A Major Project Report II On

Optimization in Round Robin Process Scheduling Algorithm

Submitted in Partial Fulfillment of the Requirement

For the Award of the Degree of

Master of Technology

In

Software Engineering

By

Anurag Upadhyay University Roll No. 2K13/SWE/01

Under the Esteemed Guidance of

Dr. S. K. Saxena Computer Science & Engineering Department, DTU

2013-2015

COMPUTER SCIENCE & ENGINEERING DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY

DELHI – 110042, INDIA

DECLARATION

I hereby declare that the major project – II work entitled "**Optimization in Round robin** scheduling algorithm", which is being submitted to Delhi Technological university, in partial fulfillment of requirements for the award of degree of Master of Technology (Software Engineering) is a genuine report carried out by me. The material contained in the report has not been submitted to any university or institution for the award of any degree.

ANURAG UPADHYAY

2K13/SWE/01

CERTIFICATE

This is to certify that the Major project – II entitled **"Optimization in Round Robin Process Scheduling Algorithm"**, is a genuine work done by **"Anurag Upadhyay"**, University roll number **2K13/SWE/01**. The project was completed under my supervision and forms a part of Master of Technology (Software engineering) course curriculum in the department of Computer Science and Engineering at Delhi Technological University, Delhi.

DATE.....

Dr .S.K.Saxena

Project guide

Department of Computer Engineering

Delhi Technological University

ACKNOWLEDGEMENT

First of all, I would like to express my deep sense of respect and gratitude to my project supervisor Dr. S.K.Saxena for providing me the opportunity of carrying out this project and being the guiding force behind this work. I am deeply indebted to him for the support, advice and encouragement he provided me without which the project could not have been a success.

Secondly, I am grateful to Dr. O.P.Verma, HOD, Computer Engineering Department, DTU for his immense support. I would also like to acknowledge Delhi Technological University library and staff for providing the right academic resources and environment for this work to be carried out.

Last but not the least I would like to express sincere gratitude to my parents and friends for constantly encouraging me during the completion of work.

Anurag Upadhyay

M.Tech (SWE)

2K13/SWE/01

Dept. of Computer Science & Engineering

DTU, Delhi

Abstract

One of the most important tasks of an operating system is to share and schedule resources among various competing processes. This task is achieved through various process scheduling algorithms. In this regard, Round Robin (RR) algorithm certainly is one of the most popular algorithms. In this algorithm, a static time quantum is given to each process. However it suffers from certain problems which are mainly related to the size of time quantum. Larger the time quantum, larger is the response and waiting time of processes. Similarly if the time quantum is too small then the overhead of CPU increases because CPU has to perform greater number of context switches.

This thesis focuses on the optimization techniques in Round Robin algorithm. Several algorithms have been proposed which use a dynamic time quantum, rather than a static one. The concept of mean, median, dispersion and others are used to calculate time quantum for processes in ready queue based on their remaining burst time. An approach based on multiple time quanta has also been proposed. Finally it has been shown through implementation and results that these algorithms are able to solve the problems of conventional Round Robin algorithm. A better turnaround time, response time and waiting time has been achieved through the implementation of these algorithms.

Keywords: Round Robin algorithm, Dynamic and multiple time quantum, means, median, dispersion.

CONTENTS

Declaration	
Certificate	
Acknowledgement	
Abstract	
List of figures	
List of tables	
Chapter 1: Introduction	1
1.1 Overview	1
1.2 Motivation	2
1.3 Problem statement	3
1.4 Scope of work	3
1.5 Organization of thesis	4
Chapter 2: Literature Survey	6
2.1 Historical background of process scheduling	6
2.2 Evolution of Round Robin scheduling	9
2.3 Existing work on Round Robin Algorithm	10
Chapter 3: Basic concepts	12
3.1 Basics of process scheduling	12
3.2 Scheduling Criteria	16
3.3 Scheduling Algorithms	17
3.4 Basics of statistical measures	22
Chapter 4: Proposed Algorithms	27
4.1 Round Robin using mean median and dispersion	27
4.2 Round Robin using arithmetic and harmonic mean	29
4.3 Incremental Round robin algorithm	32

4.4 Multiple time quanta round robin algorithm	35
Chapter 5: Tool Description	39
5.1 User Interface	39
5.2 Screenshot	39
5.3 Features	40
5.4 Technology and System requirements	40
5.5 Constraints	40
Chapter 6: Results and comparisons	41
Chapter 7: Conclusion	48
References	50

List of Figures

Figure 1: Batch operating system	7
Figure 2: Multi-programming operating system	8
Figure 3: Model of time sharing systems	9
Figure 4: Alternating CPU and I/O bursts	14
Figure 5: CPU scheduling	15
Figure 6: Round robin process scheduling	20
Figure 7: Multilevel queue scheduling	21
Figure 8: Multilevel feedback queues	22
Figure 9: Relationship between various means	24
Figure 10: Relationship between mean median and mode	25
Figure 11: Screenshot example	39
Figure 12: Average waiting time of algorithms	46
Figure 13: Average turnaround time of algorithms	46

List of Tables

Table 1: Timings of processes in first case	42
Table 2: Results for first case	42
Table 3: Timings of processes in second case	43
Table 4: Results for second case	43
Table 5: Timings of processes in Third case	44
Table 6: Results for third case	44
Table 7: Timings of processes in fourth case	45
Table 8: Results for fourth case	45