of the pixel’s feature vectors 

into defective and non defective categories is done using FFN. Following is the block diagram of this approach: 
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Fig.2.3 Block diagram of a Fabric Defect Detection using FFN 

 

Feature extraction of a pixel is basically based on the gray values of the neighbouring pixels rather than some 

statistical measures. Though FFN is fastest among all the neural networks but implementing the detection of defect 

using FFN in real time is costly in terms of. Therefore, a solution which is economic for detection of texture with the 

use of a neural network which is of linear described in [17], [18]. Hung and Chen used the fuzzy technique and 

backpropagation neural network together for the classification of eight different fabric defect types along with the 

fabric which is defect-free[19]. Apart from FFN, Support Vector Machines (SVM) are another simple technique not 

suffering from local minimum problem usually occurring in FFN. Therefore detection of defects in texture with the 

use of SVM is proposed in [20]. Large intra-class diversity in a large number of classes of fabric defects remains a 

major obstacle for the use of SVM [20] and FFN [21], [17] based approaches for the inspection of fabric online. 

 

 2.5 Defect Detection using Discrete Fourier Transform 

Enhancement of features which are periodic and noise immunity are the two important features of the Fourier 

transform (FT). The most important feature of FT is that it uses frequency components in describing the texture of an 

image. The periodically occurring features can be observed quite easily from the degree of frequency components. In 

order to detect the different types of defects in fabric, fourier transform is used. For extraction of seven significant 

characteristic parameters, the central spatial frequency spectrum is used for detecting the defects. Warp and weft yarn 

patterns together form the woven texture image. The yarns are basically  1-D are represented by a set of impulses 

modulated using profile of one yarn [22]. Because of textured components which are stochastic in nature, the proper 

localization of the local maxima peaks in the 2-D frequency plane is not done. Due to this reason, Goddard Sari-

Sarraf and [23] in order to include frequency components which are local used contiguous concentric rings having 

constant width. However, use of local frequency components for texture defect identification is described by Chan 

and Pang in [24]. Tsai and Hu in [25] presented Fourier Models of four different types for defects in texture; missing 

pick missing end, oily fabric and broken fabric. Fourier features of the real defects in texture with the use of DFT are 

extracted using these models. 
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2.6 Defect Detection using Morphological Operations 

Use of morphological operations for detection of defects is described in [26]. Firstly histogram equalization of every 

inspection image is done and to generate a binary image, thresholding of the resultant image is done.  In the training 

phase, optimal size of Structuring Element is determined using the binary image of defect-free texture by using 

autocorrelation function. Now, in testing phase the size of SE which is optimal is used. Using SE, erosion and 

dilation operations are applied on each binary test image. The distance between defective pixel results is used for 

grouping defects into blob defects. The method is limited for practical application as most of the general defects in 

texture will not be present in the binary image generated by a simple method of thresholding. Datta and Mallik-

Goswami [27] in order to detect defects performed laser-based morphological operations. Through this approach, the 

structure of fabric in optical domain which is periodic is by introduction of Fouriers lens after proper spatial filtering. 

Thus only on defective aperiodic images the morphological operations are performed. However, the defects are 

obvious for the experimental results given in [27] and there is no suggestion of an advantage over other less complex 

approaches which are available. 

 

2.7 Defect Detection using Gabor Filters 

The efficiency of methods based on WFT has shown importance of the conjoint analysis of the image texture in both 

spatial and frequency domains. Due to this reason, features of textures representing the frequency components in 

regions which are local in the spatial domain of texture pattern have led to a new area of research. The extraction of 

these texture features from the inspection images can be done through local spatial filtering. For this filtering, the 2-

D Gabor filters are ideal in many ways [106]: firstly, they have axial frequency bandwidths and tunable angular, 

tunable center frequencies, and can achieve optimal joint resolution in frequency and spatial domain. Gabor filter 

parameters can be easily augmented for a known category of defects to be distinguished. Such texture defect 

segmentation with the use of optimal Gabor filter is shown in [42]-[44], [45], [49]. The orientation and dimension of 

local defects which are generated on the textile web varies in a random manner. As a result, a general web inspection 

system which uses a bank of asymmetric and symmetric Gabors filters are shown in [49], [46]-[47] and [48] 

respectively. The texture segmentation methodology in human visual system is explained in the retinal adaptions 

with the sigmoidal shaped nonlinearity and the Real Gabor Functions. As a result, a set of multiresolution and 

multiorientation RGF, followed by 20 inter-scale and intra- image fusion has suggested fabric defects segmentation 

[51], [52]. Kumar [50], [18] also demonstrated that the FFT can be used in defect-free texture to calculate the 

dominant spectral component which can be used for automatic selection of the Gabor filter’s center frequencies. 
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3. Defect Detection Using Segmentation 

The algorithm which I have implemented for defect detection using segmentation is described in [28.]. Compared to 

the other algorithms, it is quite fast and simple. This algorithm has two basic steps: the first one is feature extraction 

in which simple features are extracted and the second one is segmentation in which based on the extracted features, 

defects are segmented. These steps are quite simple and easy to  understand. 

3.1 Feature Extraction 

Initially the given image is preprocessed and after this, feature extraction is applied on it in order to extract features. 

The first step is to convert the given image to gray scale image. And then, for each row of the image, we calculate 

the median value 

Consider an image Img(m,n) , the median for each row is calculated as follows: 

1. for i=1 to m 

Median(i)=xmd  from  x1, x2,…xmd, xmd+1,..xn  

where 
1

2

n
md


  when n is odd. 

 

We use the above equation to find the median value of a row in case when the number of elements in the row is odd.  

 

2. for i=1 to  m 

Median(i)=
1

2

md mdx x 
 from x1, x2,…xmd, xmd+1,..xn 

where 
2

n
md   when n is even 

 

The above equation finds the median value of a row in the case when the number of elements in a  row is even. 

3.2 Identification of Defected Area 

The  above calculated median value for each row and greyscale image I(m,n) are used for detecting the defective 

region. In order to detect the defective region in the image, each pixel intensity is compared with the median value of 

that row and the previous pixel value, if there is a sudden change in the intensity level, then that pixel is considered 

to be in the defective region. If this sudden change in the intensity is atmost 60% of the previous pixel value or the 

median value, then that pixel is identified to be in the defective region. 

To identify the defected area, apply the following equation: 

for x=1 to m 

     for y=1 to n-1 

        if (Img(x,y) < median(x)*0.6   OR  Img(x,y+1) < Img(x,y)*0.6) 
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        Img(x,y)=255 

        else 

        Img(x,y)=0 

Display Img(m,n), which contains the defected area in white colour and rest is black. 
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4. Texture Defect Detection using Regularity Approach 

This section contains the two basic topics for texture defect detection described in [29] and [30]. These papers 

explain two basic approaches for texture defect detection, i.e regularity and local orientation approach. The first one 

defines texture defects to be as the regions where regularity falls suddenly, and the second one as disturbances in the 

dominant orientation. Among these, the first approach is explained in the following sections. 

 

4.1 Regularity Approach 

The regularity approach searches for irregularities- here irregularities are defined as regions where regularity of a 

texture pattern  is considerably lower than its dominant value. For a set of windows, regularity features are 

computed, then outliers occurring in the regularity feature space are identified as defects. The basic assumption of 

this approach is that most of the basic region of defect free texture, has some periodicity. The first step of this 

approach is to compute the regularity feature values for a set of windows spanning the texture image containing the 

defect. From these regularity values, the one with maximum value is considered to be the maximal regularity, which 

denotes that this is the dominant regularity value of the given texture . Maximal regularity is shown to be equivalent 

to the human judgement of regularity and is used to detect defects in the texture. After this, the third step is outlier 

detection. In this  step , outlier points which fall outside the cluster of defect free pattern are detected as defective 

regions.The algorithm described in this section is called StrucDef [29]. 

In StrucDef , pattern regularity is computed by calculating in-polar coordinates and the periodicity of autocorrelation 

function. Maximal regularity feature is defined by the feature vector. Maximum value of the directional regularity 

R(i) is called the Maximal Regularity. Regularity feature vector having four features is defined based on R(i). 

Detailed steps StrucDef algorithm are mentioned below. 

 

 

4.2 The Contrast Function 

Consider a digital image I(m,n) of MXN size and a spacing vector of (dx, dy), where m is  row and n  is  column. The 

autocorrelation function of I(m,n) when normalised is defined as: 

Ƿxy(dx , dy)=

1 1

2 0 0

1
( , ) ( , )

M N

y x

m n

I m n I m d n d
S

 

 

                          (1) 

Where k=0,1,2,…. 

1 1

0 0
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k

m n

S
 

 

  I
k
(m,n)            (2) 

For faster calculation [31], fourier transform is used to calculate autocorrelation as: 

Ƿxy(m,n)= IFFT[FFT[I(m,n)]*FFT[I(m,n)]]                     (3) 

where IFFT is the Inverse FFT. 
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As the, pattern regularity needs to be computed for different directions ,a polar representation form of the 

autocorrelation function is most suitable. This representation, Ƿpol( ,d) is defined for  magnitude (spacing) d an angle 

. Given a non-integer location (δx, δy) in Ƿxy (dx, dy), δx=d cos ; dy = - d sin ; the value in this location is 

obtained by the linear interpolation of the four neighbouring pixels. Using the interpolation, Ƿpol( ,d)  is calculated 

on the polar grid ( i, dj), where i =  ∆ .i ; dj = ∆d·j. The resultant matrix is shown by Ƿpol(i,j). Generally,  ∆d = 1 is 

set and we let the spacing d to the maximum value of N/2: It is supposed that N/2 will span over at least two if not 

more periods of the texture pattern. Usually, we set ∆  = 3
o 
or 5

o
 as it is task dependent. 

The autocorrelation function is normalised: Ƿ ϵ [0,1]. Mostly, negated version of this function is used and is called 

autocorrelation based interaction map: 

Mpol(i,j)=1- Ƿpol(i,j)    from                      Mxy=1- Ƿxy(m,n)                                            (4) 

where  Ƿpol(i,j) is the polar representation of the autocorrelation function. 

In an interaction map, the periodicity vectors of the structure are shown to be occurring as dark points. A single row 

of Mpol(i, j) is known as contrast function. It shows the variation of contrast along a given direction i  with spacing 

d. 

 

Fig. 4.1 Typical curves of contrast functions of a random, weak regular and a regular pattern          

                      

4.3 Computing Directional Regularity 

The regularity measure for the direction i=1,2,…N  where N =2 /∆  is the number of total directions considered is 

grounded on contrast function Fi(d). Generally, a structure with periodicity will have a contrast function having deep 

and periodic minima. For an angle i, the directional regularity, R(i) can be defined as: 

R(i)=[Rint(i)·Rpos(i)]
2 
                     (5) 

Where Rint(i) is the intensity regularity and it shows how regular is the intensity of the pixels in the pattern. Rpos(i) is 

the position regularity which indicates the  periodic nature of the layout of the pixels in the pattern. While examining 

the periodicity of the pattern, two cases are taken into consideration. The first case  occurs when the depths of the 

global minima decrease monotonically with d. The second is the unusual case which can lead to possible 

inhomogeneity of the texture pattern, where the monotonicity may not hold. The algorithm involves  three 

procedures as follows: 

 

Procedure 1 : Finding the extrema of F(d) 
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Step 1:  Firstly, to remove the noisy extremes, apply the median filter of width 3 to F(d). Original unfiltered function 

is denoted by F0(d). 

Step 2: Find the extremes of the filtered function F(d), except for the points d = dmax and d = 0 . Denote the total 

number of minima and maxima by Nmin and Nmax, respectively. 

 

Procedure 2 : Computing intensity regularity Rint. 

Step 1: Calculate the amplitude of each maxima as follows: starting from the  maximum, move right till a higher 

value of maximum is found, then store the lowest minima in this interval, then store the difference between the 

initial maxima and this lowest minima. 

Step 2: Select the maximum (d’max , F’max) having the largest amplitude F’max – F’min where F’min is the lowest 

minimum assigned to F’max. 

Step 3: Resolve F’max by searching F0(d) for an even higher value in the +-2 neighbourhood of d’max. Set F’max to the 

highest value found in the neighbourhood. 

Step 4:  Similarly, resolve F’min  but this time search for a smaller value. 

Step 5: Calculate the intensity regularity 

'

min
int

'

max

1
F

R
F

 

                     (6) 

 

Procedure 3 : Computing position regularity Rpos. 

Step 1: If only one minima exists (Nmin = 1), find the position dmax of the highest maxima and the position d1 > dmax 

of the lowest minima after dmax , then set  

 

1 max2
1

1
pos

d d
R

d


 

                    (7) 

and stop. Else (Nmin > 1), select the two lowest minimum values (d1 , F1) and (d2 , F2) , d1  <  d2 , and continue. 

 

Step 2: If there is no minima between d1 and d2 (normal case), calculate 

 

1 1 2posR   
          (8) 

where 
1

2

d

d
   ,     0 1   

 

Else, (special case), consider also 

 

R’pos = 
1 1 3 

    if    
1 1 3 

 >= 0                          (9) 
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else            

 

R’pos = 0 

 

and select the larger value from Rpos and R’pos . 

 

The regularities are normalized so that  Rint ϵ [0,1] and Rpos ϵ [0,1]. By default Rint = Rpos = 0 if Nmin = 0 or Nmax = 0. 

 

Though median filtering in procedure 1 removes false extrema, but it also shifts the true ones. The correction steps 3 

and 4 in procedure 2 reinstate the original values of the amplitude. 

4.4 Defining the regularity feature vector 

The maximal regularity indicates prevailing direction within the texture pattern which display stronger periodicity. 

Although affine transformations change the shape of this cyclical function, the order of the significant maxima, their 

height and number remain quite stable. This is because regularity of a pattern in a principal direction is preserved. 

Transformations which are affine in nature are able to preserve both periodicity and collinearity. The largest of the 

maxima called the maximal regularity. It is the dominant feature of the texture pattern and it quantifies the regularity 

as observed by a human. 

                         Grounded on a sequence of the significant maxima of R(i), a regularity feature vector is defined 

which are invariant to affine transformations. This affine invariance of these features is due to the transformational 

properties of the autocorrelation function. The local maximum values of R(i), are denoted by Tk where 

k=1,2,3……,k is the index of the maximum in the sequence. Only the order of Tk in R(i) is relevant. To select a 

significant maxima, the regularity is thresholded at a value Tthr and remove the low maxima Tk  <  Tthr. Earlier it was 

experienced [3] that R(i) above Rthr = 0.25 indicated the presence of visually perceived periodicity in the texture 

pattern. To deal with weak regular patterns there is some relaxation, now Rthr and Tthr is set to= 0.15 [39]. 

Thresholded maxima sequences are denoted by 
'

kT , k=1,2,….,K’. The feature vector Ø1 consists of four components:  

the largest value MR , the mean µR , the variance 
2

R  , and the density of maxima  ,  defined as: 

MR = 
 'max k

k

T

     

'

'

k

k
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K
 



                      (10) 
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                          (11) 

Since R(i) ϵ [0,1],  0 <= µR <= MR <=1  having value 0 indicates random and  having value 1 indicates a highly 

periodic texture pattern. 

 

4.5 The Maximal Regularity 
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Maximal regularity is denoted by MR and it  was first introduced in [30]. It is the most discriminating property to 

structure of all the four regularity features. It associates both the layout and intensity regularities. It is also reliable 

with the visually perceived sense of regularity. This feature is able to differentiate between patterns based on their 

regularity. Random patterns thus have low maximal regularity value and highly periodic patterns have high value of 

maximal regularity. Following figure shows some maximal regularity values of different kinds of patterns: 

                                   

           Fig. 4.2 Maximal regularity values of different kinds of patterns as in [2] 

In the above figure, patterns are categorized in rows as four groupings according to their maximal regularity: random 

[0, 0.25) , low [0.25, 0.50) , medium regularity [0.50, 0.75) , high regularity [0.75, 1.00]. In each row, the MR value 

grows from left to right.The layout and the intensity regularities are combined by the Maximal Regularity. The first 

pattern being completely random has maximal regularity value to be 0 while the last pattern (mesh) has 1 value as it 

has perfect periodic and regular structure.  

 

4.6 Outlier Detection 

For a set of windows spanning the texture pattern image, we compute the maximal regularity for each window in the 

set. As the defect is localized in the texture pattern, it is covered by only some windows, but most of the windows 

span over non-defective area which has some regularity. When this is observed in the feature space, it shows that 

most of the windows (defect free) form a cluster and the defective windows occur as outliers in the feature space as 

their distance from the center of the cluster is larger than the radius of the cluster. Regions of sudden high regularity, 

are called ‘positive outliers’ can also be present. 

The basic principle of the algorithm to detect defects is based on outlier detection and robust regression [32]. We 

denote the regularity  feature vectors of the windows by pi  . The regularity feature vectors of every window are 

represented by points in the feature space. As most of the windows contain defect free pattern, most of them form a 

cluster. Firstly, the central point pc of the cluster is found.  It is done by finding the median distance of each point 

from all other points. The one with the minimum value of median is the central point pc 

( ) ( )med medd c d i for all i c                            (12) 
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where 

( )med i jd i median p p      given    i j      

pc is the inmost point of the cluster. The distance between a point pi  and the center pc  is called the radius ri of pi. 

  i i cr p p                                                    (13) 

and denote by rmean the mean radius of the cluster. 

A point pk is then considered as an outlier if its distance from the centre point is greater than the maximum of the 

radius max max: kr r r .Based on whether the ground truth is available or not, the value of rmax can be found in two 

different ways. In the case of availability of the ground truth,  rmax is learned from the distribution of the radius values 

calculated for the corresponding defect free patterns. In case when the ground truth is not available, it is set as rmax =

meanKr  where K varies from 2-4. ‘Negative’ outliers i.e windows having low regularity values are only accepted as 

defects. 

1.   

                                        Fig. 4.3 Concept of outlier detection. Gray and empty circles are outliers 

 

  Apart from thresholding factor K, StrucDef, has only two parameters: the detector window size W and the window 

slide step S.W is an important parameter to be selected carefully. The window must cover several periods of the 

pattern. At the same time, it should be as close to the expected defect size as possible. S is much less important. 

Basically, one has to balance between more reliable detection and higher processing speed. The small number of 

parameters reflects the simplification of the regularity approach. Any defect is viewed as just a significant decrease 

in regularity. W and K are only needed to tune the algorithm to the period of structure and the spread of the cluster in 

the feature space. 
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4.7 Implementation of Paper 

In this project, the above mentioned approach is used to find Maximal Regularity and then using it to detect the 

defects in texture patterns. Values not given have been assumed. And instead of using Descending Component 

Ananlysis in Procedure 1 of calculating Directional Regularity to calculate numbers of maxima and minima, I have 

used a function called Peakdet which finds number of minima and maxima in a given Contrast Function. It takes a 

single row of contrast function and threshold value as its input parameters. Results are discussed in the Results 

section. 
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5. A new statistical approach of defect detection using GLCM. 

A new statistical method for defect detection is implemented in order to identify defects of complex nature occurring 

in texture patterns. The method uses Grey Level Co-Occurrence Matrix in order to derive certain features of texture 

patterns. Using those features and finding the Euclidean distance between template features and sample features, 

defects are determined using a threshold value [35]. 

5.1 Definition of GLCM 

Grey-level co-occurrence matrix (GLCM) can be defined as a statistical method of examining texture by considering 

the spatial relationship of the pixels. GLCM is also known as the grey-level spatial dependence matrix. It is a second 

order statistics. The GLCM is calculated by counting the number of times a pixel with the intensity value ‘i’ occur in 

a specific spatial relationship to a pixel with the value ‘j’ with different offsets and angles [36]. 

MATLAB provides a function called “graycomatrix” to calculate the GLCM. 

glcm = graycomatrix(I); 

The above command creates a GLCM of Image I. 

Following figure shows the concept of GLCM. The figure shows how several values in the GLCM are calculated by 

graycomatrix in a 4-by-5 image I. Element (1,1) in the GLCM has value 1 because in the image, two horizontally 

adjacent pixels having values 1 and 1, occur only once. Similarly, element (1,2) in the GLCM contains the value 2 

because in the image, two horizontally adjacent pixels having values 1 and 2 occur twice. Thus in a similar way, all 

the values in GLCM are processed and filled by graycomatrix. 

 

Fig.5.1 Concept of GLCM 

 

The offsets in graycomatrix function explain the pixel relationships of varying distance and direction. Four possible 

spatial relationships with angles (0
o
; 45

o
; 90

o
 and 135

o
) and distance (D=1) are specified in the following figure: 



24 
 

 

Fig.5.2 Offset directions in GLCM 

Similarly, we can find GLCMs in all the eight directions. The size of the GLCM matrix is dependent on the intensity 

scale of an image. For ex. If the image is of grayscale, then its intensities will vary from 0 to 255. So, the size of 

GLCM will be 256X256. 

5.2 Features Calculated from GLCM 

The algorithm evaluates five features from GLCM using which defects are identified in the defective image. 

Following are features which are evaluated: 

1) Contrast: It gives a measure of the intensity contrast between a pixel and its neighbour over the whole image. 

For a constant image, contrast is 0. 

     C =         (14) 

 

2) Energy: Also called Angular second moment, it gives us measure of the homogeneity of an image. Hence it is 

suitable for detecting disorders in textures. It returns the sum of elements squared in the GLCM. For constant image, 

1 is returned. 

 E =           (15) 

 

3) Entropy: It is a statistical measure of randomness which can be used to characterize the texture of an image. Also, 

it gives a complexity measure of the image.  

Et=           (16) 

 

4) Homogeneity: It returns a value to measure the closeness of the distribution of values in GLCM to the GLCM 

diagonal.  For a diagonal GLCM,  homogeneity is 1. 
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    O =          (17) 

 

5) Variance: It gives the measure of the distribution of values around the mean. For a constant image, variance is 0. 

V =            (18) 

 

5.3 Defect Detection Methodology 

Steps: 

Step 1: Input the defective Image of any size. 

Step 2: Evaluate the GLCMs of the first 7X7 window in all the eight directions using graycomatrix function of 

Matlab. 

Step 3: Evaluate Grey Level Co-Occurrence Probabilities  from GLCMs 

      Step 4: Calculate Contrast, Energy, Entropy, Homogeneity and Variance for each GLCPs. 

      Step 5: Evaluate average of all the 5 features and name it Template. 

Step 6: For each window of 7X7 

Step 6.1: Evaluate average GLCM  from all 8 directions 

Step 6.2: Evaluate GLCPs from GLCMs 

                    Step 6.3: Calculate Contrast, Energy, Entropy, Homogeneity and Variance for each of the GLCPs. 

                    Step 6.4: Evaluate average of all the 5 features and name it Sample. 

Step 6.5: Find the Euclidean distancebetween these features of Template and Sample: 

                     (19) 

Step 7:If(distance > threshold) 

                    Then defective 

                    Else 

                    Not defective 

,
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6. New Method of Defect Detection using Non-Extensive Entropy 

6.1 Definition 

The new method of defect detection in texture patterns uses Non-Extensive Entropy as an indicator of regularity in 

order to detect defective regions in a texture pattern. This new Non-extensive entropy is based on Gaussian 

Information measure which ensures that only the relevant and necessary info lying inside the bell shape of the 

curve will be considered for calculating the entropy [33]. Since the proposed entropy has a non-additive property, it 

is used for the representation of information in the non-extensive systems which contain some amount of regularity 

or correlation. For the computation of entropy function, grey level co-occurrence probabilities (GLCP) are used. As 

this new non-extensive entropy is based on Gaussian Information Gain, most of the information is inside the bell 

curve and the outliers (in this case defects), lie outside 3* . Here  represents standard deviation. 

Let random variable X={x1,x2,…xn} has probabilities P={p1,p2,….pn}. Assuming complete probability distribution, 

i.epiϵ[0 1] and for i=1,2….n, (n is the number of probabilistic experiments). 

The information gain on the ith event of X, with associated probability pi is defined by the Gaussian function as 

follows: 

I(pi)  =      (20) 

Entropy of X can be defined as: 

H(P) = E(I(pi))  =                     =                                                                                                            (21) 

 

6.2 Implementation of Entropy Method 

Following are the parameters which are used for this method: 

                  1. Image Size:    256X256 

                  2. Window Size: 7X7 

                  3. Step size:         0 

Steps: 

Step 1 : Firstly the image is read 

Step 2 : Then a 7X7 window is defined. 
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Step 3 : For each window: 

Step 3.1 : GLCM is found. 

Step 3.2 : Using GLCM, we calculate GLCP 

Step 3.3 : Non-extensive entropy calculated based on GLCP. 

                Step 4 : IF(abs(mean-entropy) > 3*stdeviation) 

Then this area is defective (Central pixel of the window is   equated to 255) 

       ELSE 

   Non-defective 

We have used Entropy method in two different ways. The first way is by keeping the window size constant for all the 

images. We have kept window size to be 7X7 in the first method and we call it Constant Window size Entropy 

Method. The second way is by keeping the window size variable. Here, we first find the best window size for a 

particular image which can detect defects in the best possible manner. So, for a certain image, there was a certain 

window size which detected the defects accurately, this window size may or may  not work for other images. So, our 

first task was to find the window size for each image. We called this second approach as Variable Window size 

Entropy Method. Constant window size Method is executed on Images with synthetic defects as well as complex 

defects images. Variable window size Method is executed on complex defect images. 
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7. Automated Defect Detection using Non-Extensive Entropy 

Applying Non-Extensive Entropy with a constant window size for all images was not working and did not give 

satisfactory results. But when tested manually, most of the images were showing good results for a specific window 

size. So, we used the second approach of Variable Window size Entropy Method. Now the main goal of this 

approach is to find that specific window size for which best result is coming out. So, to automate the complete 

algorithm for defect detection using entropy, several methods were applied to find that window size for which defect 

is correctly detected. These methods are applied on the image using window size 3 to the half of the minimum side 

of the image. Finally, based on a certain criteria, the best window size is selected and the basic algorithm of defect 

detection by entropy is run on the image for that particular window size which is found out. The automation process 

has been defined using best four methods. These method find the most suitable window size for a specific image. 

They are as follows: 

7.1 Maximum Count Method 

In this method, the number of values which are greater than 3 are counted for each of the window size. Finally, that 

window size for which the maximum number of entropies qualify the 3  test is selected and considered to be the 

best window size for which defects will be detected correctly. 

7.2. Maximum Entropy Method 

In this method, the entropies which qualify the 3 test are collected and their overall Non-Extensive Entropy is 

computed. Finally, that window size is selected for which maximum entropy results. 

7.3. Gaussian Mixture Distribution Method 

In this, method, we try to fit the data of entropy values by a Gaussian Mixture distribution. ‘gmdistribution’ is a class 

in Matlab. Gaussian Mixture distribution is defined by an object of this class.  This model is called mixture model 

because it consists one or more multivariate Gaussian distributions. Each of the Gaussian component is well-defined 

by its covariance and mean, and the whole mixture is defined by a vector of mixing proportions. In order to fit a 

Gaussian mixture distribution model to data, use gmdistribution.fit. fit is a function of the class gmdistribution. Here, 

the returned object is of struct type. We minimize the entropy of PComponents which is one of the components of 

this object. In the last step, we select that window size for there is minimum entropy of PComponents. 

7.4. Combined Method of Gaussian Mixture Distribution and Maximum Counts: 

This method combines the third and the first method to select the best window size. Firstly, the dummy window size 

id found out by Gaussian Distribution Method. In the second step, we count the number of entropy values which are 

falling outside 3  for window sizes which are in +10 and -10 vicinity of the dummy window size. Finally, from this 

new range of window sizes, we select that window size, which has the maximum number of entropies outside 3 .  
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8. Experimental Results and Conclusion 

8.1 Environmental Setup: 

The following system configuration has been used while conducting the experiments: 

Hardware Configuration 

Processor                                                                                       Intel® Core™ i5-2450M CPU 

Clock Speed                                  2.50GHz 

Main Memory                        4GB 

Hard Disk Capacity                       500GB 

Software Configuration 

Operating System                                                                          Windows 7 

Software Used                                                                               MATLAB 7.9.0 (R2009b) 

We calculate the performance of our algorithms on images from Brodatz Database as well as on images from the link 

: http://athos.vision.sztaki.hu:8080/strucdef/strucdef.html  

8.2 Measures 

8.2.1 Measures for objective comparison of Regularity and Entropy Methods on images with 

Synthetic Defects 

In this section, both the methods are evaluated and an objective comparison between them is used to draw 

conclusions which one is a better method. Both methods are compared by evaluating three parameters: Precision, 

Recall and F-measure. 

Precision = 
_ _

_

relevant pixels retrieved pixels

retrieved pixels
 

OR  

Precision =  

High precision means that an algorithm gave more important results than less important ones. 

Recall = 
_ _

_

relevant pixels retrieved pixels

relevant pixels
 

OR 

Recall =  

 

F-measure =  

TruePositive

TruePositive FalsePositive

TruePositive

TruePositive FalseNegative

2*Pr *Re

Pr Re

ecision call

ecision call

http://athos.vision.sztaki.hu:8080/strucdef/strucdef.html
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8.2.3 Measures of objective comparison of Regularity, GLCM and Entropy  Methods using 

Ncorrect and Nfalse on images with complex defects 

While subjective comparison shows that Regularity is a better method in detecting defects of complex nature in 

texture patterns than Entropy and GLCM based method, but an objective comparison is better way to judge 

comparison between both the methods. 

So, we have used, 2 parameters for objective comparison of all the three methods: 

1. Ncorrect : no. of pixels which are correctly detected. This is the total number of pixels which are having 

255 intensity value at the same position in mask  of defect detected image and ground truth. (Here, 

defective region is considered to be white in the mask image). 

2. Nfalse : no. of pixels which are incorrectly detected. This is the total number of pixels which are having 

255 intensity value in the mask of defect detected image and 0 intensity value in the ground truth. (Here, 

defective region is considered to be white in the mask image). 

3. Ncorrect:Nfalse : ratio of Ncorrect and Nfalse. Higher the value of this ratio, better is the detection of 

defect in the defective image. 

8.2.4 CPU Time 

CPU time is the amount of time taken by a CPU for processing instructions of a computer program. The CPU time is 

generally measured in clock ticks or seconds. We have computed the CPU time in seconds for the running program 

by using the standard MATLAB commands “tic toc”. Thus the CPU time computed using the tic toc commands on 

the Variable window size Entropy Method is 6493.557952 seconds for a single image. 

8.3 Results 

8.3.1 Results of Segmentation Approach 

Table 8.1 Results of Segmentation approach 

Defective Image Defect Detected 

Image 

  

1. pattern19 
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2. pattern18 

  
3. pattern4 

  
4. pattern17 

  
5. pattern9 

  
6. pattern19 

  
7. pattern13 
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8. pattern6 

  
9. pattern14 

  
10. pattern16 

 

8.3.2 Results of Regularity Method (Chetverikov’s Method) 

8.3.2.1 Results of calculating Maximal Regularity on four Images 

Images shown here represent each of the four categories, i.e random, low, medium and high regularity value images. 

               (1)      (2)  

       Img1   (0.020 (random))                    Img2  (0.463 (low)) 

               (3)      (4)  

                  Img3   (0.507 (medium))                                                  Img4 (1.000(high))    

Fig. 8.1 Maximal Regularity value of 4 categories of patterns 



36 
 

8.3.2.2 Results of Images with Synthetic Defects 

In this test, eight 256 X 256 pixel size brodatz/textile images are used [4]. The textures contain more or less obvious 

imperfections. For each pattern, the threshold value is set manually. The window should be such that it includes at 

least two periods of the pattern. Generally the size should be at least 40 X 40 pixels. In this project window size is 

taken as 64 X 64. There is another parameter called step size which denotes the number of steps (pixels) to be left 

when the window is moved to next position. Step size is used to balance between more reliable detection and higher 

processing speed. In my implementation , I have taken step size to be 5. In these images defects are created 

synthetically,  Following are some of the brodatz/textile images with the defect detected identified: 

Table 8.2 Result of Regularity Approach on synthetic images 

Defective Image Defect Detected 

Image 

  
1. D20 

  

2. brodatz100 

  

3. brodatzD22 

  
4. brodatzD34 

  
5. defect_gpattern2 
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6. defect_gpattern3 

  
7. defect_pattern14 

  
8. defect_pattern16 

 

8.3.2.3 Results of Images with Complex Defects 

,Chetverikov’s method is applied to such natural defects in order to evaluate its efficiency on natural or more 

complex defects which are generally found in textile. 

Table 8.3 Result of Regularity Approach on complex defects 

Defective Image Defect Detected Mask Image Ground Truth Regularity Plot 

     
1. defect1 

    

 

2. defect2 
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3. defect3 

    

 

4. defect4 

     
5. defect6 

     
6. defect7 

     
7. defect8 

     
8. d6 
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9. d7 

    
 

10. df 

    
 

11. dk1 

     

12. dk11 

    
 

13. gcuwei 

    
 

14. sap 

     

15. texdef2 
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16. textile0 

    
 

17. textile1 

    
 

18. x 

    
 

19. YY1 

     
20. d1 
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8.3.3 Results of GLCM Method  

8.3.3.1 Results of Images with complex defects 

Table 8.4 Result of GLCM method on complex defects 

Defective Image Defect Detected Mask Image Ground Truth Euclidean Distance 

Plot 

               
   

 

1. defect1 

                  
   

 

2. defect2 

                  
   

 

3. defect3 

                 
   

 

4. defect4 
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5. defect6 

                
    

6. defect7 

                             
   

 

7. defect8 

                                         
   

 

8. d6 

                                            
   

 

9. d7 

                                                     
   

 

10. df 
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11. dk1 

                                                              

 

12. dk11 

                                                
   

 

13. gcuwei 

                                                   
   

 

14. sap 

                                                      
   

 

15. texdef2 

                                                    
   

 
16.textile0 

                                                

 

   
 

17. textile1 
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18. x 

                                                   
   

 

19. YY1 

                                                 
   

 

20. d1 

 

8.3.4 Results of Entropy Method 

8.3.4.1 Results of Images with synthetic defects 

Here, images with synthetic defects are used for execution. 

Table 8.5 Result of Entropy Method on synthetic defects 

Defective Image Defect Detected 

Image 

  
1. defect_pattern14 
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2. brodatz100 

  
3. brodatzD22 

  
4. brodatzD34 

  
5. defect_gpattern2 

  
6. defect_gpattern3 

  
7. defect1_gpattern1 

  
8. defectmesh21 
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8.3.4.2 Results of Images with complex defects 

Here, Entropy Method, which uses a new Non-Extensive Entropy as a regularity measure is used to detect defects in 

images having complex defects. 

Here, the images used are of varying size, so the program is modified in such a way so that image of any size can be 

run. 

Table 8.6 Result of Entropy method on complex defects 

Defective Image Defect Detected Mask Image Ground Truth Entropy Plot 

    

 

1. defect1 

    

 

2. defect2 

    

 

3. defect3 

    

 

4. defect4 
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5. defect6 

    
 

6. defect7 

     

7. defect8 

    

 

8. d6 

    

 

9. d7 

    

 

10. df 

    

 

11. dk1 
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12. dk11 

    

 

13. gcuwei 

    

 

14. sap 

    

 

15. texdef2 

    
 

16. textile0 

    
 

17. textile1 
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18. x 

    

 

19. YY1 

    

 

20. d1 

 

8.3.5 Results of Automated Entropy Algorithm 

8.3.5.1 Results of Max Count Method 

Table 8.7 Result of Max count method 

Defective Image Defect Detected Mask Image Ground Truth Entropy Plot 

     

1. defect1 
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2. defect2 

     

3. defect3 

     

4. defect4 

     

5. defect6 

     

6. defect7 

     

7. defect8 
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8. d6 

     

9. d7 

     

10. df 

     

11. dk1 

     

12. dk11 
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13. gcuwei 

     

14. sap 

     

15. texdef2 

    
 

16. textile0 

    
 

17. textile1 

    

 

18. x 



53 
 

     

19. YY1 

     

20. d1 

 

8.3.5.2 Results of Max Entropy Method 

Table 8.8 Result of Max Entropy method 

Defective Image Defect Detected Mask Image Ground Truth Entropy Plot 

     

1. defect1 

     

2. defect2 
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3. defect3 

     

4. defect4 

    
 

5. defcet6 

     

6. defect7 

     

7. defect8 

     

8. d1 

     

9. d7 
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10. df 

     

11. dk1 

     

12. dk11 

     

13. gcuwei 

     

14. sap 
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15. texdef2 

    
 

16. textile0 

    
 

17. textile1 

     

 
18. x 

     

19. YY1 

     

20. d1 
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8.3.5.3 Results of GM Distribution Method 

Table 8.9 Result of GM distribution method 

Defective Image Defect Detected Mask Image Ground Truth Entropy Graph 

     
1. defect1 

     

2. defect2 

     

3. defect3 

     

4. defect4 

     

5. defect6 
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6. defect7 

     

7. defect8 

     

8. d6 

     

9. d7 

     

10. df 

     

11. dk1 
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12. dk11 

     

13. gcuwei 

     

14. sap 

     

15. texdef2 

    
 

16. textile0 

    
 

17. textile1 
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18. x 

     

19. YY1 

     

20. d1 

 

8.3.5.4 Results of Combination of GM Distribution and Max Count Method 

Table 8.10 Result of combination of GM distribution and max count method 

Defective Image Defect Detected Mask Image Ground Truth Entropy Plot 

     

1. defect1 

     

2. defcet2 
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3. defect3 

     

4. defect4 

     

5. defect6 

     

6. defect7 

     

7. defect8 

     

8. d6 
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9. d7 

     

10. df 

     

11. dk1 

     

12. dk11 

     

13. gcuwei 
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14. sap 

     

15. texdef2 

    
 

16. textile0 

    
 

17. textile1 

     

18. x 

 
  

 
 

19. YY1 
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20. d1 

 

8.3.5.5 Results of Ideal Case 

Table 8.11 Result of Ideal Case of Variable window size Entropy Method 

Defective Image Defect Detected Mask Image Ground Truth Entropy Plot 

     

1. defect1 

     

2. defcet2 

     

3. defect3 
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4. defect4 

     

5. defect6 

     

6. defect7 

     

7. defect8 

 
  

 
 

8. d6 

     

9. d7 

     

10. df 
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11. dk1 

   
 

 

12. dk11 

     

13. gcuwei 

     

14. sap 

     

15. texdef2 

    
 

16. textile0 
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17. textile1 

     

18. x 

 
  

 
 

19. YY1 

     

20. d1 
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8.4 Results of Objective Comparison of Chetverikov’s and Entropy Method on Images 

with synthetic defects 

The following table shows comparison of Precision, Recall and F-measure for both the methods of defect detection: 

Table 8.12 Precision, Recall and F-measure values for Chetverikov and Entropy Method on synthetic defects 

 

 

From the table we can conclude that Chetverikov’s Method performs better than Entropy Method in the case where 

window size is kept same for all images for Entropy Method.  
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8.5 Result of Comparison of all the three methods on images with complex defects 

Table 8.13 Results of Comaprison of Regularity, Entropy and GLCM methods on complex defects 

 

 

The coloured row indicates the best method for each image. 

As we can see that, there are majority of yellow rows, which again indicates that Chetverikov’s Method is better 

among all the three methods. 
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8.6 Result of Comparison of four Automation Methods 

Table 8.14 Result of Comparison of Max Count, Max Entropy, GM distribution and combination of GM distribution 

and Max count method 

 

 

The coloured row indicates the best method for each image. 

Starting from the Segmentation approach, let us discuss the results of each method. Segmentation method works 

good only for images with dark coloured defects. As it can be seen from the Table 8.1, the algorithm detects defects 

clearly only in first six images. In the last four images, the defects are not detected properly. This is because, the 

algorithm assumes defects to be present only in the darker region which may not be the case always. 

Fig. 8.1 shows the Maximal Regularity values for four images ranging from random to the most regular image. As 

discussed in Chapter 4, Maximal Regularity quantifies the human visual perception of regularity, so accordingly, 

Img1 which is random in nature shows very low value of Maximal Regularity. Img4 which is most regular shows 

maximum value of Maximal Regularity. Maximal Regularity values is further used to identify defects in images. 

Results of Chetverikov’s Regularity Method on synthetic defect images can be seen in Table 8.2 and on complex 

defect images in Table 8.3 respectively. This method works good for both types of images, but defects are not 

identified precisely as there is large non defective area is also shown to be as a defect. 

Next, we can see results of Constant window size Entropy Method on synthetic defect images and on complex defect 

images in Table 8.4 and Table 8.5 respectively. The results of Table 8.4 are much better in terms of precision than 

results of Table 8.2. But the results of Table 8.5 are not good as compared to the results of Table 8.3. 

Next, we come to the results of GLCM Method applied on complex images. As we can see from the Table 8.6, 

textures like defect1, defect6 and df show good results but most of the images do not show satisfactory results.  
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Next four tables discuss the four methods which are used in the Variable window size Entropy Method. Subsequent 

paragraphs discuss their results and comparison. 

As we can see, that, there are majority of orange rows in the Table 8.14 which indicates that if we use Variable 

window size Entropy Method for defect detection, then to find the best window size for a certain image, we can use 

GM Distribution Method. The table also shows the ideal case results of Variable window size Entropy Method. 

These results have been manually calculated.  

As we can see from the Table 8.12, Constant window size Entropy Method has better precision values than 

Chetverikov’s Method (Regularity Method) in case of synthetic defect images. As it can be seen from the results of 

Table 8.4, defects are very accurately detected by Entropy Method than Regularity Method by Chetverikov in Table 

8.2. 

Though Entropy Method wins in the case of synthetic images but if we apply the same method to complex defect 

images, the Entropy Method fails for most of the images. Texture patterns like defect2, defect3 and defect4 from 

Table 8.5 can be seen failing the Entropy Method. The defects are not identified correctly. Although, a small amount 

of positive result can be seen in images like defect1, defect7, gcuwei and x. This failure results in the poor results of 

Entropy Method in Table 8.13, where we can see that Chetverikov’s Regulaity Method has majority of yellow rows 

amongst the three methods of defect detection, Chetverikov’s Regularity methods stands best.  

Now, that the Constant window size Entropy Method was not working properly, we decided to follow a second 

approach in which different textures work best for different window sizes This is because the defect size is different 

in different images. So, if one window size works best for one image it may not work best for another image. If the 

defect is small, a small window size is suitable for that image but if the defect is large, then a large window size is 

required to detect that defect. So, we implemented the second approach called Variable window size Entropy 

Method. Initially, we tested the texture images manually to find the best window size for which it was giving best 

results. This process was done manually by selecting a window size and then executing the program for that window 

size. The results of finding the best window size manually for all the images can be seen in the Table 8.11 and it is 

termed as the Ideal Case results. Now, if we compare the results of Table 8.3 and Table 8.11, then we can see, that 

except for few images, Entropy method can be seen working much better than Chetverikov’s Regularity Method. 

There is good accuracy and precision in the results of Entropy Method as compared to Regularity Method.  

But as we can see, there was a last step to automate this Variable window size Entropy Method and it was to find the 

best window size which can provide the best result for a given image. This window size which was to be found out 

should match the window size found in Ideal Case and if not match then, it should be as close as possible to the 

window size found in Ideal Case. So, to find out the best window size, four methods have been employed which are 

discussed in Chapter 7. The results of these four methods have been shown in Table 8.7, Table 8.8, Table 8.9 and 

Table 8.10. And Table 8.14 gives the objective comparison of all these four methods. Among these four methods, 

GM Distribution has majority of coloured rows (orange), which indicate that it is the best method amongst all the 
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four methods to find the most suitable window size for a given image. Now if we compare the ratio of Ncorr and 

Nfalse for GM Distribution Method from Table 8.14 with the ratio of Ncorr and Nfalse of Regulaity Method from 

Table 8.13, then we can see, that except for few images, our results are comparable with the results of Regularity 

Method. For some images like defect1, defect2, defect8, gcuwei, sap, textile1, x and d1, our results are much better 

than Regularity Method. For images like defect3, d7 and dk1, our results are comparable to that of results of 

Regulaity Method. Although, for images like defect6, texdef2, dk11 and textile0 Regularity results are better. All this 

was not in the case when we kept the window size constant for Entropy Method. So, it becomes clear that Variable 

window size Entropy Method is much better than Constant window size Entropy Method and if we use GM 

Distribution Method for finding optimum window size, our results have better precision and accuracy as compared to 

Chetverikov’s Regularity Method.  
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9. Conclusion and Future Work 

Though Constant Window size Entropy Method did not give good results, but every image shows a very good result 

for a certain window size. That means using the Variable window size Entropy Method gives much better results 

than Chetverikov’s Regularity Method for some common images. To find this, four automation methods are used to 

find the best window size and from among these four methods, the best method is selected in the Variable window 

size Entropy Method. Each of these automation methods of defect detection by entropy runs good on some images 

but not uniformly on all the images. Among these, GM Distribution is found to work best on most of them. Though 

Variable window size Entropy Method using GM Distribution to identify the window size gives better results than 

Regularity Method in many cases, there are still few drawbacks for which future work can be done to improve this 

method and make it the best method for texture defect detection. There are cases of certain images where defects are 

not identified by any of the four automation methods. Even GM Distribution does not give good results in certain 

cases.  Also, it does not find the exact matching window size as in the Ideal Case.  So, the future scope of this work 

would be to find a single best method which gives good results on all the images. There are some images which have 

very small sized defect, this method was not able to identify those defects. And also, we can workout a better way to 

identify a window size which matches with the window size found in Ideal Case. So, these are the few aspects on 

which future work can be done in this direction to improve it so that it can detect all the types of defects with good 

precision and accuracy.  
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