List of figures

Figure 1.1(a) Structure of a hexagonal TMDC monolayer. M atoms are in black and X atoms are in yellow. (b) A hexagonal TMDC monolayer seen from above
Figure 2.1 Molybdenite
Figure 2.2 Band structure of bulk MoS ₂ , where A and B depict the direct gap transitions, as opposed to the indirect gap transition shown by I7
Figure 2.3 Bilayer structure of MoS ₂
Figure 2.4 Bright field image of an MoS ₂ crystal9
Figure 2.5 Time trace of drain current through a monolayer MoS_2 channel. The inset shows the time trace of the drain voltage
Figure 3.1(a) Raman peak intensity mapping $(360 \sim 420 \text{ cm}-1)$, (b) PL peak intensity mapping $(650 \sim 700 \text{ nm})$ and (c) OM image of the selected area with various MoS ₂ layer thickness (1L, 2L and 3L). (d) Raman spectra and (e) photoluminescence of the monolayer, bilayer
Figure 3.1(a) Schematic experimental set-up. (b) The OM of the MoS_2 layers grown pretreated with rGO solution.(c) AFM image of a monolayer MoS_2 film(d) The thickness of the MoS_2 layer from the AFM cross-sectional profile along the line indicated in (c)12
Figure 2.3(a) TEM image of MoS2 monolayer.(b)HR-TEM image of the marked area in figure (a) with an inset showing SAED pattern.(c)TEM image for the MoS ₂ domain boundary at the location as indicated by the inset AFM image.(d)In-plaplane XRD result for MoS ₂ monolayer13
Figure 3.4(a) Schematic illustration of the two-step thermolysis process for the synthesis of MoS2 thin layers on insulating substrates. The precursor $(NH_4)_2MoS_4$ was dip-coated on SiO ₂ /Si or sapphire substrates followed by the two-step annealing process. The as-grown MoS ₂ film can be transferred onto other arbitrary substrates. (b) Raman spectra for the bilayer and trilayer MoS ₂ sheets grown on sapphire substrates (excitation laser: 473 nm), where the labels (Ar) and (Ar + S) represent the MoS ₂ sheets separately prepared in pure Ar and in the mixture of Ar and sulfur during the second annealing. (c) Energies of the two characteristic Raman peaks for the micromechanically exfoliated MoS ₂ films with various number of layers. The peak energy difference shown in the bottom graph can be used to identify the number of MoS ₂ layers. (d) The PL intensity of the trilayer MoS ₂ thin films prepared in (Ar + S) is stronger than those prepared in pure Ar (excitation laser 473 nm; spectra were normalized by Raman scattering peak at around 482 nm).
Figure 3.5 (a) AFM image of the MoS_2 trilayer grown on a sapphire substrate annealed with the

Figure 3.5 (a) AFM image of the MoS_2 trilayer grown on a sapphire substrate annealed with the presence of sulfur (Ar + S). (b) High-resolution TEM image for the MoS_2 trilayer. The d100 is 0.27 nm, and d110 is 0.16 nm. Inset is the TEM image of MoS_2 film edge, where three layers of

Figure 3.7(a) FESEM, (b) TEM images of sample C show curved sheet-like structure and uneven surface morphology on a large scale, and (c) EDX spectrum of sample C gives a mole ratio of S:Mo of 1.98, which is about the same value of the ratio of S:Mo for the precursors......17

Figure 4.2 Reaction zones during CVD	27
Figure 4.3 Physiochemical steps of CVD	28
Figure 4.4. TGA data of MoS ₂ nanoparticles and other mixed compounds	30
Figure 5.1. Typical configuration of AFM	34
Figure 5.2. Picture of AFM setup @DTU	34
Figure 5.3. Schematic setup of SEM apparatus	37
Figure 5.4. Picture of SEM setup @DTU	37
Figure 5.5. Types of electrons released during SEM imaging	38
Figure 5-6.Schematic of PL setup	41
Figure 5.7. Photographic view of PL setup @DTU	41
Figure 5.8. Schematic of UV- visible spectrophotometer	43
Figure 5.9. Photographic view of UV-Vis setup @DTU	44
Figure 6.1. Schematic of CVD Furnace with substrate placement prior to sulphurisation	45
Figure 6.2. Schematic of CVD Furnace with substrate placement during and post sulphurisation.	46
Figure 6.3.Picture of CVD Furnace used for experimentation	46
Figure 6.4. Flow Chart of the entire experimental process	48
 Figure 6.5. Block Diagram of the entire Experimental Process	49
Figure 6.6. Picture of the as-obtained sample	50
Figure 7.1. AFM image of single MoS ₂ nanoparticulate growth indicating thickness	53
Figure 7.2. SEM image of nanoparticulate growth on the substrate	54
Figure 7.3. SEM image of island growth on the substrate	54
Figure 7.4. SEM image of scattered growth in a region on the substrate	55
. Figure 7.5. SEM image of continuous growth in a region on the substrate	55

Figure 7.6. PL spectra of the MoS ₂ sample no.2	56
Figure 7.7. PL spectra of the MoS ₂ sample no.4	56
Figure 7.8. UV-Vis spectra of the MoS ₂ sample no.2	57
Figure 7.9. UV-Vis spectra of the MoS ₂ sample no.4	58

List of Abbreviations

VLSI	Very Large Scale Integration
AFM	Atomic Force Microscopy
Ar	Argon
CVD	Chemical Vapour Deposition
Mo	Molybdenum
MoO ₃	Molybdenum trioxide
MoS_2	Molybdenum Disulfide
PVD	Physical Vapour Deposition
SiO ₂ /Si	Silicon Dioxide on Silicon
S	Sulphur
SCCM	Standard Cubic Centimeters per Minute
TMDC	Transition Metal Dichalcogenide Crystal
2D	Two Dimensional
SEM	Scanning Electron Microscopy
PL	Photoluminescence

ABSTRACT

The search for monolayer materials to substitute silicon in electronic devices has widened in the past decade. Despite the benefits of two dimensional graphene, it has no band gap and behaves as a semi-metal. Molybdenum disulphide is a promising material as it boasts a band gap of up to 1.9eV in a monolayer form. In this project, an inexpensive method of fabricating monolayer MoS₂ is designed and growths on Si-substrates for future use in electronic devices will be attempted with this fabrication method.