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ABSTRACT 

Epigenetics is rapidly gaining recognition as it accounts for the change in phenotype without 

any change in the genotype or the DNA sequence. These are the heritable changes observed 

in gene expression without any change observed in the coding sequence. DNA methylation is 

the most extensively studied epigenetic mechanism which adds a methyl group to DNA at a 

cytosine base almost every time accompanied by a guanine base. These sites of methylation 

are also called “CpG” islands known to harbour promoter regions. Hence methylation at 

promoter regions directly affects the binding of DNA-binding protein thus inhibiting 

transcription and gene expression.  

 

DNA methylation is observed to play major roles in gene regulating mechanisms and gene 

silencing mechanisms. Therefore understanding the relationship between DNA methylation 

and gene expression becomes very important. As a proof of concept, Prostate 

Adenocarcinoma (PRAD) was chosen as the cancer to be studied as it is the second leading 

cause of death in men. DNA methylation (level 1) and Gene expression data (level 3) from 

The Cancer Genome Atlas (TCGA) were downloaded for 18 normal matched with tumor and 

18 tumor matched with normal samples from batch 184. 

 

“R” programming language was used to integrate and analyse the data. “R – Bioconductor” 

packages “minfi” and “COHCAP” were used to find 453 differentially methylated regions 

with with p-value < 0.05, fdr < 0.05 and beta value (methylation) > 0.2.   

 

The gene expression data was integrated with matched TCGA IDs and Pearson correlation 

analysis was carried out. 180 significant correlations were identified, out of which 112 

correlations were chosen by applying stringent rules like correlation < -0.5, p value < 0.001 

and false discovery rate < 0.001. Upon visual inspection of the results, 74 correlations were 

finally filtered and functional enrichment was carried out. It was discovered that genes 

"GSTP1" and "FGFR2" are already known to be involved in prostate cancer pathway and 

progression and these genes were present in the final filtered significant correlations. This 

approach may indicate the involvement of other novel genes in the prostate cancer pathway 

for which experimental validation must be carried out. 
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INTRODUCTION 

The classic genetic model alone cannot account for the variation in phenotype of the entire 

population (Esteller, 2008).  It is evident that there are factors (other than the genetic make-

up) involved in the phenotypic variation observed in a population. Epigenetic inheritance is 

one such mechanism widely studied across the globe which accounts for the “other” factors 

involved in the phenotypic variation. This represents cellular information other than the mere 

sequence of the DNA (Feinberg and Tycko, 2004).  

 

DNA methylation is the most common form of epigenetic mechanism studied by research 

groups all over the world (Egger et al., 1999). It involves addition of a methyl group to C-5 

position of cytosine of DNA with the aid of methyl transferases (Feinberg and Tycko, 2004) 

and thus make it unavailable to bind to DNA-binding proteins (Jones and Takai, 2001). DNA 

methylation most frequently occurs at cytosine immediately followed by a guanine molecule 

also called a CpG island (Feinberg and Tycko, 2004). It is known to play an important role in 

regulation of gene expression (Jones and Laird, 1999; Esteller, 2008). 

 

The Cancer Genome Atlas (TCGA) is a common platform designed to distribute and handle 

large volumes of research data for more than 20 types of cancer 

(https://wiki.nci.nih.gov/display/TCGA/About+TCGA). Prostate Adenocarcinoma (PRAD) is 

a common type of cancer prevalent in western countries and is a major cause of death in men 

(Hsing and Chokkalingam, 2006). TCGA provides information about the methylation 

changes observed in the tumor and normal samples along with gene expression information 

and somatic changes and variations observed. The smart architecture of TCGA enables a 

researcher to download raw or processed data wherever applicable and available. Independent 

studies can be carried out to compare, analyse and interpret the information from various 

platforms on a particular sample. As is the mission of TCGA, the atlas of changes can be 

analysed and stored to reduce the gap in the cancer and its molecular biology. 

 

Data analysis involves handling large data using suitable programming language like “R” and 

employing the use of several packages designed to carry out the analysis. In this study, DNA 

methylation data (level 1) and Gene expression RNA-Seq v2 data (level 3) was downloaded 

for PRAD of batch 184 with 18 normal with matched tumor and 18 tumor with matched 

normal samples. Statistical analysis was carried to identify the regions differentially 

methylated amongst the normal and tumor samples and integrate the information with RNA-

Seq v2 data to find out the significantly correlated genes where a relation between 

methylation and gene expression can be observed.  

 

In this study, “R – Bioconductor” package COHCAP was used to identify the differentially 

methylated regions and gene expression data was integrated using the matched TCGA IDs 

Data pre-processing was carried out using tools like MS-Excel, “R” programming language 

and “R – Bioconductor” package minfi. The results were visualized in the form of box and 

scatter plots and graphs and viewed on Integrative Genomics Viewer (IGV, Broad institute) 

(Robinson et al., 2011; Thorvaldsdóttir et al., 2013). 
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REVIEW OF LITERATURE 

3.1 Epigenetics 

The study of genetics simply aims at studying the genotype responsible for a quantifiable 

phenotype. It points to the relation of a gene with the proteins expressed and further causing 

normal or abnormal body function. Any kind of genetic change is usually irreversible and 

stable. Epigenetics refers to the changes in the expression of the genotype which are heritable 

but there are no changes in the contributing DNA sequence causing a change in the 

phenotype (Bird, 2007). A good example could be in developmental biology, all cells contain 

same DNA but differentiate to form different cells and further different tissues and in turn 

have different body functions and roles (Jones et al., 1999). 

Epigenetic changes in the body are natural occurring instances and regularly occur to carry 

out normal bodily functions and routine (Egger et al., 2004). These changes could be readily 

influenced by external factors like environmental exposures, age, lifestyle/trends and the state 

of disease. 

Epigenetic inheritance which are currently known are (Feinberg et al., 2004): 

1. DNA Methylation 

2. Histone modification 

3. Genomic imprinting 

4. Non-coding RNA regulatory system (Riddihough et al., 2010) 

The most widely studied epigenetic change is DNA Methylation and still it is not clearly 

understood by the researchers (Jones et al., 2001). DNA Methylation negatively correlates 

with the gene expression. 

Epigenetic changes are reversible and play an important role in regulating many cellular 

processes (Simmons et al., 2008). Without changing the DNA sequence, these epigenetic 

changes bring out a quantifiable phenotypic change. Any disturbance in the epigenetic 

balance can cause several maladies like cancer, neurodegenerative disorders and 

chromosomal disorders (Egger et al., 2001). The eagerness to learn and demystify the 

mystery of epigenetics has led to growth in research in epigenetics.  

3.2 DNA Methylation 

DNA Methylation is the most widely studied epigenetic mechanism (Egger et al., 1999). 

Events have been reported of DNA Methylation portraying gene silencing behaviour (Jones 

et al., 1999). DNA Methylation has been reported to show negative correlation with gene 

expression as it inhibits initiation of transcription (Holliday, 2006).  

The mechanism of DNA Methylation involves adding a methyl group to DNA. This chemical 

process is very specific and is usually observed in a CpG region where a cytosine (C) 

nucleotide and guanine (G) nucleotide are next to each other  linked by a phosphate group 

(Egger et al., 2004; Jones & Baylin, 2002; Robertson, 2002; Feinberg et al., 2004). Methyl 
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group addition is brought about by a family of enzymes namely DNA methyltransferases 

(DNMTs). DNMT1, DNMT3a and DNMT3b play important roles in maintenance of DNA 

methylation routine (Baylin, 2005). 

These CpG sites are usually found in 5’ end of the gene regulatory architecture which adds to 

the explanation of inhibiting transcription of genes (Esteller, 2008). These CpG sites can be 

on a single Cytosine base or multiple. Cpg islands are rich in CpG sites but the exact criteria 

of a CpG island is not well defined or universally accepted. A lot of investigation goes in 

analysing the role of DNA methylation at these CpG islands rather than elsewhere as these 

CpG islands are observed to have strong promoter activities (Jones et al., 2001). 

Just as important as DNA methylation is DNA demethylation as the DNA methylation is 

reversible and hence DNA demethylation plays an important role in genes reprogramming 

(Morgan et al., 2005). This fact paves way for the advent of various epigenetic therapies and 

drug design (Egger et al., 2004). 

3.3 DNA Methylation arrays 

Although the advent of Next-Generation sequencing has out-shadowed the classic microarray 

techniques, microarray is still strong and living attributing to its cost effectiveness, robust 

optimization over the years and rich experience (Meaburn and Schulz, 2012). Small 

laboratories cannot afford the very high costs of Next-Generation sequencing and hence trade 

off its high precision accuracy with low cost microarray techniques. 

Microarrays are designed where most of the CpG sites all across the genome are interrogated. 

A myriad of probes are designed for CpG sites covering all parts of the human genome. This 

design is consulted by a panel of reviewers consisting of researchers and scientists (Illumina 

HumanMethylation450K). The main principle behind DNA methylation microarrays is 

bisulphite conversion step. Upon Bisulphite Conversion and whole genome amplification, the 

analysis of DNA methylation is reduced to an analysis of single nucleotide polymorphisms 

(SNPs) for T’s and C’s. If C is found, original cytosine was methylated and if T is found, 

original cytosine was non-methylated. The flowchart below depicts the basis behind DNA 

methylation microarray. 

 

 

Figure 1: DNA methylation microarray 
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3.4 RNA-Seq: Gene expression profiling 

RNA-Seq (RNA Sequencing) is a next-generation sequencing technique that captures the 

transcriptome of the organism (Chu and Corey, 2012). RNA-Seq boasts of high accuracy and 

precision owing to the next-generation sequencing abilities. It reveals the entire transcriptome 

of the organism at that moment which refers to the transcripts and their isoforms. In 

comparison to the existing gene expression microarrays, RNA-Seq data clearly stands out 

because of accurate results, better resolution and it doesn’t require the need of previously 

known genomic sequences of the organism or a model organism (Wang et al., 2009). 

3.5 Platforms 

The platforms used for the data used in this study are depicted in the table below (TCGA 

wiki: https://wiki.nci.nih.gov/): 

Platform Code Platform Alias Platform Name 

HumanMethylation450 HumanMethylation450  
  

Illumina Infinium Human 

DNA Methylation 450 

IlluminaHiSeq_RNASeqV2 IlluminaHiSeq_RNASeqV2 Illumina HiSeq 2000 RNA 

Sequencing Version 2 

analysis 
Table 1: TCGA platform 

3.6 Data Matrix (TCGA)  

The Cancer Genome Atlas (TCGA) is a common data storage portal that provides data 

generated by the initiatives taken by TCGA and the collaborative research laboratories. The 

data comprises of clinical information, genomic information, variants information, SNP 

information, DNA methylation information and gene expression information of the tumor and 

normal genomes. TCGA contains information about the tumor samples mapped with the 

normal samples and normal samples mapped with the tumor samples. TCGA makes use of 

the latest technology and platforms. TCGA allows the users to freely use and integrate data 

downloaded from the TCGA portal. If the data is not made available it cannot be 

downloaded. This study uses the freely available that is downloaded from the TCGA Data 

Matrix portal (URL: https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm).  

 

Figure 2: TCGA Data Matrix 
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In order to use the TCGA data one must be well versed with the guidelines, bar-codes and the 

general architecture of the TCGA (https://wiki.nci.nih.gov/display/TCGA/TCGA+barcode). A 

wiki page of TCGA is available containing all the information a researcher will require when 

analysing the off-shelf data. 

To analyse the DNA Methylation data, TCGA barcode is very important to be understood in 

this case. One must also understand the level of data he/she must deal with (https://tcga-

data.nci.nih.gov/tcga/tcgaDataType.jsp). In this study level 1 type data for DNA Methylation 

is retrieved and for RNA-Seq data, level 3 type data was used. 

Data Type Name Level Description 

RNASeqV2 3 The calculated expression signal of a gene, per sample 

File type: tab-delimited (.txt) 

Array-based DNA 

Methylation 

1 Raw signal intensities of probes for each participant's 

tumor sample File type: tab-delimited (.txt) and binary 

(.idat) 
Table 2: TCGA Data Level 

TCGA barcode is well documented code. The identifier for the sample type is the fourth 

identifier after the hyphen. Tumor types range from 01 – 09, normal types from 10 – 19 and 

control samples from 20 – 29 (URL: https://wiki.nci.nih.gov/display/TCGA/TCGA+barcode). 

For examples in “TCGA-02-0001-01C-01D-0182-01”, identifier highlighted represents that 

this is a tumor sample. 

3.7 Statistical analysis of DNA Methylation data 

The data downloaded from the TCGA Data Matrix portal is large in size and therefore “R” 

programming language was used to analyse the data. R studio was used to run the R session 

for better graphical interface and better operation. Bioconductor package is open source R 

based software suite that provides tools for analysis of high-throughput biological data 

(Gentleman et al., 2004). 

To analyse DNA methylation data, several R packages are in use by the scientific 

community. In this study we use the Bioconductor packages “COHCAP” and “minfi”. 

“minfi” is a Bioconductor package that is used to read the raw IDAT files generated from 

Illumina 450k array. These raw files are pre-processed and methylation values are extracted 

for further use in “COHCAP” pipeline (Aryee et al., 2014). 

City of Hope CpG Island Analysis Pipeline (COHCAP), is a workflow developed to analyse 

the DNA methylation data produced by microarray or sequencing. The pipeline identifies 

differentially methylated regions (DMRs) by identifying CpG islands where CpG sites show 

a consistent pattern of methylation. By default the minimum number of CpG sites in an island 

is 4 which can be modified to obtain densely populated islands. 

COHCAP is the only R based algorithm that integrates the methylation data with normalized 

expression data. COHCAP detects significant negative correlations that are most likely 

involved in the regulation of the gene exression where the CpG island lies. It generates 
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quality control graphs to filter out technical defaulters. Excel sheets or text files are created 

for the user to further apply stringent rules to the data. For visualization, wiggle files are 

generated that can be viewed in Integrated Genomics Viewer (Robinson et al., 2011) or 

UCSC Genome Browser (Warden et al., 2013). 

3.8 Prostate Adenocarcinoma 

Prostate Adenocarcinoma is a common type of cancer that accounts for almost all prostate 

cancers (http://www.cancer.gov/types/prostate). It is characterized by the development of 

cancer in the prostate gland. It is more prevalent in the western countries and is the second 

leading cause of deaths in men (Hsing and Chokkalingam, 2006). A lot of research efforts are 

put in to identify the aberrant genes and identify a molecular model for Prostate 

Adenocarcinoma (Porkka and Visakorpi, 2004). 

The genes currently identified as those involved in the development of Prostate Cancer are 

GSTP1, PTEN, TP53, and AR (Porkka and Visakorpi, 2004). From the KEGG disease 

database, following gene entries were obtained (http://www.kegg.jp/dbget-

bin/www_bget?ds:H00024). 

Genes (KEGG Disease) 

AR (amplification, mutation) 

CDKN1B (allelic loss) 

NKX3.1 (allelic loss) 

PTEN (allelic loss) 

GSTP1 (hypermethylation) 

TMPRSS2-ERG (translocation) 

TMPRSS2-ETV1 (translocation) 

TMPRSS2-ETV4 (translocation) 

TMPRSS2-ETV5 (translocaiton) 

SLC45A3-ETV1 (translocation) 

SLC45A3-ELK4 (translocation) 

DDX5-ETV4 (translocaiton) 

Table 3: Genes (KEGG Disease) 

 Another gene “FGFR1” is also essential for the Prostate cancer development and progression 

(Yang e al., 2013). EZH2 and KAI1 are also involved in the Prostate cancer (Dong et al., 

1995; Varambally et al., 2002). 

3.9 Objectives 

The inspiration to carry out this study comes from the fact that due to the advent of next 

generation sequencing and high performance microarrays, a lot of data is generated from 

various research laboratories and as a bioinformatician, one must work to apply his/her skills 

to make sense of the data. Further innovative methodologies can be used to analyse data in an 

intelligent way. In this research, following objectives were fulfilled: 

1. Download matched data for DNA Methylation and RNA-Seq for 36 samples (18 

Normal + 18 Tumor) and preprocess the data using R programming language. 
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2. To find differentially methylated regions and integrate them to the expression data 

(normalized level 3 data). 

3. To visually inspect and analyze the correlation between methylation and expression 

using a genome browser. 

3.10  Pipeline used in current study 

In this study the following pipeline/workflow is used: 

 

 

Figure 3: Workflow 
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METHODOLOGY 

4.1 Data retrieval 

The 450k Illumina methylation array data and RNA-Seq v2 data for a total of 36 samples was 

collected from TCGA (The Cancer Genome Atlas) using the data matrix portal by providing 

the TCGA IDs for matched tumor and normal samples for batch 184 and disease “Prostate 

Adenocarcinoma (PRAD)”. There were 18 normal matched with tumor samples and 18 tumor 

matched with normal samples. 

Data Type DNA Methylation RNA-Seq 

Level 1 3 

Center/Platform JHU_USC 

(HumanMethylation450) 

UNC 

(IlluminaHiSeq_RNASeqV2) 

Batch 184 184 

Disease PRAD PRAD 
Table 4: Data description 

4.2 Data pre-processing 

R programming language was used to pre-process the data. Since the data is large, “R” was 

used to handle it. For the JHU_USC (HumanMethylation450) data, a sample description file 

is to be made to be able to feed it in another R package “COHCAP” for further analysis. 

Therefore using in-house scripts the sample description file was generated for 36 samples. 

For UNC (IlluminaHiSeq_RNASeqV2) data, an integrated expression value file was to be 

created for all the matched samples. In-house scripts were used to extract the normalized 

expression values from the level 3 data and was integrated in a single file for further analysis. 

For the expression values, a log2 transformation was carried for better visualization and 

comparison. Since a lot of samples contained zero values, log2(x + 1) was carried out. 

4.3 Data analysis 

DNA Methylation and RNA-Seq data was then analysed using R package “COHCAP”. 

Differentially methylated regions were analysed for the methylation data and the filtered 

islands were mapped to the corresponding genes and this was integrated with normalized 

expression values for each matched sample.  

4.4 Data visualization 

The results obtained by COHCAP analysis were viewed using Nitro Reader 3, Microsoft 

Excel and the .wig files generated by differentially methylated region analysis were viewed 

and interpreted in IGV (Integrative Genomics Viewer), Broad Institute (Robinson et al., 

2011; Thorvaldsdóttir et al., 2013). 
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4.5 Software and Hardware 

A Linux (Ubuntu) based system with 6 GB RAM was used to pre-process and analyse the 

data. “R” was installed on Ubuntu and Bioconductor packages were used for the pipeline. R 

studio was used for a better graphical user interface and easy operation. 

Package/Tool Description 

Minfi Analysis of 450K array data 

COHCAP Pipeline for CpG island analysis of 450K 

array data 

Integrative Genomics Viewer, Broad 

Institute 

Visualize the .wig files to inspect the 

methylation changes and their corresponding 

position with respect to the reference human 

genome. 
Table 5: Softwares and tools 

4.6 Functional enrichment and Pathway Analysis 

Pathway analysis for the filtered genes was carried out by the Kyoto Encyclopaedia of Genes 

and Genomes (KEGG) database and the Database for Annotation, Visualization and 

Integrated Discovery (DAVID) database (Huang et al., 2009). 

4.7 “R” scripts 

R scripts developed locally were used to pre-process the DNA methylation data and RNA-

Seq data. The scripts are included in the appendix files attached at the end. 

4.8 Quality Control 

Some of the sample data were outliers and that affected the differential methylation analysis 

and integration with expression data analysis. Such findings were removed to avoid false 

positives due to unexplainable abnormal or zero values that can be attributed to experimental 

artifacts or technical problems. The filtered genes were visualized in Integrated Genomics 

Viewer and their correlation plots were inspected. The genes where the correlation or the 

clustering of normal and tumor samples was not clear were removed. 
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RESULTS 

5.1 Clustering of the Tumor and Normal samples 

The COHCAP pipeline involves a quality control step where the samples are clustered and 

plotted for the user to remove unwanted samples or outliers. 

 

Figure 4: Sample Clustering 

 

The normal and tumor samples were clustered within their own groups as it can clearly be 

seen in the above plot where normal samples are represented by red color and tumor samples 

are represented by blue color. 
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Figure 5: PCA 

5.2 Quality Control 

The histogram plots of the methylation values (beta values) of the sample were plotted to 

check if there is any sample that is a product of technical problem or an experimental artefact. 

The plot is shown below and it can be seen that all the samples follow normal methylation 

distribution usually seen in these experiments. 
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Figure 6: Histogram of beta values (Normal v/s Tumor) 

 

5.3 Box plots for filtered Islands 

The CpG islands were filtered with p-value < 0.05, fdr < 0.05 and beta value (methylation) > 

0.2 and differentially methylated regions (DMRs) were identified and mapped to the 

corresponding gene location. A total of 453 DMRs were identified and box plots were created 

to visualize the difference in methylation. Some of the box plots are shown below. 

5.4 Methylation v/s Expression plots 

The filtered islands mapped to the corresponding genes were then integrated with the RNA-

Seq data normalized expression values and matched with their TCGA IDs. Pearson 

correlation analysis was then carried out. 180 significant correlations were identified. Some 

of the methylation v/s expression plots are shown below. 
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Figure 7: Box plots of methylation in various genes 

  

 

Figure 8: Correlation plots 
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5.5 Visualization in Integrative Genomics Viewer (IGV) 

The COHCAP pipeline generates .wig files for the methylation value in normal and tumor 

samples and for the difference observed in the methylation in normal and tumor samples. 

These files can be visualized with IGV, Broad Institute with reference human genome hg19. 

Further visual inspection was carried out to identify the regions where the filtered CpG site 

lied in the promoter region of the gene. This may help prove the hypothesis that methylation 

may indeed be involved in the regulation of the gene expression. 

A snapshot of the gene HOXA7 and CD40 is shown below. Here multiple CpG sites with a 

significant change in methylation can be seen all lying before exon 1of the gene HOXA7 and 

CD40. 

 

Figure 9: Viewing CpG islands in HOXA7 gene 

 

Figure 10: Viewing CpG islands in CD40 gene 
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5.6 Functional enrichment and pathway analysis 

The genes filtered after integrating the methylation and normalized gene expression data were 

then fed to KEGG database and DAVID database and functional relevance was identified in 

terms of Gene ontology terms, involved disease or metabolic pathways or assigned biological 

function. The genes obtained after running correlation analysis between normalized 

methylation values and normalized expression values were filtered by visual inspection. 

A total of 74 genes were uploaded to the DAVID database and functional information was 

obtained. Gene names were extracted for all the official symbols. 27 clusters were obtained 

with maximum enrichment score of ~1.86 with the GO (Gene Ontology) terms referring to 

extracellular region, metabolic processes, electron carrier activity, response to hormones like 

estrogen and steroid, immune system and transport. 

A chart of KEGG pathways was also extracted for the genes with the default settings of 

DAVID.  

Category Term Count % PValue Genes 

KEGG_PATHW

AY 

hsa00480:Glutathione 

metabolism 

4 3.603604 0.006845 GSTM2, 

GPX3, 

GPX7, 

GSTP1 

KEGG_PATHW

AY 

hsa00982:Drug 

metabolism 

4 3.603604 0.012377 GSTM2, 

AOX1, 

MAOB, 

GSTP1 

KEGG_PATHW

AY 

hsa05416:Viral 

myocarditis 

4 3.603604 0.017818 CAV1, 

HLA-A, 

CD40, HLA-

DOA 

KEGG_PATHW

AY 

hsa05330:Allograft 

rejection 

3 2.702703 0.032121 HLA-A, 

CD40, HLA-

DOA 

KEGG_PATHW

AY 

hsa00380:Tryptophan 

metabolism 

3 2.702703 0.038996 AOX1, 

MAOB, 

HAAO 

KEGG_PATHW

AY 

hsa05320:Autoimmun

e thyroid disease 

3 2.702703 0.060406 HLA-A, 

CD40, HLA-

DOA 
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KEGG_PATHW

AY 

hsa04510:Focal 

adhesion 

5 4.504505 0.071558 CAV2, 

CAV1, 

CCND2, 

FLNA, 

PRKCB 

KEGG_PATHW

AY 

hsa04514:Cell 

adhesion molecules 

(CAMs) 

4 3.603604 0.084309 HLA-A, 

NRXN1, 

CD40, HLA-

DOA 

Table 6: KEGG pathway enrichment 

 

A table containing functional information regarding gene name, Gene Ontology terms, 

proteins domains, KEGG pathways and OMIM diseases of all the existing genes in the 

database was downloaded from DAVID. The information was obtained for a total of 109 

genes. The downloaded results are provided in the supplementary data. 

 

Island Gene Cor < -0.5 p.value < 0.001 fdr < 0.001 

chr17:73083866

-73084495 SLC16A5 -0.922609302 1.25823E-15 3.88794E-13 

chr7:27195601-

27196567 HOXA7 -0.907957891 2.13721E-14 3.30199E-12 

chr2:219646432

-219647181 CYP27A1 -0.895283224 1.73318E-13 1.78517E-11 

chr19:58220189

-58220517 ZNF154 -0.891829163 2.92778E-13 2.26171E-11 

chr19:39465846

-39466403 FBXO17 -0.887159364 5.78705E-13 3.5764E-11 

chr13:36919737

-36921004 SPG20 -0.879996071 1.55621E-12 8.01447E-11 

chrX:15484211

2-154842719 TMLHE -0.878636462 1.86435E-12 8.22979E-11 

chr1:53067880-

53068608 GPX7 -0.865402638 9.74059E-12 3.67797E-10 

chr11:67350928

-67351953 GSTP1 -0.858137109 2.24554E-11 6.93872E-10 

chr17:27044168

-27045049 RAB34 -0.85645881 2.70564E-11 7.60038E-10 

chrX:12924367

4-129245575 ELF4 -0.847509423 7.03641E-11 1.81188E-09 

chr2:191044979

-191045829 C2orf88 -0.838952105 1.66058E-10 3.66514E-09 

chr12:81471569

-81472119 ACSS3 -0.831700796 3.30929E-10 6.81713E-09 

chr1:156674858

-156676654 CRABP2 -0.828220114 4.55521E-10 8.79724E-09 



MAJOR PROJECT 
 

18 
 

chr6:2841810-

2842273 SERPINB1 -0.826723596 5.21469E-10 9.47847E-09 

chr2:56150340-

56151180 EFEMP1 -0.817456946 1.17175E-09 2.01151E-08 

chr20:44746822

-44747060 CD40 -0.812882754 1.71871E-09 2.79516E-08 

chr8:94712366-

94713345 FAM92A1 -0.806716606 2.83442E-09 4.37917E-08 

chr10:12335661

6-123358285 FGFR2 -0.80072774 4.53122E-09 6.66736E-08 

chr2:21022564-

21022934 C2orf43 -0.797045262 5.99971E-09 8.06098E-08 

chr1:110210581

-110210956 GSTM2 -0.796737064 6.14075E-09 8.06098E-08 

chr7:116139774

-116140352 CAV2 -0.796102299 6.44096E-09 8.06098E-08 

chr20:3218578-

3220930 SLC4A11 -0.795936005 6.52183E-09 8.06098E-08 

chr5:150400000

-150400490 GPX3 -0.793524556 7.80538E-09 9.23119E-08 

chr14:23834435

-23835947 EFS -0.792856407 8.20033E-09 9.23119E-08 

chr14:21492735

-21494270 NDRG2 -0.792586872 8.36483E-09 9.23119E-08 

chr3:38035701-

38036000 VILL -0.791180194 9.2741E-09 9.88172E-08 

chrX:10190600

1-101907017 GPRASP1 -0.782488842 1.72514E-08 1.7769E-07 

chr12:14720248

-14721093 PLBD1 -0.778650403 2.24914E-08 2.20153E-07 

chr2:26915603-

26916551 KCNK3 -0.778451812 2.2799E-08 2.20153E-07 

chr3:139257712

-139257949 RBP1 -0.774543282 2.97021E-08 2.78119E-07 

chr20:44098280

-44099536 WFDC2 -0.774056228 3.06861E-08 2.78883E-07 

chr16:31213566

-31214287 PYCARD -0.772423734 3.42086E-08 3.02013E-07 

chr2:201450526

-201451027 AOX1 -0.769315313 4.19698E-08 3.60241E-07 

chr5:139283350

-139284282 NRG2 -0.767029075 4.86835E-08 3.99122E-07 

chr7:95025559-

95026122 PON3 -0.766902414 4.9083E-08 3.99122E-07 

chr7:30028518-

30029822 SCRN1 -0.765534822 5.35934E-08 4.24625E-07 

chr15:74658038

-74658574 CYP11A1 -0.765129594 5.50017E-08 4.24888E-07 

chrX:11446809

5-114468453 LRCH2 -0.75843796 8.37955E-08 6.31532E-07 
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chr10:8091374-

8098329 GATA3 -0.753852189 1.10965E-07 8.16384E-07 

chr2:43019665-

43020509 HAAO -0.748949606 1.48834E-07 1.04522E-06 

chr1:48937304-

48937683 SPATA6 -0.747401676 1.63066E-07 1.11972E-06 

chr6:29716468-

29717158 LOC285830 -0.746519942 1.71724E-07 1.15354E-06 

chrX:56258951-

56259159 KLF8 -0.745702745 1.80124E-07 1.18422E-06 

chr14:75894308

-75895469 JDP2 -0.742490162 2.16952E-07 1.39663E-06 

chr10:99473084

-99473291 MARVELD1 -0.741767938 2.26133E-07 1.42602E-06 

chrX:10080779

3-100808048 ARMCX1 -0.737958026 2.80776E-07 1.73519E-06 

chr14:24641053

-24642220 REC8 -0.736735166 3.0074E-07 1.82213E-06 

chr11:74178175

-74178801 KCNE3 -0.733864469 3.52846E-07 2.05716E-06 

chr7:116164703

-116166735 CAV1 -0.733486237 3.60299E-07 2.06171E-06 

chr16:88716989

-88717606 CYBA -0.73168265 3.9787E-07 2.21845E-06 

chr14:23305893

-23307013 MMP14 -0.731491857 4.02048E-07 2.21845E-06 

chr6:146136325

-146136564 FBXO30 -0.723116717 6.30633E-07 3.41869E-06 

chr2:96990857-

96991283 ITPRIPL1 -0.72074684 7.14213E-07 3.80503E-06 

chr5:180017099

-180019062 SCGB3A1 -0.718750375 7.92394E-07 4.04512E-06 

chr20:55840216

-55841794 BMP7 -0.718600923 7.98552E-07 4.04512E-06 

chr6:117085739

-117086942 FAM162B -0.71711462 8.62226E-07 4.29722E-06 

chr9:98783216-

98784364 NCRNA00092 -0.715681078 9.28023E-07 4.55173E-06 

chr1:150121695

-150123078 PLEKHO1 -0.714479159 9.86709E-07 4.76395E-06 

chr17:38599270

-38599524 IGFBP4 -0.710851759 1.1851E-06 5.63376E-06 

chr1:169396621

-169396869 C1orf114 -0.709389413 1.27494E-06 5.96906E-06 

chr10:79396095

-79398495 KCNMA1 -0.706789395 1.45028E-06 6.68859E-06 

chr2:71205563-

71206529 ANKRD53 -0.705832653 1.52017E-06 6.90784E-06 

chr2:29337983-

29338909 CLIP4 -0.698858954 2.13065E-06 9.54162E-06 
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chr1:155947678

-155948490 ARHGEF2 -0.697982705 2.22149E-06 9.80631E-06 

chr11:61594996

-61596710 FADS2 -0.697260126 2.29906E-06 1.00058E-05 

chr11:12029737

-12030841 DKK3 -0.692974162 2.81241E-06 1.19046E-05 

chr5:156886969

-156887440 NIPAL4 -0.686489702 3.79067E-06 1.58286E-05 

chr13:43566074

-43566508 EPSTI1 -0.685344149 3.9928E-06 1.64503E-05 

chrX:73642494-

73642766 SLC16A2 -0.682649143 4.50776E-06 1.83276E-05 

chr4:41258759-

41259867 UCHL1 -0.680532155 4.95406E-06 1.98806E-05 

chr12:89745168

-89748144 DUSP6 -0.676381224 5.94827E-06 2.35323E-05 

chr3:46506161-

46506416 LTF -0.676120789 6.01634E-06 2.35323E-05 

chr17:33700487

-33700760 SLFN11 -0.674449286 6.47041E-06 2.4992E-05 

chr14:51560116

-51562487 TRIM9 -0.673913326 6.62249E-06 2.52636E-05 

chr17:53342198

-53343061 HLF -0.673220329 6.82397E-06 2.57147E-05 

chr5:115151348

-115152713 CDO1 -0.671951956 7.20728E-06 2.65381E-05 

chrX:13465510

2-134655750 DDX26B -0.671929469 7.21425E-06 2.65381E-05 

chr4:5709985-

5710495 EVC2 -0.667417769 8.74366E-06 3.14364E-05 

chr10:17270430

-17272617 VIM -0.66633547 9.15197E-06 3.25053E-05 

chr3:149374709

-149376300 WWTR1 -0.660916214 1.14703E-05 4.02762E-05 

chr20:25565437

-25566547 NINL -0.660625129 1.16087E-05 4.03044E-05 

chr17:7342829-

7344028 FGF11 -0.656790905 1.35804E-05 4.6626E-05 

chr6:29910202-

29911367 HLA-A -0.655790431 1.41427E-05 4.80229E-05 

chr19:15344091

-15344419 EPHX3 -0.652163122 1.63635E-05 5.49599E-05 

chr11:11141093

2-111412199 LAYN -0.645578509 2.12206E-05 7.0507E-05 

chr1:95391837-

95393116 CNN3 -0.641325545 2.50184E-05 8.21724E-05 

chr4:16084195-

16085735 PROM1 -0.641071834 2.52634E-05 8.21724E-05 

chr15:89920793

-89922768 LOC254559 -0.638941284 2.74078E-05 8.76192E-05 
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chr3:112051893

-112052406 CD200 -0.632082657 3.54801E-05 0.000111871 

chr22:38073037

-38073412 LGALS1 -0.630268166 3.79486E-05 0.000118446 

chr18:5543437-

5544241 EPB41L3 -0.629810418 3.85954E-05 0.000118487 

chrX:13412493

8-134125307 LOC644538 -0.629716845 3.87288E-05 0.000118487 

chr17:33700989

-33701657 SLFN11 -0.623587762 4.84356E-05 0.000146731 

chr21:42798146

-42798884 MX1 -0.621613879 5.20007E-05 0.000156002 

chr8:22960384-

22960927 TNFRSF10C -0.619516933 5.60465E-05 0.000164937 

chr1:203598471

-203598853 ATP2B4 -0.619243051 5.65954E-05 0.000164981 

chrX:15359887

4-153600604 FLNA -0.618385261 5.83461E-05 0.000168495 

chr3:44626325-

44626794 ZNF660 -0.614219667 6.7564E-05 0.000193308 

chrX:43741299-

43741827 MAOB -0.608189033 8.32449E-05 0.000235988 

chr17:38333605

-38334795 RAPGEFL1 -0.6049222 9.30452E-05 0.000259806 

chr19:46800053

-46800603 HIF3A -0.604832538 9.33282E-05 0.000259806 

chr14:69256676

-69257036 ZFP36L1 -0.59412835 0.00013326 0.000364402 

chr19:16186789

-16188275 TPM4 -0.590400069 0.000150419 0.000407715 

chr12:10485025

3-104852395 CHST11 -0.589456156 0.000155067 0.000416657 

chr7:134143115

-134144063 AKR1B1 -0.584867432 0.00017955 0.000478284 

chr6:116691827

-116692868 DSE -0.581577136 0.000199184 0.000525375 

chr12:4383193-

4384405 CCND2 -0.581346604 0.000200629 0.000525375 

chr2:50574045-

50574817 NRXN1 -0.576420546 0.000233843 0.000607205 

chr6:32975684-

32975926 HLA-DOA -0.57236633 0.000264784 0.000670641 

chr2:235404502

-235406541 ARL4C -0.57115495 0.000274714 0.000690135 

chr16:23846941

-23848102 PRKCB -0.566418794 0.000316812 0.000789475 
Table 7: Filtered genes with corr < -0.5 
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CONCLUSION 

Upon integration of expression data with methylation data, 180 significant correlations were 

obtained. On applying strict rules like correlation < -0.5, p value < 0.001 and false discovery 

rate < 0.001, 112 genes were filtered. The correlation plots were visually inspected and out of 

112 genes, 74 genes were selected. These genes contain GSTP1 and FGFR2 which are known 

to play a role in Prostate cancer pathway (KEGG Disease database, Yang et al., 2013). 

In the above table, all the 74 genes are highlighted and their corresponding CpG islands are 

provided in the supplementary files. Along with analysis files, functional enrichment files are 

also provided in the supplementary files. 

In the IGV visual, it is clearly seen that the CpG sites lying upstream of the gene HOXA7 and 

CD40 are methylated. This does point to the fact that DNA methylation might indeed be 

responsible for the down-regulation of these genes. Further experimental validation must be 

carried out to actually correlate the roles of these significantly correlated genes to Prostate 

Adenocarcinoma. 74 genes which were stringently selected contained genes like GSTPI and 

FGFR2 (already known to play a role in prostate cancer pathway). The remaining genes can 

be projected as possible contenders playing a minor or a major role in prostate cancer 

progression and pathway. However choosing biomarkers out of these genes requires serious 

benchmarking and wet lab validation.  
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DISCUSSION 

DNA methylation is known to play a critical role in regulating cellular functions and proceses 

(Robertson, 2005). Many human diseases have been linked to DNA methylation like cancers, 

neurodegenerative disorders and genetic disorders (Robertson, 2005; Suzuki and Bird, 2008).  

DNA methylation and gene expression analysis carried out in Prostate Adenocarcinoma 

revealed genes whose expression was significantly correlated with DNA methylation in the 

CpG islands lying in the respective gene location. Some of these genes like GSTP1 and 

FGFR2 are already known to play a role in prostate cancer pathway. 

Quality control was carried out for the 18 tumor matched with normal samples and 18 normal 

matched with tumor samples of Prostate Adenocarcinoma for DNA methylation data and 

clustering was represented in principal component analysis scatter plots. A dendogram was 

generated which clearly clusters normal samples together and tumor samples together. This 

clustering can also be clearly visualized in the principal component analysis scatter plot 

(Figure 4 and 5). This can be a possible application to predict the type of sample given its 

methylation data by analysing which category of cluster it falls in. Likewise subtyping of the 

tumors can be carried out which may prove to be of great help in diagnosis and healthcare. 

This analysis is limited by the fact that along with off-shelve data from TCGA (The Cancer 

Genome Atlas), wet lab validation experiments are very important to support the 

interpretations made from analysing the DNA methylation data and gene expression data. It 

would be too early to comment on the topic of DNA methylation information used as 

biomarkers to subtype the various types of cancers as the research is still on-going and 

developing. However, it can be said that great responsibility lies in the hands of epi-

geneticists and molecular biologists as these are the times for epigenetics. 
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FUTURE PERSPECTIVE 

With the advent of 450K human methylation arrays, researchers are investing time and 

money in carrying out methylation analysis. There is a sudden explosion of data in the public 

data centres (Rakyan et al., 2011). Innovative methodologies must be employed to make 

sense of the data. 

 

This study marks as a proof of concept for integrating the studies of different platforms. 

TCGA has enabled the researchers to carry out a multi-platform analysis as it provides multi-

platform data for same samples. The data at TCGA is well maintained and the architecture is 

well documented (https://wiki.nci.nih.gov/display/TCGA/). 

 

In the current research, DNA Methylation and RNA-Seq data is integrated to analyse the 

correlation of methylation and expression. In future, other platforms can also be integrated to 

this research like somatic variations, clinical data and this type of study can be extended to 

other diseases and clustering can be carried out at a systems level to understand the 

relationship between genes, proteins, somatic mutations, and epigenetic modifications at a 

systems level. 

 

This model of study will certainly add to the progress in the field of diagnosis and healthcare. 

Upcoming technologies like genome editing and personalized medicine require accurate and 

precise information which can be obtained by carrying out integrative investigation studies 

and working on to reduce the unknown parameters that contribute in disease–disease, 

disease–gene, protein–protein, metabolic and disease pathways. 

 

Furthermore a disease model can be generated with integrated information and can be 

validated by experiments. Despite numerous efforts and investments, there is still a wide gap 

in the understanding of epigenetic modifications. We are far from understanding the reasons 

behind the differences observed in DNA methylation. Currently research aims at epigenetic 

therapies, predictive power of epigenetics and understanding developmental biology but a lot 

has to be done before one conquers this unfathomable journey (Bock, 2012). 
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APPENDIX 1 

#Pre-processing .idat files (DNA methylation 450k) using minfi 

==== start code==== 

library(minfi) 

idat.folder <- “path_to_idat_folder” 

RG.raw <- read.450k.exp(idat.folder) 

methyl.norm <- preprocessIllumina(RG.raw, bg.correct = TRUE, normalize = “controls”) 

beta.table <- getBeta(methyl.norm) 

probes <- rownames(beta.table) 

output.table <- data.frame(SiteID=probes, beta.table) 

beta.file <- “minfi.txt” 

write.table(output.table, file=beta.file, sep=”\t”, quote=F, row.names=F) 

====end code==== 

 

#COHCAP analysis 

==== start code==== 

library(COHCAP) 

sample.file <- “COHCAP_sample_description.txt” 

project.folder <- getwd() 

project.name <- “COHCAP_folder_name” 

beta.table <- COHCAP.annotate(beta.file, project.name, project.folder, platform=”450k-UCSC”) 

COHCAP.qc(sample.file, beta.table, project.name, project.folder) 

====end code==== 

 

filtered.sites <- COHCAP.site(sample.file, beta.table, project.name, project.folder, ref=”N”, 

methyl.cutoff = 0.3) 

 

filtered.islands <- COHCAP.avg.by.island(sample.file, filtered.sites, beta.table, project.name, 

project.folder, ref=”N”, methyl.cutoff = 0.3) 

 

#Pre-processing expression data 

exp.normGenesFolder <- "E:/PROJECT/PROSTATE/DATA/3ee4b1b5-648d-4d2b-ab30-

b4c611cdaebe/RNASeqV2/UNC__IlluminaHiSeq_RNASeqV2/Level_3/" 

exp.normFiles <- list.files(exp.normGenesFolder,pattern = "genes.normalized_results$",recursive = 

TRUE,ignore.case = TRUE,full.names = TRUE ) 

for (file in exp.normFiles){ 

 if(!exists("exp.norm.counts")){ 

  exp.norm.counts <- read.table(file , header = TRUE) 

 } 

 else{ 

  temp_dataset <- read.table(file, header = TRUE) 

  exp.norm.counts <- cbind(exp.norm.counts, temp_dataset["normalized_count"]) 

  rm(temp_dataset) 

 } 

 } 

exp.norm.counts.M <- as.matrix(exp.norm.counts) 

exp.logplusone.counts <- log2(exp.norm.counts.M  + 1) 

write.table(exp.logplusone.counts, file=”expression.txt”, row.names = F, sep = “\t”) 

 

#COHCAP integration 

COHCAP.integrate.avg.by.island(filtered.islands, project.name,project.folder, expression.file, 

sample.file) 
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SUPPLEMENTARY MATERIAL 
 

1. PRAD_DAVID_KEGG_RESULTS.xlsx 

a. Sheet 1: Name of the genes 

b. Sheet 2: Clusters of genes based on gene ontology terms and protein domains 

c. Sheet 3: Table containing all the information from DAVID 

d. Sheet 4: Table containing KEGG pathways 

2. Box plots of 453 genes filtered based on differential methylation. 

3. Scatter plots of 180 significantly correlated genes based on Methylation vs Expression 

data. 

4. Table of 309 genes after integration of expression and methylation data along with 

correlation coefficient, p value and false discovery rate value. 

5. Wiggle files for methylation in normal, tumor and difference in methylation to be 

viewed in a genome browser. 

6. Table of significantly methylated CpG sites. 

7. Table of significantly methylated CpG islands. 


