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ABSTRACT 

 

 

We are increasingly seeing computer systems day by day supporting larger size of RAM, 

in order to meet workload demands. However, power consumption of memory is 

significant, potentially up to more than a third of total system power on server systems. 

Hence with obvious reason, memory becomes the next major target for power 

optimization on embedded systems and smart phones, and all the way up to large server 

systems. 

Most of the studies in the computer domain predict RAM usage in embedded systems and 

Personal computer to increase at very fast rate, RAM consumes ~30% of power usage of 

a system. 

Modern memory hardware supports a number of power saving measures - for instance, 

the memory controller can automatically put memory DIMMs/banks into content-

preserving low-power states, if it detects that entire memory DIMM/bank has not been 

referenced for a threshold amount of time, thus reducing the energy consumption of the 

memory hardware. We term these power-manageable chunks of memory as "Memory 

Regions”. 

The OS needs to know about the granularity at which the hardware can perform 

automatic power-management of the memory banks (i.e., the address boundaries of the 

memory regions). On ARM platforms, the boot loader can be modified to pass on this 

info to the kernel via the device-tree. On x86 platforms, the new ACPI 5.0 spec has added 

support for exporting the power optimization capabilities of the memory hardware to the 

OS in a standard way. 
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Chapter 1  

INTRODUCTION 

 

1.1 Introduction 

Most of the studies in computer domain predict RAM usage in embedded systems and 

personal computer to increase at very fast rate, memory consumes potentially more than 

one third of total power, this is the major target for power optimization now. 

Modern hardware have the capability to put part of memory not used in low power state, 

like in DDR3 memory if some region from memory is not referenced for threshold 

amount time, it will be moved this region to low power state. We use this capability for 

the power optimization. 

When Memory used in the system is of large size, it will be split into multiple blocks or 

chips. This design will be very helpful for power optimization as the block or chip not in 

use will be put into low power mode. This will have direct impact on power consumption 

from the device. 

Reducing the power usage from memory not referenced is done automatically by 

hardware, this paper goal is to minimize the memory references to the regions in 

minimum area by doing the memory allocation and de-allocation such that it is not 

distributed across the entire memory space, and in addition there is light weight 

compaction/reclaim support to reclaim very partially memory filled regions. It is an 

applied research work. 
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1.2 Motivation 

It had been observed significant variations in inter-die and intra–die processes in past 

years. Most of the research in power domain has predicted that this will further go up by 

more than 50% in coming years. These variation are due to ambient conditions, wear out 

from devices or the manufacturing process itself. In spite of having so many variations on 

hardware, software always assumes homogeneous structure for its stack implementation. 

One method of guard banding systems with such hardware variability is to binning 

semiconductor device to lowest possible operating frequencies so as to reduce the impact 

of variation in inter-die but this will compromise on performance of the device and 

optimal power usage. 

Also we have now come up to multi-core technology which has further complicated this 

issue. In order to minimize the effect of these variations we need to exploit the inherent 

variations in devices so as to improve system performance. 

One of major component which suffers from power variations is main Memory systems. 

On chip memory consumes nearly around one third of system power consumption. 

Above mentioned problems of intra-die and inter-die variations in main memory can be 

resolved using caching mechanism, DRAM and OS level power management. However 

such changes can be classified as Hardware change as it requires changing existing 

memory configurations. 

In this work, we present memory manager which is optimized for power and it is a 

system-level variability-aware solution that adapts to the power variability inherent in 

DRAM memory modules. With this approach we use power of the variability in DDR3 

onward memory. Our approach could be generalized to work at finer granularities of 

memory, if variability data and hardware support are available. 
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1.3 Related Work 

Power optimization is one of the biggest research areas since long, with advent of 

embedded systems like mobile phones power optimization has become more important 

now days. Battery usage of embedded system is directly dependent upon power 

consumption from the device. Similarly many server computers keeping running for long 

hours, if they power usage from them is optimized this can save lot of power. As much 

research was done to focus on how much power consumption is from different 

component in any embedded or server/personal computer system, many of them point to 

main memory as the most power consuming component. It takes up to one third of power 

consumption from the whole system. Following are the recent research papers which 

have proposed the power optimization techniques for memory. 

Min Kyu Jeong proposes Balancing DRAM Locality and Parallelism in shared memory 

CMP systems IEEE 2012, to partition the internal memory banks between cores to isolate 

their access streams and eliminate locality interference. It was implemented by extending 

the physical frame allocation algorithm of the OS such that physical frames mapped to 

the same DRAM bank can be exclusively allocated to a single thread.  Modern memory 

systems rely on spatial locality to provide high bandwidth while minimizing memory 

device power and cost. The trend of increasing the number of cores that share memory, 

however, decreases apparent spatial locality because access streams from independent 

threads are interleaved. 

Mishra, V.K proposes Performance enhancement of NUMA multiprocessor systems with 

on-demand memory migration 2013, most efforts are made to research in the area of 

memory management to reduce power consumption from memory to most optimized 

minimum. In the paper [2] presents memory migration on-demand policy to enable 

automatic dynamic migration of pages with low cost when they are actually accessed by a 

task. Major focus is on the quality of the scheduling has a strong impact on the overall 

application performance because of process and data affinities, This issue is now 

becoming critical due to the variable memory access latencies in NUMA architecture, 

because in NUMA architecture local data access being significantly faster than remote 

access. 
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Gangyong Jia Proposes, Memory Affinity: Balancing Performance, Power, Thermal and 

Fairness for Multi-core Systems, IEEE 2013, this paper firstly proposes memory affinity 

which retains the active and low power memory ranks as long as possible to avoid 

frequently switching between active and low power status. Main memory is expected to 

grow significantly in both speed and capacity for it is a major shared resource among 

cores in a multi-core system, which will lead to increasing power consumption. It is 

critical to address the power issue without seriously decreasing performance in the 

memory subsystem. Also present a memory affinity aware scheduling (MAS) to balance 

performance, power, thermal and fairness for multi-core systems. 

Zhang Haiyang introduces Red-Black Tree Used for Arranging Virtual Memory Area of 

Linux IEEE 2010, Red-Black Tree's definition, merit and the content of the VAM 

in Linux Then discusses how to accomplish the Red-Black tree in Linux Kernel, 

and Red-Black tree used for arranging virtual memory area of Linux. 

In all the recent research done and specially the research papers in memory optimization, 

we can observe there is great focus on optimizing power for multi core architecture when 

its access memory. Either this research has focus on using NUMA Architecture or it is 

focused on access of memory from multi-core architecture. Most of the systems in 

embedded or server domain do not use NUMA as this architecture is very complex and 

still lot of work needs to be done on it. Also memory ranking and optimization around it 

is tends to be moving in hardware domain. In comparison, we have found UMA is most 

common architecture used in embedded systems as well as servers. Also with larger 

memory systems in place, there is significance requirement to optimize power from 

memory itself. 

All the recent research in memory power optimization have focus on Non Unified 

Memory Access Architecture or Hardware based optimizations, none of them has focused 

to find out power optimized memory solution for Unified Memory Access based 

architecture with large size memory, which has become the major focus of this theses. 
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1.4 Problem Statement 

Our Focus is on the optimization of power consumption from memory as this is most 

power consuming area for embedded and computer systems. We can target to work on 

the management of memory to reduce the power consumption by switching of the 

memory components not in use to the low power state. In order to do so we need to make 

sure to reduced the used area of memory to the lowest. 

Memory management is designed to efficiently provide the required memory to 

applications from the total memory available and same should be return back to the 

available memory when not in use. We can additionally make our algorithms to focus on 

making the memory allocation and de-allocation considering the area from which 

memory is allocated and de-allocated. 

Problem statement for our projects is to develop power manger at system level so as to 

reduce the allocation of memory to the smallest number of regions available for an 

application in order to reduce the power consumption. 
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1.5 Scope Of The Work 

 

Memory management is most important part of any operating system. It is designed to 

keep performance of the system most optimized. The main consumer of power in any 

embedded or server system is main memory, we have focused to analyze the pattern of 

memory usage and impact of pattern of usage on main memory power consumption. In 

this thesis, we purposed a new design for the memory manager which has focus on 

keeping the power optimized. 

 

This thesis has three goals to achieve power optimization for memory manager: 

 

1. To design a new architecture for memory manager with target of power 

optimization. 

2. To design algorithm which divide main memory of system into regions which are 

power switchable and then allocated memory to process are kept to minimum 

number of regions. 

3. To establish results of the purposed algorithm to demonstrate its impact on 

power consumption of the system. 

 

a. In our optimization proposal, we divide the memory zones in regions, which are 

based on block structure of the memory.  Further along with memory regions buddy 

system is also divided in regions. It will enable the allocation of memory to least 

number of regions. 

 

b. To achieve our goal, we have modified the buddy system for memory allocation. In 

Linux memory manager, there is one buddy system per zone but  in our proposal we 

will manage buddy system per region. During process request for memory allocation 

to allocatore, same will be passed to region buddy allocator, which will pass control 

to first available buddy region in memory manager. This will allocate the maximum 

available in that buddy region, after that it passes control to the next buddy region of 
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the zone where memory is free. In this way it will allocate memory from one region 

before going to next region. 

 

c. To analyze the results on power consumption from the proposed algorithm change, 

we have tested our algorithm on multiple machines; First system is Intel core 2 Duo 

CPU with 2 GByte of RAM and 128 GB HDD. Second system is Intel core I5 with 6 

GByte of RAM and 512 GByte HDD, In third system  Intel Core I5 with 4 GByte of 

RAM and 512 GByte of HDD. This will further help in making the results 

generalized as we tested them across multiple systems with different configuration. 
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Chapter 2  

BACKGROUND STUDY 

2.1 Power Measurement And Optimization 

Power optimization and management in general is an ongoing and active area of 

computer science. Irrespective of the size or function of any computing system, all 

consumes power, and the consumption of power always carries an economic cost. The 

economic cost manifest differently for different systems, and on the surface, it would 

seem the cost would bear more weight on some computing devices such as Smartphone 

while other computing systems are seemingly immune (such as data center). 

For example, it is easier to understand that in a battery-operated, cordless device, such as 

Smartphone, higher power consumption means either the battery needs higher capacity 

means increase in direct cost of manufacturing and sale price or have to suffer shorter 

usage time or potential lost business to competing vendors on the market -- opportunity 

cost loss. On the other end of the physical size spectrum, a data center that is attached to 

the AC power grid seems to have unlimited supply of power and doesn't suffer the same 

power constraint as a Smartphone. However, as an operator of a data center with a fixed 

budget, every dollar that is spent on paying for the power (both for running the 

computing systems and cooling them) means one less dollar to spend on increasing 

computing capacity of the center, and it is the computing capacity that generates revenue 

for the owner. 

Power optimization is very important for embedded or hand-help devices as they require 

battery to be used, If power consumption is optimized for a device, it can be used for 

longer duration of time. An optimized mobile system with same amount of battery can be 

used for double the time if we are able to optimize its current to one half. Similar is the 

case for large server systems, they are expected to be running for long hours and power 

optimization is very important as amount of power optimized is directly to cost saved for 

their usage. 

http://en.wikipedia.org/wiki/Economic_cost
http://en.wikipedia.org/wiki/Smartphone
http://en.wikipedia.org/wiki/Data_center
http://en.wikipedia.org/wiki/Opportunity_cost
http://en.wikipedia.org/wiki/Opportunity_cost
http://en.wikipedia.org/wiki/Opportunity_cost


 

Department of Software Engineering, Delhi Technical University                                          Page 10 
 

Even though power consumption optimization may look as prime responsibility for the 

hardware designer but software design has also major role in its optimization. 

Basics of power consumption 

There are many factors which impact on the power consumption of a device; four major 

factors are application, Voltage, frequency and processor technology. In below details we 

will find out why these factors are so important. 

Application of device is very important to understand how power profile of the device 

will differ. Let’s take the example of hand help media player, Media player will require 

to be used for long duration of time. We need to focus of data flow optimization and 

algorithm rather than idle power mode. 

Similar is the case of a mobile device but the focus of power optimization is different. It 

needs to be use during a call and while all other time it remain in idle mode. If we are 

able to reduce the power usage of idle mode in a mobile device than it will have major 

impact on its power usage. 

Types of power consumption 

In any device there can be two type of power consumption, Static and Dynamic. 

Total power of a device is calculated as: 

Total power = Dynamic power + Static power 

Or 

Total power = idle power/base power + variable running power due to 

processing/ongoing activity. 

From software, we can control over the large part of dynamic consumption but static 

consumption there is not much control. From static power consumption we mean the 

power consumption from a device without consideration of the work ongoing. 
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Other factors which can impact on static power consumption are temperature, process 

and supply voltage. Temperature increase will increase electron mobility which will 

increase the flow of electrons and results in more static power consumption. 

 

Dynamic power consumption 

Dynamic power consumption from embedded devices includes many factors like core 

subsystems, peripherals, Main memory, Clocks etc.  At lower level we can say this as 

power used when switching transistors. Dynamic power consumption will be dependent 

on the voltage supply level but it will not dependent on temperature. 

There are four type of power consumption which needs to be considered for a device. 

Typical power consumption, Average power consumption, Maximum power 

consumption and worst case power consumption. 

Maximum power consumption as the name suggests is the highest power reading 

measured from the device at any particular instance. This indicate to us the maximum 

power required by us to operate the device. 

Average power indicates the power usage from the device divide by time. This helps us 

to understand the battery or the supply required to operate device for a particular amount 

of time. 

Worst case power indicates the average of full power usage from a device over a period 

of time. This means that we will operate a system with all its parts operating to maximum 

capacity for some period of time and than average out its power usage. 

Typical Power consumption is also very important. In normal usage, a device rarely 

operates to the worst case power, For example we may not be always using all core of a 

processor when using our personal computer. Typical power usage refers to power 

consumption from the device from general power use cases. 
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Power Optimization There are several methods to optimize static and dynamic power 

consumption. We can optimize the system for power by selecting right components in 

system and designing dynamic software architecture for them. 

DDR means dual data rate, DDR SDRAM take advantage of both edges of DDR clock to 

write and read data. This means we are effectively doubling the effective data rate 

There are various features in Main memory and these features affect the power usage 

from it, EDC (Error detection), ECC (Error correction codes), Type of Bursting, data 

refresh rate which are programmable, Programmable memory configurations. 

Various methods to optimize power from a main memory are optimizing power by data 

flow, timing, Interleaving, DDR configurations, burst access and software data 

organization. 

 

2.2 Memory System Architecture 

There are some important terms related to memory and memory management, we need to 

understand them in order to understand our proposed architecture. We worked in this 

thesis with DDR3 DRAM memory. This memory has the capability to put regions of 

memory which are not referenced by CPU into low power mode. 

A typical DRAM based memory has memory controller connected to multiple memory 

channels. Further these channels will have multiple DIMM in them which are further 

divided into ranks on opposite sides of the module. Memory controller can access these 

ranks independently. There are further banks of memory which are composed of columns 

and rows. We can access any memory location with unique combination of rows, 

columns, bank and rank. 

Our approach is the optimized the power consumption by targeting the least selectable 

memory part which can be put into low power mode and make sure there is no data 

present in this area if possible with working on pattern of data. 
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Architecture of memory management in Linux 

Memory management system for Linux is simple but yet scalable to handle various type 

of processor architecture from x86 to ARM or power PC etc. There are two parts of 

memory management, architecture dependent code and non-architecture dependent code. 

Most of the code is kept in Non-architecture dependent part so that our memory manager 

can work on new architecture with major modification. Architecture dependent part of 

the code is for the parts which have major dependencies on hardware or need to be 

optimized for any architecture. 

There are two major type of memory architecture, NUMA Architecture and UMA 

Architecture. 

NUMA means non-unified memory access. This is applied to the system which has 

memory where access to one area of memory takes different time than accessing other 

part of memory. This means access to memory is non-unified. Typical example for this is 

a multiple processor system which has main memory connected to each processor but 

also accessible from any processor in system. In this case processor will have faster 

access to memory connected directly to it rather than memory connected to other 

processor. 

UMA is unified memory access. In these systems all the memory access to any location 

in a system takes same time independent of the location being accessed. Typical example 

of UMA systems is personal computer with single main memory. Any location access in    

this main memory from processor takes same amount of time. 

 

UMA Architecture 
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Figure 2.1 UMA Architecture 

 

 

Figure 2.2 NUMA Architecture 

We can further divide typical memory architecture in Nodes and Zones. 

Node: A memory which is directly accessible from CPU can be termed as Node. E.g.  

Multiple main memory modules connected to a single processor, in this case all these 

modules together will be called as Node. 

Zone: A node (group of different memory regions) further can be divided into different 

memory regions may be termed as Zone, which will be dependent on 32 bit or 64 bit 

Architecture. 
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Major Zones in any system are as below: 

DMA:  This is lowest 16 MByte of area in the main memory. This area is separated from 

other memory area as there was some old generation hardware which can only do DMA 

using this area and are not able to access area beyond it. 

DMA32: This is also DMA area but for 64bit machines. With latest technology now there 

are devices which can do DMA up to 4GByte of memory. This region has limit up to 

4GByte of memory. 

Normal Zone: Normal zone changes between 32 bit architecture or 64 bit architecture. On 

a 64 bit machine normal zone is all area beyond 4 GByte of memory while on a 32 bit 

Architecture this is between 16 MByte to 896 MByte. 

 

Figure 2.3 32 Bit Memory Zone 

On a 64 bit system, we will see most of the memory mapped to ZONE DMA32 only if its 

total value is system is around 4 GByte while in case of 32 bit system most part of it will 

be in Zone NORMAL or HighMem. 
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Figure 2.4 64 Bit Memory Zone 

High Mem: This region is valid only for 32 Machines. This will be to access area of 

memory above 896 MByte of memory in 32 bit machines. 

 

Figure 2.5 Zoning in the Traditional Linux x86-64 Kernel 
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2.3  Balancing DRAM Locality and Parallelism in shared Memory CMP 

Systems: 

Balancing DRAM Locality and Parallelism in shared Memory CMP systems Min Kyu 

Jeong, Doe Hyun Yoon^, Dam Sunwoo*,  Michael Sullivan, Ikhwan Lee, and Mattan 

Erez. 

 Spatial locality is lost when independent access streams from many cores are 

interleaved 

 To preserve the locality, we propose to isolate streams to exclusive set of DRAM 

banks 

 Partitioning banks reduces bank-level parallelism available to each thread 

 To compensate for lost BLP, we increase effective bank count with sub-ranking 

 Our combined approach simultaneously improves performance and efficiency, 

while maintaining fairness 

 

Spatial Locality in DRAM 

 

 Many applications exhibit spatial locality 

 Modern memory systems are designed to exploit spatial locality to deliver 

performance cost effectively (e.g. Row-Buffer Hits) 
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Loss of Opportunity 

 However, in chip-multiprocessor systems, spatial locality is lost as independent 

access streams from multiple cores are interleaved 

 Result: Lower performance and energy efficiency 

 

 

 

Prior Work 

 Out-of-order scheduling 

o Reduces the number of back-and-forth row swapping 

o Arrival interval should be short enough 

o Limited by the scheduling queue size 

o Delaying certain streams hurts performance and fairness 

 MP fairness-aware scheduling 

o Maximizing bandwidth != system performance 

o Optimize for system fairness and performance 

 All still pay the cost of bank conflicts 
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Eliminate Inter-Process Bank Conflicts 

 Make different cores to use different DRAM banks 

 Modify the physical frame allocation algorithm of an OS 

 

 

Virtual to Physical to DRAM Address 
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Figure 2.6 Virtual to physical DRAM 

Bank-partitioning Frame Allocation 

 

Figure 2.7 Bank Partition Frame Allocation 
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Bank-Level Parallelism 

•  Bank-partitioning reduces the number of banks per thread 

• Applications with low spatial locality needs many banks to overlap long latency 

accesses 

Trading off Parallelism and Locality 

 Bank Partitioning 

 Isolate streams to preserve locality 

 Good for applications with high spatial locality 

 Sub-ranking 

 Controls subsets of rank independently, increases BLP 

 Good for applications with low spatial locality 

The two techniques complement each other and improve synergistically 
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CONCLUSION  

 Combination of bank partitioning and sub-ranking balances locality and 

parallelism 

 It boosts performance and efficiency of the system simultaneously while 

maintaining fairness 

o 10%, 7%, and 5% throughput gain for HIGH, MIX, and LOW 

o 10%, 9%, and 6% efficiency gain 

o 21.4% DRAM Power reduction on average 

o 15% fairness gain over bank-partitioning only in MIX 

 

 

2.4 Performance Enhancement of NUMA Multiprocessor Systems: 

Vipul Kumar Mishra proposes Performance Enhancement of NUMA Multiprocessor 

systems with On-Demand Memory Migration in 2013 IEEE conference. 

 NUMA Architecture is made based on the property of a memory system where 

access of local memory has different cost than access to Remote memory. 

 Process are migrated from one Processor to another in-order to load balance the 

work on system 

 When migrating process there will be reduction in performance and increase in 

memory access as there will be access across the node. 

 Moving all the pages of process along with it is highly inefficient as this will 

result in lot of migration efforts 

 There is proposal to do the migration of memory pages with on-demand request. 

Whenever some page is requested by Process, it is moved from current node to 

Node where process has moved. 
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Figure 2.8 NUMA Architecture 

 

Related work 

Many improvement algorithms have been proposed to work on process and page 

migrations for NUMA Architecture.  These method has initially focus on static memory 

placement but this requires prior knowledge of processor memory interconnection 

architecture, manually binding the threads and allocating memory local to each thread. 

While in Dynamic schemes data is migrated from where it resides to where it is accessed. 

There were some proposals to migrate pages using predictive algorithms and aging 

algorithms. 

Proposed Memory migration policy 

Most important work for performance enhancement of a NUMA architecture based 

system is to have the most efficient memory migration policy. We know in LINUX 

operating system, there is already a policy for Copy-On-Write, this is implemented by 

removing write-access but from the PTE’s(Page Table Entry). This means whenever 

some application will try to write on this page, there will be page fault generated and this 

page will be copied for our process with write bit set. 

 M 

   P 

 M 

   P 

M 

  P 

M 

  M 

Interconnection Network 
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Author has proposed similar scheme for Memory migration pages. Both write and read 

flags from Page Table Entry are removed. There is additional flag being set which is 

called as non-Touch flag. 

Whenever some process will try to access its page, system will check the next-touch flag. 

If this flag is set, we will copy the pages from current memory node to the process own 

memory node. After this next touch flag is removed and read/write access is enabled 

again. 

No of Processes No of memory migration 
Memory migration  

Along with process 

Memory migration  

on-Demand 

25 326 326 326 

50 625 630 620 

100 1207 1180 1146 

150 1650 1603 1530 

200 2230 2198 2029 

250 3012 2912 2510 

300 3852 3686 3159 

 

 

Performance Evaluation: 

Performance Evaluation set is done with using system with 8 Nodes, 2 processors and 

memory access level of 6. It has been observed that if memory migration is done with on-

demand policy proposed instead of moving all pages along with process. There is 

performance improvement of around 16-19%. This intern helps in power optimization of 

the system. 
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Chapter 3  

PROPOSED MEMORY ARCHITECURE 

 

Memory Manager is most important function any operating system and it is core 

component for its operation. It has great impact on performance of a system along with 

power consumption. 

We understood basics of Memory Manager in Linux operating system in chapter 2. From 

this design we have the understanding of Node, Zones, and Buddy System. 

In this section we will understand the factor which has impact on power consumption 

while designing a memory manager. 

Zone
Memory 
Allocator

Memory Allocation Request

`

Memory Allocation Request

`

Order 0

Order 1

Order 2

Order 3

Order 4

Order 5

…………….

Order N

Buddy Allocator

 

Figure 3.1 Design of Memory Manager 
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As we understand from working of memory manager, every node is divided into zones. 

Node is divided into zones because of the physical limitation of memory. There are 

certain pages which cannot be used by kernel for all activities and Zoning is done based 

on that. Memory allocation component of memory manager which are active during 

allocation includes Slab Allocator, Buddy Allocator. Slub allocator work over buddy 

allocator and hence it is not affecting physical management of pages directly. 

Memory allocation is done from zones based on buddy system. Buddy system is memory 

allocation algorithm which divides the memory in blocks of different order and any 

request of memory is satisfied from block with most nearest matching size. 

 

Figure 3.2 Zone to Buddy Page order Mapping 

As we understand from above Picture, buddy system is spread across the Zone; Memory 

allocator will try to allocate memory from most matching order block without 

consideration of memory location of the block. 

If physically zone is spread across multiple blocks, memory manager will prefer to 

allocate the memory to most matching order even if this results in allocations getting 

scatter across the memory. 

This is major problem we can observe in any system with very large memory. Let’s 

consider a system with 2 GByte of memory. In a 32 bit system zone allocation will be 

Zone DMA – 16 MByte, Zone NORMAL – 880 MByte, Zone HighMem – 1152 MByte. 

In our test we have taken a system with 2 GByte memories -- DDR3 RAM. It is having 4 

512 MByte memory together. 
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Now our Zone Normal is split across 2 Memory chips. Initial memory required after boot 

up of OS at idle is 400 MByte. As memory allocator is trying to find the most matching 

order of memory from the buddy system, Allocation is split across two memory chip. 

This means that even when the memory required by our system is fitting to one memory 

chip we are using the second memory chip. 

In DDR3 memory we are having the capability to get in to low power mode but in the 

above case allocation is on multiple chip and both will keep consuming the power. 

In order to work on this problem of allocation spreading to multiple memory blocks or 

chip we need to work on the architecture of buddy system. Every zone should have the 

information of memory blocks or chip boundaries and this information should act as 

input to buddy system in deciding the block from which it has to do the allocation and 

when should it look for a higher order block instead of taking a matching order block but 

physically located at position not preferred. 

As part of further study on memory allocation spread, we used the system for some time 

and memory allocation is increased to more than 1.2 GByte of RAM in the system. Now 

we was able to observe 3 memory chip are getting used. After this we have done the 

RAM cleaning and closed all the applications. This has reduced the RAM usage to 450 

MByte. When we observe at the memory chip usage it is still 3 memory chip modules. 

This shows us the second part of problem to work on, with prolonged use memory spread 

will be across the blocks and it need to be corrected to least possible chip regions. We 

also need to consider the impact on performance when during memory movement and 

hence this operation is best to be done when system is in idle state and users work should 

not get impacted. 
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3.1 Design Of Proposed Architecture 

Our goal in this work is to reduce power consumption caused by memory access and 

making memory management efficient for this purpose. 

 

Zone
Memory 
Allocator

Memory Allocation Request

`

Memory Allocation Request

`

Region 1

Region 2

Region 3

Region N

Order 0

Order 1

….

Order N

Order 0

Order 1

….

Order N

Order 0

Order 1

….

Order N

Order 0

Order 1

….

Order N

Buddy 1

Buddy 2

Buddy 3

Buddy N

Region Alocator

 

Figure 3-3 Architecture of Proposed Memory Allocator 

The memory within a node can be divided into regions of memory that can be 

independently power-managed. That is, chunks of memory can be transitioned to low-

power states based on the frequency of references to that region. 

For example, if a memory chunk is not referenced for a given threshold amount of time, 

the hardware (memory controller) can decide to put that piece of memory into a content-

preserving low-power state. And of course, on the next reference to that chunk of 

memory, it will be transitioned back to full-power for read/write operations 
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Memory Manager can take advantage of this feature by managing the available memory 

with an eye towards power-savings - i.e., by keeping the memory allocations/references 

consolidated to a minimum no. of such power-manageable memory regions. 

As shown in figure 3.3, initially all allocation request are given to zone memory 

allocator, from this it will be requested to buddy allocator and allocated memory is given. 

In our purposed design, our allocations are passed to Region allocator which is division 

of multiple regions in zone. These regions have their own buddy system and they will be 

doing allocation of memory for any possible memory order until there is no memory 

available in the region. When memory is fully allocated from one region than only 

allocation request can be given to next region. 

Buddy Allocation design 

In order to influence page allocation decisions we need to be able to distinguish page 

blocks belonging to different zone memory regions within the zones' (buddy) free lists. 

So, within every free list in a zone, provide pointers to describe the boundaries of zone 

memory regions and counters to track the number of free page blocks within each region. 

Due to the region-wise ordering of the pages in the buddy allocator's free lists, whenever 

we want to delete a free page block from a free list we need to be able to tell the buddy 

allocator exactly which migrate type it belongs to. For that purpose, we can use the page's 

free page migrate type So, while splitting up higher order pages into smaller ones as part 

of buddy operations, keep the new head pages updated with the correct free page migrate 

type information. 

While merging buddy free pages of a given order to make a higher order page, the buddy 

allocator might coalesce pages belonging to two different migrate type of that order. So 

our design explicitly find out the migrate type info of the buddy page and use it while 

merging the buddies. Also, set the free page migrate type of the buddy to the new one. 

The sorted-buddy design for memory power management depends on keeping the buddy 

free lists region-sorted. And this sorting operation has been pushed to the free logic, 

keeping the alloc path fast. However, we would like to also keep the free path as fast as 
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possible, since it holds the zone->lock, which will indirectly affect alloc also. So replace 

the existing sorting logic used in the free-path, with a new special-case sorting algorithm 

in order to optimize the free path further. This algorithm uses a bitmap-based radix tree to 

help speed up the sorting. One of the other main advantages of this design is that it can 

support large amounts of RAM (up to 2 TB and beyond) quite effortlessly. 

Buddy Allocator Region Wise self Sorting

Allocation Request
Sorting of 
Buddy in 
Regions

Memory Allocated

 

Figure 3.4  Region buddy self sorting 

 

While allocating pages from buddy free lists, there could be situations in which we have a 

ready free page of the required order in a higher numbered memory region, and there also 

exists a free page of a higher page order in a lower numbered memory region. To make 

the consolidation logic more aggressive, try to split up the higher order buddy page of a 

lower numbered region and allocate it, rather than allocating pages from a higher 

numbered region. This ensures that we spill over to a new region only when we truly 

don't have enough contiguous memory in any lower numbered region to satisfy that 

allocation request. 

 

3.2 Algorithm for memory allocation 

Memory allocation is divided in two parts, in first part is for allocation of initial memory; 

second part is for compaction of memory when some memory is freed and it results in 

memory spread to multiple regions. 

 

 



 

   Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System”           Page 31 

 

3.2.1 Algorithm for  Initial memory allocator 

In the Flow diagram below, there is steps in which initial memory allocation is made 

from Region Allocator, This is explained with all details below. 

Start

Initialize Memory Region structure for 
Node

Map Node Regions to memory Zones

Sort and Maintain Page Blocks in Region 

order in the zones

Add Region information to Pagetype and 
Zoneinfo

Add Bias in Allocator to Allocate from 
lowest region instead of matching order

Enable Region allocator instead of normal 
Allocator

End

 

Figure 3.5 Flow chart for Initial memory allocator 
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The first step of initial memory allocator is to teach the MM about the boundaries of 

these regions - and to capture that info, we introduce a new data-structure called 

"Memory Regions". 

Node is sub-divide into zones based on some well-known constraints. So where do we fit 

in memory regions in this hierarchy. Instead of artificially trying to fit it into the 

hierarchy one way or the other, we choose to simply capture the region boundaries in a 

parallel data-structure, since most likely the region boundaries won't naturally fit inside 

the zone boundaries or vice-versa. 

Once we capture the region boundaries in the memory regions data-structure, we can 

influence MM decisions at various places, such as page allocation, reclamation etc, in 

order to perform power-aware memory management. 

Most of the MM algorithms (like page allocation etc) work within a zone; hence such a 

zone-level mapping of the absolute region boundaries will be very useful in influencing 

the MM decisions at those places 

As we can see in the figure 3.3, Node and Zones are default design of a memory 

allocator. They are the basic building blocks for a memory management system while we 

added new parts in the end which is further dividing zones in region of memory. 

Today, the MM subsystem uses the buddy 'Page Allocator' to manage memory at a 'page' 

granularity. But this allocator has no notion of the physical topology of the underlying 

memory hardware, and hence it is hard to influence memory allocation decisions keeping 

the platform constraints in mind. 

So we need to augment the page-allocator with a new entity to manage memory (at a 

much larger granularity) keeping the underlying platform characteristics and the memory 

hardware topology in mind. 
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To that end, introduce a "Memory Region Allocator" as a backend to the existing "Page 

Allocator". Splitting the memory allocator into a Page-Allocator at front-end and a 

Region-Allocator at backend. 

The flow of memory allocations/frees between entities requesting memory 

(applications/kernel) and the MM subsystem: 

Pages regions Applications <========> Page <========> Memory Region 

Since the region allocator is supposed to function as a backend to the page allocator, we 

implement it on a per-zone basis (since the page-allocator is also per-zone). 

The sorted-buddy page allocator keeps the buddy free lists sorted region-wise, and tries to 

pick lower numbered regions while allocating pages. The idea is to allocate regions in the 

increasing order of region number. Propagate the same bias to the region allocator as 

well. That is, make it favor lower numbered regions while allocating regions to the page 

allocator. To do this efficiently, add a bitmap to represent the regions in the region 

allocator, and use bitmap operations to manage these regions and to pick the lowest 

numbered free region efficiently. 

Now that we have built up an infrastructure that forms a "Memory Region Allocator", 

connect it with the page allocator. To entities requesting memory, the page allocator will 

function as a front-end, whereas the region allocator will act as a back-end to the page 

allocator. Implement the flow of free pages from the page allocator to the region 

allocator. When the buddy free lists notice that they have all the free pages forming a 

memory region, they give it back to the region allocator. When __rmqueue_smallest () 

comes out empty handed, try to get free pages from the region allocator. If that fails, only 

then fallback to an allocation from a different migrate type. This helps significantly in 

avoiding mixing of allocations of different migrate types in a single region. Thus it helps 

in keeping entire memory regions homogeneous with respect to the type of allocations. 

The free page migrate type is used to determine which free list a given page should be 

added to, upon getting freed. To ensure that the page goes to the right free list, set the free 

page migrate type of all the pages of a region, when allocating free pages from the region 
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allocator.  This helps ensure that upon freeing the pages or during buddy expansion, the 

pages are added back to the free lists of the migrate type for which the pages were 

originally requested from the region allocator. 

We would like to maintain memory regions such that all memory pertaining to given a 

memory region serves allocations of a single migrate type. We don't want to permanently 

mix allocations of different migrate types within the same region. So, when allocating a 

region from the region allocator to the page allocator, set the page block migrate type of 

all that memory to the migrate type for which the page allocator requested memory. Note 

that this still allows temporary sharing of pages between different migrate types; it just 

ensures that there is no permanent mixing of migrate types within a given memory 

region. An important advantage to be noted here is that the region allocator doesn't have 

to manage memory in a granularity lesser than a memory region, in any situation. This is 

because the free page migrate type and the fallback mechanism allows temporary sharing 

of free memory between different migrate types when the system is short on memory, but 

eventually all the memory gets freed to the original migrate type (because we set the page 

block migrate type of all the free pages appropriately when allocating regions). This 

greatly simplifies the design of the region allocator, since it doesn't have to keep track of 

memory in smaller chunks than a memory region. 

Currently, whenever the page allocator notices that it has all the free pages of a given 

memory region, it attempts to return it back to the region allocator. This strategy is 

needlessly aggressive and can cause a lot of back and forth between the page-allocator 

and the region-allocator.  More importantly, it can potentially completely wreck the 

benefits of having a region allocator in the first place - if the buddy allocator immediately 

returns free pages of memory regions to the region allocator, it goes back to the generic 

pool of pages. So, in future, depending on when the next allocation request arrives for 

this particular migrate type, the region allocator might not have any free regions to hand 

out, and hence we might end up falling back to free pages of other migrate types. Instead, 

if the page allocator retains a few regions as a cache for every migrate type, we will have 

higher chances of avoiding fallbacks to other migrate types. 
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So, don't return all free memory regions (in the page allocator) to the region allocator. 

Keep at least one region as a cache, for future use. 

 

Algorithm for initial memory allocator 

Step 1:  Start 

Step 2: Declare structure for Regions in memory as part of Node structure 

Struct node_mem_region 

Step 3:  Initialize Region of memory during Node Initialization 

for each page in the Node do 

set Start and End Page Frame for the Region 

Done 

Step 4: Define Mapping of memory area of Region and Zones within a Node 

for each Zone in the Node do 

set Start and End Page Frame for the Zone 

for each Region in the Node do 

Update zone region start and end Page Frame 

Done 

Done 

Step 5: Sort and Maintain Page Blocks in Region order in the zones 

Add_to_Freelist_of_pages() 

{ 
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Region_id =  get_region_id( page ) 

Add_page_block_to_Region_List(Region_id) 

} 

Step 6: Print all the Region information in memory statics in Pagetypeinfo, Zoneinfo to 

accurately display the memory changes 

Flag_show_print() 

{ 

For each region in zone do 

For Each order in region do 

Print Region free blocks 

done 

done 

} 

Step 7: Add the bias in allocator to allocate memory from lowest region instead of most 

matching buddy order. 

__rmqueue_smallest 

{ 

If  true Select_most_matching_page(Region, order) than 

Return page; 

Else  Select_page_in_same_region_but_higher_order than 

Return Page; 

end 
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} 

Step 8: Connect Region Allocator with Page allocator to allocate memory from Regions 

zone_init_free_lists_late 

{ 

Initalize_zone_region_allocator(); // Instead of normal zone allocator 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Department of Software Engineering, Delhi Technical University                                          Page 38 
 

3.2.2 Algorithm  for Memory Compaction 

To enhance memory power-savings, we need to be able to completely evacuate lightly 

allocated regions, and move those used pages to lower regions, which would help 

consolidate all the allocations to a minimum no. of regions. This can be done using some 

of the memory compaction and reclaim algorithms. 

Start

Initialize infrastructure for memory 
compaction

Initialize dedicated thread to do region 
memory compaction

End

Page is allocated from a Region & 
Zone is not DMA

NO

Page is moveable or Reclaimable

Perform compaction for all region marked 
for it

NO

 

Figure 3.6 Flow Diagram for Memory compaction algorithm 
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Develop such an infrastructure to evacuate memory regions completely. The traditional 

compaction algorithm uses a PFN walker to get free pages for compaction. But this 

would be way too costly for us. So we do a pfn walk only to isolate the used pages, but to 

get free pages, we just depend on the fast buddy allocator itself. 

We are careful to abort the compaction run when the buddy allocator starts giving free 

pages in this region itself or higher regions 

To further increase the opportunities for memory power savings, we can perform targeted 

compaction to evacuate lightly-filled memory regions. For this purpose, introduce a 

dedicated per-node kthread to perform the targeted compaction work. Our 

"kmempowerd" kthread uses the generic kthread-worker framework to do most of the 

usual work all kthread needs to do. 

On top of that, this kthread has the following infrastructure in place, to perform the 

region evacuation. A work item is instantiated for every zone. Accessible to this work 

item is a spin-lock protected bitmask, which helps us indicate which regions have to be 

evacuated. The bits set in the bitmask represent the zone-memory-region number within 

that zone that would benefit from evacuation. 

The operation of the "kmempowerd" kthread is quite straight-forward: it makes a local 

copy of the bitmask (which represents the work it is supposed to do), and performs 

targeted region evacuation for each of the regions represented in that bitmask. When it’s 

done, it updates the original bitmask by clearing those bits, to indicate that the requested 

work was completed. 

While the kthread is going about doing its duty, the original bitmask can be updated to 

indicate the arrival of more work. So once the kthread finishes one round of processing, it 

re-examines the original bitmask to see if any new work had arrived in the meantime, and 

does the corresponding work if required. This process continues until the original bitmask 

becomes empty. 

Now that we have a dedicated kthread in place to perform targeted region evacuation, add 

and export a mechanism to queue work to the kthread. Adding work to kmempowerd is 
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very simple: just set the bits corresponding to the region numbers that we want to 

evacuate, and queue the work item to the thread. 

 

Algorithm for Memory Compaction 

Step 1:  Start 

Step 2: Add infrastructure to evacuate memory regions using compaction 

Step 3: Add a kthread to perform targeted compaction for memory power man 

For each region marked for evacuation do 

Evacuate the region of memory 

Clear Evacuation bit from mask 

Done 

Step 4: Trigger for call of Evacuation thread based on the criteria of region compaction 

If  page is allocated from a region 

if page zone is not DMA 

if page is Moveable or Reclaimable 

Trigger thread of compaction 

Done 

Done 

Done 
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Chapter 4  

EXPERIMENT SETUP AND RESULT 

ANALYSIS 

Our goal is to show that region based memory allocation mechanism is capable of 

reducing power consumption with minimal performance overheads. Our goal is to save 

power consumption by prioritizing accesses to the low power regions via region based 

allocation and defragmentation of memory to lowest regions. In order to show the true 

benefits of region access prioritization (zoning), we simulated an ideal case, initially 

memory was allocated to the applications and system so that it is within the first region of 

memory allocation. 

 

Configuration of System under Test: 

 

Intel Core 2 Duo + 2 GByte of DDR2 Main Memory [ 1 GByte + 1 GByte ] + 160 GByte 

HDD + 1280x800 Resolution. 

Operating system: Ubuntu 14.04 

Linux kernel: 3.12.0 

 

Below are the steps to setup the system: 

 

 

 

 

 

Figure 4.1 Setup of system for test 

This design of verification helps us to test the system in real time stress. First part of 

algorithm help us in making the allocation always from the lowest region, With first 

experiment we will be able to test and confirm if the allocation of memory happens to 

Power on system 

with default 

memory allocated 

Additionally 

allocate chunk of 

memory in system 

Check the Effect of 

allocation on 

memory 
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prefer lowest region or it is scatter across the regions. 

 

System under test without any optimization 

1. Memory Allocation from a system on First boot 

Zone Region ID Total Memory Available Memory 

DMA Region      0 3998 2378 

DMA32 Region      0 28673 1024 

DMA32 Region      1 32768 0 

DMA32 Region      2 32768 0 

DMA32 Region      3 32768 0 

DMA32 Region      4 32768 776 

DMA32 Region      5 32768 6288 

DMA32 Region      6 32768 245 

DMA32 Region      7 32768 22843 

DMA32 Region      8 32768 32768 

DMA32 Region      9 32768 32768 

DMA32 Region     10 32768 32768 

DMA32 Region     11 32768 32768 

DMA32 Region     12 32768 32768 

DMA32 Region     13 32768 32768 

DMA32 Region     14 32768 32768 

DMA32 Region     15 30316 17408 

 

Figure 4.2 Memory Allocation on First boot 
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Inference from the results 

 This clearly shows on the first boot itself we are able to see memory is scatter 

across multiple regions. 

 We can see the regions specially region 0,4,5,6,7. Memory is allocated in each 

region but not fully taken. 

 

 

2. Memory Allocation from a system for addition 256 MByte 

 

Zone Region ID Total Memory Available Memory 

DMA Region      0 3998 1956 

DMA32 Region      0 28673 1024 

DMA32 Region      1 32768 0 

DMA32 Region      2 32768 1 

DMA32 Region      3 32768 0 

DMA32 Region      4 32768 778 

DMA32 Region      5 32768 6050 

DMA32 Region      6 32768 147 

DMA32 Region      7 32768 4579 

DMA32 Region      8 32768 0 

DMA32 Region      9 32768 0 

DMA32 Region     10 32768 0 

DMA32 Region     11 32768 18408 

DMA32 Region     12 32768 32768 

DMA32 Region     13 32768 32768 

DMA32 Region     14 32768 32768 

DMA32 Region     15 30316 17408 
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Figure 4.3 Memory Allocation for additional 256 MByte 

Inference from the results 

 On additional allocation of memory, it is scatter across multiple region of 

memory. 

 We can see the regions specially region 0-10. Memory is allocated in each 

region but not fully taken. 
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System under test with optimization of Memory Management 

3. Memory Allocation from a system on First boot 

 

 

Figure 4.4 Memory Allocation for addition 256 MByte 
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DMA Region      0 3998 2357 
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Inference from the results 

 This clearly shows on the first boot itself we are able to see memory is 

optimized to be limited to least regions. 

 We can see the regions specially region 0-6. 

 

4. Memory Allocation from a system for addition 256 MByte 

Zone Region ID Total Memory Available Memory 

DMA Region      0 3998 1958 

DMA32 Region      0 28673 1024 

DMA32 Region      1 32768 0 

DMA32 Region      2 32768 0 

DMA32 Region      3 32768 0 

DMA32 Region      4 32768 0 

DMA32 Region      5 32768 0 

DMA32 Region      6 32768 0 

DMA32 Region      7 32768 0 

DMA32 Region      8 32768 0 

DMA32 Region      9 32768 0 

DMA32 Region     10 32768 10441 

DMA32 Region     11 32768 32768 

DMA32 Region     12 32768 32768 

DMA32 Region     13 32768 32768 

DMA32 Region     14 32768 32768 

DMA32 Region     15 30316 20019 
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Figure 4.5 Memory Allocation for addition 256 MByte 

Inference from the results 

 On additional allocation of memory, it is still being taken from the least 

number of regions. 

 We can see the regions specially region 0-10. Memory is allocated in each 

region and fully utilized. 

 

Second Experiment 

 

First experiment was to show that memory usage and allocation is always done from the 

lowest region in case of power optimized memory allocation. 

 

In the final check, we need to see the memory usage of a system which is in use for quite 

some time. This means how our algorithm can make the power reduction if system is 

having memory allocation and de-allocation ongoing. 

 

 

 

 

 

 

Figure 4.6 Memory Allocation to test compaction 
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System under test without any optimization 

5. Memory De-allocation from a system for additional 256 MByte memory 

Zone Region ID Total Memory Available Memory 

DMA Region      0 3998 2151 

DMA32 Region      0 28673 1024 

DMA32 Region      1 32768 0 

DMA32 Region      2 32768 2 

DMA32 Region      3 32768 0 

DMA32 Region      4 32768 770 

DMA32 Region      5 32768 5888 

DMA32 Region      6 32768 162 

DMA32 Region      7 32768 12956 

DMA32 Region      8 32768 16388 

DMA32 Region      9 32768 16395 

DMA32 Region     10 32768 16380 

DMA32 Region     11 32768 25967 

DMA32 Region     12 32768 32768 

DMA32 Region     13 32768 32768 

DMA32 Region     14 32768 32768 

DMA32 Region     15 30316 17408 

 

 

Figure 4.7 Memory De-allocation for additional 256 MByte 

Inference from the results 

 On de-allocating additional allocation of memory, it is scatter from all the 

regions. 

 This clearly indicates that default memory allocation algorithm does not care 

for the fragmentation of memory and confining it to least regions. 
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System under test with optimization of Memory Management 

6. Memory De-allocation from a system for additional 256 MByte memory 

Zone Region ID Total Memory Available Memory 

DMA Region      0 3998 2067 

DMA32 Region      0 28673 1024 

DMA32 Region      1 32768 0 

DMA32 Region      2 32768 0 

DMA32 Region      3 32768 0 

DMA32 Region      4 32768 0 

DMA32 Region      5 32768 0 

DMA32 Region      6 32768 0 

DMA32 Region      7 32768 2794 

DMA32 Region      8 32768 7423 

DMA32 Region      9 32768 32768 

DMA32 Region     10 32768 32768 

DMA32 Region     11 32768 32768 

DMA32 Region     12 32768 32768 

DMA32 Region     13 32768 32768 

DMA32 Region     14 32768 32768 

DMA32 Region     15 30316 20019 

 

 

Figure 4.8 Memory De-allocation for additional 256 MByte 

Inference from the results 

 On de-allocating additional allocation of memory, it is compacted to least no. 

of regions. 

 This clearly indicates that our memory allocation algorithm care for the 

fragmentation of memory and confining it to least regions. 
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Configuration of System under Test: 

Intel Core I 5 + 6 GByte of DDR3 Main Memory [4 GByte + 2 GByte] + 512 GByte HDD 

+ 1280x800 Resolution. 

Operating system: Ubuntu 12.04 

Linux kernel: 3.12.0 

System under test without any optimization 

7. Memory Allocation from a system on First boot 

Zone Region ID Total Memory Used Memory 

DMA Region      0 3997 161 

DMA32 Region      0 126976 112898 

DMA32 Region      1 130560 512 

DMA32 Region      2 131072 0 

DMA32 Region      3 131072 0 

DMA32 Region      4 131072 0 

DMA32 Region      5 110252 18092 

NORMAL Region      0 131072 115742 

NORMAL Region      1 131072 0 

NORMAL Region      2 131072 0 

NORMAL Region      3 131072 0 

NORMAL Region      4 131072 0 

NORMAL Region      5 130559 29183 

 

 

Figure 4.9 Memory Allocation on First boot 

Inference from the results 

 This clearly shows on the first boot itself we are able to see memory is scatter 

across multiple regions. 
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8. Memory Allocation from a system for addition 256 MByte 

Zone Region ID Total Memory Used Memory 

DMA Region      0 3997 161 

DMA32 Region      0 126976 124996 

DMA32 Region      1 130560 52765 

DMA32 Region      2 131072 0 

DMA32 Region      3 131072 0 

DMA32 Region      4 131072 0 

DMA32 Region      5 110252 18092 

NORMAL Region      0 131072 129006 

NORMAL Region      1 131072 53895 

NORMAL Region      2 131072 0 

NORMAL Region      3 131072 0 

NORMAL Region      4 131072 0 

NORMAL Region      5 130559 29183 

 

 

Figure 4.10 Memory Allocation for addition 256 MByte 

Inference from the results 

 On additional allocation of memory, it is scatter across multiple region of 

memory. 

 We can see the regions specially region 0-10. Memory is allocated in each 

region but not fully taken. 
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System under test with optimization of Memory Management 

9. Memory Allocation from a system on First boot 

Zone Region ID Total Memory Used Memory 

DMA Region      0 3997 161 

DMA32 Region      0 126976 116206 

DMA32 Region      1 130560 3369 

DMA32 Region      2 131072 0 

DMA32 Region      3 131072 0 

DMA32 Region      4 131072 0 

DMA32 Region      5 110252 17415 

NORMAL Region      0 131072 117128 

NORMAL Region      1 131072 3906 

NORMAL Region      2 131072 0 

NORMAL Region      3 131072 0 

NORMAL Region      4 131072 0 

NORMAL Region      5 130559 27048 

 

 

Figure 4.11 Memory Allocation on first boot 

Inference from the results 

 This clearly shows on the first boot itself we are able to see memory is 

optimized to be limited to least regions. 

 We can see the regions specially region 0-6. Memory is allocated in each 

region before moving to next one. 

 

10. Memory Allocation from a system for addition 256 MByte 
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Zone Region ID Total Memory Used Memory 

DMA Region      0 3997 161 

DMA32 Region      0 126976 126976 

DMA32 Region      1 130560 57967 

DMA32 Region      2 131072 0 

DMA32 Region      3 131072 0 

DMA32 Region      4 131072 0 

DMA32 Region      5 110252 17415 

NORMAL Region      0 131072 131072 

NORMAL Region      1 131072 56041 

NORMAL Region      2 131072 0 

NORMAL Region      3 131072 0 

NORMAL Region      4 131072 0 

NORMAL Region      5 130559 27048 

 

Figure 4.12 Memory Allocation for addition 256 MByte 

Inference from the results 

 

 On additional allocation of memory, it is still being taken from the least 

number of regions. 

 We can see the regions specially region 0-10. Memory is allocated in each 

region and fully utilized. 

 

 

Second Experiment 

System under test without any optimization 
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11. Memory De-allocation from a system for additional 256 MByte memory 

Zone Region ID Total Memory Used Memory 

DMA Region      0 3997 161 

DMA32 Region      0 126976 119003 

DMA32 Region      1 130560 26887 

DMA32 Region      2 131072 0 

DMA32 Region      3 131072 0 

DMA32 Region      4 131072 0 

DMA32 Region      5 110252 18092 

NORMAL Region      0 131072 122868 

NORMAL Region      1 131072 26648 

NORMAL Region      2 131072 0 

NORMAL Region      3 131072 0 

NORMAL Region      4 131072 0 

NORMAL Region      5 130559 29182 

 

 

Figure 4.13 Memory De-allocation for additional 256 MByte 

 On de-allocating additional allocation of memory, it is scatter from all the 

regions. 

 This clearly indicates that default memory allocation algorithm does not care 

for the fragmentation of memory and confining it to least regions. 

 

 

System under test with optimization of Memory Management 

12. Memory De-allocation from a system for additional 256 MByte memory 
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Zone Region ID Total Memory Used Memory 

DMA Region      0 3997 161 

DMA32 Region      0 126976 126976 

DMA32 Region      1 130560 25383 

DMA32 Region      2 131072 0 

DMA32 Region      3 131072 0 

DMA32 Region      4 131072 0 

DMA32 Region      5 110252 17415 

NORMAL Region      0 131072 131072 

NORMAL Region      1 131072 22270 

NORMAL Region      2 131072 0 

NORMAL Region      3 131072 0 

NORMAL Region      4 131072 0 

NORMAL Region      5 130559 27048 

 

 

Figure 4.14 Memory De-allocation for additional 256 MByte 

Inference from the results 

 On de-allocating additional allocation of memory, it is compacted to least no. 

of regions. 

 This clearly indicates that our memory allocation algorithm care for the 

fragmentation of memory and confining it to least regions. 
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Intel Core I 5 + 4 GByte of DDR3 Main Memory [4 GByte] + 512 GByte HDD + 
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1280x800 Resolution. 

Operating system: Ubuntu 13.04 

Linux kernel: 3.12.0 

 

 

System under test without any optimization 

13. Memory Allocation from a system on First boot 

Zone Region ID Total Memory Used Memory 

DMA Region      0 3997 161 

DMA32 Region      0 126976 112898 

DMA32 Region      1 130560 512 

DMA32 Region      2 131072 0 

DMA32 Region      3 131072 0 

DMA32 Region      4 131072 0 

DMA32 Region      5 110252 18092 

NORMAL Region      0 131072 115742 

NORMAL Region      1 130559 29183 

 

 

Figure 4.15 Memory De-allocation for First boot 

Inference from the results 

 This clearly shows on the first boot itself we are able to see memory is scatter 

across multiple regions. 

 

14. Memory Allocation from a system for addition 256 MByte 
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Zone Region ID Total Memory Used Memory 

DMA Region      0 3997 161 

DMA32 Region      0 126976 124996 

DMA32 Region      1 130560 52765 

DMA32 Region      2 131072 0 

DMA32 Region      3 131072 0 

DMA32 Region      4 131072 0 

DMA32 Region      5 110252 18092 

NORMAL Region      0 131072 129006 

NORMAL Region      1 130559 83078 

 

 

Figure 4.16 Memory Allocation for additional 256 MByte 

Inference from the results 

 On additional allocation of memory, it is scatter across multiple region of 

memory. 

 We can see the regions specially region 0-10. Memory is allocated in each 

region but not fully taken. 

 

 

 

 

 

 

 

System under test with optimization of Memory Management 

15. Memory Allocation from a system on First boot 
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Zone Region ID Total Memory Used Memory 

DMA Region      0 3997 161 

DMA32 Region      0 126976 116206 

DMA32 Region      1 130560 3369 

DMA32 Region      2 131072 0 

DMA32 Region      3 131072 0 

DMA32 Region      4 131072 0 

DMA32 Region      5 110252 17415 

NORMAL Region      0 131072 121034 

NORMAL Region      1 130559 27048 

 

 

Figure 4.17 Memory Allocation on First boot 

Inference from the results 

 This clearly shows on the first boot itself we are able to see memory is optimized to be 

limited to least regions. 

 We can see the regions specially region 0-6. Memory is allocated in each region before 

moving to next one. 

16. Memory Allocation from a system for addition 256 MByte 
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Zone Region ID Total Memory Used Memory 

DMA Region      0 3997 161 

DMA32 Region      0 126976 126976 

DMA32 Region      1 130560 57967 

DMA32 Region      2 131072 0 

DMA32 Region      3 131072 0 

DMA32 Region      4 131072 0 

DMA32 Region      5 110252 73456 

NORMAL Region      0 131072 131072 

NORMAL Region      1 130559 27048 

 

 

Figure 4.18 Memory Allocation for addition 256 MByte 

Inference from the results 

 On additional allocation of memory, it is still being taken from the least 

number of regions. 

 We can see the regions specially region 0-10. Memory is allocated in each 

region and fully utilized. 

 

 

 

 

 

 

 

Second Experiment 

System under test without any optimization 
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17. Memory De-allocation from a system for additional 256 MByte memory 

Zone Region ID Total Memory Used Memory 

DMA Region      0 3997 161 

DMA32 Region      0 126976 119003 

DMA32 Region      1 130560 26887 

DMA32 Region      2 131072 0 

DMA32 Region      3 131072 0 

DMA32 Region      4 131072 0 

DMA32 Region      5 110252 44740 

NORMAL Region      0 131072 122868 

NORMAL Region      5 130559 29182 

 

 

Figure 4.19 Memory De-Allocation for additional 256 MByte 

Inference from the results 

 On de-allocating additional allocation of memory, it is scatter from all the 

regions. 

 This clearly indicates that default memory allocation algorithm does not care 

for the fragmentation of memory and confining it to least regions. 

 

 

 

 

 

System under test with optimization of Memory Management 

18. Memory De-allocation from a system for additional 256 MByte memory 

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5 6 7 8

Total Memory

Used Memory



 

   Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System”           Page 61 

Zone Region ID Total Memory Used Memory 

DMA Region      0 3997 161 

DMA32 Region      0 126976 126976 

DMA32 Region      1 130560 25383 

DMA32 Region      2 131072 0 

DMA32 Region      3 131072 0 

DMA32 Region      4 131072 0 

DMA32 Region      5 110252 39685 

NORMAL Region      0 131072 131072 

NORMAL Region      1 130559 27048 

 

 

Figure 4.20 Memory De-allocation for additional 256 MByte 

Inference from the results 

 On de-allocating additional allocation of memory, it is compacted to least no. 

of regions. 

 This clearly indicates that our memory allocation algorithm care for the 

fragmentation of memory and confining it to least regions. 
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Chapter 5  

CONCLUSION & FUTURE WORK 

 

In this project we presented Power management for large scale memory system, a system-

level variability-aware solution that adapts to the power variability inherent in a set of 

DRAM memory modules. With our module we have shown how to restrict usage of 

memory to the minimum area. This was archived during initial allocation of memory at 

first. This was to demonstrate the capability of our changes on restricting memory 

allocation at initial step itself. 

With second step, we have shown how to further de-fragment memory usage when system 

is in use for long time. With long usage every system is expected to de-allocate memory 

which it was using and this de-allocation occur randomly. Sometime the memory is de-

allocated from middle of memory area while at other time same is de-allocated from start 

of it. We have demonstrated with our changes that we were able to restrict the usage of 

memory to minimum area again. 

Our Main memory is divided into banks. Each of these banks is independently power 

switchable. In some cases we were able to restrict No. of banks in usage from 6 with 

normal algorithm to 3 with optimized algorithm. This means improvement in the power 

usage of the system by almost 30 Percent. 

Future work from this project include following, Power optimization from our algorithm 

are demonstrated on a server and personal computer. These are validated with verification 

on multiple computers. We need to further demonstrate the algorithm on an embedded 

system like a mobile device. This will demonstrate the power usage and optimization from 

our algorithm directly in power domain itself 

Also we have worked to keep the de-fragmentation of memory during idle time. This 

activity takes time, we need to measure the time taken by this activity and also method to 

optimize this time.  Further identification of suitable time may be done by using context 

awareness utility (widely available in portable devices) as well as in other systems based 

on past activity logs. 
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