

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page i

A

Dissertation

On

“AN OPTIMIZATION OF POWER IN LARGE SCALE

MEMORY SYSTEM”

In

SOFTWARE TECHNOLOGY

By

SHAILESH KUMAR PANDEY (ROLL NO. 2K12/SWT/11)

Under the guidance of

PROFESSOR R.K. YADAV

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

BAWANA ROAD, DELHI – 2015

Department of Software Engineering, Delhi Technical University Page ii

DECLARATION

I hereby want to declare that the thesis entitled “An Optimization of Power in Large Scale

Memory System”, which being is submitted to the Delhi Technological University, in partial

fulfillment of the requirements for the award of degree of Master of Technology in Software

Technology is an authentic work carried out by me. The material contained in this thesis has not

been submitted to any institution or university for the award of any degree.

Shailesh Kumar Pandey

Department of Computer Science & Engineering

Delhi Technological University,

Delhi.

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page iii

CERTIFICATE

DELHI TECHNOLOGICAL UNIVERSITY

BAWANA ROAD, DELHI-110042

Date:

This is to certify that the thesis entitled “An Optimization of Power in Large Scale Memory

System” submitted by Shailesh Kumar Pandey (Roll Number: 2K12/SWT/11), in partial

fulfillment of the requirements for the award of degree of Master of Technology in Software

Technology, is an authentic work carried out by him under my guidance. The content embodied

in this thesis has not been submitted by him earlier to any institution or organization for any

degree or diploma to the best of my knowledge and belief.

Prof R.K. Yadav,

Department of Software Engineering,

Delhi Technological University, Delhi-110042

Department of Software Engineering, Delhi Technical University Page iv

ACKNOWLEDGEMENT

I would like to take this opportunity to express my appreciation and gratitude to all those who

have helped me directly or indirectly towards the successful completion of this work.

Firstly, I would like to express my sincere gratitude to my guide Prof R.K. Yadav, Department

of Computer Science and Engineering, Delhi Technological University, Delhi whose

excellent guidance, continuous support, encouragement and timely feedback were always there

for me throughout the course of my work. Without his continuous support and interest, this thesis

would not have been the same as presented here.

Also I would like to extend my thanks to the entire staff in the Department of Computer Science

& Engineering, DTU for their help during my course of work.

SHAILESH KUMAR PANDEY

2K 12/SWT/11

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page v

 CONTENTS

ABSTRACT .. 1

Chapter 1 .. 2

INTRODUCTION ... 2

1.1 Introduction ... 2

1.2 Motivation .. 3

1.3 Related Work .. 4

1.4 Problem Statement .. 6

1.5 Scope Of The Work... 7

Chapter 2 .. 9

BACKGROUND STUDY ... 9

2.1 Power Measurement And Optimization ... 9

2.2 Memory System Architecture .. 12

2.3 Balancing DRAM Locality and Parallelism in shared Memory CMP Systems: 17

2.4 Performance Enhancement of NUMA Multiprocessor Systems: 22

Chapter 3 ..25

PROPOSED MEMORY ARCHITECURE ...25

3.1 Design Of Proposed Architecture ... 28

3.2 Algorithm for memory allocation .. 30

3.2.1 Algorithm for Initial memory allocator ... 31

3.2.2 Algorithm for Memory Compaction .. 38

Chapter 4 ..41

EXPERIMENT SETUP AND RESULT ANALYSIS41

Chapter 5 ..62

CONCLUSION & FUTURE WORK ...62

REFERENCES ..63

Department of Software Engineering, Delhi Technical University Page vi

LIST OF FIGURES

FIGURE 2.1 UMA ARCHITECTURE ... 14

FIGURE 2.2 NUMA ARCHITECTURE ... 14

FIGURE 2.3 32 BIT MEMORY ZONE ... 15

FIGURE 2.4 64 BIT MEMORY ZONE ... 16

FIGURE 2.5 ZONING IN THE TRADITIONAL LINUX X86-64 KERNEL ... 16

FIGURE 2.6 VIRTUAL TO PHYSICAL DRAM ... 20

FIGURE 2.7 BANK PARTITION FRAME ALLOCATION ... 20

FIGURE 2.8 NUMA ARCHITECTURE ... 23

FIGURE 3.1 DESIGN OF MEMORY MANAGER .. 25

FIGURE 3.2 ZONE TO BUDDY PAGE ORDER MAPPING ... 26

FIGURE 3-3 ARCHITECTURE OF PROPOSED MEMORY ALLOCATOR .. 28

FIGURE 3.4 REGION BUDDY SELF SORTING .. 30

FIGURE 3.5 FLOW CHART FOR INITIAL MEMORY ALLOCATOR .. 31

FIGURE 3.6 FLOW DIAGRAM FOR MEMORY COMPACTION ALGORITHM .. 38

FIGURE 4.1 SETUP OF SYSTEM FOR TEST .. 41

FIGURE 4.2 MEMORY ALLOCATION ON FIRST BOOT .. 42

FIGURE 4.3 MEMORY ALLOCATION FOR ADDITIONAL 256 MBYTE ... 44

FIGURE 4.4 MEMORY ALLOCATION FOR ADDITION 256 MBYTE ... 45

FIGURE 4.5 MEMORY ALLOCATION FOR ADDITION 256 MBYTE ... 47

FIGURE 4.6 MEMORY ALLOCATION TO TEST COMPACTION ... 47

FIGURE 4.7 MEMORY DE-ALLOCATION FOR ADDITIONAL 256 MBYTE .. 48

FIGURE 4.8 MEMORY DE-ALLOCATION FOR ADDITIONAL 256 MBYTE .. 49

FIGURE 4.9 MEMORY ALLOCATION ON FIRST BOOT .. 50

FIGURE 4.10 MEMORY ALLOCATION FOR ADDITION 256 MBYTE ... 51

FIGURE 4.11 MEMORY ALLOCATION ON FIRST BOOT .. 52

FIGURE 4.12 MEMORY ALLOCATION FOR ADDITION 256 MBYTE ... 53

FIGURE 4.13 MEMORY DE-ALLOCATION FOR ADDITIONAL 256 MBYTE .. 54

FIGURE 4.14 MEMORY DE-ALLOCATION FOR ADDITIONAL 256 MBYTE .. 55

FIGURE 4.15 MEMORY DE-ALLOCATION FOR FIRST BOOT ... 56

FIGURE 4.16 MEMORY ALLOCATION FOR ADDITIONAL 256 MBYTE ... 57

FIGURE 4.17 MEMORY ALLOCATION ON FIRST BOOT .. 58

FIGURE 4.18 MEMORY ALLOCATION FOR ADDITION 256 MBYTE ... 59

FIGURE 4.19 MEMORY DE-ALLOCATION FOR ADDITIONAL 256 MBYTE ... 60

FIGURE 4.20 MEMORY DE-ALLOCATION FOR ADDITIONAL 256 MBYTE .. 61

Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 1

ABSTRACT

We are increasingly seeing computer systems day by day supporting larger size of RAM,

in order to meet workload demands. However, power consumption of memory is

significant, potentially up to more than a third of total system power on server systems.

Hence with obvious reason, memory becomes the next major target for power

optimization on embedded systems and smart phones, and all the way up to large server

systems.

Most of the studies in the computer domain predict RAM usage in embedded systems and

Personal computer to increase at very fast rate, RAM consumes ~30% of power usage of

a system.

Modern memory hardware supports a number of power saving measures - for instance,

the memory controller can automatically put memory DIMMs/banks into content-

preserving low-power states, if it detects that entire memory DIMM/bank has not been

referenced for a threshold amount of time, thus reducing the energy consumption of the

memory hardware. We term these power-manageable chunks of memory as "Memory

Regions”.

The OS needs to know about the granularity at which the hardware can perform

automatic power-management of the memory banks (i.e., the address boundaries of the

memory regions). On ARM platforms, the boot loader can be modified to pass on this

info to the kernel via the device-tree. On x86 platforms, the new ACPI 5.0 spec has added

support for exporting the power optimization capabilities of the memory hardware to the

OS in a standard way.

Department of Computer Science & Engineering, Delhi Technological University Page 2

Chapter 1

INTRODUCTION

1.1 Introduction

Most of the studies in computer domain predict RAM usage in embedded systems and

personal computer to increase at very fast rate, memory consumes potentially more than

one third of total power, this is the major target for power optimization now.

Modern hardware have the capability to put part of memory not used in low power state,

like in DDR3 memory if some region from memory is not referenced for threshold

amount time, it will be moved this region to low power state. We use this capability for

the power optimization.

When Memory used in the system is of large size, it will be split into multiple blocks or

chips. This design will be very helpful for power optimization as the block or chip not in

use will be put into low power mode. This will have direct impact on power consumption

from the device.

Reducing the power usage from memory not referenced is done automatically by

hardware, this paper goal is to minimize the memory references to the regions in

minimum area by doing the memory allocation and de-allocation such that it is not

distributed across the entire memory space, and in addition there is light weight

compaction/reclaim support to reclaim very partially memory filled regions. It is an

applied research work.

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 3

1.2 Motivation

It had been observed significant variations in inter-die and intra–die processes in past

years. Most of the research in power domain has predicted that this will further go up by

more than 50% in coming years. These variation are due to ambient conditions, wear out

from devices or the manufacturing process itself. In spite of having so many variations on

hardware, software always assumes homogeneous structure for its stack implementation.

One method of guard banding systems with such hardware variability is to binning

semiconductor device to lowest possible operating frequencies so as to reduce the impact

of variation in inter-die but this will compromise on performance of the device and

optimal power usage.

Also we have now come up to multi-core technology which has further complicated this

issue. In order to minimize the effect of these variations we need to exploit the inherent

variations in devices so as to improve system performance.

One of major component which suffers from power variations is main Memory systems.

On chip memory consumes nearly around one third of system power consumption.

Above mentioned problems of intra-die and inter-die variations in main memory can be

resolved using caching mechanism, DRAM and OS level power management. However

such changes can be classified as Hardware change as it requires changing existing

memory configurations.

In this work, we present memory manager which is optimized for power and it is a

system-level variability-aware solution that adapts to the power variability inherent in

DRAM memory modules. With this approach we use power of the variability in DDR3

onward memory. Our approach could be generalized to work at finer granularities of

memory, if variability data and hardware support are available.

Department of Software Engineering, Delhi Technical University Page 4

1.3 Related Work

Power optimization is one of the biggest research areas since long, with advent of

embedded systems like mobile phones power optimization has become more important

now days. Battery usage of embedded system is directly dependent upon power

consumption from the device. Similarly many server computers keeping running for long

hours, if they power usage from them is optimized this can save lot of power. As much

research was done to focus on how much power consumption is from different

component in any embedded or server/personal computer system, many of them point to

main memory as the most power consuming component. It takes up to one third of power

consumption from the whole system. Following are the recent research papers which

have proposed the power optimization techniques for memory.

Min Kyu Jeong proposes Balancing DRAM Locality and Parallelism in shared memory

CMP systems IEEE 2012, to partition the internal memory banks between cores to isolate

their access streams and eliminate locality interference. It was implemented by extending

the physical frame allocation algorithm of the OS such that physical frames mapped to

the same DRAM bank can be exclusively allocated to a single thread. Modern memory

systems rely on spatial locality to provide high bandwidth while minimizing memory

device power and cost. The trend of increasing the number of cores that share memory,

however, decreases apparent spatial locality because access streams from independent

threads are interleaved.

Mishra, V.K proposes Performance enhancement of NUMA multiprocessor systems with

on-demand memory migration 2013, most efforts are made to research in the area of

memory management to reduce power consumption from memory to most optimized

minimum. In the paper [2] presents memory migration on-demand policy to enable

automatic dynamic migration of pages with low cost when they are actually accessed by a

task. Major focus is on the quality of the scheduling has a strong impact on the overall

application performance because of process and data affinities, This issue is now

becoming critical due to the variable memory access latencies in NUMA architecture,

because in NUMA architecture local data access being significantly faster than remote

access.

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 5

Gangyong Jia Proposes, Memory Affinity: Balancing Performance, Power, Thermal and

Fairness for Multi-core Systems, IEEE 2013, this paper firstly proposes memory affinity

which retains the active and low power memory ranks as long as possible to avoid

frequently switching between active and low power status. Main memory is expected to

grow significantly in both speed and capacity for it is a major shared resource among

cores in a multi-core system, which will lead to increasing power consumption. It is

critical to address the power issue without seriously decreasing performance in the

memory subsystem. Also present a memory affinity aware scheduling (MAS) to balance

performance, power, thermal and fairness for multi-core systems.

Zhang Haiyang introduces Red-Black Tree Used for Arranging Virtual Memory Area of

Linux IEEE 2010, Red-Black Tree's definition, merit and the content of the VAM

in Linux Then discusses how to accomplish the Red-Black tree in Linux Kernel,

and Red-Black tree used for arranging virtual memory area of Linux.

In all the recent research done and specially the research papers in memory optimization,

we can observe there is great focus on optimizing power for multi core architecture when

its access memory. Either this research has focus on using NUMA Architecture or it is

focused on access of memory from multi-core architecture. Most of the systems in

embedded or server domain do not use NUMA as this architecture is very complex and

still lot of work needs to be done on it. Also memory ranking and optimization around it

is tends to be moving in hardware domain. In comparison, we have found UMA is most

common architecture used in embedded systems as well as servers. Also with larger

memory systems in place, there is significance requirement to optimize power from

memory itself.

All the recent research in memory power optimization have focus on Non Unified

Memory Access Architecture or Hardware based optimizations, none of them has focused

to find out power optimized memory solution for Unified Memory Access based

architecture with large size memory, which has become the major focus of this theses.

Department of Software Engineering, Delhi Technical University Page 6

1.4 Problem Statement

Our Focus is on the optimization of power consumption from memory as this is most

power consuming area for embedded and computer systems. We can target to work on

the management of memory to reduce the power consumption by switching of the

memory components not in use to the low power state. In order to do so we need to make

sure to reduced the used area of memory to the lowest.

Memory management is designed to efficiently provide the required memory to

applications from the total memory available and same should be return back to the

available memory when not in use. We can additionally make our algorithms to focus on

making the memory allocation and de-allocation considering the area from which

memory is allocated and de-allocated.

Problem statement for our projects is to develop power manger at system level so as to

reduce the allocation of memory to the smallest number of regions available for an

application in order to reduce the power consumption.

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 7

1.5 Scope Of The Work

Memory management is most important part of any operating system. It is designed to

keep performance of the system most optimized. The main consumer of power in any

embedded or server system is main memory, we have focused to analyze the pattern of

memory usage and impact of pattern of usage on main memory power consumption. In

this thesis, we purposed a new design for the memory manager which has focus on

keeping the power optimized.

This thesis has three goals to achieve power optimization for memory manager:

1. To design a new architecture for memory manager with target of power

optimization.

2. To design algorithm which divide main memory of system into regions which are

power switchable and then allocated memory to process are kept to minimum

number of regions.

3. To establish results of the purposed algorithm to demonstrate its impact on

power consumption of the system.

a. In our optimization proposal, we divide the memory zones in regions, which are

based on block structure of the memory. Further along with memory regions buddy

system is also divided in regions. It will enable the allocation of memory to least

number of regions.

b. To achieve our goal, we have modified the buddy system for memory allocation. In

Linux memory manager, there is one buddy system per zone but in our proposal we

will manage buddy system per region. During process request for memory allocation

to allocatore, same will be passed to region buddy allocator, which will pass control

to first available buddy region in memory manager. This will allocate the maximum

available in that buddy region, after that it passes control to the next buddy region of

Department of Software Engineering, Delhi Technical University Page 8

the zone where memory is free. In this way it will allocate memory from one region

before going to next region.

c. To analyze the results on power consumption from the proposed algorithm change,

we have tested our algorithm on multiple machines; First system is Intel core 2 Duo

CPU with 2 GByte of RAM and 128 GB HDD. Second system is Intel core I5 with 6

GByte of RAM and 512 GByte HDD, In third system Intel Core I5 with 4 GByte of

RAM and 512 GByte of HDD. This will further help in making the results

generalized as we tested them across multiple systems with different configuration.

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 9

Chapter 2

BACKGROUND STUDY

2.1 Power Measurement And Optimization

Power optimization and management in general is an ongoing and active area of

computer science. Irrespective of the size or function of any computing system, all

consumes power, and the consumption of power always carries an economic cost. The

economic cost manifest differently for different systems, and on the surface, it would

seem the cost would bear more weight on some computing devices such as Smartphone

while other computing systems are seemingly immune (such as data center).

For example, it is easier to understand that in a battery-operated, cordless device, such as

Smartphone, higher power consumption means either the battery needs higher capacity

means increase in direct cost of manufacturing and sale price or have to suffer shorter

usage time or potential lost business to competing vendors on the market -- opportunity

cost loss. On the other end of the physical size spectrum, a data center that is attached to

the AC power grid seems to have unlimited supply of power and doesn't suffer the same

power constraint as a Smartphone. However, as an operator of a data center with a fixed

budget, every dollar that is spent on paying for the power (both for running the

computing systems and cooling them) means one less dollar to spend on increasing

computing capacity of the center, and it is the computing capacity that generates revenue

for the owner.

Power optimization is very important for embedded or hand-help devices as they require

battery to be used, If power consumption is optimized for a device, it can be used for

longer duration of time. An optimized mobile system with same amount of battery can be

used for double the time if we are able to optimize its current to one half. Similar is the

case for large server systems, they are expected to be running for long hours and power

optimization is very important as amount of power optimized is directly to cost saved for

their usage.

http://en.wikipedia.org/wiki/Economic_cost
http://en.wikipedia.org/wiki/Smartphone
http://en.wikipedia.org/wiki/Data_center
http://en.wikipedia.org/wiki/Opportunity_cost
http://en.wikipedia.org/wiki/Opportunity_cost
http://en.wikipedia.org/wiki/Opportunity_cost

Department of Software Engineering, Delhi Technical University Page 10

Even though power consumption optimization may look as prime responsibility for the

hardware designer but software design has also major role in its optimization.

Basics of power consumption

There are many factors which impact on the power consumption of a device; four major

factors are application, Voltage, frequency and processor technology. In below details we

will find out why these factors are so important.

Application of device is very important to understand how power profile of the device

will differ. Let’s take the example of hand help media player, Media player will require

to be used for long duration of time. We need to focus of data flow optimization and

algorithm rather than idle power mode.

Similar is the case of a mobile device but the focus of power optimization is different. It

needs to be use during a call and while all other time it remain in idle mode. If we are

able to reduce the power usage of idle mode in a mobile device than it will have major

impact on its power usage.

Types of power consumption

In any device there can be two type of power consumption, Static and Dynamic.

Total power of a device is calculated as:

Total power = Dynamic power + Static power

Or

Total power = idle power/base power + variable running power due to

processing/ongoing activity.

From software, we can control over the large part of dynamic consumption but static

consumption there is not much control. From static power consumption we mean the

power consumption from a device without consideration of the work ongoing.

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 11

Other factors which can impact on static power consumption are temperature, process

and supply voltage. Temperature increase will increase electron mobility which will

increase the flow of electrons and results in more static power consumption.

Dynamic power consumption

Dynamic power consumption from embedded devices includes many factors like core

subsystems, peripherals, Main memory, Clocks etc. At lower level we can say this as

power used when switching transistors. Dynamic power consumption will be dependent

on the voltage supply level but it will not dependent on temperature.

There are four type of power consumption which needs to be considered for a device.

Typical power consumption, Average power consumption, Maximum power

consumption and worst case power consumption.

Maximum power consumption as the name suggests is the highest power reading

measured from the device at any particular instance. This indicate to us the maximum

power required by us to operate the device.

Average power indicates the power usage from the device divide by time. This helps us

to understand the battery or the supply required to operate device for a particular amount

of time.

Worst case power indicates the average of full power usage from a device over a period

of time. This means that we will operate a system with all its parts operating to maximum

capacity for some period of time and than average out its power usage.

Typical Power consumption is also very important. In normal usage, a device rarely

operates to the worst case power, For example we may not be always using all core of a

processor when using our personal computer. Typical power usage refers to power

consumption from the device from general power use cases.

Department of Software Engineering, Delhi Technical University Page 12

Power Optimization There are several methods to optimize static and dynamic power

consumption. We can optimize the system for power by selecting right components in

system and designing dynamic software architecture for them.

DDR means dual data rate, DDR SDRAM take advantage of both edges of DDR clock to

write and read data. This means we are effectively doubling the effective data rate

There are various features in Main memory and these features affect the power usage

from it, EDC (Error detection), ECC (Error correction codes), Type of Bursting, data

refresh rate which are programmable, Programmable memory configurations.

Various methods to optimize power from a main memory are optimizing power by data

flow, timing, Interleaving, DDR configurations, burst access and software data

organization.

2.2 Memory System Architecture

There are some important terms related to memory and memory management, we need to

understand them in order to understand our proposed architecture. We worked in this

thesis with DDR3 DRAM memory. This memory has the capability to put regions of

memory which are not referenced by CPU into low power mode.

A typical DRAM based memory has memory controller connected to multiple memory

channels. Further these channels will have multiple DIMM in them which are further

divided into ranks on opposite sides of the module. Memory controller can access these

ranks independently. There are further banks of memory which are composed of columns

and rows. We can access any memory location with unique combination of rows,

columns, bank and rank.

Our approach is the optimized the power consumption by targeting the least selectable

memory part which can be put into low power mode and make sure there is no data

present in this area if possible with working on pattern of data.

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 13

Architecture of memory management in Linux

Memory management system for Linux is simple but yet scalable to handle various type

of processor architecture from x86 to ARM or power PC etc. There are two parts of

memory management, architecture dependent code and non-architecture dependent code.

Most of the code is kept in Non-architecture dependent part so that our memory manager

can work on new architecture with major modification. Architecture dependent part of

the code is for the parts which have major dependencies on hardware or need to be

optimized for any architecture.

There are two major type of memory architecture, NUMA Architecture and UMA

Architecture.

NUMA means non-unified memory access. This is applied to the system which has

memory where access to one area of memory takes different time than accessing other

part of memory. This means access to memory is non-unified. Typical example for this is

a multiple processor system which has main memory connected to each processor but

also accessible from any processor in system. In this case processor will have faster

access to memory connected directly to it rather than memory connected to other

processor.

UMA is unified memory access. In these systems all the memory access to any location

in a system takes same time independent of the location being accessed. Typical example

of UMA systems is personal computer with single main memory. Any location access in

this main memory from processor takes same amount of time.

UMA Architecture

Department of Software Engineering, Delhi Technical University Page 14

Figure 2.1 UMA Architecture

Figure 2.2 NUMA Architecture

We can further divide typical memory architecture in Nodes and Zones.

Node: A memory which is directly accessible from CPU can be termed as Node. E.g.

Multiple main memory modules connected to a single processor, in this case all these

modules together will be called as Node.

Zone: A node (group of different memory regions) further can be divided into different

memory regions may be termed as Zone, which will be dependent on 32 bit or 64 bit

Architecture.

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 15

Major Zones in any system are as below:

DMA: This is lowest 16 MByte of area in the main memory. This area is separated from

other memory area as there was some old generation hardware which can only do DMA

using this area and are not able to access area beyond it.

DMA32: This is also DMA area but for 64bit machines. With latest technology now there

are devices which can do DMA up to 4GByte of memory. This region has limit up to

4GByte of memory.

Normal Zone: Normal zone changes between 32 bit architecture or 64 bit architecture. On

a 64 bit machine normal zone is all area beyond 4 GByte of memory while on a 32 bit

Architecture this is between 16 MByte to 896 MByte.

Figure 2.3 32 Bit Memory Zone

On a 64 bit system, we will see most of the memory mapped to ZONE DMA32 only if its

total value is system is around 4 GByte while in case of 32 bit system most part of it will

be in Zone NORMAL or HighMem.

Department of Software Engineering, Delhi Technical University Page 16

Figure 2.4 64 Bit Memory Zone

High Mem: This region is valid only for 32 Machines. This will be to access area of

memory above 896 MByte of memory in 32 bit machines.

Figure 2.5 Zoning in the Traditional Linux x86-64 Kernel

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 17

2.3 Balancing DRAM Locality and Parallelism in shared Memory CMP

Systems:

Balancing DRAM Locality and Parallelism in shared Memory CMP systems Min Kyu

Jeong, Doe Hyun Yoon^, Dam Sunwoo*, Michael Sullivan, Ikhwan Lee, and Mattan

Erez.

 Spatial locality is lost when independent access streams from many cores are

interleaved

 To preserve the locality, we propose to isolate streams to exclusive set of DRAM

banks

 Partitioning banks reduces bank-level parallelism available to each thread

 To compensate for lost BLP, we increase effective bank count with sub-ranking

 Our combined approach simultaneously improves performance and efficiency,

while maintaining fairness

Spatial Locality in DRAM

 Many applications exhibit spatial locality

 Modern memory systems are designed to exploit spatial locality to deliver

performance cost effectively (e.g. Row-Buffer Hits)

Department of Software Engineering, Delhi Technical University Page 18

Loss of Opportunity

 However, in chip-multiprocessor systems, spatial locality is lost as independent

access streams from multiple cores are interleaved

 Result: Lower performance and energy efficiency

Prior Work

 Out-of-order scheduling

o Reduces the number of back-and-forth row swapping

o Arrival interval should be short enough

o Limited by the scheduling queue size

o Delaying certain streams hurts performance and fairness

 MP fairness-aware scheduling

o Maximizing bandwidth != system performance

o Optimize for system fairness and performance

 All still pay the cost of bank conflicts

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 19

Eliminate Inter-Process Bank Conflicts

 Make different cores to use different DRAM banks

 Modify the physical frame allocation algorithm of an OS

Virtual to Physical to DRAM Address

Department of Software Engineering, Delhi Technical University Page 20

Figure 2.6 Virtual to physical DRAM

Bank-partitioning Frame Allocation

Figure 2.7 Bank Partition Frame Allocation

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 21

Bank-Level Parallelism

•  Bank-partitioning reduces the number of banks per thread

• Applications with low spatial locality needs many banks to overlap long latency

accesses

Trading off Parallelism and Locality

 Bank Partitioning

 Isolate streams to preserve locality

 Good for applications with high spatial locality

 Sub-ranking

 Controls subsets of rank independently, increases BLP

 Good for applications with low spatial locality

The two techniques complement each other and improve synergistically

Department of Software Engineering, Delhi Technical University Page 22

CONCLUSION

 Combination of bank partitioning and sub-ranking balances locality and

parallelism

 It boosts performance and efficiency of the system simultaneously while

maintaining fairness

o 10%, 7%, and 5% throughput gain for HIGH, MIX, and LOW

o 10%, 9%, and 6% efficiency gain

o 21.4% DRAM Power reduction on average

o 15% fairness gain over bank-partitioning only in MIX

2.4 Performance Enhancement of NUMA Multiprocessor Systems:

Vipul Kumar Mishra proposes Performance Enhancement of NUMA Multiprocessor

systems with On-Demand Memory Migration in 2013 IEEE conference.

 NUMA Architecture is made based on the property of a memory system where

access of local memory has different cost than access to Remote memory.

 Process are migrated from one Processor to another in-order to load balance the

work on system

 When migrating process there will be reduction in performance and increase in

memory access as there will be access across the node.

 Moving all the pages of process along with it is highly inefficient as this will

result in lot of migration efforts

 There is proposal to do the migration of memory pages with on-demand request.

Whenever some page is requested by Process, it is moved from current node to

Node where process has moved.

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 23

Figure 2.8 NUMA Architecture

Related work

Many improvement algorithms have been proposed to work on process and page

migrations for NUMA Architecture. These method has initially focus on static memory

placement but this requires prior knowledge of processor memory interconnection

architecture, manually binding the threads and allocating memory local to each thread.

While in Dynamic schemes data is migrated from where it resides to where it is accessed.

There were some proposals to migrate pages using predictive algorithms and aging

algorithms.

Proposed Memory migration policy

Most important work for performance enhancement of a NUMA architecture based

system is to have the most efficient memory migration policy. We know in LINUX

operating system, there is already a policy for Copy-On-Write, this is implemented by

removing write-access but from the PTE’s(Page Table Entry). This means whenever

some application will try to write on this page, there will be page fault generated and this

page will be copied for our process with write bit set.

 M

 P

 M

 P

M

 P

M

 M

Interconnection Network

Department of Software Engineering, Delhi Technical University Page 24

Author has proposed similar scheme for Memory migration pages. Both write and read

flags from Page Table Entry are removed. There is additional flag being set which is

called as non-Touch flag.

Whenever some process will try to access its page, system will check the next-touch flag.

If this flag is set, we will copy the pages from current memory node to the process own

memory node. After this next touch flag is removed and read/write access is enabled

again.

No of Processes No of memory migration
Memory migration

Along with process

Memory migration

on-Demand

25 326 326 326

50 625 630 620

100 1207 1180 1146

150 1650 1603 1530

200 2230 2198 2029

250 3012 2912 2510

300 3852 3686 3159

Performance Evaluation:

Performance Evaluation set is done with using system with 8 Nodes, 2 processors and

memory access level of 6. It has been observed that if memory migration is done with on-

demand policy proposed instead of moving all pages along with process. There is

performance improvement of around 16-19%. This intern helps in power optimization of

the system.

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 25

Chapter 3

PROPOSED MEMORY ARCHITECURE

Memory Manager is most important function any operating system and it is core

component for its operation. It has great impact on performance of a system along with

power consumption.

We understood basics of Memory Manager in Linux operating system in chapter 2. From

this design we have the understanding of Node, Zones, and Buddy System.

In this section we will understand the factor which has impact on power consumption

while designing a memory manager.

Zone
Memory
Allocator

Memory Allocation Request

`

Memory Allocation Request

`

Order 0

Order 1

Order 2

Order 3

Order 4

Order 5

…………….

Order N

Buddy Allocator

Figure 3.1 Design of Memory Manager

Department of Software Engineering, Delhi Technical University Page 26

As we understand from working of memory manager, every node is divided into zones.

Node is divided into zones because of the physical limitation of memory. There are

certain pages which cannot be used by kernel for all activities and Zoning is done based

on that. Memory allocation component of memory manager which are active during

allocation includes Slab Allocator, Buddy Allocator. Slub allocator work over buddy

allocator and hence it is not affecting physical management of pages directly.

Memory allocation is done from zones based on buddy system. Buddy system is memory

allocation algorithm which divides the memory in blocks of different order and any

request of memory is satisfied from block with most nearest matching size.

Figure 3.2 Zone to Buddy Page order Mapping

As we understand from above Picture, buddy system is spread across the Zone; Memory

allocator will try to allocate memory from most matching order block without

consideration of memory location of the block.

If physically zone is spread across multiple blocks, memory manager will prefer to

allocate the memory to most matching order even if this results in allocations getting

scatter across the memory.

This is major problem we can observe in any system with very large memory. Let’s

consider a system with 2 GByte of memory. In a 32 bit system zone allocation will be

Zone DMA – 16 MByte, Zone NORMAL – 880 MByte, Zone HighMem – 1152 MByte.

In our test we have taken a system with 2 GByte memories -- DDR3 RAM. It is having 4

512 MByte memory together.

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 27

Now our Zone Normal is split across 2 Memory chips. Initial memory required after boot

up of OS at idle is 400 MByte. As memory allocator is trying to find the most matching

order of memory from the buddy system, Allocation is split across two memory chip.

This means that even when the memory required by our system is fitting to one memory

chip we are using the second memory chip.

In DDR3 memory we are having the capability to get in to low power mode but in the

above case allocation is on multiple chip and both will keep consuming the power.

In order to work on this problem of allocation spreading to multiple memory blocks or

chip we need to work on the architecture of buddy system. Every zone should have the

information of memory blocks or chip boundaries and this information should act as

input to buddy system in deciding the block from which it has to do the allocation and

when should it look for a higher order block instead of taking a matching order block but

physically located at position not preferred.

As part of further study on memory allocation spread, we used the system for some time

and memory allocation is increased to more than 1.2 GByte of RAM in the system. Now

we was able to observe 3 memory chip are getting used. After this we have done the

RAM cleaning and closed all the applications. This has reduced the RAM usage to 450

MByte. When we observe at the memory chip usage it is still 3 memory chip modules.

This shows us the second part of problem to work on, with prolonged use memory spread

will be across the blocks and it need to be corrected to least possible chip regions. We

also need to consider the impact on performance when during memory movement and

hence this operation is best to be done when system is in idle state and users work should

not get impacted.

Department of Software Engineering, Delhi Technical University Page 28

3.1 Design Of Proposed Architecture

Our goal in this work is to reduce power consumption caused by memory access and

making memory management efficient for this purpose.

Zone
Memory
Allocator

Memory Allocation Request

`

Memory Allocation Request

`

Region 1

Region 2

Region 3

Region N

Order 0

Order 1

….

Order N

Order 0

Order 1

….

Order N

Order 0

Order 1

….

Order N

Order 0

Order 1

….

Order N

Buddy 1

Buddy 2

Buddy 3

Buddy N

Region Alocator

Figure 3-3 Architecture of Proposed Memory Allocator

The memory within a node can be divided into regions of memory that can be

independently power-managed. That is, chunks of memory can be transitioned to low-

power states based on the frequency of references to that region.

For example, if a memory chunk is not referenced for a given threshold amount of time,

the hardware (memory controller) can decide to put that piece of memory into a content-

preserving low-power state. And of course, on the next reference to that chunk of

memory, it will be transitioned back to full-power for read/write operations

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 29

Memory Manager can take advantage of this feature by managing the available memory

with an eye towards power-savings - i.e., by keeping the memory allocations/references

consolidated to a minimum no. of such power-manageable memory regions.

As shown in figure 3.3, initially all allocation request are given to zone memory

allocator, from this it will be requested to buddy allocator and allocated memory is given.

In our purposed design, our allocations are passed to Region allocator which is division

of multiple regions in zone. These regions have their own buddy system and they will be

doing allocation of memory for any possible memory order until there is no memory

available in the region. When memory is fully allocated from one region than only

allocation request can be given to next region.

Buddy Allocation design

In order to influence page allocation decisions we need to be able to distinguish page

blocks belonging to different zone memory regions within the zones' (buddy) free lists.

So, within every free list in a zone, provide pointers to describe the boundaries of zone

memory regions and counters to track the number of free page blocks within each region.

Due to the region-wise ordering of the pages in the buddy allocator's free lists, whenever

we want to delete a free page block from a free list we need to be able to tell the buddy

allocator exactly which migrate type it belongs to. For that purpose, we can use the page's

free page migrate type So, while splitting up higher order pages into smaller ones as part

of buddy operations, keep the new head pages updated with the correct free page migrate

type information.

While merging buddy free pages of a given order to make a higher order page, the buddy

allocator might coalesce pages belonging to two different migrate type of that order. So

our design explicitly find out the migrate type info of the buddy page and use it while

merging the buddies. Also, set the free page migrate type of the buddy to the new one.

The sorted-buddy design for memory power management depends on keeping the buddy

free lists region-sorted. And this sorting operation has been pushed to the free logic,

keeping the alloc path fast. However, we would like to also keep the free path as fast as

Department of Software Engineering, Delhi Technical University Page 30

possible, since it holds the zone->lock, which will indirectly affect alloc also. So replace

the existing sorting logic used in the free-path, with a new special-case sorting algorithm

in order to optimize the free path further. This algorithm uses a bitmap-based radix tree to

help speed up the sorting. One of the other main advantages of this design is that it can

support large amounts of RAM (up to 2 TB and beyond) quite effortlessly.

Buddy Allocator Region Wise self Sorting

Allocation Request
Sorting of
Buddy in
Regions

Memory Allocated

Figure 3.4 Region buddy self sorting

While allocating pages from buddy free lists, there could be situations in which we have a

ready free page of the required order in a higher numbered memory region, and there also

exists a free page of a higher page order in a lower numbered memory region. To make

the consolidation logic more aggressive, try to split up the higher order buddy page of a

lower numbered region and allocate it, rather than allocating pages from a higher

numbered region. This ensures that we spill over to a new region only when we truly

don't have enough contiguous memory in any lower numbered region to satisfy that

allocation request.

3.2 Algorithm for memory allocation

Memory allocation is divided in two parts, in first part is for allocation of initial memory;

second part is for compaction of memory when some memory is freed and it results in

memory spread to multiple regions.

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 31

3.2.1 Algorithm for Initial memory allocator

In the Flow diagram below, there is steps in which initial memory allocation is made

from Region Allocator, This is explained with all details below.

Start

Initialize Memory Region structure for
Node

Map Node Regions to memory Zones

Sort and Maintain Page Blocks in Region

order in the zones

Add Region information to Pagetype and
Zoneinfo

Add Bias in Allocator to Allocate from
lowest region instead of matching order

Enable Region allocator instead of normal
Allocator

End

Figure 3.5 Flow chart for Initial memory allocator

Department of Software Engineering, Delhi Technical University Page 32

The first step of initial memory allocator is to teach the MM about the boundaries of

these regions - and to capture that info, we introduce a new data-structure called

"Memory Regions".

Node is sub-divide into zones based on some well-known constraints. So where do we fit

in memory regions in this hierarchy. Instead of artificially trying to fit it into the

hierarchy one way or the other, we choose to simply capture the region boundaries in a

parallel data-structure, since most likely the region boundaries won't naturally fit inside

the zone boundaries or vice-versa.

Once we capture the region boundaries in the memory regions data-structure, we can

influence MM decisions at various places, such as page allocation, reclamation etc, in

order to perform power-aware memory management.

Most of the MM algorithms (like page allocation etc) work within a zone; hence such a

zone-level mapping of the absolute region boundaries will be very useful in influencing

the MM decisions at those places

As we can see in the figure 3.3, Node and Zones are default design of a memory

allocator. They are the basic building blocks for a memory management system while we

added new parts in the end which is further dividing zones in region of memory.

Today, the MM subsystem uses the buddy 'Page Allocator' to manage memory at a 'page'

granularity. But this allocator has no notion of the physical topology of the underlying

memory hardware, and hence it is hard to influence memory allocation decisions keeping

the platform constraints in mind.

So we need to augment the page-allocator with a new entity to manage memory (at a

much larger granularity) keeping the underlying platform characteristics and the memory

hardware topology in mind.

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 33

To that end, introduce a "Memory Region Allocator" as a backend to the existing "Page

Allocator". Splitting the memory allocator into a Page-Allocator at front-end and a

Region-Allocator at backend.

The flow of memory allocations/frees between entities requesting memory

(applications/kernel) and the MM subsystem:

Pages regions Applications <========> Page <========> Memory Region

Since the region allocator is supposed to function as a backend to the page allocator, we

implement it on a per-zone basis (since the page-allocator is also per-zone).

The sorted-buddy page allocator keeps the buddy free lists sorted region-wise, and tries to

pick lower numbered regions while allocating pages. The idea is to allocate regions in the

increasing order of region number. Propagate the same bias to the region allocator as

well. That is, make it favor lower numbered regions while allocating regions to the page

allocator. To do this efficiently, add a bitmap to represent the regions in the region

allocator, and use bitmap operations to manage these regions and to pick the lowest

numbered free region efficiently.

Now that we have built up an infrastructure that forms a "Memory Region Allocator",

connect it with the page allocator. To entities requesting memory, the page allocator will

function as a front-end, whereas the region allocator will act as a back-end to the page

allocator. Implement the flow of free pages from the page allocator to the region

allocator. When the buddy free lists notice that they have all the free pages forming a

memory region, they give it back to the region allocator. When __rmqueue_smallest ()

comes out empty handed, try to get free pages from the region allocator. If that fails, only

then fallback to an allocation from a different migrate type. This helps significantly in

avoiding mixing of allocations of different migrate types in a single region. Thus it helps

in keeping entire memory regions homogeneous with respect to the type of allocations.

The free page migrate type is used to determine which free list a given page should be

added to, upon getting freed. To ensure that the page goes to the right free list, set the free

page migrate type of all the pages of a region, when allocating free pages from the region

Department of Software Engineering, Delhi Technical University Page 34

allocator. This helps ensure that upon freeing the pages or during buddy expansion, the

pages are added back to the free lists of the migrate type for which the pages were

originally requested from the region allocator.

We would like to maintain memory regions such that all memory pertaining to given a

memory region serves allocations of a single migrate type. We don't want to permanently

mix allocations of different migrate types within the same region. So, when allocating a

region from the region allocator to the page allocator, set the page block migrate type of

all that memory to the migrate type for which the page allocator requested memory. Note

that this still allows temporary sharing of pages between different migrate types; it just

ensures that there is no permanent mixing of migrate types within a given memory

region. An important advantage to be noted here is that the region allocator doesn't have

to manage memory in a granularity lesser than a memory region, in any situation. This is

because the free page migrate type and the fallback mechanism allows temporary sharing

of free memory between different migrate types when the system is short on memory, but

eventually all the memory gets freed to the original migrate type (because we set the page

block migrate type of all the free pages appropriately when allocating regions). This

greatly simplifies the design of the region allocator, since it doesn't have to keep track of

memory in smaller chunks than a memory region.

Currently, whenever the page allocator notices that it has all the free pages of a given

memory region, it attempts to return it back to the region allocator. This strategy is

needlessly aggressive and can cause a lot of back and forth between the page-allocator

and the region-allocator. More importantly, it can potentially completely wreck the

benefits of having a region allocator in the first place - if the buddy allocator immediately

returns free pages of memory regions to the region allocator, it goes back to the generic

pool of pages. So, in future, depending on when the next allocation request arrives for

this particular migrate type, the region allocator might not have any free regions to hand

out, and hence we might end up falling back to free pages of other migrate types. Instead,

if the page allocator retains a few regions as a cache for every migrate type, we will have

higher chances of avoiding fallbacks to other migrate types.

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 35

So, don't return all free memory regions (in the page allocator) to the region allocator.

Keep at least one region as a cache, for future use.

Algorithm for initial memory allocator

Step 1: Start

Step 2: Declare structure for Regions in memory as part of Node structure

Struct node_mem_region

Step 3: Initialize Region of memory during Node Initialization

for each page in the Node do

set Start and End Page Frame for the Region

Done

Step 4: Define Mapping of memory area of Region and Zones within a Node

for each Zone in the Node do

set Start and End Page Frame for the Zone

for each Region in the Node do

Update zone region start and end Page Frame

Done

Done

Step 5: Sort and Maintain Page Blocks in Region order in the zones

Add_to_Freelist_of_pages()

{

Department of Software Engineering, Delhi Technical University Page 36

Region_id = get_region_id(page)

Add_page_block_to_Region_List(Region_id)

}

Step 6: Print all the Region information in memory statics in Pagetypeinfo, Zoneinfo to

accurately display the memory changes

Flag_show_print()

{

For each region in zone do

For Each order in region do

Print Region free blocks

done

done

}

Step 7: Add the bias in allocator to allocate memory from lowest region instead of most

matching buddy order.

__rmqueue_smallest

{

If true Select_most_matching_page(Region, order) than

Return page;

Else Select_page_in_same_region_but_higher_order than

Return Page;

end

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 37

}

Step 8: Connect Region Allocator with Page allocator to allocate memory from Regions

zone_init_free_lists_late

{

Initalize_zone_region_allocator(); // Instead of normal zone allocator

}

Department of Software Engineering, Delhi Technical University Page 38

3.2.2 Algorithm for Memory Compaction

To enhance memory power-savings, we need to be able to completely evacuate lightly

allocated regions, and move those used pages to lower regions, which would help

consolidate all the allocations to a minimum no. of regions. This can be done using some

of the memory compaction and reclaim algorithms.

Start

Initialize infrastructure for memory
compaction

Initialize dedicated thread to do region
memory compaction

End

Page is allocated from a Region &
Zone is not DMA

NO

Page is moveable or Reclaimable

Perform compaction for all region marked
for it

NO

Figure 3.6 Flow Diagram for Memory compaction algorithm

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 39

Develop such an infrastructure to evacuate memory regions completely. The traditional

compaction algorithm uses a PFN walker to get free pages for compaction. But this

would be way too costly for us. So we do a pfn walk only to isolate the used pages, but to

get free pages, we just depend on the fast buddy allocator itself.

We are careful to abort the compaction run when the buddy allocator starts giving free

pages in this region itself or higher regions

To further increase the opportunities for memory power savings, we can perform targeted

compaction to evacuate lightly-filled memory regions. For this purpose, introduce a

dedicated per-node kthread to perform the targeted compaction work. Our

"kmempowerd" kthread uses the generic kthread-worker framework to do most of the

usual work all kthread needs to do.

On top of that, this kthread has the following infrastructure in place, to perform the

region evacuation. A work item is instantiated for every zone. Accessible to this work

item is a spin-lock protected bitmask, which helps us indicate which regions have to be

evacuated. The bits set in the bitmask represent the zone-memory-region number within

that zone that would benefit from evacuation.

The operation of the "kmempowerd" kthread is quite straight-forward: it makes a local

copy of the bitmask (which represents the work it is supposed to do), and performs

targeted region evacuation for each of the regions represented in that bitmask. When it’s

done, it updates the original bitmask by clearing those bits, to indicate that the requested

work was completed.

While the kthread is going about doing its duty, the original bitmask can be updated to

indicate the arrival of more work. So once the kthread finishes one round of processing, it

re-examines the original bitmask to see if any new work had arrived in the meantime, and

does the corresponding work if required. This process continues until the original bitmask

becomes empty.

Now that we have a dedicated kthread in place to perform targeted region evacuation, add

and export a mechanism to queue work to the kthread. Adding work to kmempowerd is

Department of Software Engineering, Delhi Technical University Page 40

very simple: just set the bits corresponding to the region numbers that we want to

evacuate, and queue the work item to the thread.

Algorithm for Memory Compaction

Step 1: Start

Step 2: Add infrastructure to evacuate memory regions using compaction

Step 3: Add a kthread to perform targeted compaction for memory power man

For each region marked for evacuation do

Evacuate the region of memory

Clear Evacuation bit from mask

Done

Step 4: Trigger for call of Evacuation thread based on the criteria of region compaction

If page is allocated from a region

if page zone is not DMA

if page is Moveable or Reclaimable

Trigger thread of compaction

Done

Done

Done

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 41

Chapter 4

EXPERIMENT SETUP AND RESULT

ANALYSIS

Our goal is to show that region based memory allocation mechanism is capable of

reducing power consumption with minimal performance overheads. Our goal is to save

power consumption by prioritizing accesses to the low power regions via region based

allocation and defragmentation of memory to lowest regions. In order to show the true

benefits of region access prioritization (zoning), we simulated an ideal case, initially

memory was allocated to the applications and system so that it is within the first region of

memory allocation.

Configuration of System under Test:

Intel Core 2 Duo + 2 GByte of DDR2 Main Memory [1 GByte + 1 GByte] + 160 GByte

HDD + 1280x800 Resolution.

Operating system: Ubuntu 14.04

Linux kernel: 3.12.0

Below are the steps to setup the system:

Figure 4.1 Setup of system for test

This design of verification helps us to test the system in real time stress. First part of

algorithm help us in making the allocation always from the lowest region, With first

experiment we will be able to test and confirm if the allocation of memory happens to

Power on system

with default

memory allocated

Additionally

allocate chunk of

memory in system

Check the Effect of

allocation on

memory

Department of Software Engineering, Delhi Technical University Page 42

prefer lowest region or it is scatter across the regions.

System under test without any optimization

1. Memory Allocation from a system on First boot

Zone Region ID Total Memory Available Memory

DMA Region 0 3998 2378

DMA32 Region 0 28673 1024

DMA32 Region 1 32768 0

DMA32 Region 2 32768 0

DMA32 Region 3 32768 0

DMA32 Region 4 32768 776

DMA32 Region 5 32768 6288

DMA32 Region 6 32768 245

DMA32 Region 7 32768 22843

DMA32 Region 8 32768 32768

DMA32 Region 9 32768 32768

DMA32 Region 10 32768 32768

DMA32 Region 11 32768 32768

DMA32 Region 12 32768 32768

DMA32 Region 13 32768 32768

DMA32 Region 14 32768 32768

DMA32 Region 15 30316 17408

Figure 4.2 Memory Allocation on First boot

0

20000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Total Memory

Used Memory

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 43

Inference from the results

 This clearly shows on the first boot itself we are able to see memory is scatter

across multiple regions.

 We can see the regions specially region 0,4,5,6,7. Memory is allocated in each

region but not fully taken.

2. Memory Allocation from a system for addition 256 MByte

Zone Region ID Total Memory Available Memory

DMA Region 0 3998 1956

DMA32 Region 0 28673 1024

DMA32 Region 1 32768 0

DMA32 Region 2 32768 1

DMA32 Region 3 32768 0

DMA32 Region 4 32768 778

DMA32 Region 5 32768 6050

DMA32 Region 6 32768 147

DMA32 Region 7 32768 4579

DMA32 Region 8 32768 0

DMA32 Region 9 32768 0

DMA32 Region 10 32768 0

DMA32 Region 11 32768 18408

DMA32 Region 12 32768 32768

DMA32 Region 13 32768 32768

DMA32 Region 14 32768 32768

DMA32 Region 15 30316 17408

Department of Software Engineering, Delhi Technical University Page 44

Figure 4.3 Memory Allocation for additional 256 MByte

Inference from the results

 On additional allocation of memory, it is scatter across multiple region of

memory.

 We can see the regions specially region 0-10. Memory is allocated in each

region but not fully taken.

0

10000

20000

30000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Total Memory

Used Memory

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 45

System under test with optimization of Memory Management

3. Memory Allocation from a system on First boot

Figure 4.4 Memory Allocation for addition 256 MByte

0

10000

20000

30000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Total Memory

used Memory

Zone Region ID Total Memory Available Memory

DMA Region 0 3998 2357

DMA32 Region 0 28673 1024

DMA32 Region 1 32768 0

DMA32 Region 2 32768 0

DMA32 Region 3 32768 0

DMA32 Region 4 32768 0

DMA32 Region 5 32768 0

DMA32 Region 6 32768 12377

DMA32 Region 7 32768 32768

DMA32 Region 8 32768 32768

DMA32 Region 9 32768 32768

DMA32 Region 10 32768 32768

DMA32 Region 11 32768 32768

DMA32 Region 12 32768 32768

DMA32 Region 13 32768 32768

DMA32 Region 14 32768 32768

DMA32 Region 15 30316 20019

Department of Software Engineering, Delhi Technical University Page 46

Inference from the results

 This clearly shows on the first boot itself we are able to see memory is

optimized to be limited to least regions.

 We can see the regions specially region 0-6.

4. Memory Allocation from a system for addition 256 MByte

Zone Region ID Total Memory Available Memory

DMA Region 0 3998 1958

DMA32 Region 0 28673 1024

DMA32 Region 1 32768 0

DMA32 Region 2 32768 0

DMA32 Region 3 32768 0

DMA32 Region 4 32768 0

DMA32 Region 5 32768 0

DMA32 Region 6 32768 0

DMA32 Region 7 32768 0

DMA32 Region 8 32768 0

DMA32 Region 9 32768 0

DMA32 Region 10 32768 10441

DMA32 Region 11 32768 32768

DMA32 Region 12 32768 32768

DMA32 Region 13 32768 32768

DMA32 Region 14 32768 32768

DMA32 Region 15 30316 20019

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 47

Figure 4.5 Memory Allocation for addition 256 MByte

Inference from the results

 On additional allocation of memory, it is still being taken from the least

number of regions.

 We can see the regions specially region 0-10. Memory is allocated in each

region and fully utilized.

Second Experiment

First experiment was to show that memory usage and allocation is always done from the

lowest region in case of power optimized memory allocation.

In the final check, we need to see the memory usage of a system which is in use for quite

some time. This means how our algorithm can make the power reduction if system is

having memory allocation and de-allocation ongoing.

Figure 4.6 Memory Allocation to test compaction

0

10000

20000

30000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Total Memory

Used Memory

Power on system

with default

memory allocated

Additionally

allocate chunk of

memory in system

Check the Effect of

allocation on

memory

Check the Effect

of allocation on

memory

Keep the system

in idle for memory

compaction

De-allocate

additionally

allocated chunk of

memory in system

Department of Software Engineering, Delhi Technical University Page 48

System under test without any optimization

5. Memory De-allocation from a system for additional 256 MByte memory

Zone Region ID Total Memory Available Memory

DMA Region 0 3998 2151

DMA32 Region 0 28673 1024

DMA32 Region 1 32768 0

DMA32 Region 2 32768 2

DMA32 Region 3 32768 0

DMA32 Region 4 32768 770

DMA32 Region 5 32768 5888

DMA32 Region 6 32768 162

DMA32 Region 7 32768 12956

DMA32 Region 8 32768 16388

DMA32 Region 9 32768 16395

DMA32 Region 10 32768 16380

DMA32 Region 11 32768 25967

DMA32 Region 12 32768 32768

DMA32 Region 13 32768 32768

DMA32 Region 14 32768 32768

DMA32 Region 15 30316 17408

Figure 4.7 Memory De-allocation for additional 256 MByte

Inference from the results

 On de-allocating additional allocation of memory, it is scatter from all the

regions.

 This clearly indicates that default memory allocation algorithm does not care

for the fragmentation of memory and confining it to least regions.

0

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Total Memory

Availabe Memory

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 49

System under test with optimization of Memory Management

6. Memory De-allocation from a system for additional 256 MByte memory

Zone Region ID Total Memory Available Memory

DMA Region 0 3998 2067

DMA32 Region 0 28673 1024

DMA32 Region 1 32768 0

DMA32 Region 2 32768 0

DMA32 Region 3 32768 0

DMA32 Region 4 32768 0

DMA32 Region 5 32768 0

DMA32 Region 6 32768 0

DMA32 Region 7 32768 2794

DMA32 Region 8 32768 7423

DMA32 Region 9 32768 32768

DMA32 Region 10 32768 32768

DMA32 Region 11 32768 32768

DMA32 Region 12 32768 32768

DMA32 Region 13 32768 32768

DMA32 Region 14 32768 32768

DMA32 Region 15 30316 20019

Figure 4.8 Memory De-allocation for additional 256 MByte

Inference from the results

 On de-allocating additional allocation of memory, it is compacted to least no.

of regions.

 This clearly indicates that our memory allocation algorithm care for the

fragmentation of memory and confining it to least regions.

0
50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Used Memory

Total Memory

Department of Software Engineering, Delhi Technical University Page 50

Configuration of System under Test:

Intel Core I 5 + 6 GByte of DDR3 Main Memory [4 GByte + 2 GByte] + 512 GByte HDD

+ 1280x800 Resolution.

Operating system: Ubuntu 12.04

Linux kernel: 3.12.0

System under test without any optimization

7. Memory Allocation from a system on First boot

Zone Region ID Total Memory Used Memory

DMA Region 0 3997 161

DMA32 Region 0 126976 112898

DMA32 Region 1 130560 512

DMA32 Region 2 131072 0

DMA32 Region 3 131072 0

DMA32 Region 4 131072 0

DMA32 Region 5 110252 18092

NORMAL Region 0 131072 115742

NORMAL Region 1 131072 0

NORMAL Region 2 131072 0

NORMAL Region 3 131072 0

NORMAL Region 4 131072 0

NORMAL Region 5 130559 29183

Figure 4.9 Memory Allocation on First boot

Inference from the results

 This clearly shows on the first boot itself we are able to see memory is scatter

across multiple regions.

0

100000

200000

1 2 3 4 5 6 7 8 9 10 11 12

Total Memory

Used Memory

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 51

8. Memory Allocation from a system for addition 256 MByte

Zone Region ID Total Memory Used Memory

DMA Region 0 3997 161

DMA32 Region 0 126976 124996

DMA32 Region 1 130560 52765

DMA32 Region 2 131072 0

DMA32 Region 3 131072 0

DMA32 Region 4 131072 0

DMA32 Region 5 110252 18092

NORMAL Region 0 131072 129006

NORMAL Region 1 131072 53895

NORMAL Region 2 131072 0

NORMAL Region 3 131072 0

NORMAL Region 4 131072 0

NORMAL Region 5 130559 29183

Figure 4.10 Memory Allocation for addition 256 MByte

Inference from the results

 On additional allocation of memory, it is scatter across multiple region of

memory.

 We can see the regions specially region 0-10. Memory is allocated in each

region but not fully taken.

0

50000

100000

150000

1 2 3 4 5 6 7 8 9 10 11 12

Total Memory

Used Memory

Department of Software Engineering, Delhi Technical University Page 52

System under test with optimization of Memory Management

9. Memory Allocation from a system on First boot

Zone Region ID Total Memory Used Memory

DMA Region 0 3997 161

DMA32 Region 0 126976 116206

DMA32 Region 1 130560 3369

DMA32 Region 2 131072 0

DMA32 Region 3 131072 0

DMA32 Region 4 131072 0

DMA32 Region 5 110252 17415

NORMAL Region 0 131072 117128

NORMAL Region 1 131072 3906

NORMAL Region 2 131072 0

NORMAL Region 3 131072 0

NORMAL Region 4 131072 0

NORMAL Region 5 130559 27048

Figure 4.11 Memory Allocation on first boot

Inference from the results

 This clearly shows on the first boot itself we are able to see memory is

optimized to be limited to least regions.

 We can see the regions specially region 0-6. Memory is allocated in each

region before moving to next one.

10. Memory Allocation from a system for addition 256 MByte

0

50000

100000

150000

1 2 3 4 5 6 7 8 9 10 11 12

Total Memory

Used Memory

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 53

Zone Region ID Total Memory Used Memory

DMA Region 0 3997 161

DMA32 Region 0 126976 126976

DMA32 Region 1 130560 57967

DMA32 Region 2 131072 0

DMA32 Region 3 131072 0

DMA32 Region 4 131072 0

DMA32 Region 5 110252 17415

NORMAL Region 0 131072 131072

NORMAL Region 1 131072 56041

NORMAL Region 2 131072 0

NORMAL Region 3 131072 0

NORMAL Region 4 131072 0

NORMAL Region 5 130559 27048

Figure 4.12 Memory Allocation for addition 256 MByte

Inference from the results

 On additional allocation of memory, it is still being taken from the least

number of regions.

 We can see the regions specially region 0-10. Memory is allocated in each

region and fully utilized.

Second Experiment

System under test without any optimization

0

50000

100000

150000

1 2 3 4 5 6 7 8 9 10 11 12

Total Memory

Used Memory

Department of Software Engineering, Delhi Technical University Page 54

11. Memory De-allocation from a system for additional 256 MByte memory

Zone Region ID Total Memory Used Memory

DMA Region 0 3997 161

DMA32 Region 0 126976 119003

DMA32 Region 1 130560 26887

DMA32 Region 2 131072 0

DMA32 Region 3 131072 0

DMA32 Region 4 131072 0

DMA32 Region 5 110252 18092

NORMAL Region 0 131072 122868

NORMAL Region 1 131072 26648

NORMAL Region 2 131072 0

NORMAL Region 3 131072 0

NORMAL Region 4 131072 0

NORMAL Region 5 130559 29182

Figure 4.13 Memory De-allocation for additional 256 MByte

 On de-allocating additional allocation of memory, it is scatter from all the

regions.

 This clearly indicates that default memory allocation algorithm does not care

for the fragmentation of memory and confining it to least regions.

System under test with optimization of Memory Management

12. Memory De-allocation from a system for additional 256 MByte memory

0

50000

100000

150000

1 2 3 4 5 6 7 8 9 10 11 12

Total Memory

Used Memory

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 55

Zone Region ID Total Memory Used Memory

DMA Region 0 3997 161

DMA32 Region 0 126976 126976

DMA32 Region 1 130560 25383

DMA32 Region 2 131072 0

DMA32 Region 3 131072 0

DMA32 Region 4 131072 0

DMA32 Region 5 110252 17415

NORMAL Region 0 131072 131072

NORMAL Region 1 131072 22270

NORMAL Region 2 131072 0

NORMAL Region 3 131072 0

NORMAL Region 4 131072 0

NORMAL Region 5 130559 27048

Figure 4.14 Memory De-allocation for additional 256 MByte

Inference from the results

 On de-allocating additional allocation of memory, it is compacted to least no.

of regions.

 This clearly indicates that our memory allocation algorithm care for the

fragmentation of memory and confining it to least regions.

Configuration of System under Test:

Intel Core I 5 + 4 GByte of DDR3 Main Memory [4 GByte] + 512 GByte HDD +

0

50000

100000

150000

1 2 3 4 5 6 7 8 9 10 11 12

Total Memory

Used Memory

Department of Software Engineering, Delhi Technical University Page 56

1280x800 Resolution.

Operating system: Ubuntu 13.04

Linux kernel: 3.12.0

System under test without any optimization

13. Memory Allocation from a system on First boot

Zone Region ID Total Memory Used Memory

DMA Region 0 3997 161

DMA32 Region 0 126976 112898

DMA32 Region 1 130560 512

DMA32 Region 2 131072 0

DMA32 Region 3 131072 0

DMA32 Region 4 131072 0

DMA32 Region 5 110252 18092

NORMAL Region 0 131072 115742

NORMAL Region 1 130559 29183

Figure 4.15 Memory De-allocation for First boot

Inference from the results

 This clearly shows on the first boot itself we are able to see memory is scatter

across multiple regions.

14. Memory Allocation from a system for addition 256 MByte

0

50000

100000

150000

1 2 3 4 5 6 7 8

Total Memory

Used Memory

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 57

Zone Region ID Total Memory Used Memory

DMA Region 0 3997 161

DMA32 Region 0 126976 124996

DMA32 Region 1 130560 52765

DMA32 Region 2 131072 0

DMA32 Region 3 131072 0

DMA32 Region 4 131072 0

DMA32 Region 5 110252 18092

NORMAL Region 0 131072 129006

NORMAL Region 1 130559 83078

Figure 4.16 Memory Allocation for additional 256 MByte

Inference from the results

 On additional allocation of memory, it is scatter across multiple region of

memory.

 We can see the regions specially region 0-10. Memory is allocated in each

region but not fully taken.

System under test with optimization of Memory Management

15. Memory Allocation from a system on First boot

0

50000

100000

150000

1 2 3 4 5 6 7 8

Total Memory

Used Memory

Department of Software Engineering, Delhi Technical University Page 58

Zone Region ID Total Memory Used Memory

DMA Region 0 3997 161

DMA32 Region 0 126976 116206

DMA32 Region 1 130560 3369

DMA32 Region 2 131072 0

DMA32 Region 3 131072 0

DMA32 Region 4 131072 0

DMA32 Region 5 110252 17415

NORMAL Region 0 131072 121034

NORMAL Region 1 130559 27048

Figure 4.17 Memory Allocation on First boot

Inference from the results

 This clearly shows on the first boot itself we are able to see memory is optimized to be

limited to least regions.

 We can see the regions specially region 0-6. Memory is allocated in each region before

moving to next one.

16. Memory Allocation from a system for addition 256 MByte

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5 6 7 8

Total Memory

Used Memory

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 59

Zone Region ID Total Memory Used Memory

DMA Region 0 3997 161

DMA32 Region 0 126976 126976

DMA32 Region 1 130560 57967

DMA32 Region 2 131072 0

DMA32 Region 3 131072 0

DMA32 Region 4 131072 0

DMA32 Region 5 110252 73456

NORMAL Region 0 131072 131072

NORMAL Region 1 130559 27048

Figure 4.18 Memory Allocation for addition 256 MByte

Inference from the results

 On additional allocation of memory, it is still being taken from the least

number of regions.

 We can see the regions specially region 0-10. Memory is allocated in each

region and fully utilized.

Second Experiment

System under test without any optimization

0

50000

100000

150000

1 2 3 4 5 6 7 8

Total Memory

Used Memory

Department of Software Engineering, Delhi Technical University Page 60

17. Memory De-allocation from a system for additional 256 MByte memory

Zone Region ID Total Memory Used Memory

DMA Region 0 3997 161

DMA32 Region 0 126976 119003

DMA32 Region 1 130560 26887

DMA32 Region 2 131072 0

DMA32 Region 3 131072 0

DMA32 Region 4 131072 0

DMA32 Region 5 110252 44740

NORMAL Region 0 131072 122868

NORMAL Region 5 130559 29182

Figure 4.19 Memory De-Allocation for additional 256 MByte

Inference from the results

 On de-allocating additional allocation of memory, it is scatter from all the

regions.

 This clearly indicates that default memory allocation algorithm does not care

for the fragmentation of memory and confining it to least regions.

System under test with optimization of Memory Management

18. Memory De-allocation from a system for additional 256 MByte memory

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5 6 7 8

Total Memory

Used Memory

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 61

Zone Region ID Total Memory Used Memory

DMA Region 0 3997 161

DMA32 Region 0 126976 126976

DMA32 Region 1 130560 25383

DMA32 Region 2 131072 0

DMA32 Region 3 131072 0

DMA32 Region 4 131072 0

DMA32 Region 5 110252 39685

NORMAL Region 0 131072 131072

NORMAL Region 1 130559 27048

Figure 4.20 Memory De-allocation for additional 256 MByte

Inference from the results

 On de-allocating additional allocation of memory, it is compacted to least no.

of regions.

 This clearly indicates that our memory allocation algorithm care for the

fragmentation of memory and confining it to least regions.

0

50000

100000

150000

1 2 3 4 5 6 7 8

Total Memory

Used Memory

Department of Software Engineering, Delhi Technical University Page 62

Chapter 5

CONCLUSION & FUTURE WORK

In this project we presented Power management for large scale memory system, a system-

level variability-aware solution that adapts to the power variability inherent in a set of

DRAM memory modules. With our module we have shown how to restrict usage of

memory to the minimum area. This was archived during initial allocation of memory at

first. This was to demonstrate the capability of our changes on restricting memory

allocation at initial step itself.

With second step, we have shown how to further de-fragment memory usage when system

is in use for long time. With long usage every system is expected to de-allocate memory

which it was using and this de-allocation occur randomly. Sometime the memory is de-

allocated from middle of memory area while at other time same is de-allocated from start

of it. We have demonstrated with our changes that we were able to restrict the usage of

memory to minimum area again.

Our Main memory is divided into banks. Each of these banks is independently power

switchable. In some cases we were able to restrict No. of banks in usage from 6 with

normal algorithm to 3 with optimized algorithm. This means improvement in the power

usage of the system by almost 30 Percent.

Future work from this project include following, Power optimization from our algorithm

are demonstrated on a server and personal computer. These are validated with verification

on multiple computers. We need to further demonstrate the algorithm on an embedded

system like a mobile device. This will demonstrate the power usage and optimization from

our algorithm directly in power domain itself

Also we have worked to keep the de-fragmentation of memory during idle time. This

activity takes time, we need to measure the time taken by this activity and also method to

optimize this time. Further identification of suitable time may be done by using context

awareness utility (widely available in portable devices) as well as in other systems based

on past activity logs.

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 63

REFERENCES

1. Balancing DRAM Locality and Parallelism in shared memory CMP systems IEEE

2012, Min Kyu Jeong

2. Performance enhancement of NUMA multiprocessor systems with on-demand

memory migration 2013, Mishra, V.K

3. Memory Affinity: Balancing Performance, Power, Thermal and Fairness for Multi-

core Systems, IEEE 2013, Gangyong Jia

4. introduces Red-Black Tree Used for Arranging Virtual Memory Area of Linux IEEE

2010, Zhang Haiyang

5. ViPZonE: OS-Level Memory Variability-Driven Physical Address Zoning for Energy

Savings Luis Angel D. Bathen, Nikil Dutt, Alex Nicolau

6. Model-based, memory-centric performance and power optimization on NUMA

multiprocessors Chunyi Su ; Dong Li ; Nikolopoulos, D.S. ; Cameron, K.W. ; De

Supinski, B.R. ; Leon, E.A.

7. A system level memory power optimization technique using multiple supply and

threshold voltages Ishihara, T. ; Asada, K.

Department of Software Engineering, Delhi Technical University Page 64

8. Scratchpad memory-global power optimization Karthika, M. ; Rajasekaran, C. Pattern

9. Performance-power optimization of memory components for complex embedded

systems Gebotys, C.H. ; Gebotys, R.J.

10. Memory power models for multilevel power estimation and optimization Schmidt, E.

; von Colln, G. ; Kruse, L. ; Theeuwen, F. ; Nebel, W.

11. Very Large Scale Integration (VLSI) Systems, Device-architecture co-optimization of

STT-RAM based memory for low power embedded systems Cong Xu ; Dimin Niu ;

Xiaochun Zhu ; Kang, S.H. ; Nowak, M. ; Yuan Xie

12. Digital Object Identifier Low-power multiple-bit upset tolerant memory optimization

Seokjoong Kim ; Guthaus, M.R.

13. Particle Swarm Optimization Based Scheme for Low Power March Sequence

Generation for Memory Testing Kumar, K.S. ; Kaundinya, S. ; Chattopadhyay, S.

14. Accurate, wideband characterization and optimization of high power LDMOS

amplifier memory properties Eron, M. ; Martony, E. ; Fogel, Y. ; Jeckeln, E. ;

Hrybenko, M.

 Shailesh Kumar Pandey, “An Optimization of Power in Large Scale Memory System” Page 65

15. Analysis and Optimization of Low-Power Passive Equalizers for CPU–Memory

Links Ling Zhang ; Wenjian Yu ; Yulei Zhang ; Renshen Wang ; Deutsch, A. ;

Katopis, G.A. ; Dreps, D.M. ; Buckwalter, J. ; Kuh, E.S. ; Chung-Kuan Cheng

16. Memory Optimizations For Fast Power-Aware Sparse Computations Malkowski, K. ;

Raghavan, P. ; Irwin, M.J.

17. Optimization of programming consumption of silicon nanocrystal memories for low

power applications Della Marca, V. ; Masoero, L. ; Molas, G. ; Amouroux, J. ; Petit-

Faivre, E. ; Postel-Pellerin, J. ; Lalande, F. ; Jalaguier, E. ; Deleonibus, S. ; De Salvo,

B. ; Boivin, P. ; Ogier, J.

18. A novel flash memory cell and design optimization for high density and low power

application Huiwei Wu ; Shiqiang Qin ; Yimao Cai ; Poren Tang ; Zhan, Zhan ;

Huang, Qianqian ; Ru Huan

19. Memory Access Characterization of Scientific Applications on GPU and Its

Implication on Low Power Optimization Wang, Guibin

20. Optimization of memory organization and hierarchy for decreased size and power in

video and image processing systems Nachtergaele, L. ; Catthoor, F. ; Balasa, F. ;

Franssen, F. ; De Greef, E. ; Samsom, H. ; De Man, H.

Department of Software Engineering, Delhi Technical University Page 66

21. Power-performance co-optimization of throughput core architecture using resistive

memory Goswami, Nilanjan ; Cao, Bingyi ; Li, Tao

22. A global bus power optimization methodology for physical design of memory

dominated systems by coupling bus segmentation and activity driven block placement

Hua Wang ; Papanikolaou, A. ; Miranda, M. ; Catthoor, F.

23. Power and Area Optimization for Run-Time Reconfiguration System On

Programmable Chip Based on Magnetic Random Access Memory Weisheng Zhao ;

Belhaire, E. ; Chappert, C. ; Mazoyer, P.

24. Scratchpad memory based power efficient optimization for MPSoC Wei Hu

25. Hardware compilation of application-specific memory-access interconnect

Venkataramani, G. ; Bjerregaard, T. ; Chelcea, T. ; Goldstein, S.C.

