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ABSTRACT 

 

The small signal stability of a power system is the ability of the system to maintain 

synchronism under small disturbances like variation in load and/or generation. The 

disturbances are considered sufficiently small for linearization of system equations to be 

permissible for the purpose of analysis. Traditional ways to improve small signal stability 

included power system stabilizers (PSS). Shunt FACTS Controllers like Static Var 

Compensator (SVC) are primarily used to improve the voltage profile and for reactive power 

compensation. SVC susceptance modulation using a damping controller can achieve the 

additional objective of power oscillation damping. It is observed that SVC with only voltage 

controller increases the small signal stability marginally. However, when a damping 

controller is added, a marked increase in the system small signal stability is observed. A 

damping controller can use a variety of auxiliary or supplementary signals to improve the 

power oscillation damping. Usually, at the SVC location, electrical power, synthesized 

frequency, line current etc. are used as auxiliary signals. In this work, line current signal is 

used as a supplementary signal, with the SVC connected at the mid-point of the transmission 

line. Multiple case studies with a SMIB system validate this. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 BASIC CONCEPT AND DEFINITIONS 

Power system stability may be broadly defined as that property of a power system that 

enables it to remain in a state of operating equilibrium under normal operating conditions and 

to regain an acceptable state of equilibrium after being subjected to a disturbance. 

Small signal stability is the ability of the power system to maintain synchronism under small 

disturbances. Such disturbances occur continually on the system because of small variation in 

load and generation. The disturbances are considered sufficiently small for linearization of 

system equations to be permissible for the purpose of analysis. Instability that may result can 

be of two forms: 

(1) Steady increase in rotor angle due to lack of sufficient synchronizing torque or 

(2) Rotor oscillations of increasing amplitude due to lack of sufficient damping torque. 

The nature of system response to small disturbances depends on a number of factors 

including the initial operating condition, the transmission system strength, and the type of 

generator excitation controls used. 

In today's practical power system, small signal stability is largely a problem of insufficient 

damping of oscillations. 

Traditional ways to improve small signal stability included power system stabilisers (PSS). 

FACTS Controllers like Static Var Compensator (SVC) can be used to improve power 

transfer capability by improving system bus voltage profile.   

In this work, the small signal stability of a single machine infinite bus (SMIB) system is 

analysed. In this system, the generator is connected to the infinite bus through a step up 

transformer and a long transmission line. The SVC is connected at the mid-point of the 

transmission line. 
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It is observed that SVC with only voltage controller marginally increases the system small 

signal stability. However, when a damping controller is added, a marked increase in the 

system small signal stability is observed.  

A damping controller can use a variety of auxiliary or supplementary signals to improve the 

power oscillation damping. Usually, deviations in the rotor speed, electrical power, line 

current etc. are used as auxiliary signals. In this work, line current is used as the auxiliary 

signal.   

1.2 LITERATURE REVIEW 

Power system stability is a topic that has always challenged power system engineers. A 

review of the history of the subject is useful for a better understanding of present day stability 

problems. 

The stability of power systems was first recognized as an important problem in 1920. Results 

of the first laboratory tests on miniature systems were reported in 1924. The first field test on 

the stability on a practical power system was conducted in 1925. 

[1] presents terms and definitions in the analysis of Power System Stability. This paper also 

gives the mathematical analysis of representing the d-axis and q-axis saturation in the small 

perturbation of a synchronous machine. The analysis is performed for a synchronous machine 

connected to an infinite bus system through a transmission line. 

[2] describes the modelling techniques for the small signal stability analysis of a single 

machine infinite bus system by Phillips-Heffron model and the eigenvalue analysis. It also 

presents the use of the participation factors for identifying the relevant swing modes. 

[3] presents the small signal stability of nonlinear system  as given by the roots of 

characteristic equation of the system i.e., by the eigenvalues of state matrix A. 

[4] describes participation factor for analysing a system. 

[5] describes the eigenvalue computation by solving the characteristic equation of a simple 

second-order system. Using the state space representation and modal analysis, the torque-

angle relationship is used to analyze the system stability characteristics. 
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 The block diagram approach was first used by Heffron and Phillips[6] and later by deMello 

and Concordia[7] to analyze the small signal stability of a synchronous machine connected to 

a power system. 

CIGRE defines a static var system (SVS) as a combination of a static var compensator (SVC) 

and mechanically switched capacitors and reactors, all under coordinated control [8].  Most 

of this paper pertains to the modeling of static var compensators. 

 

Speed deviation is used as the supplementary control signal as described in [9]. However, at 

the mid-point of the line, the speed deviation signal may not be available. Hence, other 

supplementary signals like  line current, frequency deviation, deviation of line active power 

etc. may be used. 

 [10] describes static var compensator models for power flow and dynamic analysis.  

The influence of dynamic devices on the behavior of different electromechanical modes can 

be explained through the associated synchronizing and damping torques by modal analysis as 

in [11], [12]. 

 

The Philips Heffron block diagram model of a single machine infinite bus system installed 

with an SVC, incorporating a damping controller using a supplementary input signal is 

described in [11,13,14]. 

Power system damping enhancement by application of SVC has been described in [15] based 

on the well-known equal area criterion.   

Use of dynamic reactive power compensation to improve voltage and reactive power 

conditions in a SMIB system is described in [16]. It is shown that additional tasks can also be 

performed by an static Var Compensator (SVC) to increase the transmission capacity when a 

SVC is used for power oscillation damping. 

 

  [17] has reported that damping control introduced by the SVC ia able to provide the power 

system with damping whose capability increases at higher level of load. 

 

 [18] describes the application of Static Var Systems for enhancing system dynamic 

performance. 



4 | P a g e  
 

 

[19] presents the results of a recent EPRI-sponsored study to compare the performance of 

GTO-based systems with conventional SVCs and synchronous condensers, so that decisions 

for development and eventual procurement of such systems can be made on a rational 

technical and economic basis. 

 

[20-21] presents the various measurement systems employed in the SVC control system. The 

demodulation effect of the measurement systems was discussed in detail. The different 

components of the basic SVC voltage control system are described. 

 

[22-25] presented different control issues related to the voltage-control function of the SVC. 

The procedures for design of voltage regulator are described, and the influences of network 

resonances and harmonic resonances on the performance of SVC voltage control are also 

discussed. 

 

The advantage achieved by adopting the voltage-modulation control strategy, in comparison 

to constant-voltage regulation, is presented in ref. [26]. 

 

The optimal robust control and H∞ optimization are described in [27, 28] 

 

SVC with a primary-voltage control loop and an auxiliary controller with generator-speed 

deviation as the control signal [29]. 

 

An SVC with a single-input–signal-output (SISO) proportional–integral derivative (PID) 

auxiliary-speed controller, in conjunction with a voltage regulator, is proposed in [30] for 

damping torsional oscillations. 

 

An concept is described in [31], in which a midline-located SVC in a series-compensated 

SMIB system is used for power-transfer improvement. 

[32] presents a fundamental analysis of the application of static VAr compensators (SVC) for 

stabilizing power systems. Basic SVC control strategies are examined in terms of enhancing 

the dynamic and transient stabilities, improving tie line transmission capacity and damping 

power oscillations. 
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1.3 ORGANISATION OF THE THESIS  

In this thesis, the small signal stability of a single machine infinite bus (SMIB) system 

incorporated with a Static Var Compensator (SVC) at the midpoint of transmission line, is 

analysed. The SVC is equipped with a voltage controller and a damping controller which uses 

line current magnitude as the auxiliary signal. The thesis consists of five chapters. 

 

Chapter one presents an overview of the general ideas about stability, the SVC as a shunt 

connected FACTS controller and related works. 

Chapter two describes the small signal stability model of single machine infinite bus system.  

Chapter three describes the SVC Voltage controller and damping controllers. 

Chapter four addresses the modelling of a single machine infinite bus system with SVC 

voltage and damping controller. 

Chapter five presents the different case studies taken up for analysis and the results. 

 

. 
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CHAPTER-2 

SMALL SIGNAL STABILITY OF A SINGLE MACHINE 

INFINITE BUS SYSTEM 

2.1 INTRODUCTION 

Small signal stability is the ability of the system to  maintain synchronism under small 

disturbances like change in loads or generation. Such disturbances occur continually on the 

system because of small variation in load and generation. The disturbances are considered 

sufficiently small for linearization of system equations to be permissible for the purpose of 

analysis. Traditional ways to improve small signal stability included power system stabilisers 

(PSS). The general system configuration for a single machine infinite bus system is shown in 

fig 2.1(a). For the purpose of analysis, the system of fig 2.1(a) can be reduced to the form of 

fig 2.1(b) by using Thevenin's equivalent of the transmission network external to the machine 

and the adjacent transmission system. 

We will analyze the small signal stability of the system of Fig 2.1(b) with the synchronous 

machine represented by models of varying degrees of detail. We will begin with the classical 

model and gradually increase the model detail by accounting for the effects of the dynamics 

of the field circuit, and the excitation system. 

 

Large
system

      Z1

 Z2     Z3

 Z4

   Z5

   Z6

 Z7

 

Fig 2.1(a): A single machine connected to a large power system through transmission lines  
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G

Et Eb

                     Zeq =RE  +jXE

                         Infinite bus

 

Fig 2.1(b): Equivalent circuit of the system shown in Fig. 2.1 (a) 

              

2.2 GENERATOR REPRESENTED BY THE CLASSICAL MODEL  

The system representation is shown in Fig 2.2.The generator is represented the classical 

model and all resistances neglected. Here E' is the voltage behind Xd'. Its magnitude is 

assumed to remain constant at the pre-disturbance value. Let δ be the angle by which E' leads 

the infinite bus voltage Eb. As the rotor oscillates during a disturbance, δ changes.   

Et

              X'
d

                        XE

E'
δ EB     0  

It

 

 Fig 2.2 SMIB system with generator represented by the classical model 

From Fig 2.2, with E' as the reference phasor, the generator current is given by 

 ̃  
            

   
 

 

 ̃  
                   

   
                                                         

 ̃    ̃        ̃   
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The complex power behind   X 'd  is given by 

           

 
        

  
 
             

  
                                            

 

With armature resistance neglected, the air gap power is equal to the terminal power „P‟. In 

p.u., the air-gap torque is equal to the air-gap power, 

Hence,  

     
    
  

                                                                       

We linearize the expression for the air-gap torque around the operating point.   

Linearizing about an  operating condition represented by      . 

     
    
  
                                                                            

               
    
  

          

Basic equation of motion :- 

The basic electromechanical equation, also known as the swing equation, is given by 

  

  
                                                                          

It can be observed that the swing equation is a 2
nd

 order nonlinear differential equation and 

can be represented by two first order differential equations. These are 

     
 

  
                                                          

                                                                                

where 
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       = per unit speed deviation 

δ      = rotor angle (elec rad.) 

       = Base rotor electrical speed (rad/sec) 

p      = Differential operator d/dt  (time in sec) 

 

Linearizing equation (2.5) and putting the value of      from equation (2.4), we get, 

     
 

  
                                                                      

where     is considered as change in mechanical torque and 

KS =  
    

  
                                                                                  

In the above equation, KS   is the synchronizing torque coefficient 

Linearizing equation (2.6), we get 

                                                                                     

Writing Equations (2.7)  and  (2.9)  in the vector matrix form, we obtain  

 

  
[
   
  
]  = *

 
  

  
 
  

  

   
+ [
   
  
]  + *

 

  

 
+                                          

 

Equation (2.10) is in this form   ̇          The  element of the state matrix A are 

dependent on the parameters KD, H, XT  and the initial operating values of E' and δ0.  

Taking the Laplace transformation of equations (2.7) and (2.9), we get,  

        
 

  
(                       ) 

       
 

   
{                       }                                
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These equations are represented in the transfer function block diagram as shown in Fig. 2.3. 

         ∆δ

∆Te    

 ∆Tm

KS 

 KD 

ω01
2Hs s∑ +

_

_

∆ωr

 

Fig 2.3: Transfer function block diagram of SMIB system  

 Simplifying equations (2.11) and (2.12), we get, 

   
  
 
[
 

   
{              }] 

   
  
 
[
 

   
{            

  

  
}]                                          

Rearranging, 

        
  
  
      

  
  
       

  
  
    

Therefore, the characteristic equation is given by  

   
  
  
  

  
  
                                                                        

The characteristic equation is in the general form of 

          
 
    

Roots of this equation are 
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          √     

      

The real part of the eigenvalues gives the damping and the imaginary part of the eigenvalues 

gives the frequency of the oscillation. A negative real part indicates a damped oscillation 

whereas a positive real part indicates oscillation of increasing amplitude. 

The pair of eigenvalues are    

       

The frequency of damped oscillation is in Hz is given by 

  
 

  
 

The damping ratio is given by 

  
  

√     
 

The damping ratio „ξ‟ determines the rate of decay of the amplitude of the oscillation. 

When       , the system is under damped 

ξ = 1 critically damped 

ξ   over damped 

If ξ  , the system is unstable 

In any system, we have to ensure that the damping is adequate so that the oscillations 

generated in the system are damped. Whenever we design the controller for the system we 

have to achieve a minimum damping for all the modes which are present in the system. 

Thus, from equation (14), the undamped natural frequency is 

   √  
  

  
  rad/s                                                 (2.15)  

and the damping ratio is  
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√      
                                                                     

 

From equations (2.15) and (2.16), it can be observed that when the synchronizing torque 

coefficient Ks increases, then    increases and    decreases. An increase in damping torque 

coefficient KD increases    whereas an increase in inertia constant decreases both    and   . 

2.3 EFFECTS OF SYNCHRONOUS MACHINE FIELD CIRCUIT 

DYNAMICS : 

         We now consider the system performance including the effect of field flux variations. 

The amortisseur  effect will be neglected and the field voltage will be assumed constant 

(manual excitation control). 

          A state-space model of the system is developed by first reducing the synchronous 

machine equations to an appropriate form and then combining them with network equations. 

We will express time in seconds, angles in electrical radians, and all other variables in per 

unit. 

2.3.1 Synchronous machine equations 

As in the classical generator  model, the acceleration equations are 

     
 

  
                                                                       

                                                                                                   

where 

     f0  elec. rad/s. 

In this case, the angle by which the q-axis leads by reference    is the rotor angle δ. As 

shown in the Fig (2.4), the rotor angle δ is the sum of the angle    (internal angle) and the 

angle of Et leads EB. For identifying the rotor position with respect to an appropriate 

reference and keeping track of it as the rotor oscillates, the q-axis is used. The choice of EB as 

the reference for measuring rotor angle is convenient from the viewpoint of solution of 

network equations. 
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EBd  

EBq 

 ed

eq  

 δi δ 
 ω0

ωr

d-axis

q-axis

Et

 

Fig 2.4 Relation between d-axis and q-axis quantities 

 

The field circuit dynamic equations is 

                    

 
     

    
                                                                

where     
   

    
    

where     is the exciter output voltage. Equations (2.17) – (2.19) describe the dynamics of 

the synchronous machine with    , δ and      are the state variables.  

The Rotor and Stator flux linkages are given by 

                       

                                                                                         

             (   ) 

                                                                                         

 

        (       )         
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where 

         Air-gap (mutual) flux linkages 

      Saturated values of the mutual inductances 

From equation (2.22), the field current is expressed as 

    
       

   
                                                                                    

The d-axis mutual flux linkage can be written as 

                    

         
    
   

(       )                                           

          
   

   
 

where 

      
 

 

    
 

 

   

                                                                  

The mutual flux linkage of q-axis is given by  

                                                                                       

The air-gap torque is given by 

             

                                                                          

 

With pѰ terms and speed variations not considered (neglected), the stator voltage equations 

are 
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       (        )                                                   

            

                                                                    

2.3.2 Network equations 

There is only one machine, the machine network equations can be expressed in term of d-q 

reference frame. Referring to Fig 2.4 the machine terminal voltage and the infinite bus 

voltage in term of d-q components are  

 ̃                                                                                     

 ̃                                                                                  

From the system network equation  

 ̃   ̃           ̃  

                 +        (      )                          

Again solving into d and q component gives  

                                                                          

                                                                          

where 

                                                                                         

                                                                                        

Manipulating the above equations, the expressions of id and iq in terms of state variables are: 

   
       (

    

        
)                  
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  [   (

    

        
)        ]           

 
                           

where 

         

       (       )         

         
 
                                                       (2.39) 

             

where 

    ,      = saturated values. (pu) = corresponding inductances.  

 

2.3.3 Linearized system equations 

            Expressing equations (2.37) and (2.38) in terms of perturbed values, we get, 

                                                                               

                                                                                 

where 

   
                    

 
 

   
                   

 
 

   
   

 

    

(        )
                                                              

   
  
 

    
          

 

Now linearizing equations (2.24) and (2.26) and substituting the values from equations (2.40) 

and (2.41), we get 
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 (
 

   
   )              

 
                                  

                 

                                                                     

Linearizing equation (2.23) and substituting the value from equation (2.43) gives 

     
         

   
 

 
 

   
(  

     
   

    
 
   )     

 

   
   

 
                        

The linearized equation (2.24)  is 

                                    

Putting the values of     ,     ,      and      from equations (2.40) to (2.44), we obtain  

                                                                             

Where  

     (            )    (      
 
      )                             

     (            )    (      
 
      )  

     
   

                    

Linearizing equations (2.17) – (2.19) and substituting the values of       and     from 

equations (2.45) and (2.46), we get the system equations as 

[

  ̇ 
  ̇
  ̇  

]= [

         
     
       

] [

   
   
    

] + [
    
  
    

] [
   
    

]                             

where 
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    and      depend on the prime-mover and the excitation controls. When constant 

mechanical input torque is,      ; and when constant exciter output voltage ,      = 0. 

In these equations mutual inductances are saturated values. The method of accounting for 

saturation for small signal analysis is defined below. 

2.3.4 Representation of saturation in small-signal studies 

       Since we are expressing small-signal performance in terms of perturbed values of flux 

linkages and currents, a difference has to be made between incremental saturation and total 

saturation. 

       Total saturation is related with total values of flux linkages and currents. while the 

incremental saturation is related with perturbed values of flux linkages and currents. So ,the  

incremental slope of the saturation curve is used to computing  the incremental  saturation as 

shown in in the fig. 

        Representing the incremental saturation factor Ksd(incr), we get 
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Similar is the case for  q-axis saturation. 

           Total saturation is used for computing the initial values of system variables. While 

incremental saturation is used for relating the perturbed values i.e. in equations  (2.39) , 

(2.42) , (2.47) ,  (2.48) and (2.50), the incremental factor is used. 

2.3.5 Summary of procedure for formulating the state matrix 

step 1   The following parameters are given: 

            Pt          Qt          Et          RE       XE  

            Ld         Lq         Ll       Ra        Lfd        Rfd        Asat          Bsat         ѰT1 

 

step 2   The next is to compute the initial steady state values (denoted by subscript 0) of  

           system variables: 

           It,   power factor angle    Փ  

           Total saturation factor     and     

                     
   

      
  ;     | ̃ |   ;         

              ;  ̃   ̃       

                                                                                                                                    ̃  
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                          Փ  

                         Փ  

                                 

                                 

                       
   

    

    
  

                  
 
       

 
    

   
 

                      
                

    
 ,                  

                                ,                    

 

step 3   The next  next step to compute incremental saturation factor and the corresponding  

              saturated values of Lads ,Laqs ,L'ads and then put in equations(2.39),(2.42),(2. 46) and   

              (2.47) 

step 4    Finally, we compute the matrix A. 

 

Block diagram representation 

Fig 2.5 shows the transfer function block diagram of the SMIB system. 
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Fig 2.5 Transfer function block diagram representation of SMIB system with constant Efd 

 

 

2.4 EFFECTS OF THE EXCITATION SYSTEM 

           In this section, we will extend the state space model and develop the transfer function 

block diagram to include the excitation system. We will examine effect of the excitation 

system on the small signal stability performance of the SMIB system. 

          The excitation input control signal is normally the generator terminal voltage Et..Here  

Et is not a state variable . So, Et  has to be described in terms of the state variables. 

Et  can be expressed in complex form as: 

 ̃         

Hence, 

     
 
   

 
  

Applying a small perturbation, we may write 

         
           

           
  

Now neglecting second-order terms involving perturbed values, we get 

                     

Therefore, 
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                                                                 (2.53) 

Equations (2.28) and (2.29) may be written (terms in perturbed values) as 

                      

                      

Then we substitute the values of      ,                         in the above equations in terms 

of the state variables and get 

                                                                                     

where, 

   
   

   
[                 ]  

   

   
                             (2.55) 

   
   

   
[                 ]  

   

   
             

 
   (

 

   
   )(2.56) 

For the purpose of examination and illustration of the effect on small signal stability, we will 

include the excitation system model as shown in Fig 2.6. We assume a thyristor excitation 

system. 

A high exciter gain, without transient gain reduction or derivative feedback, is used. 

Component TR represents the terminal voltage transducer time constant. 

∑ 

+
_

Exciter
Terminal voltage 

transduser

1
1 + sT

E

EFMAX

FMIN

R

K AE t

v1

fdE

V ref

 

Fig 2.6 Block diagram of thyristor excitation system with AVR  
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The output voltage of the exciter is represented by EFMAX and EFMIN. These limits are ignored 

for small disturbance studies as we are interested in a linearized model about an operating 

point such that Efd within the limits. 

From Fig 2.6, using perturbed values, we get 

    
 

     
    

Hence, 

     
 

  
          

Substituting the value of     in above equation from equation (54), we get 

     
  
  
   

  
  
     

 

  
                                                  

From Fig. 2.6  

                

In terms of perturbed value, we get 

                                                                            

 

The field circuit dynamic equation with the effect of the excitation system included, becomes 

                                                    (2.58) 

where 

            
     

    
                                                 (2.59) 

Since we have a first order model for the exciter, the new state variable added is    . from 

equation (2.56)  

                                                        (2.60) 

Where 



24 | P a g e  
 

      

    
  
  

 

    
  
  
                                                                      

     
 

  
 

Since      and     are not affected by the exciter, 

           

The complete state-space model for the power system including the excitation system has the 

following form: 

[
 
 
 
 
  ̇ 
  ̇
  ̇  
  ̇ ]

 
 
 
 

= [

          
      
          
          

] [

   
   
    
   

] + [

  
 
 
 

]                   (2.62) 

 

With constant mechanical torque input, 

      

Block diagram representation including the excitation system 

Fig 2.7 shows the transfer function block diagram obtained by including the voltage 

transducer and exciter blocks. 
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Fig 2.7 Transfer function block diagram representation including exciter and AVR 
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CHAPTER-3 

STATIC VAR COMPENSATOR 

 

3.1: INTRODUCTION 

Static var compensator (SVCs) is a shunt-connected FACTS controller. It is a static generator 

and supplies/or absorbs reactive power to control specific parameters of the electric power 

system . The term "static" is used to indicate that's SVCs, unlike synchronous compensators, 

have no moving or rotating components. 

Thus an SVC consists of static var generator (SVG) or absorber devices and a suitable control 

device.  

SVCs are used to improve voltage and reactive power conditions in ac systems. An additional 

task of SVC is to increase transmission capacity as result of power oscillation damping.  

The schematic diagram of a static var compensator is shown in Fig 3.1. 

 

 

 

 

 

 

 

                                        Fig 3.1   A static var compensator 

 

3.1.1 Types of SVC: 
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The following are the basic types of elements which control reactive power in any static Var 

system. 

 Saturated Reactor (SR) 

 Thyristor Controlled Reactor (TCR) 

 Thyristor - Swiched Capacitor (TSC) 

 Thyristor Controlled Transformer (TCT) 

 Self or Line Commutated Convertor (SCC / LCC) 

3.2 STRUCTURE OF SVC CONTROLLERS 

 

Voltage
Regulator

Thyristor
Succeptance

control

Inter
face

Other
signals

Measuring
circuit

Other 
signals

Transmission 
Voltage

vref

Isvc

 

Fig 3.2: Block diagram representing of SVC control 

Figure 3.2 shows the block diagram for voltage and damping control by a SVC. The voltage 

regulator is of the proportional type.  

3.2.1 Effect of the SVC on synchronizing and damping torque 

The influence of a SVC is integrated in the response of the i
th

 electromechanical mode as 

shown in the modified block diagram of Fig. 3.3 This diagram comprehensively demonstrates 

the individual effects of the SVC voltage regulator as well as the SVC auxiliary power swing 

damping controller (PSDC). The SVC can provide damping to the power system only if the 

auxiliary damping controllers are incorporated in the SVC control, which modulate the bus 

voltage in response to a control signal sensitive to power oscillations. Although both the 

synchronizing and damping-torque coefficients are influenced by the generator-excitation 

systems, only the damping torque is affected by the system loads and turbine governors. 
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SVC Voltage Regulator: This generates a susceptance reference signal, ∆BSVCi, that primarily 

causes the bus voltage to change by ∆VBi  through a function KVBi(s) representing the network 

response. The same susceptance output ∆BSVCi, also generates a synchronizing-torque 

contribution by acting through a function KTBi(s). The SVC voltage regulator is represented 

by the transfer function Vregi(s): 

The modal voltage at the SVC bus is influenced by the modal speed δi and, consequently, by 

the modal angle ωi both of which impart their contribution through the frequency-dependent 

function KVdi(s), 

SVC PSDC: An auxiliary control signal, ∆Xδi, is provided as input to the SVC PSDC. As 

explained previously, this signal must be a function of the modal speed or modal angle ∆δi, to 

which its relationship must be expressed through the transfer function Kxdi(s). The SVC 

PSDC is modeled by the transfer function PSDCx(s) that contributes an additional 

modulating input ∆Vmodi to the voltage regulator. The SVC susceptance ∆BSVCi,  generates an 

inner-loop response ∆XILi which influences the auxiliary signal through the transfer function 

KxBi(s). 
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Figure 3.3 Transfer function block diagram representation showing model damping and     

                                                  synchronizing torque contributions  
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3.3 SVC VOLTAGE CONTROLLER 

Fig 3.4 shows the voltage controller model. The gain KR is reciprocal of the slope. The slope 

setting of KR  varies between 20 per unit (5% slope) and 100 per unit (1% slope) on the SVC 

base. The time constant, TR, is between 20 to 150 msec. The leg-lead terms are zero. The lag-

lead terms can be used to provide adequate phase and margin. Integrators should be non –

windup.   

 Verror

Bmax

Bmin

 Bref
1+sTR   

KR

 

Figure 3.4 Block diagram of SVC voltage regulator model 

 

3.4 SVC DAMPING CONTROLLER 

Design Procedure for a PSDC 

The following procedure is suggested in [11, 12] for the design of the auxiliary PSDC. 

1. The controller is designed primarily for the dominant swing-mode frequency. 

2. The desired phase angle of the controller-transfer function is obtained corresponding to the 

pure-damping condition. This phase angle is a function of the controllability and 

observability constants. 

3. An operating point signifying a heavy-power transfer scenario is chosen and a specific 

magnitude of system damping is selected for this scenario. The desired controller gain is that 

which ensures the specific magnitude of damping for the chosen operating point subject to 

the following conditions: 

a. an inner-loop gain margin of at least 10 dB is satisfied for the most constraining network 

configuration; 

b. a maximum level of interaction with sub synchronous modes is ensured; and 

c. a noise amplification beyond an acceptably small limit is not permitted. 
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4. The efficacy of the PSDC controller must be established for both forward and reverse 

power flow in the tie-line. A tentative value of controller gain can be obtained by performing 

stability simulations for the worst system configuration in the absence of PSDC and noting 

the maximum variation in the auxiliary signal magnitude. The gain maybe chosen as that 

which can cause the SVC reactive power to traverse its entire controllable range for this peak 

variation in the auxiliary control signal. A typical PSDC controller comprises a lead-lag 

stage, a washout stage, and a high-frequency–filtering stage, together with a gain [11] as 

shown in Fig. 3.5. The filter is designed to pass the swing-mode-frequency signal while 

allowing for any variation in this frequency from system conditions. It rejects frequencies 

associated with non–power-swing modes, such as sub synchronous torsional oscillations and 

modes relating to noise signals that override the auxiliary control signals. In some cases, this 

noise may be within the bandwidth of the power-swing frequencies. The control system, 

therefore, needs to be designed by avoiding too high a gain. This technique for PSDC 

controller design is valid for a two-area, three-area [11], [12] or a multi-area system. The 

effectiveness of the same SVC is dependent on the location of the loads as well as its own 

placement. The controllability of a mode may improve if the SVC is located close to the 

midpoint of that mode shape. In the event that the midpoints of different modes are at 

different locations, the damping benefit, which the SVC can provide for one mode, will not 

be the same as that for the other modes. 

KPDSC
 sTw

1+sTw

 1+sT1

1+sT2

+VML 

  -VML

Input 
signals VMOD

 

Figure 3.5 Block diagram of SVC damping controller model 
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CHAPTER-4 

SYSTEM MODELLING 

 

4.1 SYSTEM UNDER CONSIDERATION 

The Single Machine Infinite Bus system is shown in fig 4.1. This system consists four 555 

MVA, 24 kV, 60Hz thermal generating units. It is chosen to analyze the improvement of 

small signal stability by using SVC. 

The system data and parameters are given in Appendix. 

2220

MVA

LT

Et

P

Q

Transformer

j Xt

HT

j X line

Infinite 

Bus

 

Fig. 4.1 Schematic diagram of SMIB system 

 

4.2 ANALYSIS OF SMIB SYSTEM WITH SVC 

The Static var compensator (SVC) is shunt-connected static generator or absorber whose 

output varies so as to control specific parameters of the electric power system. Thus a SVC 

consists of static var generator (SVG) or absorber devices and a suitable control device. It is 

used to improve voltage and reactive power conditions in ac systems. An additional task of 

SVC is to increase transmission capacity as result of power oscillation damping.  

Fig. 4.2 shows the schematic diagram of SMIB system incorporating SVC at the 

midpoint of transmission line. The equivalent circuit diagram of SMIB system with SVC is 

shown in Fig. 4.3. It is shown that the SVC is represented by a susceptance Bsvc. The 

generator is represented by an emf behind a transient reactance   
 . All resistances in the 
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system are neglected. When the SVC provide reactive power to the system it acts as a 

capacitor and vice-versa. 

EBEtP+jQ

Bsvc

It

Isvc

G
jXline1jXline1

HT LT

jXt

 

Fig 4.2 Schematic diagram of SMIB system installed with SVC at midpoint of line 
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Fig 4.3 Equivalent circuit of system shown in Fig. 4.2 

 

For the purpose of analysis, the circuit shown in Fig 4.3 can be reduced to the form of Fig 4.4 

by using the Thevenin equivalent of the transmission network external to the machine and the 

adjacent transmission. 

The small signal stability of the system of Fig 4.4 is analysed by accounting for the effects of 

the excitation system and the SVC voltage and damping controllers.  
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Fig 4.4 Thevenin equivalent circuit of SMIB power system installed with SVC 

From Fig. 4.4 

         

             

where 

   
 

  
      

    

 

4.2.1 Effects of Synchronous Machine field Circuit Dynamics: 

         We now consider the system performance including the effect of field flux variations. 

The amortisseur effect will be neglected and the field voltage will be assumed constant 

(manual excitation control). 

          A state-space model of the system is developed by first reducing the synchronous 

machine equations to an appropriate form and then combining them with network equations. 

We will express time in seconds, angles in electrical radians, and all other variables in per 

unit. 

4.2.1.1 Synchronous machine equations 

As in the classical generator model, the acceleration equations are 

     
 

  
                                                                               

                                                                                                       

where 
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     f0  elec. rad/s. 

In this case, the q-axis leads the reference    by the angle δ. As shown in the Fig 4.5, the 

rotor angle δ is the sum of the angle    (internal angle) and the angle by which Et leads EB. 

The choice of EB as the reference for measuring rotor angle is convenient from the viewpoint 

of solution of network equations. 

 = C1EBd  

= C1EBq 

 ed

eq  

 δi δ 
 ω0

ωr

d-axis

q-axis

Et

Vth 

Vthq

 Vthd 

 

Fig 4.5 Relation between quantities in d-axis and q-axis  

The field circuit dynamics equations are  

                    

 
     

    
                                                               

where    
   

    
    

where     is the exciter output voltage. Equations (17) - (19) describe the dynamics of the 

synchronous machine with    , δ and     as the state variables.  

With amortisseurs neglected, the equivalent circuits relating the machine flux linkages and 

current are as shown in Fig 4.6 
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Fig 4.6 Equivalent circuit relating machine flux linkages and current 

The rotor and stator flux linkages are given by 

                       

                                                                                  

             (   ) 

                                                                              

 

        (       )         

                                                                                     

where 

         Air-gap (mutual) flux linkages 

      Saturated values of the mutual inductances 

From equation (4.6), the field current is expressed as 

    
       

   
                                                                       

The d-axis mutual flux linkage can be written as 

                    

         
    
   

(       )                                     
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where 

       
 

 

    
 

 

   

                                                                        

 

The mutual flux linkage of q-axis is given by  

                                                                                           

By linearizing above equations, we get  

      
 
   (     

    

   
)                                                     

                                                                                       

 

The air-gap torque is given by 

             

                                                                             

By linearizing the above equation, we get 

                                                                            

 

With pѰ terms and speed variations not considered (neglected), the stator voltage equations 

are 

       

 (        )                                                       
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4.2.1.2 Network Equations 

The machine terminal and infinite bus voltage in terms of the d-axis and q-axis components 

are given below 

                                                                        

         

   {        }                                                 

The network constraint equation is  

             +      

(      )            

    (        )     (       )                     

Separating Into d-axis and q-axis Components are given by 

                                                                   

                                                                     

Where 

            

            

By manipulating the above equations, the expressions of id and iq in terms of the state 

variables are obtained as 
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where, 

               

           
 
                                                              

   
 

            
 

                 

    
      

            
 

 

4.2.1.3 Linearized system equations 

            Expressing equations (4.22) and (4.23) in terms of perturbed values, we get, 

                                                                   

                                                                       

where 

   
      

{                                         }
 

   

     

   
              

{                            
 
           }

 

 

  

 

{                             
 
           } {

     

   
         } {

     

   
                        }

 {                            }
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{                                         }
                            

 

     

 

   
                                

{                                         }
 

 

The linearized equation of torque is obtained from equation (4.14) as 

                                    

Substituting the values of     ,     ,      and      from equations (4.24), (4.25), (4.11) 

and (4.12), we obtain 

                                                                          

where 

       (    
 
        )                   

         (    
 
        )  

     
   

                                                     

       (    
 
        )                   

Now putting the value of      in equation (4.1), we get 

     
 

  
{                          } 

     
   
  

                                                                     

where 
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From equation (4.2) 

          

                                                                           

Where 

           

Linearizing equation (4.8), we get, 

     
         

   
 

Putting value of     from equation (4.11), we get 

     
 

   
                 

    

   
  

Again, putting the value of ∆id in above equation, we get 

     
 

   
*  

     
   

    
 
   )     

 

   
   

 
                          

 
     
   

                                                                                            

Linearizing equation (4.3), we get 

      
     

    
                                                                     

Now putting the value of      in above equation from equation (4.30),we get 
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*   

     
   

    
 
   )     

 

   
   

 
      

 
     
   

                                                                                                     

 

4.2.2 Effects of excitation system  

In this section, we will extend the state space model by including the effect of the excitation 

system. 

          The excitation input  control signal is normally the generator terminal voltage Et..  Here  

Et is not a state variable . So,  Et  has to be described in terms of the state variables. 

Et can be expressed in complex form: 

 ̃         

Hence, 

     
 
   

 
  

Applying a small perturbation, we may write 

         
           

           
  

Now neglecting second-order terms involving perturbed values, we get 

                     

Therefore, 

    
   
   
    

   

   
                                                               

From equations (4.15) and (4.16) may be written (terms in perturbed values) as 
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Now putting the values of      ,                         from previous equations in the above 

equations in terms of the state variables and putting the resulting expressions for     and     

in equation (4.36), we get 

                                                                    

Where 

    
   
   
(       )   

   

   
             

      
   

   
*       

 
   (

 

   
   )+                                               

    
   
   
(       )   

   

   
             

We now include the excitation system model shown in fig 2.6. It represents a thyristor 

excitation system. A high exciter gain, without transient gain reduction or derivative 

feedback, is used. Component TR represents the terminal voltage transducer time constant. 

The output voltage of the exciter is represented by EFMAX and EFMIN. These limits are ignored 

for small disturbance studies, we are interested in a linearized model about an operating point 

such that Efd is within the limits. 

From Fig. 2.6, using perturbed values, we get 

    
 

     
    

Hence, 

     
 

  
          

 

Substituting the value of     in above equation from equation (4.36), we get 
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(                        )                               

From the block diagram of thyristor excitation system with AVR 

                

In terms of perturbed value, we get 

                                                                                  

The field circuit dynamic equation with the effect of excitation system included, becomes 

                                                                 

Where 

     
     

   
        

     
     

   
(  

     
   

    
 
   )                                

       
     

    
 

     
     

   
        

Since we have a first order model for the exciter, the new state variable added is    . from 

equation (4.41), we get 

                                                                   

Where 
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4.2.3 Auxiliary input signal: 

From Fig. 4.4, the auxiliary control signal | ̃    | can be expressed as follows. 

 ̃      ̃  

  Therefore  ̃     can be expressed in complex form: 

 ̃            

Hence, 

        
 
   

 
  

Applying a small perturbation, we may write 

               
           

           
  

By neglecting second-order terms involving perturbed values, we get 

                           

Therefore, 

       
   
      

    
   

      
                                                               

Now substituting the values of     and     in above equation, We get 

                                                                       

Where 
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4.2.4 Voltage at the mid-point of the transmission line (vm): 

Let   be the angle by which E' leads the infinite bus voltage EB.. From figure 4.3, applying 

KCL, 

         

 ̅   ̅ 
           

       ̅  
 ̅    
       

 

    ̅               ̅  

Where 

              

                             

Vm can be expressed in terms of d-axis and q-axis quantities as 

(          
   

   
           

      

   
         

Equating real and imaginary parts 

    
   
   

    
      
   

                                                      

    
   
   

    
      
   

                                                       

Hence, 

     
 
    

 
   

Applying a small perturbation, we may write 

         
             

             
  

By neglecting second-order terms involving perturbed values, we get 
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Where 

    
   

       
                    

     
   

       
                    

       
      
       

                    

            
      
       

                       

     
    

       
      

 
     

 
      

 
                      

     
 
     

 
      

 
                      

 

The linearized equations of                            are given below: 

                    

                

               

                

                    

Now putting the values of     ,                         from previous equations to above 

equations in terms of the state variables and then putting the resulting expressions for     , 

   ,                       in equation (4.45), we get 

                                                                         

Where 
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                               (       )                  

         ,       
 
   (

 

   
   )-                                                

         (       )            
 
                  

 

4.3 INCORPORATION OF SVC VOLTAGE AND DAMPING 

CONTROLLER 

SVC voltage controller along with a damping controller using line current auxiliary signal is 

shown in Fig 4.7. 
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Fig. 4.7 Block diagram of SVC voltage controller along with a damping controller 

 

 From the block diagram 
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By using SVC voltage and damping controller the equations are linearized as 

    
  

     
    

 
     

  

  

                                                               

where 

     
  
  
    

     
  
  
      

     (
 

  
 
  
  
)                                                     

    
  
  

 

From equation (4.55) 
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From equation (4.55) 
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The complete state-space model, including the voltage and damping controller has the 

following form- 
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4.4 REPRESENTATION OF SATURATION IN SMALL-SIGNAL 

STUDIES 

       Since we are analysing the small-signal performance in terms of the perturbed values of  

flux linkages and currents, a difference  has to be made between incremental saturation and 

total saturation. 

       Total saturation is related with total values of flux linkages and currents. while the 

incremental saturation is related with perturbed values of flux linkages and currents. So, the  

incremental slope of the saturation curve is used for computing  the incremental  saturation. 

        Representing the incremental saturation factor Ksd(incr), we get 

                                                                                            

          
 

               
          

                                                  

In a similar manner,  the factor for q-axis saturation can be determined. 
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           Total saturation is used for computing the initial values of system variable. While 

incremental saturation is used for relating the perturbed values i.e. in equations (4.24),  

(4.27),  (4.29), (4.31) and (4.46), the incremental factor is used. 

 

4.5 SUMMARY OF PROCEDURE FOR FORMULATING THE STATE 

MATRIX 

step 1   The following parameters are given: 

            Pt          Qt          Et          RE       XE  

            Ld         Lq         Ll       Ra        Lfd        Rfd        Asat          Bsat         ѰT1 

step 2   The next is to compute the initial steady state values (denoted by subscript 0) of   

            system  variables: 

           It,   power factor angle    Փ  

           Total saturation factor     and     
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step3   the next  next step to compute incremental saturation factor and the corresponding      

            saturated values of Lads ,Laqs ,L'ads  and then put in equations (4.39), (4.42), (4.46) and         

           (4.47). 

step4    Finally, we compute the matrix A. 
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CHAPTER 5 

CASE STUDIES AND RESULTS 

 

5.1 SMIB SYSTEM WITHOUT ANY SVC 

At first, the system is analysed without any SVC. The system data and operating conditions 

are given in Appendix. The SVC controller parameters are given below: 

                   

5.1.1 Rotor angle deviation : The plots of rotor angle deviations with time for 5% change in 

mechanical torque corresponding to transmitted active powers of P=0.5 p.u. and 1.0 p.u. are 

shown in Fig. 5.1 and 5.2, respectively. 

 

Fig 5.1 Plot of rotor angle deviation vs. time without SVC for P=0.5 p.u. 

Fig 5.2 Plot of rotor angle deviation vs. time without SVC for P=1.0 p.u. 
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From Fig. 5.1 and 5.2, it can be observed that the small signal stability of the system 

decreases as the transmitted active power is increased from 0.5 p.u to 1 p.u. 

5.1.2 Damping ratio: The transmitted active power was gradually varied from P=0.2 p.u to 

1.0 p.u. The eigenvalues of the state matrices were computed. Fig 5.3 shows the plot of the 

damping ratio of the rotor mode eigenvalues against the transmitted active power. It is again 

observed that the system becomes small signal unstable for higher values of active power 

transmitted.

 

Fig 5.3 Plot of rotor mode damping ratio with „P‟ (without SVC) 

5.2 SMIB SYSTEM WITH SVC VOLTAGE CONTROLLER ONLY 

The system was analysed with SVC voltage controller only.  The SVC firing angle is set to 

160
0
. The controller parameters are given below:  

                                      

5.2.1 Rotor angle deviation: In this case, the transmitted active power is P =1.0 p.u.  The 

plot of rotor angle deviation with time for 5% change in mechanical torque is shown in      

Fig 5.4.

 

Fig 5.4 Rotor angle deviation vs. time with SVC voltage controller only (P=1.0 p.u) 
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5.2.2 Damping ratio: The line active power was gradually varied from P=0.2 to 1.0 p.u..The 

SVC firing angle is kept unchanged at 160
0
. Fig 5.5 shows the plot of the damping ratio of 

the rotor mode eigenvalues against the line active power. It is observed that as compared to 

the case without any SVC, the system small signal stability is marginally improved with only 

the SVC voltage controller. 

 

Fig 5.5 Plot of rotor mode damping ratio vs. „P‟ (with SVC voltage controller only) 

5.3 SMIB SYSTEM WITH BOTH SVC VOLTAGE AND DAMPING 

CONTROLLERS: 

The system was analysed with the SVC voltage controller along with a damping controller. 

The parameters for the damping controller are given below:       

                                              

5.3.1 Rotor angle deviation: The transmitted active power is P =1.0 p.u. The SVC firing 

angle is kept at 160
0
. The plot of rotor angle deviation with time for 5% change in mechanical 

torque is shown in Fig. 5.6. It can be observed that the system small signal stability is 

markedly improved. 

 

Fig 5.6: Plot of rotor angle deviation vs. time (with SVC voltage and damping controller) 
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5.3.2 Damping ratio: The SVC firing angle is kept at 160
0
. The transmitted active power 

was varied from P=0.2 to 1.0p.u. The eigenvalues of the state matrix were computed. The 

damping ratio of the rotor mode eigenvalues are plotted against the transmitted active power. 

Fig 5.7 shows the plot of the damping ratio of the rotor mode eigenvalues against the 

transmitted active power. It is observed that the system small signal stability is markedly 

improved. 

 

Fig 5.7 Plot of rotor mode damping ratio vs. „P‟ (with SVC voltage and damping controller) 

5.4 COMPARISON: 

5.1.1 Rotor angle deviation: The SVC firing angle is kept at 160
0
. The line active power is 

set to P=1.0p.u. The eigenvalues of the state matrix were computed. Fig. 5.8 shows the 

comparison of rotor angle deviation vs. time without SVC and with SVC controllers for 5% 

change in mechanical torque. It can be observed that with the SVC voltage controller, there is 

very little improvement in system damping. On the other hand, with both the SVC voltage 

and damping controllers, the system damping is markedly improved. 

Fig. 5.8 shows the comparison of Rotor angle deviation without SVC and with SVC 

controllers (P = 1.0 p.u.) 
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5.1.2 Damping ratio: SVC firing angle is kept at 160
0
. The transmitted active power was 

varied from P=0.2 to 1.0 p.u. The eigenvalues of the state matrix were computed. Fig 5.9 

shows the plots of the damping ratio of the rotor mode eigenvalues against the transmitted 

active power corresponding to three cases namely, without any SVC, with SVC voltage 

controller only and with both the SVC voltage and damping controllers. It is observed that the 

system small signal stability only marginally improves with the SVC voltage controller while 

marked improvement is observed with both the SVC voltage and damping controllers. 

 

Fig 5.9:Plots of the damping ratio vs. 'P' without SVC, with SVC voltage controller only and 

with both the SVC voltage and damping controllers 
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CONCLUSIONS 

In this work, the small signal stability of a single machine infinite bus system is analysed. A 

SVC is connected at the mid point of the long transmission line. The SVC comprises a 

voltage controller in conjunction with a damping controller. It is observed that SVC with only 

voltage controller is only marginally able to improve the small signal stability of the system. 

However, when a damping controller is added to the voltage controller, the small signal 

stability of the system shows a marked improvement. The line current magnitude is taken as 

an auxiliary signal for the SVC damping controller. 

 

 

SCOPE FOR FURTHER WORK 

 

 In this work, the line current signal is used as the supplementary control signal. Other 

supplementary signals like  synthesized frequency deviation, active power deviation 

etc may be used for studying the small signal stability of the system. 

 

 Initial value of SVC firing angle / susceptance may be varied to see the effect on the 

small signal stability. 

 

 The SVC damping controller parameters have to be properly tuned for an optimum 

response. The parameters are dependent on the system operating condition. An 

adaptive controller may be designed to account for the same.  
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APPENDIX 

The operating conditions of SMIB system are: 

                                        

The transformer and line reactance are considered 0.15 and 0.5 p.u on the base of 2220 MVA, 

24 kV respectively.  

All the generators are represented by an equivalent generator model including the effect of 

the generator field circuit dynamics. The parameters of each of the four generators of the 

plant in per unit on its rating are as follows: 
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