

A

Dissertation

On

Eliciting Information Requirements

For Data Warehouses

Submitted in fulfilment of the requirements of the degree of

Doctor of Philosophy

(Computer Engineering)

By

DEEPIKA PRAKASH

(University Roll No. 01/Ph.D./CoE/2009)

Under the supervision of:

Dr. Daya Gupta,

Professor, Dept. of Computer Engineering, Delhi Technological University (DTU)

To the

DEPARTMENT OF COMPUTER ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

NEW DELHI – 110042

2016

[I]

DECLARATION

I, Deepika Prakash, student of Ph.D. (Roll No: 01/PhD/CoE/2009), hereby declare that the

thesis entitled “Eliciting Information Requirements for Data Warehouses” which is being

submitted for the award of the degree of Doctor of Philosophy in Computer Engineering, is a

record of bonafide research work carried out by me in the Department of Computer

Engineering at Delhi Technological University.

I further declare that the work presented in the thesis has not been submitted to any

University or Institution for any degree or diploma.

Date: _________________ ________________________________

Place: New Delhi Deepika Prakash

 (Candidate)

 01/Ph.D/CoE/2009

 Department of Computer Engineering

 Delhi Technological University (DTU)

 New Delhi- 110042

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

CERTIFICATE

Date: _________________

This is to certify that the work embodied in the synopsis entitled “Eliciting Information

Requirements for Data Warehouses” submitted by Deepika Prakash with Roll No.

01/PhD/CoE/2009 as a part-time research scholar in the Department of Computer

Engineering, Delhi Technological University, is an authentic work carried out by her under

my guidance and is submitted to Delhi technological University for the award of the Degree

of Doctor of Philosophy.

The work is original and has not been submitted, in part or full, to any other University or

Institution for the award of any other degree.

Supervisor

Dr. Daya Gupta,

Professor,

Department of Computer Engineering,

Delhi Technological University (DTU)

New Delhi - 110042.

SHAHBAD DAULATPUR, BAWANA ROAD, DELHI-110042, INDIA

OFF.:+91-11-27871018 FAX: +91-11-27871023 WEBSITE: www.dtu.ac.in

http://www.dtu.ac.in/

 [III]

ACKNOWLEDGEMENT

First and foremost, I am indebted to three most important and amazing people in my life. To

my parents, a very big THANK YOU. They supported me emotionally through this journey

and provided me tremendous support. I believe I learn from the BEST. To my sister, Kelika,

yahoo, I made it this far. THANK YOU for being my friend in the many, many moments of

crisis. I dedicate this thesis to all three of them for their endless love, support and

encouragement and for giving me the strength to chase my dreams.

I would like to extend thanks to the many people who so generously contributed to the work

presented in this thesis. Special mention goes to my supervisor, Prof. Daya Gupta. My Ph.D.

has been an amazing experience and I thank her wholeheartedly, not only for her academic

support, but also for giving me so many wonderful opportunities. She has been a truly

dedicated mentor and had constant faith in my work.

Similar, profound gratitude goes to CBIP group for helping me in developing confidence

through various presentations and for sharing their experience and providing valuable

feedback.

I would also like to thank Dean (IRD) and Dr. Anil Kumar AR (IRD). I extend my gratitude

to Prof. O.P.Verma (DRC Chairman) and to Prof. Vishal Verma (Ph.D. Coordinator).

Finally, but not the least, thank you to all my friends. Your friendship made this journey even

more enjoyable. I cannot list all the names, but you are always on my mind.

Deepika Prakash

November, 2015

 [IV]

ABSTRACT

Data Warehouse support in terms of Requirements Engineering models and techniques has

been extensively provided for operational level of decision making. However, it is

increasingly being recognized that there are other forms of decision making that exist in an

organization. These are strategic in nature and ‘above’ operational decision making.

 This thesis addresses the issue of providing decision making support to both strategic and

operational decision making in the same DW system. The solution starts by defining two

broad categories of decisions for which decision support is needed, one for policy

enforcement rule (PER) formulation decisions and the other for operational decisions. Both

kinds of decisions are structured based on a generic decision meta-model developed here.

The process starts by developing two Data Warehouses, one for policy enforcement rules and

the other for operational decisions. In order to identify the needed information for supporting

decision making, a set of generic techniques for eliciting information is proposed. This

information is stored in the DW. Again, the structure of information for the two DWs is based

on a generic information meta-model developed here.

The two DWs are integrated upstream in the requirements engineering phase using an

integration life cycle proposed in this thesis. It is argued that there is a need for integration

following the problems of inconsistency and loss of business control that can occur. This is

due to common information and differing refresh times between the two Data Warehouses.

Further, three tools were developed to provide computer support for arriving at information

for (a) PER, (b) operational decisions and (c) integrating information. This process was

validated using AYUSH policies.

 [V]

PUBLICATIONS FROM THE THESIS

INTERNATIONAL JOURNAL PAPERS:

1. Prakash, D. and Gupta, D. (2015) ‘Data Warehouse requirements engineering: an

emerging discipline’, International Journal Business Information Systems (in press).

[Scopus Indexed]

2. Prakash, D., and Gupta, D. (2014). Eliciting Data Warehouse Contents for Policy

Enforcement Rules. International Journal of Information System Modeling and

Design (IJISMD), 5(2), 41-69.

[Scopus Indexed]

3. Prakash, D., and Gupta, D. (2014). Data Warehouse Integration at the Requirements

Engineering Stage: A semi-automated Approach. Business and Information Systems

Engineering. Springer. (communicated on 04/01/2015)

[SCI-Expanded, Scopus Indexed]

INTERNATIONAL CONFERENCE PAPERS:

1. Prakash, N., Prakash, D., and Gupta, D. (2011). Decisions and Decision

Requirements for Data Warehouse Systems. In Information Systems Evolution (pp.

92-107). Springer Berlin Heidelberg.

[Scopus Indexed]

 [VI]

LIST OF ABBREVIATIONS

BMM Business Motivation Model

BRG Business Rules Group

CADEI Computer Aid For Decision Early Information elicitation

CC Complex-Complex

CG Connectivity Graph

CIM Computation Independent Model

CREWS Co-operative Requirements Engineering With Scenarios

CRUD Create Retrieve Update Delete

CS Complex-Simple

CSF Critical Success Factor

CSFI Critical Success Factor Information

CSO Choice Set Objective

CT Collective Term

CV Set Variable

DB2 IBM DataBase 2

DM Data Mart

DR Decision Requirement

DSS Decision Support System

DW Data Warehouse

DWARF Data WArehouse Requirements deFinition technique

DW-ENF Data Warehouse-Extended NFR Framework

 [VII]

DWop Operational Data Warehouse

DWper Policy Enforcement Rule Data Warehouse

DWRE Data Warehouse Requirements Engineering

EI Early Information

EIop Operational level Early Information

EIper PER level Early Information

ELISPE ELiciting Information Support for Policy Enforcement

ELISO ELiciting Information Support for Operations

ENDSI ENDS Information

EQ Equal to

ER Entity Relationship

ETL Extraction Transformation Load

FR Functional Requirement

GBRAM Goal-Based Requirements Analysis Method

GDI Goal – Decision – Information

GEQ Greater than Equal to

GORE Goal-Oriented Requirements Engineering

GQ Greater than

GQM Goal-Question-Metric

GRAnD Goal-oriented Requirement Analysis for Data warehouses

IS Information System

JAD Joint Application development

KAOS Knowledge acquisition in automated specification of software

LEQ Less than Equal to

LHS Left Hand Side

 [VIII]

LQ Less than

MD Multi-Dimensional

MDA Model Driven Development

MEANSI MEANS Information

MOLAP Multi-Dimensional Online Analytical Processing

NEQ Not Equal to

NFR Non-Functional Requirement

NLP Natural Language Processing

OLTP Online Transaction Processing

PER Policy Enforcement Rule

PIM Platform Independent Model

QVT Query-View-Transformation

RAD Rapid Application Development

RE Requirements Engineering

RHS Right Hand Side

ROLAP Relational Online Analytical Processing

SBRE Scenario Based Requirements Engineering

SC Simple-Complex

SD Strategic Dependency

SDM Strategic Dependency Model

SE Software Engineering

SOM Check in paper

SQL Structured Query Language

SR Strategic Rationale

 [IX]

SRM Strategic Rationale Model

SS Simple-Simple

ST Simple Term

SV Single Value variable

TRE Transactional Requirements Engineering

Tropos Towards requirements-driven information systems engineering

UML Unified Modeling Language

V&V Verification and Validation

VMOST Vision, Mission, Objectives, Strategies, Tactics

 [X]

Contents

 Acknowledgement... III

Abstract………………………………………………………………………………….......IV

Publications……………………………………………………………………………….....V

List of Abbreviations………………………………………………………………….........VI

Contents……………………………………………………………………………………...X

List of Figures……………………………………………………………………..….…...XIV

List of Tables………………………………………………………………………......…XVII

Chapter 1 .. 1

Data Warehouse Requirements Engineering ... 1

1.1 Importance of Requirements Engineering: Failure Statistics 1

1.2 Definition of Requirement and Requirements Engineering .. 2

1.3 Requirements Engineering as a process .. 5

1.4 Requirements Elicitation techniques ... 8

1.4.1 Traditional elicitation techniques ... 8

1.4.2 Model driven RE .. 9

1.4.3 Scenario Oriented Requirements Engineering ... 15

1.5 Data Warehouse Systems .. 18

1.5.1 Data Warehouse Development Strategies .. 20

1.5.2 Operational Nature of Decision making .. 22

1.6 Data Warehouse Failure Statistics and need for RE ... 23

1.7 Influence of Transactional RE on Data Warehouse RE .. 23

1.8 Data Warehouse Requirements Engineering Techniques ... 24

1.9 Arriving at the Problem Statement .. 39

1.10 Proposed Solution ... 41

 [XI]

1.11 Outline of the Thesis ... 43

Chapter 2 .. 46

The Decision Requirement and Information Elicitation .. 46

2.1 The Decisional Environment .. 46

2.2. Nature of Decisions ... 47

2.3 Meta-Model of Decisions .. 52

2.4 Modeling Information .. 55

2.5 Decision Requirement ... 57

2.5.1. The Decision Requirement Meta-Model ... 57

2.6. Information Elicitation Techniques ... 60

Summary .. 65

Chapter 3 .. 66

Policy Enforcement Level Decision making ... 66

3.1. PER Life Cycle.. 67

3.2. Policy Representation .. 69

3.3. Rule Formulation Sub-Stage ... 72

3.3.1. Representing PERs... 74

3.3.2. Enforcing Policies .. 77

3.3.3. Guidelines for Eliciting Actions .. 78

3.4. Early Information SubStage .. 90

3.5. Late Information SubStage.. 92

Summary .. 100

Chapter 4 .. 102

Operational Life Cycle ... 102

4.1. Decision making at operational level .. 103

4.2. PER Actions to Decisions ... 104

 [XII]

4.3 Operational Life Cycle .. 106

4.4. Early Information Elicitation .. 109

Summary .. 112

Chapter 5 .. 114

Integrating the Warehouses .. 114

5.1 The Integration Problem... 114

5.1.1 The Integration Dichotomy in Databases .. 116

5.1.2 Integrating Data Marts ... 119

5.2 Need for PER-Operations DW Integration ... 120

5.3 The Approach to Integration ... 125

5.3.1 Build by Integrating ... 126

5.3.2 Integrate Early Information ... 127

5.4 The Vertical Integration Life Cycle ... 129

5.4.1. Overview of four Components... 130

5.4.2. MetaData Reader ... 130

5.4.3. Correspondence Drafter ... 132

5.4.4. Information Mapper ... 134

5.4.5. Conflict Resolver ... 135

5.4.6 An example showing Integration ... 136

Summary .. 144

Chapter 6 .. 146

Validation and Experience ... 146

6.1 Lessons Learnt during Elicitation .. 147

6.2 Lessons Learnt from Integration .. 152

Summary .. 153

CHAPTER 7 .. 155

Implementation .. 155

PART I: ELiciting Information Support for Policy Enforcement (ELISPE) 155

PART II: ELiciting Information Support for Operations (ELISO) 164

PART III: Computer Aid For Decision Early Information elicitation (CADEI) 167

Summary .. 171

Chapter 8 .. 172

Conclusion, Contribution and Future Scope .. 172

Contribution of the Thesis .. 176

Future Work and Open Problems ... 178

References .. 179

Biography of Author .. 194

Appendix A .. 195

List of AYUSH policies ... 195

Appendix B .. 221

Integrated Data Warehouse Schema .. 221

 [XIV]

LIST OF FIGURES

Fig 1.1 Input and Output to requirements engineering process 6

Fig 1.2 The Requirements Engineering process 6

Fig 1.3 Meta schema as proposed by Sutcliffe et al, 1998 16

Fig. 1.4 Difference between Kimball’s and Inmon’s DW development strategy 21

Fig. 1.5 Integration of individual data marts 21

Fig. 1.6 Meta model for target with a choice set 30

Fig. 1.7 GDI schema showing Goal-Decision and Information 32

Fig. 1.8 Modified i* framework for CIM 33

Fig. 1.9 UML class stereotypes 34

Fig. 1.10 Business Oriented approach using VMOST 34

Fig. 1.11 The overall process of arriving at an integrated enterprise wide Data

Warehouse

43

Fig. 2.1 Embedded IS in a Decisional Environment 47

Fig 2.2 The decision continuum 50

Fig 2.3 The difference between the different layers of the decision continuum 51

Fig. 2.4 Decision Meta Model 53

Fig 2.5 An Abstract Decision 53

Fig 2.6(a) A Complex Decision with OR link 54

Fig 2.6(b) A Complex Decision 55

Fig. 2.7 Information Model in Data Warehouses 56

Fig. 2.8 Decision Requirement Meta Model 58

Fig. 2.9 Abstract Decision Requirement with an IS A hierarchy 58

Fig. 2.10 Composition of Decision Requirements with AND and OR link 59

Fig 3.1 Overall process of arriving at star schema from PER actions 68

Fig 3.2 ER diagram for the policy enforcement rule WHEN create x IF

!Run(x, y) THEN start y

95

Fig 3.3 ER diagram for the policy enforcement rule WHEN create pr IF

LT(area(pr),200) THEN Expand pr

97

Fig 3.4 Integrated ER diagram 97

Fig 3.5 Unpruned Star Schema for Fact Treatment 99

Fig 3.6 Star Schema for Fact Treatment 100

Fig. 4.1 Specialization for action start private ward 104

Fig 4.2 Decomposition tree for action start private ward 104

Fig 4.3 The Overall process 108

Fig 4.4 Overall process of arriving at star schema from Decisions 108

Fig 5.1 Horizontal and Vertical integration 116

Fig. 5.2 Pair-wise integration at the requirements engineering stage 127

Fig 5.3 Strategy (a) integrating at the ER schema point 128

Fig 5.4 Strategy (b) integrating Early Information 129

Fig 7.1 Architecture of ELISPE 156

Fig. 7.2 Eliciting Actions for policy “∀x[Ayurvedic(x) Run(x, OPD)]” 159

Fig 7.3 Formulating Policy enforcement rules for policy “∀x[Ayurvedic(x)

Run(x, OPD)]”

160

Fig 7.4 Back End Architecture of ELISPE 161

Fig. 7.5 Eliciting Information by CSFI Analysis 162

Fig 7.6 Eliciting Information by ENDSI Analysis 163

Fig. 7.7 Eliciting Information by MEANSI Analysis 164

Fig. 7.8 Architecture of ELISO 165

Fig. 7.9 Action Hierarchy Maker 166

Fig. 7.10 Architecture of CADEI -I 167

Fig. 7.11 Architecture of CADEI-II 168

Fig. 7.12 Metadata Reader for PER data source 169

Fig. 7.13 Metadata Reader for Operational data source 170

Fig. 8.1 The Generic Platform 174

 [XVII]

LIST OF TABLES

Table 2.1 CSF Information 61

Table 2.2 Ends Information 63

Table 2.3 Means Information 64

Table 3.1 PER life cycle 68

Table 3.2 Types of Policies 73

Table 3.3 Elicitation strategies for given RHS predicate 81

Table 3.4 Elicitation strategy for LEQ and GT predicates 83

Table 3.5 Elicitation strategies for given LHS predicate 86

Table 3.6 Early information for action ‘Re-designate x’; x is an instance

of AYUSH hospital

91

Table 3.7 Information elicitation for WHEN create x, IF !Run(x, y)

THEN start y

93

Table 3.8 Information elicitation for WHEN create pr IF

LT(area(pr),200) THEN expand pr

96

Table 4.1 Operational Life Cycle 106

Table 4.2 Information elicitation for expand pr at the PER level 109

Table 4.3 Information elicitation for expand pr at the operational level 110

Table 5.1 Transactions and refresh times for DWop and DWper 124

Table 5.2 Data at time T and t’ for DWop and DWper 125

Table 5.3 Trace Information of PE Rules 131

Table 5.4 Trace Information of Decisions 131

Table 5.5 Weak Correspondence strategy 132

Table 5.6 Average Correspondence strategy 133

[XVIII]

Table 5.7 Strong correspondence strategy 134

Table 5.8 Conflict resolution 136

Table 5.9 Trace Information of PE Rules 137

Table 5.10 Trace Information of Decisions 138

Table 5.11 Correspondence between EIR and EID using WCS strategy 139

Table 5.12 Correspondence between EIR and EID using ACS strategy 139

Table 5.13 Correspondence between EIR and EID using SCS strategy 140

Table 5.14 Early information for EIR1,CSFI,PS and EID1,CSFI,PatSat 142

Table 5.15 Early information after integrating EIR1,CSFI,PS and EID1,CSFI,PatSat 143

Table 5.16 Early information for EIR1,CSFI,QualC and EID1,CSFI,QC 143

Table 5.17 Early information after integrating EIR1,CSFI,QualC and EID1,CSFI,QC 144

Table 5.18 EIintegrated after integrating from Tables 6.9 and 6.11 144

Table 6.1 Information for create x for PER WHEN create x, IF !Run(x, y)

THEN start y

149

Table 6.2 Information for action create x for PER WHEN create x IF

!ratio(count(b), count(n),8, 1) THEN re-designate x

150

Table 6.3 Trade-off between different correspondence strategies 153

1

Chapter 1

 Data Warehouse Requirements Engineering

This chapter starts off by discussing the different definitions of Requirements and

Requirements Engineering, RE followed by a short discussion on the phases of Requirements

Engineering. The chapter reviews the techniques for eliciting requirements for functional

systems and the reasons for developing a separate set of techniques for Data Warehouse

Requirements Engineering (DWRE). Finally, the state of the art in DWRE is reviewed. Using

this discussion, the problem of the thesis is arrived at and subsequently the approach to

solving the problem is discussed.

1.1 Importance of Requirements Engineering: Failure Statistics

Origins of Requirements and Requirements Engineering, RE, lie in software engineering

(SE). SE aims to deliver the needed functionality in the hands of the user. A functional

system is for transactional activity. Here requirements are elicited from users, collected,

prioritized and a system specification is made.

Over the last almost twenty five years, the importance of requirements engineering, RE,

in the systems development life cycle has been well recognized. Information/software

systems developers realized that one major factor that goes into systems failure is the

inadequate attention paid to requirements formulation (Coman and Ronen, 2010; Flyvbjerg

and Budzier, 2011). Indeed, the effect of poorly engineered requirements ranges from

outright systems rejection by the customer to major reworking of the developed system.

2

The Software Hall of Shame (Charette, 2005) listed about 30 large software-development

projects that failed between 1992 and 2005. These failures arise because projects go beyond

the actual needs or because of expansion of the scope of the original project (Charette, 2005;

Coman and Ronen, 2010; Flyvbjerg and Budzier, 2011). According to studies conducted at

Bell labs and IBM (Hooks and Farry, 2001), of all defects encountered in software

development, 80% are in the requirements phase. Boehm and Papaccio (Boehm and

Papaccio , 1988) said that the cost of correcting requirements errors is 5 times when done

during the design phase, 10 times during implementation phase, 20 times during testing and

200 times after the system has been delivered. The result is expensive products at best and

total rejection of software at worst. This is corroborated by the Standish group (Standish,

2003) that reports “incomplete requirements” was one of the reasons that “Challenged” and

“Failed” projects had in common.

1.2 Definition of Requirement and Requirements Engineering

A widely accepted definition of a requirement is the one given by (IEEE).

Definition 1: A requirement as defined in (IEEE Standard, IEEE-Std ‘610, 1990) is “(1) a

condition or capability needed by a user to solve a problem or achieve an objective, (2) A

condition or capability that must be met or possessed by a system or system components to

satisfy a contract, standard, specification or other formally imposed documents, (3) A

document representation of a condition as in (1) or in (2)”.

Requirements thus arise from user, general organization, standards, and government bodies.

These requirements are then documented.

Requirement has also been defined for a product by Robertson, and also by Kotonya.

3

Definition 2: “Something that the product must do or a quality that the product must have”

(Robertson and Robertson, 2012)

Definition 3: “A description of how the system shall behave, and information about the

application domain, constraints on operations, a system property etc.” (Kotonya and

Sommerville, 1998)

As goal oriented techniques developed, requirement was defined with respect to a goal.

Definition 4: “A requirement specifies how a goal should be accomplished by a proposed

system” (Anton, 1996)

 By (Sommerville, 1995) as

Definition 5: “Requirements are high level abstractions of the services the system shall

provide and the constraints imposed on the system”.

Requirements have been classified as functional, FR and non-functional requirements, NFR.

A number of definitions exist as follows:

Definition 6: Functional requirements are “statements about what a system should do, how it

should behave, what it should contain, or what components it should have” and Non-

functional requirements are “statements of quality, performance and environment issues with

which the system should conform”. (Sutcliffe, 2002)

Definition 7: “Non-functional requirements (or quality attributes, qualities, or more

colloquially “-ilities”) are global qualities of a software system, such as flexibility,

maintainability, usability, and so forth” (Mylopoulos et al., 1999)

4

Requirements Engineering

Once the concept of requirements is defined, the next question is about understanding how

requirements can be obtained and modelled. RE deals with both obtaining and modelling of

requirements. Indeed, a number of definitions of RE exist in literature.

Definition 8: Requirements Engineering (RE) is defined (IEEE Standard, IEEE-Std ‘610,

1990) as “the systemic process of developing requirements through an iterative cooperative

process of analyzing the problem, documenting the resulting observations in a variety of

representation formats and checking the accuracy of understanding gained”.

The process is cooperative because different stakeholders have different needs and therefore

varying viewpoints. RE must take into account conflicting views and interests of users and

stakeholders. Capturing different viewpoints allow conflicts to surface at an early stage in the

requirements process. Further, the resulting requirements are the ones that are agreeable to

both customers and developers.

A number of definitions for the goal-oriented perspective exist. A selection is presented

below.

Definition 9: According to (Zave, 1997), “Requirements engineering is the branch of

software engineering concerned with the real-world goals for functions of and constraints on

software system. It is also concerned with the relationship of these factors to precise

specifications of software behavior, and to their evolution over time and across software.”

This definition incorporates “real world goals” in its definition. In other words, this definition

hopes to capture requirements that answer the “why” of software systems. Here, the author is

5

referring to “functional requirements”. Further, the definition also gives emphasis to “precise

requirements”. Thus quality of requirements captured is also important.

Definition 10: “RE (Lamsweerde, 2000) is concerned with the identification of goals to be

achieved by the envisioned system, the operationalization of such goals into services and

constraints…."

Definition 11: For (Nuseibeh and Easterbrook, 2000) “software systems requirements

engineering (RE) is the process of discovering that purpose, by identifying stakeholders and

their needs, and documenting these in a form that is amenable to analysis, communication,

and subsequent implementation”.

Here the emphasis is on identifying stakeholders and capturing the requirements of the

stakeholders. “Communication” is also given importance along with analysis and

implementation.

 1.3 Requirements Engineering as a process

The input and output of the RE process of (DeMarco and Plauger, 1979) is shown below in

Fig 1.1. Stakeholders are the problem owners. They can be users, designers, system analysts,

business analysts, technical authors, customers. In the RE Process, requirements are elicited

from these sources. Output of the process is generally a set of agreed requirements, system

specifications and system models. The first two of these are in the form of use cases, goals,

agents or NFRs. System models can be object models, goal models, domain descriptions,

behavioural models, problem frames etc.

6

Fig 1.1: Input and Output to requirements engineering process (DeMarco and Plauger, 1979)

There are three fundamental concerns of RE namely, understanding the problem, describing

the problem and attaining an agreement on the nature of the problem. The process involves

several actors for the various activities.

Fig 1.2: The Requirements Engineering process (Zang, 2007)

The Requirements Engineering process of (Zang, 2007) is shown in Fig 1.2. The activities of

requirements development include:

 ‘Elicitation’: Requirements are elicited from users, domain experts, literature,

existing software that is similar to the one to be built, stakeholders etc. The

requirements engineer is involved in identifying different sources, as well as acquiring

and finding the relevance and significance of the requirements. As can be seen from

Fig 1.2, several sessions are conducted and further different sessions can employ

7

different methods to elicit requirements. The requirements are then presented in the

form of models. This is a labour intensive step and usually takes a large amount of

time and resources.

 ‘Analysis/ Negotiation’: An agreement between the various stakeholders on the

requirements of the system to-be, is established. Conflicts arise due to different views

and goals of the stakeholders and are resolved by a facilitator.

 ‘Specification and Documentation’: Requirements are documented for use in

subsequent system development. Formal specification languages, knowledge

representation languages etc. are used to document requirements. Any

inconsistencies, missing requirements found during the validation phase can also be

fed back into this task. From the Specification and documentation task, one can go to

the negotiation task (e.g. if conflicting requirements are found) or elicitation task (if

more information is required). System analyst and domain experts are involved in this

task.

 ‘Verification and Validation’ (V&V): The main goal is to check if the document

meets the customers’/clients’ needs. Consistency and completeness are some aspects

of the document that are checked. The project manager and the client are involved in

this task.

There are two phases of RE, an early phase and late RE phase. Early RE phase focuses on

whether the interest of stakeholders is being addressed or compromised. Elicitation and

negotiation form early RE phase. Late RE phase focuses on consistency, completeness and

verification of requirements (Yu, 1997).

In recent years, much emphasis is placed on agile development. Agile methodologies are

oriented to solving the problem of dealing with large number of requirements. Here, methods

8

that involve natural language processing (NLP), machine learning (clustering techniques like

k-means, hierarchical) are employed to obtain ‘similar’ requirements. Once ‘similar’

requirements are obtained, they are then prioritized and higher priority ones are converted to

user stories and elaborated. Iterations proceed with the feedback of the stakeholder. This is

different from traditional methods where requirements obtained were modelled and directly

prioritized as a one-shot activity.

1.4 Requirements Elicitation techniques

Elicitation techniques fall mainly in the following categories namely traditional techniques,

model driven techniques and scenario oriented techniques. The first category is useful in the

early RE phase of elicitation and negotiation. Model driven techniques have been used for

both early as well as late RE phases. Scenario oriented techniques have widely been used for

verification and validation (V&V) RE phase. This section describes some techniques of each

category.

1.4.1 Traditional elicitation techniques

These include interviews (Goguen and Linde, 1993), analyzing existing documentation which

form a rich source of requirements (Sutcliffe, 2002), questionnaires, group elicitation

techniques (Leffingwell and Widrig, 2000), brainstorming, workshops, prototyping,

contextual, cognitive and ethnographic studies.

These techniques have certain disadvantages. The interaction between the requirements

engineer and the stakeholder can be based on assumptions (Goguen and Linde, 1993) with

the possibility of ambiguity in understanding the question (Suchman and Jordan, 1990), a

9

tendency to over-analyze leading to the system to be too constrained (Hickey and Davis,

2003) and improper sampling leading to bias (Goguen and Linde, 1993) among others.

The disadvantages seen with traditional techniques are noticed particularly when one moves

to systems with increasing complexity (Lapouchnian, 2005). This led to the development of

model driven techniques.

1.4.2 Model driven RE

Modelling requirements has today become a core process in requirements elicitation.

Generally, the system and possible alternate configurations of the system are modelled. These

techniques shift the focus from “what” feature of the system to “why” of the system (Anton

1996). While the former focuses on activities of the system, the latter focuses on the

rationale for setting the system up. There are two techniques goals and agent oriented

modelling both of which are interrelated.

a) Goal oriented Requirements Engineering (GORE)

“Goal-oriented requirements engineering (GORE) is concerned with the use of goals for

eliciting, elaborating, structuring, specifying, analyzing, negotiating, documenting, and

modifying requirements”(Lamsweerde, 2004). This indicates that goals can be used in

almost every activity of the requirements process. Goals have been looked upon in a number

of ways some of which are described below:

i. (Dardenne et al., 1993) states that goals are high-level objectives of the business,

organization or system; they capture the reasons why a system is needed and guide

decisions at various levels within the enterprise.

10

ii. According to (Anton, 1996), “Goals are targets for achievement which provide a

framework for the desired system. Goals are high level objectives of the business,

organization, or system”

iii. According to (Lamsweerde, 2000), "Goal is an objective the composite system should

meet.”

iv. (Pohl, 2010) observes that goals are prescriptive statements as against descriptive

statements in that they state what is expected from the system and not statements

describing the domain of the system.

Goals have been used in RE for eliciting functional requirements (Dardenne et al., 1993) as

well as non-functional requirements ((Mylopoulos et al., 1999). Hard goals can be by the

system and used for modelling and analysing FRs (Sutcliffe, 2002). Satisfaction and

information goals are examples of hard goals. Softgoals are goals that do not have a clear-cut

criterion for their satisfaction (Mylopoulos et al., 1999) and are “satisficed”. They are used to

model and analyse NFRs.

Goal models are motivated by the AND/OR graphs of problem solving in Artificial

Intelligence where a given problem is decomposed into sets of sub-problems. The AND

decomposition indicates ALL sub-problems must be tackled to solve the problem while OR

decomposition states that any one set of sub-problems can be tackled to solve the problem.

In GORE, Goals are decomposed into sub-goals. This refinement is applied recursively till

lowest level goals are reached. Thus, one obtains directed acyclic graphs with the nodes of

the graphs representing goals (Haumer et al., 1998) and achievement as edges. An AND

association means that all the sub-goals, g1,....,gn, must be satisfied to satisfy the parent goal,

11

g. An OR association means that satisfying at least one sub-goal, g1,...gn, is enough to satisfy

the parent goal, g.

The remaining question is of how the sub-goal is obtained. Means-Ends analysis, which is a

reduction technique, is applied to arrive at the graph. Notice that each level of the goal

hierarchy describes the same system. However, the level of abstraction differs with the root

level goal at the highest level of abstraction and the leaf level goal at the lowest level. The

lowest level leaf goal can be operationalized.

Enhancements to this basic goal model have been made. Apart from the AND/OR link, a

third link, “conflict”, was also added to the refinement tree to capture the case when

satisfying one goal causes another goal to not be satisfied. Further links were introduced to

reflect the fact that goals positively or negatively “support” other goals (Lamsweerde, 2001).

Pre-conditions, post-conditions and trigger conditions were added by (Lamsweerde, 2000).

Link between goals and operations was also introduced by (Dardenne et al., 1993).

Before one can start goal modelling, goals need to be identified. One source of goals is by

reverse engineering from current systems and documents like ER diagrams, flowcharts.

Another source is by forward engineering from stakeholder interviews. Stakeholders own

goals, though, requirements are expressed by them not in terms of goals but as actions and

operations (Anton, 1996). Goals can be extracted from actions by selecting appropriate

“action words”.

GORE became a popular method of modelling requirements. A number of Goal Oriented

Requirements Engineering have been proposed (Castro et al., 2002; Kavakli and

12

Loucopoulos, 1998; Antón, 1996; Bubenko et al.,1994; Dardenne et al.,1993). KAOS and

GBRAM techniques are briefly described below:

 KAOS (Dardenne, 1993) defines a formal specification language for goal

specification consisting of objects, operations, agent, and goal. Objects can be entities,

relationships or events. The elicitation process is in two parts. Initially, a set of system

goals and objects and an initial set of agents and actions are defined. In the second

part refining goals using AND/OR decomposition, identifying obstacles to goals,

operationalizing goals into constraints and refining and formalizing definitions of

objects and actions is done iteratively. Goal refinement ends when every sub-goal is

realizable by some agent.

 Goal-Based Requirements Analysis Method, GBRAM, (Anton, 1996) identifies,

elaborates, and refines the goals as requirements. It deals with two issues. How can

goals be identified and what happens to requirements when goals change? The first

part of the question is answered by Goal Analysis and the second part by Goal

Evolution. In the former goals, stakeholders, actors and constraints are identified. This

gives a preliminary set of goals. Once validated by the stakeholders, this initial set can

be refined.

Recently though, certain difficulties in using GORE have been pointed out. It has been

observed by (Antón and Potts, 1998) that identifying goals of the system is not the easiest

task. Further, GORE is subjective, dependent on the requirements engineer view of the real

world from where goals are identified (Haumer et al., 1998). (Horkoff and Yu, 2010) points

out that such models are “informal and incomplete” and “difficult to precisely define”.

(Horkoff and Yu, 2012) observe “goal modeling is not yet widely used in practice”

13

(Matulevičius and Heymans, 2007) notices that constructs used in KAOS are not used in

practice.

b) Agent Oriented Requirements Engineering

 “Agents” have been defined in software engineering as objects that can change state and

behaviour. They can be humans, machines or be of any other type.

Let us look at the relationship between an agent and goals. In GORE, agents are not central

concepts like goals are and do not have a say in the RE process. They are simply assigned to

goal and fulfil goals. So during goal modelling, goals are identified and then during

operationalization, agents are allocated to goals.

 Agent oriented methods treat agents as first class concepts. The central concept is that “goals

belong to agents”. This is in contrast to GORE where “agents fulfil goals”. Notice that even

though it is possible to have goals without agents (Eric, 1997) and agents without goals as in

their NFR framework, goals and agents complement each other.

Agents have the following properties (Castro et al. 2002; Yu, 1997; Lapouchnian, 2005):

i. Agents are intentional in that they have properties like goals, beliefs, abilities etc.

associated with them. These goals are local to the agent. It is important to note that

there is no global intention that is captured.

ii. Agents have autonomy. However they can influence and constrain one another. This

means that they are related of each other at the intentional level.

iii. Agents are in a strategic relationship with each other. They are dependent on each

other and are also vulnerable w.r.t. other agents’ behaviour.

14

Agents help in defining the rationale and intensions of building the system. This enables them

to ask and answer the “why” question. Agent oriented RE focuses on early RE. Some

techniques include (Neto and Morais, 2013; Yu and Mylopoulos, 1994). (Yu and

Mylopoulos, 1994) developed the i* framework for modelling and reasoning about the

organizational environment and its information system. The central concept of i* is that of

the intentional actor. This model has two main concepts, the Strategic Dependency model

(SDM) and the Strategic Rationale model (SRM). The SDM component of the model

describes actors in their organizational environments and captures the intentional

dependencies between them. The freedom and the constraints of the actors are shown in

terms of different dependencies like goal, task, soft goal and resource dependencies. SRM is

at a much lower level of abstraction than SDM. It captures the intentional relationships that

are internal and inside actors. Intentional properties are modelled as external dependencies,

using means-ends relationships as well as task decomposition. Means-ends relationship helps

us understand “why an actor would engage in some task”. This can also assist in the

discovery of new soft goals and therefore provide more alternate solutions. During modelling

one can travel from means to ends or vice versa. Task decomposition results in hierarchy of

intentional elements part of a routine.

Using ontological studies (Matulevičius and Heymans, 2007) found similarities between i*

and KAOS. According to them, constructs like i* goal and soft goal of KAOS, and means-

end link of i* and contribution relation of KAOS are conceptually the same. Notice, KAOS

does model agents as having wishes and they do participate in the RE process.

15

1.4.3 Scenario Oriented Requirements Engineering

Scenarios have been used for requirements engineering (Sutcliffe et al., 1998) particularly for

elicitation, refining and validating requirements, that is, in the late RE phase. Scenarios have

also been used to support goals formulated in the early requirements phase. They show

whether the system satisfies (fulfilment) or does not satisfy (non-fulfilment) a goal. In other

words, scenarios ‘concretise’ goals.

(Holbrook, 1990) states that "Scenarios can be thought of as stories that illustrate how a

perceived system will satisfy a user's needs". This indicates that scenarios describe the system

from the viewpoint of the user. They have a temporal component as seen in the definition

given by (Lamsveerde and Willemet, 1998): “a scenario is a temporal sequence of interaction

events between the software-to-be and its environment in the restricted context of achieving

some implicit purpose(s)”. Scenarios have also been defined with respect to agents. (Plihon et

al., 1998) says that scenario is "…possible behaviours limited to a subset of

purposeful…communications taking place among two or several agents".

Scenario based approaches describe requirements and system behaviour through examples,

scenes, narrative descriptions of contexts, use cases and illustrations of agent behaviours.

Scenarios represent typical interactions between the system To-Be and its stakeholders. An

interaction is a series of message-response pairs: a message is sent by the stakeholder to the

system To-Be and the response is the reaction of the system to the message. The entire

interaction specifies a typical functional requirement.

A meta schema was proposed by (Sutcliffe et al., 1998) looks at the relationship between

goals, scenarios and agents (see Fig. 1.3 below). Scenarios are a single instance of a use case.

16

Use cases are composed of actions that help in fulfilment of goals. One use case fulfils one

goal. A single action ‘involves’ one or more agents.

Fig. 1.3.: Meta schema as proposed by Sutcliffe et al., 1998

Scenarios can be expressed using natural languages (Haumer, 1998), tables (Potts et

al.,1994), scenario scripts (Ruben and Goldberg, 1992), regular grammars (Glinz,1995) or

state-charts (Harel,1987). Scenarios can be descriptive (Potts et al.,1994), explanatory

(Wright,1992) or exploratory (Holbrook,1990). In addition to this they may also contain

behavioural, organisational and stakeholder information.

Several scenario based elicitation techniques exist two of which are SBRE (Holbrook, 1990)

CREWS (Sutcliffe et al., 1998).

 SBRE (Holbrook, 1990): There are two worlds, users’ and designers’ world. The goal

set is defined in the user's world. It contains information regarding goals and

constraints of the system. The goals are represented as sub-goals. The design set is in

17

the designer's world. This set consists of design models that represent the system. The

goal set and the design set communicate with each other with the help of scenarios

that is in the scenario set. This set shows how a specific design meets a goal.

Scenarios have a one to one relationship with the design models. A specific scenario

may satisfy many goals. Any issue that may arise is captured in the issue set. A

feedback cycle captures the user’s response to Issue and Design. Scenarios form part

of the specification of the required system.

 CREWS (Sutcliffe et al, 1998): This technique is integrated with OO development

and employs use cases to model functionality of the system-to-be. Here, scenario is

represented by one instance of an event which is defined by a pathway of a use case.

Thus, many scenarios can be generated from one use case and one scenario is

composed of one or more events. Use cases are elicited from users and formatting

guidelines. The use cases are compared with generic requirements and finally normal

and exception flows are modeled. From the former normal scenarios and from the

latter exception scenarios are generated. They are validated using validation frames.

Scenarios originated from system design and those captured from actual experience

are captured by this technique.

Proposals for Goal-Scenario coupling also exist in literature (Liu and Yu, 2004; CREWS,

1998; Pohl and Haumer, 1997; Cockburn, 1997). This can be unidirectional from goals to

scenarios or bidirectional coupling of goals and scenarios. Unidirectional coupling says that

goals are realized by scenarios and this reveals how goals can be achieved. Bi-directional

coupling considers going from scenario to goals in addition to going from goals to scenarios.

It says that scenarios can be sources of sub-goals of the goal for which the scenario is written.

18

It is clear that RE for transactional systems (TRE) is well established. The work in this thesis

is focussed in the area of RE for Data Warehouse systems. Thus, it is first important to

understand the influence that the above mentioned methods have had on RE for DW systems.

Subsequent sections examine the existing techniques to arrive at the problem statement of the

thesis.

1.5 Data Warehouse Systems

In order to understand DWRE, let us first review the definition of DWs.

Definition 1: (Inmon, 2005) defines Data Warehouse (DW) as “A data warehouse is a

subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of

management’s decision-making process”.

Let us examine each property of a DW mentioned in this definition:

Subject- Oriented: Functional systems are application driven. For example, for a university

system applications developed for a functional system are: library system, admission system,

HR system etc. DW subjects for this university system are students, faculty, placement etc.

Integrated: Data of a DW comes from various sources like databases, flat files etc. The

formats in which data is stored in these different sources may therefore differ. For example,

in one source say gender is represented as male and female. In another source 1 may

represent male and 0 female. Similarly, there can be differences in units of say height, weight

etc between the different sources. There are often fields that essentially contain the same data

but named differently like description or remarks or comments. Thus, there is a need to

19

convert, reformat, summarize data before integration so that after integration data has one

single corporate image.

Time-variant: Time variant property states that at data in the DW represents information at

some moment in time but this data varies from moment to moment. Therefore, data is time

stamped to know moment for which it is valid.

Non-Volatile: DW data is read-only and no update in place is allowed. As a result, it is

possible to have current data as well as data at earlier moments. That is, a DW collects

historical information. Since a DW is non-volatile, it is refreshed periodically, and at refresh

time, a fresh snapshot of the data is loaded.

Definition 2: (Dayal et al., 2009) says that a DW “…consolidates data from several

operational databases, and serves a variety of front-end querying, reporting and analytic

tools”.

The foregoing definitions show that DW systems are different from traditional functional

systems. A functional system is for transactional activity. Data Warehouses on the other hand

are set up to cater to the decisional needs of decision makers or knowledge makers.

According to (Gam and Salinesi, 2006) goals of a traditional functional system are different

from those of a DW. The former “implement” business rules. The users expect the system to

support achievement of business processes. The users’ of a DW are decision makers’. They

use the DW to “monitor” business processes.

20

There are also differences in the way data is gathered in the two kinds of systems (Gam and

Salinesi, 2006). For, a functional system, data comes from transactional activity and this data

follows CRUD life cycle. DW data is collected from various data sources and data here is

preserved as historical data.

1.5.1 Data Warehouse Development Strategies

There are two broad DW development strategies, those of Inmon (Inmon, 2005) and Kimball

(Kimball, 1996). In Kimball’s approach individual data marts, DM, are built independently

with each data mart representing a subject specific view. Thus, a typical DW system consists

of a collection of multiple data marts connected together.

The two development strategies are shown in Fig. 1.4. Consider the top half of the figure

first. Using Kimball’s approach, data specific to a data mart is extracted from OLTP by the

ETL process. This is then loaded to form the specific data mart, data mart1. Again, data

specific to the next data mart, data mart2, is extracted and ETL performed. By following this

process individual data marts are built.

However, as the number of DMs increase, the problem of inconsistency between some DMs

is noticed. Such DMs are integrated, which typically involves identifying conformed

dimensions and facts. It is interesting to note that integration is done even as other DMs are

developed independently. If inconsistency arises again, between the newly built DMs and an

integrated DW, integration is performed again.

21

Fig. 1.4: Difference between Kimball’s and Inmon’s DW development strategy

This process is conceptualised in Fig. 1.5 by the independently developed data marts DM1,

DM2 to DMn. When the inconsistency problem arises, then the data marts are integrated (the

edges in Fig. 1.5) to develop DW1 even as other data marts DMp to DMr are developed.

Now, the inconsistency problem arises again leading to yet another integration. The

underlying principle is that of inconsistency detection and correction. The worst case

situation is when the very first two data marts display invalid/inconsistent results.

Fig. 1.5: Integration of individual data marts

Now consider Inmon’s development strategy shown in the bottom half of Fig 1.4. In Inmon’s

approach a full DW system is built and DMs are derived from it. Thus all the data that is

DM1 DM2

DW1

DMn

DMp DMr

DW2

Inconsistency

Inconsistency
Integration

Integration

22

required is Extracted from the OLTP systems, Transformed and Loaded to make the Data

Warehouse. This is similar to the schema-subschema relationship found in data base

technology, data marts are analogous to subschema whereas the Data Warehouse is the

schema.

1.5.2 Operational Nature of Decision making

Underlying the DW movement is the assumption that the DW is needed for taking decisions

for running an organization. These decisions can therefore be said to be operational in nature,

or that, a Data Warehouse supports operational decision making.

Consider the second generation of Data Warehouse systems. In Inmon’s DW 2.0 (Inmon et

al., 2010) architecture, three components are addressed, Data architecture, Infrastructure and

Unstructured data. Data is divided into four sectors: Interactive sector with ‘very current’

transactional data; Integrated sector with current data on hourly, daily or real time basis; Near

line sector with historical data; Archival sector with data older than near line data.

Unstructured Data makes it possible to store text, images and other such forms of data.

However, notice in terms of decision making, it is still of the operational kind.

In Imhoff and White’s DSS 2.0 (Imhoff and White, 2008), there is compartmentalization of

operational, business analytics and content analytics in separate modules. The authors

recognize multiple levels of decision makers for long term goals. In terms of decision

making, the nature continues to be operational.

23

1.6 Data Warehouse Failure Statistics and need for RE

Notice there is no mention of RE while building DW systems. This was indeed the case with

Inmon (Inmon, 1996) observing that, in fact, requirements are the last thing to be discovered

while building DW systems. However, this has undergone a change. Whereas from a

theoretical point of view, researchers extended the gains made in transactional systems

development to Data Warehouse systems development, results from real Data Warehouse

projects were also coming in. Data Warehouse failure statistics highlighted the crucial role of

RE in mitigating system failure (Alshboul, 2012). Hayen (Hayen et al., 2007) refers to

studies that indicate the typical cost of a Data Warehouse project to be one million dollars in

the very first year. However, these projects are very risky: one-half to two-third of most Data

Warehouse projects fail. One of the causes of this failure (Alshboul, 2012) is inadequate

determination of the relationship of the DW with strategic business requirements. These

statistics reinforce the need for RE for decisional systems.

1.7 Influence of Transactional RE on Data Warehouse RE

There is enough evidence of the influence of transactional RE (TRE) on Data Warehouse RE

(DWRE). Concepts like goals, scenarios and goal-scenario coupling have been adapted to fit

in the DW context. While TRE is for transactional activity, DWRE is used to support

decision making. Thus, in TRE, the focus is on discovering system functionality and

associated non-functional requirements, NFRs, in the case of DWRE, information to support

decision making needs to be discovered.

While comparing goals of TRE with that of DWRE approaches, one finds the introduction of

some additional concepts. This was in order to make goal models elicit information rather

than functionality of transactional systems. Thus, along with AND/OR goal hierarchy of

24

TRE, additional concepts like decision and information nodes along with goal-decision edges

and decision-information edges was developed in (Prakash and Gosain 2003; Prakash and

Gosain, 2008). Similarly, information requirement, goal-business process link among others

was seen in (Mazón et al., 2007). There was also a movement to develop a view of goals

which was different from TRE goal. In this regard, goals were viewed as describing

nature/purpose of a service (Boehnlein and Ulbrich, 1999), as a quality measure (Bonifati et

al., 2001) among others. The prominence of GORE in DWRE can be clearly seen by the

number of goal oriented DWRE techniques.

Bidirectional Goal-Scenario coupling has been adapted to Decision-Information scenario

coupling by Prakash and Gosain (Prakash and Gosain, 2008). When comparing scenario of

TRE and information scenario here, one finds that while the former specifies goal

achievement, the latter specifies information. Further, a scenario illustrates main task and its

variations and exceptions while an information scenario reveals information of main

decisions and variations of decisions. As for the differences between Goal-Scenario coupling

and Decision-Information scenario, the former helps discover new goals while the latter helps

discover new decisions. Other than the above mentioned technique of (Prakash and Gosain,

2008), other DWRE approaches that use goal-scenario coupling have not been found.

1.8 Data Warehouse Requirements Engineering Techniques

DWRE techniques identify DW structures like facts, dimensions and finally arrive at star

schema. DW structures are identified from existing systems, information gathered from

users’ of the DW or a combination of the two. Based on this, DW RE techniques are

classified into two broad categories: Supply driven and Demand driven.

25

a) Supply driven techniques: the basic approach is bottom-up where existing

transactional systems are used to arrive at DW structure (Winter and Strauch, 2004). Two

such techniques are reviewed here, (i) that starts from existing databases and (ii) that start

from ER schema of operational systems.

(i) Database Driven Approach (Golfarelli et al., 1998; Golfarelli and Rizzi, 1999): This

approach starts off with analysis of existing database systems, which is followed by

determination of requirements of the Data Warehouse. The DW designer in collaboration

with the managers of information systems collect documentation of the existing system and

produce database scheme of either the entire information system or the part that is of interest.

The database scheme created is used by the DW designers and the end users of the DW to

produce a choice of facts and the preliminary workload. The authors propose rules to help in

the selection of facts. The preliminary workload helps in the identification of dimensions and

measures. Taking the facts and the preliminary workload defined, the dimensional schema is

produced which consists of fact schemes. (Prakash et al., 2009) states that since, information

contents of DW are defined by data present in the operational data sources, information is

limited to existing databases. Identification of external sources and other internal sources is

difficult and thus information related to them is not captured.

(ii) ER schema driven approach: DW structure is also obtained by starting with ER

schema. This approach produces measures and dimensional attributes of the Data Warehouse

after starting from ER schemas of databases. Described below are techniques by Hüsemann

(Hüsemann et al., 2000) and by Moody (Moody and Kortink, 2000).

 (Hüsemann et al., 2000): The process of arriving at DW structures starts by the DW

designer, in collaboration with the managers of information systems, collecting

26

documentation of the existing system. From this database scheme of either the entire

information system or the part that is of interest is created. In the next step, the

database scheme created is used by the DW designers and the end users of the DW to

produce a choice of facts and the preliminary workload. Rules to help in the selection

of facts are proposed by the authors. The preliminary workload helps in the

identification of dimensions and measures. In the conceptual design step, using facts

and preliminary workload defined in the previous step, a dimensional schema is

produced. This schema consists of fact schemes obtained by applying algorithms

defined for the same.

 (Moody and Kortink, 2000): This method also derives Data Warehouse structures

from enterprise data models like ER schemas. They even insist on developing a model

if one does not already exist. After obtaining ER schema, in the next step entities are

classified as transaction, component or classification entities. Transaction entities

form fact tables. Component entities form dimension tables and answer the “who”,

“what”, “when”, “where”, “how” and “why” of business events. Similarly,

classification entities form dimension tables. All hierarchies that exist in the data

model are identified.

(Kimball, 1997) notes that “Entity relation models cannot be used for enterprise Data

Warehouses”. Information is limited to what has been captured by the ER diagram. In the

case of Hüsemann‘s model, ER schemas do not cater to temporal information. No guidance is

available on whether such information needs to be captured. There is limited guidance in

identification of facts, dimensions and measures. Determining aggregates was also a manual

process with no guidance available. (Moody and Kortink, 2000) offers no guidance in

selecting which transaction entities are important for decision making and therefore become

27

facts. A precedence hierarchy for resolving ambiguities that arise during classifying entities

has been defined. But again no guidance in terms of an algorithm has been provided. Further,

these techniques do not give primary importance to users’ perspective (Giorgini et al., 2005).

This means that the DW designer ends up deciding on the relevance of data instead of the

user (Schaefer et al., 2011).

b) Demand/Requirement driven- These techniques start by determining information

requirements of DW users and then arrive at DW structures. Some literature divides demand

driven approaches into user driven and goal driven. Whereas the former elicits information

requirements from business users of the system, the latter elicits them from top level

management of the organization. Each of these approaches is considered below.

(i) USER DRIVEN APPROACHES

This is a bottom-up approach where from users information requirements are elicited. The

focus here is on developing requirements analysis techniques and improving participation of

business users (Golfarelli, 2010). In the case of user driven approach, users are involved and

have a clear understanding of the system being built. Discussed below are some techniques

followed by their drawbacks.

 (Paim and Castro, 2003) proposed the DWARF technique where they adapted

traditional requirements elicitation techniques like interviews, workshops, prototyping to

elicit requirements from users’ perspective. They designed DW functionalities (ETL) using

the use case model. They developed EW-ENF for non-functional DW requirements like

indexing, schema loading etc.

28

 (Winter and Strauch, 2003) proposes a cyclic process which maps the information

demand made by middle level managers and knowledge workers with information supplied in

operational databases, reports etc. They have an ‘initial’ phase, an ‘as is’ phase and a ‘to be’

phase. In the first phase they argue that since different users can result in different data

models, the dominant users must be identified. This helps target a specific business process.

In the ‘as is’ phase, an information map is created by analyzing (a) existing information

systems and (b) reports that the users commonly use. According to the authors, analyzing the

latter helps identify more sources of information that one is not commonly aware of. In the

‘to be’ phase, information demand is elicited from the user by asking business questions. The

information supply and information demand is compared and inconsistencies analyzed.

Finally, using semantic models information requirements are modelled.

 (Bruckner et al., 2001) DW requirements are defined at different abstraction levels by

the authors: Use Cases are used for communication between stakeholders, domain experts

and DW designers. Use cases provide the input at the abstraction level ‘detailed system

requirement’. The authors propose an incremental method to develop use cases. Facade

iteration is the first iteration where outline and high level descriptions are captured. Its

purpose is to identify actors, create placeholders for other major iterations. The information

gathered is minimal as it captures names and short descriptions of actor interactions with DW

system. The next iteration is Filled iteration where ideas of use cases, generated during the

Facade iteration, are broadened and deepened. They generally include ‘functional’,

information requirements plus requirement attributes. Since the requirements gathered can be

too large, in the Analysed iteration, use cases are first individually evaluated for errors and

omissions, then prioritized and pruned. This is done so that at the end only the use cases that

provide sufficient information to build DW system are left. The next iteration is Optimized

29

iteration. Here conflicting/inconsistent use cases are identified and reassessed. Unlike the

previous iteration where each use case is considered individually, here all the use cases are

considered together to understand their effect on each other. The last iteration is Finished

which includes touching up and fine pruning use cases so that they are complete and can be

used for design of the DW system.

 (Prakash and Bhardwaj, 2012) The authors divide their requirements engineering task

into an early information part and a late information part. In the former, unstructured

information for decision making is determined and in the latter unstructured early information

is converted into more structured form like facts, dimensions.

Early information phase starts with the notion of a target. A target is defined as <aspect,

indicator> where aspect represents quality, work area, work unit and indicator is a “metric

whose value identifies ‘what is to be achieved’”. There are two reductions defined by the

authors (a) aspect driven where aspect of the top level target is reduced into sub aspects and

sub indicators are determined to form sub-targets; (b) indicator driven where indicators of top

level targets are reduced into sub indicators, their aspects determined and sub-targets formed.

A target hierarchy is thus formed by the two reduction processes.

For targets to be achieved, choice sets are associated with targets (see Fig 1.6). This is where

decision making is done. The authors define choice set as “a pair <CSO, O> where CSO is

the choice set objective and O is the set of alternatives for meeting the CSO”. Relationship

‘fulfils’ captures the relationship between target and choice set. Similar to aspect and

indicator reduction, CSO and O can also be reduced to build hierarchies. These hierarchies let

us know “how it is to be achieved”.

30

Fig. 1.6: Meta model for target with a choice set (Prakash and Bhardwaj, 2012)

In order to select an alternative from the choice set, pertinent information is required. This is

elicited using the techniques of (Prakash et al., 2009). Their entire RE process therefore has

the following steps: Determine top level aspects, business indicators for each aspect,

formulate top level targets, decompose targets, identify CSO, build achieves hierarchy,

identify information. In order to perform these steps, brainstorming sessions, management

reports can be used.

Summary of User driven approaches

Broadly, user driven techniques suffer from the following disadvantages:

 Users’ requirements are difficult to elicit (Golfarelli, 2010). Some may not be able to

describe their requirements (Boehnlein and Ulbrich, 2000)

 Requirements of users’ keep changing through the project (List et al.,2002; Golfarelli,

2010)

 Users’ do not see organization from a “broad angle” and so the requirements are

“narrow” (List et al.,2002)

 There is lack of traceability between requirements model and final DW model (Mazón

et al., 2007)

A I CSO O

relevant achieves

1

n1

n

1
n

n 1

fulfills

target Choice set

1
n

31

(ii) GOAL DRIVEN APPROACHES

Goal driven techniques follow a top-down approach where top level managers define their

goals and further refinement of these goals is done through goal decomposition techniques.

Unlike user driven approach, users are not involved the process of system design. Some

techniques of this approach have been described below followed by their drawbacks.

 (Gam and Salinesi, 2006) CADWA is a goal based approach that identifies ‘early

requirements’, refines requirements and concretizes them into DW structures. There are three

stages to this process a) eliciting requirements b) designing DW fragment model and c)

integrating DW fragment models. Here, requirements are captured by ‘anticipating’ decision

makers’ requests. This is done by studying overall business objectives and opportunities,

decision makers’ macro and micro business plans. The Action plans that are obtained are

finally converted into DW models.

 (Prakash and Gosain, 2008) The requirements engineering process discovers the

decisions of interest as well as the relevant information. It is assumed that these decisions are

themselves based on a discovery of organizational goals. The set of goals, decisions, and

information revealed by the requirements engineering process are all organized in a Goal –

Decision – Information (GDI) schema (see Fig 1.7).

The authors view a goal “as an aim or objective that is to be met”. A goal is non-operational,

passive which means that it cannot perform or cause any action. A decision is “a

specification of an active component that causes goal fulfilment”. Similar to a goal, a

decision can be simple or complex. Whereas the former cannot be decomposed into simpler

ones, the latter consists of simple or complex decisions. Relationship between goals and

32

decisions is through the association ‘is influenced by’. Information is required for decision

making and this is captured by ‘is required for’ association.

complex decision

complex goal

simple decision

GOAL

information

DECISION

 consists

of

 consists

of

action Is associated

 with is influenced

 by

 is required

for

1,N

1,N

1,N

1,N

simple goal

1,N 1,N

and/or

and/or

Fig. 1.7: GDI schema showing Goal-Decision and Information (Prakash and Gosain, 2008)

The GDI schema forms the basis of development of the ER diagram from which the

properties of the star schemas to be developed are determined. The complete set of properties

including aggregates and history are postulated. The design includes information additional to

mere facts and dimensions by including aggregates and history.

 (Mazón et al., 2007) The authors propose a GORE technique for DWRE based on i*

methodology. They relate goals supported by DW with information requirements. Facts and

dimensions are discovered from information requirements. Their approach is integrated with

model driven development (MDA) which defines a computation independent model (CIM)

and platform independent model (PIM) at the conceptual level. CIM models goals and

information requirements and PIM models the multi-dimensional structures. Query-View-

Transformation (QVT) is used for transformation between these models.

33

CIM is specified by the i* framework which is modified (see Fig 1.8) as follows. An

intentional actor refers to a decision maker involved in decisions making process. For each

intentional actor, intentional elements are goals, tasks and resources and intentional

relationships are means-ends, decomposition link. To the resources stereotype, concepts of

Business Process, Measure and Context have been added. Goals can be of three kinds,

strategic: highest level of abstraction, decision: next level of abstraction, information: lowest

level of abstraction. This hierarchy is used for discovering goals using refinement.

Fig. 1.8: Modified i* framework for CIM (Mazón et al., 2007)

The process first starts with identification of decision makers. Strategic goals are elicited for

each decision. SD model is built. SR model is then built for each decision maker. Strategic

goals are decomposed into decision and decision into information. Information requirements

are identified from information goals. QVT transformation is applied to the CIM to obtain

PIM which is the conceptual model. Fact, fact attribute, dimensions and dimension

hierarchies are identified in PIM. They are represented using UML class stereotypes as

shown below in Fig 1.9.

34

Fig. 1.9: UML class stereotypes (Mazón et al., 2007)

This technique has been used by (Leal et al, 2013) to develop a business strategy based

approach.

 (Leal et al., 2013) proposes arriving at DW structures by using a business oriented

approach. There are four phases as seen in Fig 1.10: business strategy analysis using

VMOST, aligning business strategy with DW using BMM model components, building

conceptual model based on i*, arriving at MD model. The last two phases use the method

described above by (Mazón et al., 2007).

Fig. 1.10: Business Oriented approach using VMOST (Leal et al., 2013)

35

Business Strategy is analysed by VMOST analysis. For this, first business actors (decision

makers) are identified. DW is also considered as an actor. Components namely, vision,

mission, strategies and strategic goals are obtained from the actors. Intentional elements like

objectives, tasks, tactics and relationships represented as means-ends links are obtained next.

Decisional goals are obtained for strategic goals and Information goals from decisional goals.

Once the strategy elements are elicited, alignment is verified using BMM like whether

strategy is a component of Mission, strategic goal is amplifying vision, mission is making

vision operational etc.

 (Boehnlein, and Ulbrich, 1999; Boehnlein, and Ulbrich, 2000) This approach derives

the Data Warehouse structure from business process models. There are four stages in the

process. The first three are based largely on the SOM methodology while the last stage deals

with identifying Data Warehouse structures. The link goal-service-business process-metric is

followed to discover goals and services of the system.

In the first stage of the derivation process goals of the system are identified. These goals are

then decomposed into sub-goals. The business process is then analyzed. Here a distinction is

made between a main process and a service process. Decomposition rules and feedback loop

are applied several times to obtain a detailed interaction schema. In the third stage business

objects are identified. The dependencies between the objects, attributes are assigned to the

objects. In the last stage initial Data Warehouse structures namely dimensions and measures

are added to the object schema.

36

Summary of GORE in DWRE

The first drawback is the inherent limitation of goal orientation itself. Recall that (Horkoff and

Yu, 2012) has observed that while goal modelling has been used for a number of case studies,

it is not yet widely used in practice. Goal reduction is also not a straight forward process. The

approach of (Boehnlein, and Ulbrich, 1999; Boehnlein, and Ulbrich, 2000), gives us no

guidelines about movement from goals to business process and thereafter to Data Warehouse

structures. In the goal stage, it does partly rely on goal reduction but does not adopt the

decision perspective. (Prakash and Gosain, 2008) move away from goal

decomposition/reduction as a way of processing goals and define goal-decision association as

a way to do DWRE. However, decisions are defined from the narrow perspective of goals of

the system.

c) Mixed Driven

Mixed driven techniques were developed to overcome the disadvantages of supply driven and

data driven techniques when used separately. As the name suggests, they use a combination

of these techniques. Three such techniques have been discussed below.

 (Bonifati et al., 2001) They obtain DW structures from users’ goals and operational

databases. There are three levels of analysis done (i) top down for the users’ goals (ii) bottom

up for operational databases, and (iii) integrated analysis which integrates DW structures got

from top down and bottom up analysis methods.

Top down analysis - Users’ requirements are collected through traditional techniques like

interviewing and brainstorming. Their goals and needs are expressed via the Goal-Question-

Metric approach. These goals are further analyzed, decomposed into simpler sub-goals. More

detailed analysis of these goals is usually needed to elicit information in order to produce the

37

star schemas. Additional information regarding the nature of these goals is collected on GQM

Abstraction sheets. Ideal star schemas are extracted from these abstraction sheets. The

requirements captured here are functional in nature and are independent of the underlying

data in the operational data sources.

Bottom up analysis – The entity relationship diagram at the conceptual level of an existing

operational database is analyzed. ER schema is converted to a Connectivity graph (CG) using

certain rules defined in the paper. All n-ary (n>2) and many-to-many relationships are

converted to one-to-many relationships. Entities having additive attributes are treated as a

potential fact entity. They form the centre node and dimensions reachable by one-to-many or

one-to-one relationships are all possible dimensions for this fact. Thus, from this graph one

obtains a snowflake graph. Candidate star schemas are derived from the snowflake graphs.

Integration analysis – The star schemas got from the previous two steps namely the ideal and

the candidate star schemas are matched. A metrics for selection is applied and the star

schemas are ranked. The designer then chooses the best fit for system design.

 (Giorgini et al., 2005) The GRAND approach is an extension of the Tropos

methodology (Bresciani et al., 2004). It divides the requirements elicitation process into two

perspectives, the organizational perspective and the decisional perspective. The former

models the requirements of the stakeholders while the later is from the perspective of

decision makers. Both perspectives produce models having the following two steps in

common: goal analysis and fact analysis. However, the actors for both the perspectives are

different, stakeholder in the case of organizational model and decision maker for decisional

model.

38

In the goal analysis phase, goals for the actor are represented using an actor diagram. Each

goal is decomposed by AND/OR decomposition and the rationale diagram built. Facts are

associated with goals in the rationale diagram and added to the diagram in the fact analysis

phase. The organizational model extends this diagram adding attributes to the facts. These

attributes can be dimensions or measures.

The decisional model has dimension and measure analysis as additional steps. The goals of

the actor, who is the decision maker involved in the decisional process, are analyzed and

decomposed. There could be some goals that were not discovered in the organizational

modelling that could surface here. Similar to organization modelling, facts are associated

with the goals of actors. Finally a set of dimensions and measures are associated with the

facts.

This technique can be used in a mixed driven (supply and demand driven) as well as demand

driven framework. The supply driven part is used to identify attribute hierarchies with the

help of data source schema. In the absence of source schema, this technique is used within the

demand driven framework in which case attribute hierarchy identification is left for the

requirements engineer to identify by interacting with domain experts. Within the mixed

driven framework, decisional model facts are mapped onto entities or n-ary associations of

the operational database schema. Dimensions and measures are mapped using the attributes

of organizational model as a bridge. For each successful mapping, the many-to-one

associations are used to generate the attribute hierarchies. Algorithm of (Golfarelli, 1998) is

then used to generate the fact schema.

39

Summary of Mixed driven approaches

According to the approach of (Giorgini et al., 2005), there is a change of perspective required

that views nodes of a goal hierarchy as goals in the first perspective and as decisional

alternatives later. This treats all alternatives uniformly and deals with ‘what is to be achieved’

dimension. In the approach of (Bonifati et al., 2001), the set of decisions is implied by the

goal-question framework that is developed. Further, there is little guidance on what questions

to ask. Yet, the metrics determined are critically dependent on the questions associated with

goals.

1.9 Arriving at the Problem Statement

The discussion above brings forth the following drawbacks currently facing DWRE:

1 Lack of Data Warehouse support for upstream decision-making in an organization:

As mentioned earlier, DW systems have been built, extensively, to provide

information for the needs of operational decision makers. Thus, information support

for daily decision making is provided to all levels in an organization. IBM mentions

two interesting points in (IBM, 2013). Firstly, “Decision making happens at every

level, in every function, in every region of your organization”. Secondly, “Every one

of those decisions is based on the information people have on hand”. As already

mentioned (Imhoff and White, 2008) has already addressed this issue but only for

operational decision-making.

However, the policies of an organization and rules of business also need to be decided

upon (BRG, 2010) for a business. Decision making in an operational business is thus

done in the context of policy and rules decisions. These latter are thus upstream to

40

decisions about business operations and are not supported by DW technology. Thus,

there is a need to develop specific techniques for such strategic decision making.

2 Limited understanding of the Decision-Information Link :

Decisional and Information perspectives have been introduced by Giorgini (Giorgini

et al., 2005) and Prakash and Gosain (Prakash and Gosain, 2008) respectively.

However, the nature of the link between a decision and information relevant to it, has

not been studied. There is a need to explicitly model this relationship and treat both

decision and information as first class concepts.

3 Limited techniques specific to Information Elicitation:

DWRE techniques are highly oriented towards arriving at information in the form of

Facts, Dimensions and Measures. This is either done directly without analyzing

information and without sufficiently exploring information before structuring it.

Techniques like (Giorgini et al, 2005; Gam and Salinesi, 2006; Mazon, et al., 2007)

belong to the former class and techniques like (Boehnlein and Ulbrich, 1999; Bonifati

et al., 2001; Prakash and Gosain, 2008; Prakash and Bhardwaj, 2014) belong to the

latter. Even though some investigation of information was done with Information

scenarios of (Prakash and Gosain, 2008) there is no guidance provided by the authors

on postulating Information scenarios.

While arriving at MD structures is essential, it is equally important to elicit, examine

and analyze information that is unstructured. Evidently, one needs to find ways by

which information can be elicited in a guided manner.

41

4 Integration of Upstream and Operational DW:

Information across DW systems can be common. The solutions that exist involve

identifying conformed dimensions and facts and integrate. In other words, all existing

techniques talk about star schemas/data mart integration. However, this means that

too much time is taken up in first arriving at the star schema and then in integrating

them. Since the point of integration is downstream at the conceptual design step, it is

likely that, requirements specification of the integrated system is out of step with the

real system. Lastly, in terms of availability of an operational DW, a logical and

physical DW is available only after the entire integration process is completed.

Thus, the problem statement of the thesis is:

To develop an RE approach for upstream or strategic DW systems and integrating, at the

requirements level, strategic with operational DWs.

1.10 Proposed Solution

The solution to the above problems can be broken down into the following sub-goals:

1. Defining upstream and operational decisions: The thesis defines two broad categories

of decisions: Imperative decisions and Managerial decisions. Managerial decision making

deals with strategic decision making. One kind of Managerial decisions’ is those that deal

with formulation of norms and standards that are to be followed in organizations. These

decisions are Policy Decisions. The other kind of managerial decisions are those that are

concerned with the enforcement of given policies. The decision problem here is that of

defining an appropriate set of rules that the organization will follow during its

operations. These decisions are Policy Enforcement Rule (PER) Decisions. This leads us to

42

Imperative decisions. These decisions are derived from policy enforcement rules and consist

of operational actions. The imperative decision making problem is that of selecting the

most appropriate action in a given situation and one which at the same time does not

violate policy enforcement rules.

2. Developing generic decision, information meta models along with information

elicitation techniques: There are two kinds of decision support needed, one for policy

enforcement rule formulation decisions and the other for operational decisions. In order to

identify the needed information for supporting this decision making, the thesis proposes a set

of generic techniques for eliciting information that shall be stored in the DW. In other

words, these information elicitation techniques apply to both kinds of DWs. The thesis also

proposes a generic meta-model for decision and information to define the structure of

decisions and information in both DW. Further, the thesis proposes to conceptualize the

decision-information link as a decision-requirement and proposes a meta-model for the

same.

3. Providing decision Support for policy enforcement rule formulation decisions and

operational decisions: The left hand side of Fig 1.11 shows the two DWs, Policy Enforcement

Rule DW and operational DW. Notice that they are independent of each other. This

independence can be a source of problems if there is some common information between

them. This commonality leads to replication of information. This thesis shows that

information replication leads to the problems of (a) Inconsistency in decision making, and (b)

Loss of business control.

43

Fig. 1.11: The overall process of arriving at an integrated enterprise wide Data Warehouse

4. Integrating Data Warehouses: The thesis proposes an integration technique that integrates

at the Requirements level. This is in contrast to the data mart approach discussed in section

1.5.1 in which integration is done once data marts become operational. The proposal in this

thesis is that DW integration is performed the moment the set of required information is

obtained for a pair of DWs. Thus, integration is moved from the star schema level, where

facts and conformed dimensions are integrated together, right upstream to the requirements

engineering phase. By this, effort in design and construction of DW to-be is reduced. This is

shown by the broad arrow in Fig. 1.11. The figure also shows that the same integrated DW

can be used by both policy enforcement rule decision makers as well as operational decision

makers.

1.11 Outline of the Thesis

Chapter 2 defines typology of decisions in the ‘Decision Environment’ namely, Managerial

set of decisions which can be Policy level or PER level decisions and Imperative decisions

which are operational in nature. The generic decision requirement model, information model

44

and decision models are presented. This is followed by describing three generic information

elicitation techniques that are applicable to every level of decision making to elicit

information.

Chapter 3 discusses PER life cycle to formulate PER and arrive at the Data Warehouse. The

chapter proposes representing organizational policies in an extended first order logic.

Thereafter, the chapter proposes guidelines that are applied to each of the four types of

policies to arrive at policy enforcement rules. Also, early information is elicited using the

generic techniques ENDSI, MEANSI and CSFI analysis. Finally, the chapter proposes

guidelines to convert early information into ER diagrams by first generating individual and

then integrating them. ER schema can then be used to identify facts etc by existing

methodologies.

Chapter 4 discusses operational life cycle. The chapter discusses expressing actions of PER

into operational level actions, eliciting early information elicitation using ENDSI, MEANSI,

CSFI analysis techniques. Finally, the chapter discusses the conversion process of early

information into ER diagrams and then into star schema by existing methodologies.

Chapter 5 presents a Vertical Integration life cycle. The chapter highlights the problems in

keeping PER and Operational DW systems as separate systems. After establishing the need

for integration, the chapter justifies the proposed approach to integrate upstream.

Subsequently, a four step semi-automated integration approach is proposed having MetaData

Reader, Correspondence Drafter, Information Mapper and finally the Conflict Resolver.

45

Chapter 6 illustrates the process of arriving at EIper, EIop, and EIintegrated using AYUSH

medical domain. The elicitation process was applied to structural policies of AYUSH. The

chapter presents statistics of the study, lessons learnt and the result of applying these

learnings.

Chapter 7 discusses the implementation using ELISPE, ELISO and CADEI tools to arrive at

EIper, EIop, and. The approach is based on the models and techniques discussed in chapters 2,

3, 4 and 5. The architecture of the tools along with an explanation on the working of the

different components of the tools is described. To get a feel of the tools various screen shots

have also been included.

Finally, Chapter 8 summarizes the contribution of the thesis, present the conclusion and

discuss future scope of the work.

46

Chapter 2

The Decision Requirement and Information Elicitation

This chapter considers the decisional environment and shows that there are two kinds of

decisions, imperative and managerial. In order to take decisions, information is required. This

association is modelled as a tuple <decision, information> and refer to it as Decision

requirement. This chapter also develops a meta model for decision requirements and also

model the notion of a decision and information from the Data Warehouse perspective.

Thereafter, the next section discusses the manner in which information is elicited for given

decisions.

2.1 The Decisional Environment

There is a close relationship between the information systems and Data Warehouse of an

organization. The former are used to populate the latter through the ETL process. In the

opposite direction, the decision taken by using the Data Warehouse has the effect of changing

information system contents. This means that information systems operate in a decisional

environment. In other words, the decisional environment provides the context in which an

information system (IS) operates. This is shown in Fig. 2.1. When the information system is

sent a stimulus from the decisional environment then the functionality that responds to this

stimulus is invoked.

Stimuli can be sent by two different kinds of actors, IS administrators and IS operators. These

stimuli correspond to two kinds of decisions, managerial and imperative. Managerial

decisions are used to ‘initialize’ the IS where as the latter work within the initialized IS to

operate the system. For example, in a railway reservation system IS administrators initialize

47

train data whereas IS operators invoke functionality to make reservations and cancellations

using information set up by the IS administrator.

Fig. 2.1. Embedded IS in a Decisional Environment.

2.2. Nature of Decisions

Decision theory focuses on managerial decision-making and how organizations process and

use information in making decisions (Mullins, 2010; Jones and George, 2008). Turban

(Turban, 1998) considers decision making as the activity of manufacturing a new piece of

knowledge expressing commitment to some course of action. Makarov (Makarov, 1987)

formulates the decision-making problem as the pair <Ω, OP> where Ω is a set of alternatives

and OP is an optimality principle. The solution to <Ω, OP> is the ΩOP set selected by the

optimality principle OP. According to Simon (Simon, 1977) the decision-making process

consists of three phases, (a) intelligence, that involves searching for conditions that call for

decisions, (b) design, which involves inventing, developing, and analysing possible courses

of actions, and (c) choice, which implies the selection of a course of action from those

available.

Regarding selection of alternatives, one approach is to use a single criterion. However,

according to Roy (Roy, 2005), this is not sufficient when the consequences of the alternatives

Information System

Decisional Environment: rationale for stimulus

Stimulus

Invoked

function

48

to be analyzed are important or in the presence of multiple viewpoints and contradictory

criteria. Multicriteria analysis allows a more in-depth treatment in these situations. The goal

of multicriteria DM (MCDM) methods is to define priorities among alternatives according to

multiple criteria. The main five families of MCDM methods are: MAUT (Multiattribute

Utility Theory) (Keeney and Raiffa, 1993), AHP (Analytic Hierarchy Process) (Saaty, 1980),

outranking methods (Roy, 1996), weighting methods (Keeney, 1999), and fuzzy methods

(Fuller and Carlsson, 1996).

With regard to the kinds of decisions, (Gbande and Akuhwa, 2015) state that executives take

either of the two major types of decisions: programmed (structured) and non-programmed

(unstructured) decisions. McLeod and Schell (McLeod and Schell, 2001) classify decisions

along three dimensions, namely, the level of the organization at which a decision is taken, the

structuredness of decisions, and whether or not negotiation is required. Thus, they propose

the following types of decisions

 Management Level: Strategic, management control, operational control

 Structuredness: Structured, Semistructured, Unstructured

 Negotiation: Negotiated decisions, Unilatteral decisions

The Object Modeling group, OMG, in its Business Motivation Model (BRG, 2010)

conceptualizes a business in terms of policies and directives that govern their enforcement.

This suggests to us yet another classification of decisions that is based on the nature of the

task to be carried out, namely, policy formulation, determination of policy enforcement rules,

operational decisions.

49

The foregoing implies that there are two broad kinds of decisions in the decision

environment,

 Managerial: Managerial decision making deals with setting up the business. It is

strategic kind of decision making where the organization decides its policies and how

these shall be enforced.

 Imperative: Operational kind of decision making. This corresponds to our operational

decisions to manage the business processes and, in general, monitor that the operational

organization is working in accordance with the managerial decisions that have been

taken. Deviations, if any, call for corrective decisions.

It follows that imperative decisions can only be taken after managerial decisions have been

taken. Thus, Managerial decisions provide the context for the imperative decisions.

Managerial decisions are of two kinds, the policies to be followed and the enforcement of

these policies. The former is referred to as Policy formulation decisions and the latter as

Policy Enforcement Rule (PER) formulation decisions. Thus, managerial decisions can be

seen to be in two layers, Policy formulation decisions are first taken and then PER

formulation decisions are taken. Policy formulation can be done by following policies

defined by regulatory bodies or by best practices in the domain. Policy enforcement rules

deal with corrective actions that need to be taken when policy violations occur. Thus, policies

are the input to this layer. Only once policies are formulated can they be enforced. This

makes the Policy layer provide the context for Policy enforcement rule layer with the latter

nested in the former as can be seen in Fig 2.2.

50

Fig 2.2 also shows that Imperative decisions are nested in the policy enforcement level. The

set of corrective actions provided by the policy enforcement level are input to the tactical

level. In the tactical level a decision of which action is to be executed is taken.

Fig 2.2: The decision continuum

Since each layer addresses a different level of management in an organization, the decision

maker concerned with each layer also varies. So, the policy layer has upper management,

senior functionaries as decision maker, PER layer has a lower level of management and the

imperative layer has the lowest level of management as its decision maker.

Recall that while the Data Warehouse provides information for taking decisions, the

information system in turn populates the warehouse. Changes in the information system are

reflected in the Data Warehouse when the latter is refreshed. This interaction between the IS

and the DW is shown by the dotted line in Fig 2.2.

To further illustrate the difference between the three layers consider the following example.

Different hospitals can adopt different doctor: patient ratios, 30:1, 20:1 or 15:1. The decision

of which ratio to adopt is taken by managers and other senior functionaries of the hospital.

51

This decision is a Policy level decision. Fig 2.3 shows the choice set as {1:30, 1:20, 1:15}.

The decision maker selects one from this choice set. Once a particular ratio is adopted as a

policy, the next question is of enforcement of the policy for which rules have to be defined.

Fig 2.3: The difference between the different layers of the decision continuum

Now, consider the next inner layer. Assume that the policy ratio of 1:30 is selected. This will

be input to the PER decision layer. Events like buying/discarding equipment, introducing a

new specialty etc may increase/decrease the number of patients and thus alter the ratio.

Corrective actions like hire new doctor, transfer doctor from another wing may have to be

taken to increase the number of doctors and remain compliant with the policy. Now, which

corrective action is to be part of the enforcement rule is the decision problem for a PER

decision maker. Thus, the choice set presented is {select correctiveAction1, modify

correctiveAction1, reject correctiveAction1} and depending on the choice exercised a

particular corrective action either directly becomes part of the PER, or a modified version is

adopted. If the choice is to reject the corrective action, then naturally the action will not be

part of any PER.

52

For the imperative layer, the PER formulated in the PER layer are input and the decisional

problem is to select which corrective action is to be taken. For example, the decision maker

can decide to transfer a doctor.

For decision making at each level the Data Warehouse is consulted. Relevant information for

each level must be present in the Data Warehouse. Each layer can have independent Data

Warehouses. However, recall the decision continuum establishes that any decision at the

imperative level must not violate policy enforcement rule and decisions at policy enforcement

rule level must not violate related Policy. This means separate, independent solutions for

strategic and operational decision making cannot be provided. An integrated enterprise wide

resource, the integrated DW is needed that can address strategic as well as operational

decision making.

2.3 Meta-Model of Decisions

The decision meta-model, expressed in UML notation, shows three kinds of Decisions:

Atomic, Abstract and Complex. An atomic Decision is the simplest decision that cannot be

decomposed further into its parts. An abstract Decision is arrived at by using

generalization/specialization principles. This gives rise to ISA relationships between

decisions. Finally, a complex Decision is composed of other simpler decision requirements.

Complex decision requirements form an AND/OR hierarchy. (The notions of this hierarchy

have already been introduced in Chapter 1.) Notice that each decision belongs to either the

Managerial or Imperative level in the Decision Environment.

53

Fig. 2.4: Decision Meta Model

To illustrate an abstract Decision, consider an automobile plant that makes 1-tonne and 13-

tonne trucks. Let the decision of interest be Set up New Assembly Line. This decision can be

specialized into two decisions Start New 1-tonne Line and Start New 13-tonne Line

respectively. Each of these is an ISA relationship with Set up New Assembly Line as shown

below in Fig 2.5. in shared target style of UML.

Fig 2.5: An Abstract Decision

The introduction of an abstract decision is motivated by the consideration as follows. It is

possible to treat the specialized classes of an ISA hierarchy as flat structures by introducing

attributes in atomic/complex classes, and, vice versa, it is possible to convert classes with

common attributes into an ISA hierarchy. Thus, whether hierarchical abstraction is used or

not in a particular situation is only determined by the clarity that it brings to a schema. An

54

ISA hierarchy brings out commonality explicitly, which remains hidden if an attribute is used

instead of it.

Our inclusion of an abstract decision provides for explicit representation of ISA structures.

Thus, in our example, the complex decision, Set up New Assembly Line is a generalization of

its two specialized decisions, Start New 1-tonne Line and Start New 13-tonne Line

respectively. These latter two decisions inherit the properties Set up New Assembly Line, that

is, the AND/OR structure of Fig. 2.6b.

Now, the Decision Set up New Assembly Line is a complex one having two component

decision requirements, Create separate profit centre and Merge with existing profit centre

(see Fig. 2.6 (a)). An OR link connects these two components so as to define the complex

decision.

Fig 2.6 (a): A Complex Decision with OR link

Fig. 2.6 (b) shows an example of a complex decision with a combination of AND/OR links.

Two more components are shown, Decide Capacity and Choose Location with an AND link

to the existing OR link between Create separate profit centre and Merge with existing profit

centre.

55

Fig 2.6 (b): A Complex Decision

2.4 Modeling Information

Since information is required to take decisions, we introduce our information model here. Let

there be a set of decisions D = {D1, D2…. Dn}. Let I1, I2…. In be the sets of information

relevant to the corresponding decisions of D where the set Ii = {Ii1 , Ii2 , Ii3…. Iik}, i between 1

and n. We shall refer to Iik as an instance, member or element of Information interchangeably.

Then, the set of relevant information to D, represented as Information in Fig. 2.7 is defined as

the union of I1, I2…. In. In other words,

Information = I1 U I2 …. U In = {I such that I belongs to Ik, k between 1 and n}

Now three kinds of information are relevant to data warehousing (Kimball 2002; Inmon,

2005), detailed information which is at the lowest level of granularity, summarized or

aggregated information, that is obtained from other detailed/aggregated information, and

historical information that may be the history of detailed information or of aggregated

information. This information has its own dimensions. For example,

 Detailed information: sales transaction

 Aggregated information: weekly summary of sales

Set up New Assembly Line

Create Separate Profit Centre Merge with existing Profit Centre

OR

Decide Capacity Choose Location

AND

AND

56

 Historical information: sales for the last three months, weekly sales for the last three

months

Fig. 2.7 introduces the corresponding typology, Detailed for detailed information and

Aggregate for aggregated information. The figure shows that an aggregate is obtained by the

‘Is computed from’ relationship between Aggregate and Information.

Fig. 2.7: Information Model in Data Warehouses

Historical information is represented by the relationship ‘History of’ between Information

and Temporal unit. The cardinality of this relationship shows that it is possible for

information to have no temporal unit associated with it. In such a case, only current

information is to be maintained. However, when a temporal unit is associated with

information then the number of years of history to be maintained may also be of interest. This

is captured, as shown in the figure, by the attribute Period.

Is computed

from
Temporal Unit Information

Detailed Aggregate

History of
1..*

0..*

Period

Value-set

Takes

value from

1..1

Property

Categorized

by

1..*
1..*

1..*

0..* 1..*

57

Data warehouse schemas are multi-dimensional (Kimball, 2002; Inmon, 2005) with fact data

and dimension data. This is represented in Fig. 2.7 by the relationship, categorized by,

between information and information. An example of a fact and its dimension is sales by

salesperson. Here, sales is a fact and salesperson is its dimension. In terms of Fig. 2.7, fact is

categorized by salesperson.

Information is also associated with a value-set and takes on values from it. In Fig. 2.7 this

association is called “Takes value from”.

In the subsequent chapters and sections of this thesis, the word information and entity is used

interchangeably. This can be seen particularly while arriving at the information base in

chapters 3, 4 and in the implementation chapter, namely, chapter 7.

2.5 Decision Requirement

In order to make a decision, reference to the information in the Data Warehouse needs to be

made. This is represented as a pair <decision, information> and referred to as a decision

requirement. The notion of decision requirement is elaborated below.

2.5.1. The Decision Requirement Meta-Model

The Decision Requirement, DR, meta-model is shown in Fig. 2.8. As shown it is modelled as

an aggregate of information and decision.

Fig. 2.8 shows that there are three kinds of decision requirements, atomic, abstract and

complex. An atomic DR is the smallest decision requirement. It cannot be decomposed into

58

its parts. An abstract DR is a decision requirement that is arrived using

generalization/specialization principles. This gives rise to ISA relationships between decision

requirements. Finally, a complex DR is composed of other simpler decision requirements.

Fig. 2.8: Decision Requirement Meta Model.

Notice that the typology of a decision requirement follows that of a decision closely. Indeed,

since a decision can be reduced to an AND/OR graph, so also, a decision requirement can be

decomposed into an AND/OR graph. The only difference is in the association of the notion of

information with a decision requirement.

Fig. 2.9: Abstract Decision Requirement with an IS A hierarchy

59

To illustrate an abstract DR, consider, see Fig. 2.9, the decision Set up New Assembly Line.

Let the required information be Unsatisfied Orders. This DR can be specialized into two DRs

with decisions Start New 1-tonne Line and Start New 13-tonne Line respectively and required

information, Unsatisfied Orders for 1-tonners and Unsatisfied Orders for 13-tonners. Each

DR is an ISA relationship with Set up New Assembly Line.

Now let us consider composition. The Decision Requirement <Set up New Assembly Line,

Unsatisfied Orders> is a complex one having two component decision requirements,

<Decide Capacity, Resources Available> and <Choose Location, Land Availability>. An

AND link connects these two components so as to define the complex decision requirement,

<Set up New Assembly Line, Unsatisfied Orders> (see Fig. 2.10).

Fig. 2.10: Composition of Decision Requirements with AND and OR link

The foregoing shows that a DR can be decomposed to reflect the decomposition of its

decision component. It is also possible to do DR decomposition through information

decomposition. In this case, the decision part is held constant whereas information

60

components are elaborated. The Choose Location decision of Fig. 2.10 is shown as associated

with the information, Land Availability. Land availability can be decomposed into two pieces

of information, Land site and Land size Then the complex DR <Choose location, Land

availability> can be decomposed into <Choose Location, Land site> and <Choose Location,

Land size> respectively.

2.6. Information Elicitation Techniques

The thesis proposes three generic information elicitation techniques as described below.

These can be applied to any layer of the decision continuum.

Critical Success Factors

Bullen and Rockart (Bullen and Rockart, 1981) consider a CSF as a key area of work in

which success is essential for a manager to meet his goals. A manager should have full

information to determine if work is proceeding well in the area. It has been pointed out that

most managers have only a few critical success factors, typically 4-8 (Wetherbe, 1991).

Bullen and Rockart lay down an interviewing technique for eliciting CSFs.

Our interest is not in defining the CSFs of a manager. This task can be performed by using

the technique of (Bullen and Rockart, 1981). Instead, given already defined CSFs, we are

interested in obtaining information for estimating CSF satisfaction, and therefore in defining

an elicitation technique for this information.

The CSF Information elicitation technique, CSFI Elicitation for short, obtains information

required to assess progress in critical work areas. The essential question here is to identify the

61

variables/measures that must be monitored to ensure that these factors remain in control. This

control is carried out by appropriate decision making.

Table 2.1 shows the essence of the CSFI technique. In the first two columns, the CSF and the

decision with which it is associated is tabulated. The third column contains the variables that

go into assessing the CSF. Finally, the last column contains the information relevant to the

variables.

Table 2.1: CSF Information

Decision CSF CSF Measure Information

Add New

Pharmacy

Medicine

delivery

 Waiting time

of patient

Aggregate: average waiting time

Category : patient type

History:

time unit: week

Duration 10 weeks

The example presented in Table 2.1 is for the decision of adding a new pharmacy in the

health service. The CSF associated with it is Medicine delivery since it is a critical work area

in the service. One variable that helps in assessing the CSF is the waiting time of patients at

the pharmacy. The information needed for this variable is the average waiting time

categorized by patient type and a weekly record of this informtion needs to be kept for a 10

week duration.

Note that, in general, there may be more than one measure for a given CSF. However, we

have exemplified out technique in Table 2.1 with one variable.

Ends Achievement

Ends achievement can be considered in two different ways, depending upon the way one

conceptualizes the notion of Ends. These are as follows:

62

1) An end is a statement about what is to be achieved a goal. Notice that an End is

different from a CSF in that the latter is a work area where success is critical to the

manager. In this view, one can do Ends analysis by asking which ends contribute to

the achievement of which other ends. When this is applied recursively then we obtain

an Ends hierarchy. One technique used is means-ends analysis. In this, the problem

solver begins by envisioning the end, or ultimate goal, and then determines the best

strategy for attaining the goal in his current situation. Here, a means-ends hierarchy is

built in which nodes at a certain level are goals and those at the next lower level are

means of achieving it. Means-ends analysis is recursively applied till the leaves of the

hierarchy are reached.

2) The second view of Ends achievement views an End as the result achieved by

performing a task or as the intended result of a decision. When compared with view 1)

above, one does not ask which end achieves a given end. Instead, one asks what

information is needed to ensure the effectiveness of the end. In other words, Ends

analysis here is the identification of information needed to evaluate the effectiveness

of the end.

There is a difference between the notion of a CSF and this view of Ends. Whereas a CSF is

about success in a critical work area, an End is the expected result of a decision. A CSF is a

more ‘macro’ issue whereas an End is relatively more focused and is at a ‘micro’ level’.

Since our interest is in determining information, we adopt the second view. In our context,

‘Ends’ refers to the result achieved by a decision. It identifies a concrete change in the

63

organization that is a consequence of the decision. The decision-maker/requirements engineer

interaction is centred round determining the information for the effectiveness of the result.

Ends Information Elicitation, EI elicitation, is the identification of information needed to

evaluate the effectiveness of the end to be achieved. The requirements engineering task is that

of determining the variables and information of interest in estimating this effectiveness.

Table 2.2 shows the four aspects of EI elicitation. In the first two columns, the End and the

decision with which it is associated is tabulated. The third column contains the measure that

go into assessing the effectiveness of the End. Finally, the last column contains the

information relevant to the variables.

Table 2.2: Ends Information

Decision End End

Effectiveness

Measure

Information

Add New

Pharmacy

Profitability Service provided

Aggregate: total sales

Category : medicine-wise

Aggregate:

Number of transactions

Category:

Shift-wise

We continue in Table 2.2 with the example for the decision of adding a new pharmacy. The

End associated with it is Full Utilization. An effectiveness variable that helps in assessing the

effectiveness of the End is the service provided. The information needed for this variable is

the total sales medicie-wise. The second row shows additional informaiton, the number of

transactions during each shift.

64

As for CSFI, there can be more than oneeffectiveness variable per End and there can be many

Ends for a decision.

Means Efficiency

Broadly speaking, a means is a way of achieving the ends. When considering Ends

achievement, we have mentioned the use of Means-Ends for developing the ends hierarchy.

A lower level in the hierarchy is the means of achieving the immediately higher level. Both

levels describe the same system but in different terms.

There is yet another way of looking at Means. This view treats a Means as a first class

concept of the business world. A means is of direct interest in the business world, just as an

Ends is or a CSF is. It is the instrument, the process, the activity or task deployed to achieve

an End. The interesting question for a manager is the efficiency of the deployed means. Thus,

Means Efficiency deals with identification of information for evaluating the efficiency of the

means. The requirements engineer/stakeholder interaction is now centered round eliciting

variables that provide information on the efficiency of the means adopted for each decision.

We can again understand Means Information elicitation through the 4-column Table 2.3. As

before, the first two columns associate the Means with a decision. Thereafter, the efficiency

of the Means is captured in a measure, and finally, the information is obtained.

Table 2.3: Means Information

Decision Means Means Efficiency

Measure

Information

Add New

Pharmacy

Establish

afresh

Resources Used

Estimated cost

Category: Resource wise

Time Setting up time

65

The example in Table 2.3 is for the same decision, Add New Pharmacy. The means is to start

completely afresh and not reuse an existing building. The efficiency variables are the

resources, civil, electrical, fixtures and furniture etc. that shall be used. The information

needed is the cost for each resource. The second row of the table shows that efficiency can be

estimated as the time to set up the new pharmacy, and the total start up time is the

information to be maintained.

Summary

This chapter has developed a model for decision requirements in the tradition of model driven

requirements engineering. The consequence has been that the notions of decision and

information have also been modelled. As a result of these models, the structuring of

information (in the last step of the three elicitation processes) has been separated from the

task of eliciting it as in the third step of the three elicitation processes. In other words, the

third step is concentrated on the mere obtaining of information without attempting to

structure it in any way. It is because of this that the thesis postulated, in Chapter 1, that the

elicited information is early information.

Having obtained early information, the task thereafter is to structure it in multi-dimensional

form. To do this, the thesis proposes to build an ER diagram for the early information and

thereafter convert it to the star schema using Golfarelli’s algorithm (Golfarelli et al., 1998).

The manner in which this is done shall be taken up in the next chapter, in the context of PER

decision formulation.

Note: The ideas of this chapter have been published in Information Systems Evolution (2010).

Springer.

66

Chapter 3

Policy Enforcement Level Decision making

Chapter 2 considered the notion of a decision and information as forming the decision

requirement. The notions developed there are neutral to the nature of decisions, managerial or

imperative. That is, the proposals of Chapter 2 are generic and can be applied to any kind of

decision, managerial or imperative.

Let us consider managerial decisions. Policy formulation is done in a number of contexts, in

government/public policy formulation (Lindbloom, 1993), in the corporate/business world

(Hillman and Hitt, 1999), in specific areas like manufacturing (Park, 2000), and accounting

(Newton, 1980). The stakeholders are also varied and comprise (Lindbloom, 1993; Ritchie,

1988) general public, opinion makers, service providers, service users, activists etc. Some

other factors going into policy formulation are

 The role of other corporates (Cooke and Morgan, 1993) in the formulation of policy

by a business house

 Dependence (Park, 2000) on other related policies

 The role of consensus building (Ritchie, 1988)

 The strategy (information, financial incentive, and constituency building), level of

participation (individual, collective) and action (transactional and relational) to be

adopted (Hillman and Hitt, 1999)

From the foregoing, we see that policy formulation is a many-facetted and complex task. A

full treatment requires a focused effort that is left for a separate investigation. Therefore, in

67

this thesis, we assume a policy representation system and focus on policy enforcement rule

decisions and operational decisions.

This chapter presents the first life cycle, one for policy enforcement rule (PER). The life

cycle shows discovery of early information in the RE stage from organizational policies using

a multi-step process. As stated in the introduction, this early information can be used to arrive

at the star schema for DWper using guidelines proposed that first convert early to late

information in the form of ER diagram. Subsequently, existing techniques are used to convert

ER schema into star schema. The use of early information as an input to the vertical

integration life cycle will be discussed later in chapter 5.

3.1. PER Life Cycle

Table 3.1 shows the various stages of the PER life cycle namely, Requirements Engineering,

Conceptual and Logical Design phase. As can be seen, the input to the life cycle is

formulated organizational policies that have to be enforced. Therefore, it is assumed here that

formulation of policies is already performed in the policy level of decision making.

Requirements Engineering stage: has three sub stages. In the Rule Formulation Substage,

policy enforcement rules (PER) are formulated to enforce organizational policies. The PERs

are represented in the ‘WHEN triggering action IF condition THEN correcting action’ form.

Elicitation of both triggering and correcting actions are done by applying proposed guidelines

and policy enforcement rules are formulated. The decisional problem here is to decide on the

correcting actions that are to be part of the PER. In order to take this decision, information is

needed and this is elicited using the generic information elicitation techniques in the Early

Information Substage. This information is ‘early’.

68

Table 3.1: PER life cycle

Stage Input Output

Requirements

Engineering

Rule formulation

Substage

 Organizational

Policies

Policy Enforcement

Rules

Early Information

Substage

 Policy

Enforcement Rules

Early information

Late Information

Substage

 Early information ER Schema

Conceptual Design ER schema Multi-dimensional

model

Logical Design Multi-dimensional

model

MOLAP/ROLAP

Early information needs to be converted into a more structured form and this is done in the

late information substage. As can be seen in Fig 3.1, information, which is ‘early’, is

converted into ER schema. For this the thesis defines guidelines.

Fig 3.1: Overall process of arriving at star schema from PER actions

Early

Information
Elicitation Information

Convert

to ER
Diagram

ER to Star

Schema
ER Diagram Star SchemaAction

69

Conceptual Design Phase: ER schema obtained in the previous stage is converted into multi-

dimensional structures. For this the thesis relies on existing techniques of Golfarelli

(Golfarelli et al., 1998) and Moody (Moody and Kortink, 2000).

Each step is looked at in detail in the subsequent sections of the chapter.

3.2. Policy Representation

Again notice, formulated organizational policies are input. This section presents a

representation system for policies. This is because PERs are derived from policies, which

implies that their own structure will be derived from the structure of the policy they are

enforcing.

We have taken recourse to representation of a policy in a logic. The first order logic (Boulos,

2002; Jeffrey, 1991; Shoenfield, 1967) has been used extensively in computer science, for

example, in database technology to formulate the tuple and domain relational calculus

respectively that form the basis of query languages SQL and QBE; in artificial intelligence

for knowledge representation, and by Object Modeling Group, OMG, in its Semantics of

Business Vocabulary and Rules, SBVR (OMG, 2008) for representing business rules.

There are a number of limitations of the logic, its expressiveness and of the fragments of

natural languages that it can describe. From the former stand point, (Boulos, 2002), (Jeffrey,

1991), (Shoenfield, 1967) the first-order logic is undecidable. Further, extensions like

infinitary logics and higher-order logics are more expressive and are needed to permit

categorical axiomatizations of the natural numbers or real numbers.

70

A number of features of natural language cannot be represented (Gamut, 1991) in the first

order logic for example, quantification over predicates, predicate adverbials, relative

adjective, prepositions etc. Additionally, counting quantifiers, like at most N or at least M,

needed in many natural language sentences, are missing. For natural language analysis the

logic system to be used needs (Gamut, 1991) a much richer structure than first-order

predicate logic.

Now policies of organizations are likely to be expressed in natural language. We are not

interested in performing natural language analysis and our interest is limited to showing how

we can move from policies to policy enforcement rules. Thus, from our point of view, the

first order logic, even with its limitations, provides the basic framework that we can use for

converting policies to policy enforcement rules.

Now, we represent policies in a logic system, Extended First Order Logic, defined as follows:

There are two kinds of variables, those that denote a single value, SV, and others that denote

a set of values, CV.

 A simple term, ST, can either be

o A constant

o an SV that refers to a variable

o an n-adic function symbol applied to n SVs

 A collective term, CT, is

o a CV that denote a set of values

o an n-adic function symbol applied to n CVs

71

 An atom is an n-ary predicate P defned on ST or CT. There are standard predicates for

the six relational operators named EQ (x, y), NEQ (x, y), GEQ (x, y), LEQ (x, y), GQ (x, y),

LQ (x, y)

 Every atom is a formula

 If F1, F2 are formulae then F1 AND F2, F1 OR F2 and Not F1 are formulae

 If F1, F2 are formulae then F1 F2 is also a formula

 If F1 is a formula then sF1 and sF1 are formulae. Here s is a variable, SV or CV.

 Parenthesis may be placed around formulae as needed

 Nothing else is a formula.

The precedence while evaluating the formulae is as follows:

 Universal and existential quantifiers, ∀

 Logical AND, OR, NOT

Notice that besides usual first order features (constants, variables that denote individuals,

predicates and functions) the formulation also has set variables (CV) that can be quantified.

Shown below are two examples. The first example uses quantification over an SV whereas the

second shows quantification over a CV.

Example 1: Consider a policy “every Ayurvedic hospital must run an O.P.D”.

 Ayu(x): x is a Ayurveda hospital

 Run(x, OPD): x must run an OPD

 OPD is a constant

72

Its representation is:

∀x [Ayu(x) run(x,OPD)]

Example 2: “A Semi-private Ward must have area of 200 Sq. ft. for 2 beds”. Its

representation is as follows:

 spw(x): x is a semi private ward

 EQ(x,c1): x is equal to c1

 B is a set of beds

 Belongs(x, y): y belongs to x

∀xƎB [spw(x) EQ(area(x),200)AND EQ(count(B),2) AND belongs(x, B)]

3.3. Rule Formulation Sub-Stage

In order to develop guidelines for formulating policy enforcement rules, policies are

classified into four categories based on the type of formulae used for their representation. It

can be seen that formulae can be classified into two groups Simple and Complex. Formulae

with the following are said to be Complex:

 n-adic functions

 conjunctions and disjunctions

All other formulae are simple.

Further, recall policies are of the form Quantifier(If F1 THEN F2). Depending on the nature

of F1 and F2, there are four types of policies.

73

Simple-Simple (SS): Both F1 and F2 are simple. For example the policy, all doctors must

have a degree in M.D. represented as ∀x(doc(x) degree(x, MD)), is a simple policy. Both

formulae on the LHS and RHS of the implication are simple.

Table 3.2: Types of Policies

S.No F1 F2 Policy Type

1 Simple Simple Simple, SS

2 Simple Complex Complex, SC

3 Complex Simple Complex CS

4 Complex Complex Complex CC, subsumed in 2 and 3

A complex policy has at least one formula as complex. When the complex formula is on the

RHS, the policy is of simple-complex (SC) type. Consider the policy, ∀yƎBƎN(GB(y)

EQ(ratio(count(B), count(N)), ratio(8,1)) AND Belongs (y,B) AND Belongs(y, N)). Formula

on RHS of the implication involves function count and conjunction operator AND. Therefore

it is complex. The LHS is a simple formula. Thus, this policy is simple-complex or SC.

Another example is ∀xƎB(S(x) LEQ(count(B),3) AND GT(count(B),1) AND Belongs(x,

B)) where the RHS formula has both function, count(b) as well as AND as conjunction and

thus complex.

When the LHS has a complex formula and the RHS is simple the policy becomes complex-

simple (CS). For example, ∀x (nurse(x) AND GEQ(salary(x), 15000) provide (x,

ProvidentFund)) is of type complex-simple because the LHS of the implication has

conjunction AND, and so is complex. The RHS is a simple formula. A complex-complex

(CC) policy has both formulae as complex. The policy ƎwtabSetƎftabSet

74

(woodTable(wtabset) AND fibreTable(ftabset) EQ(Sum((count(wtabSet),

count(ftabSet)),2)) is of the CC type. As can be seen the LHS of the implication has a

conjunction OR and RHS has function count, both of which are complex.

There are two conditions when policy violation can occur in the general form Quantifier(IF

F1 THEN F2). If there is an action A that causes F2 to become False when F1 is True. In this

case, action B needs to be taken to make F2 True. The second condition may be when action

A causes F1 to be False. Then action C needs to be taken to disallow action A.

Now, the problem is (a) representing policy enforcement rules and (b) elicitation of actions

A, B, and C above for given policies. Each of these is considered in turn.

3.3.1. Representing PERs

Policy enforcement rules belong to the class of business rules. There are two broad

approaches to business rules representation, natural language based and logic based. In (Leite

and Leonardi, 1998) one finds a baseline of business rules expressed as statements in natural

language following specified patterns. Another variant of the natural language representation

is the use of templates (Sosunovas and Vasilecas, 2006). A template consists of template

expressions, for example determiner expression, subject expression, characteristic expression

and so on. Semantics of Business Vocabulary and business Rules, SBVR, (OMG, 2008)

proposes its own SBVR Structured English for expressing business rules.

The semantics of SBVR Structured English expressions are rooted in its formal, logic-based

system. The SBVR formalism has no notion of activity fact type (OMG, 2008; Steen et al.,

2010). (Fu, 2001) proposed a predicate logic based Business Rules Language, BRL. BRL is

limited in scope and only a small number of built-in predicates are captured.

75

As is well known, logic based representation can be expressed in the IF-THEN form. This

form has been used by (Auechaikul and Vatanawood, 2007); a variant IF-THEN-ELSE- by

(Muehlen and Kamp, 2007) and WHEN-IF-DO by (Rosca, 1997).

Now, as discussed in the previous section, the representation of policy enforcement rules

must allow us to express the basic notion of an action. Actions are interesting from two points

of view as follows:

 Triggering: This type of action triggers a policy violation. This action could on the

Then side of the implication and cause the IF side to be false. It can also be on the IF

side causing the Then side to be false. Action A above is a triggering action.

 Correcting: As stated once there is a policy violation, suitable corrective action has to

be taken. Actions B and C above are correcting actions.

The absence of an activity fact type in SBVR (OMG, 2008) makes one look for a rather more

direct way to represent triggers and correcting actions. . Indeed, a representation in logic shall

not yield a direct representation of triggers and actions which will need to be derived from the

functions/predicates comprising well formed formulas of the logic. Therefore, the work here

proposes to represent the triggering aspect of an action in the WHEN part of a rule; the

condition to be checked upon the trigger occurring in the IF part; and the correcting action in

the THEN part of the rule. Therefore, here representation of a policy-enforcing rule is

WHEN triggering action IF condition THEN correcting action

Notice the similarity of the policy-enforcement rule with that of the notion of a trigger in

SQL. A trigger (Elmasri, 2004) is a stored program, a pl/sql block structure that is fired when

INSERT/UPDATE/DELETE operations are performed and certain conditions are satisfied.

There are thus three components to a trigger, an event, a condition and an action

76

corresponding to the WHEN, IF, and THEN part respectively.

In SQL, a trigger is seen as an executable component. However, a policy enforcement rule is

a directive that governs/guides [BRG, 2010] a future course of action. Seeing this similarity

with SQL, we use here the basic idea behind a range variable of SQL.

The remaining question is about the representation of an action. Actions, both triggering and

correcting, are of the form <verb> <range variable>. To see this let us first consider the

notion of a range variable.

The notion of range variable here is similar to that in SQL. Whereas in SQL the range

variable ranges over a tuple, the range variable here represents a single instance of a noun.

Once defined, a range variable can be repeatedly used. Before using it, a range variable must

be declared using the form:

<noun> < range variable >

In this declaration, noun can be a simple noun or constructed by noun-noun modification. As

an example of noun-noun modification consider, Ayurvedic Hospital built over two nouns

Ayurvedic and Hospital, the former is a noun that modifies the latter. We will italicize range

variables for easy identification.

As examples of declaration of range variables, consider

<OPD> <x>

<Ayurvedic Hospital> <y>

77

In the first example, OPD is a noun and x is its range variable. This says that x is an instance

of OPD. Similarly, in the second example, y is an instance of Ayurvedic Hospital.

Now we can construct actions which, as mentioned above are of the form <verb> <range

variable>. Using the range variable x and y declared above we can define actions, create x

and operate y respectively.

The policy enforcement rules take the form

WHEN <verb> <range variable> IF condition THEN <verb> <range variable>

3.3.2. Enforcing Policies

In order for the requirements engineer to formulate PER for a policy P, s/he has to decide on

the possible correcting actions for a triggering action. Let this a the set {corrAction1,

corrAction2, corrAction3.... }.

On examining this set closely, one finds that in fact with every action there is a choice the

requirements engineer has to make, whether to select, modify or reject the action. In other

words, the choice set presented to the requirements engineer is:

{select corrAction1, modify corrAction1, reject corrAction1, select corrAction2, modify

corrAction2.........}

The actions selected become part of the PER, rejected actions are not part of any PER and the

modified actions become part of the PER. For example, if corrAction1 and corrAction2 are

selected and corrAction3 is rejected then the requirements engineer arrives at two PER

78

WHEN trigAction1 IF violatingCondition THEN corrAction1

WHEN trigAction1 IF violatingCondition THEN corrAction2

Note, the same action can be a correcting action for more than one kind of triggering action.

Also, a triggering action in one PER can be a correcting action in another PER and vice

versa.

The next task is to develop guidelines to elicit actions and further to formulate policy

enforcement rules.

3.3.3. Guidelines for Eliciting Actions

This section develops macro guidelines to elicit actions. Both sides of the implication are

examined. Actions are elicited in the form described above, <verb> <range variable>. Once

this is done the WHEN IF THEN form is filled in with suitable triggering and correcting

actions.

 Guideline I: This guideline suggests to the requirements engineer to define one or

more triggering actions to make LHS true. Now, policy violation occurs when the

RHS becomes false. Therefore, correcting actions that cause RHS to become true

have to be elicited.

 Guideline II: this guideline suggests to the requirements engineer to define one or

more triggering actions to make RHS false. Policy violation can occur if the LHS of

the policy is true. To avoid this, correcting action to make the LHS false has to be

elicited.

These guidelines are applied to SS, SC, CS and CC types of policies.

79

Simple Type Policy

Recall a simple type policy has both formulae as simple.

Example I: Every Ayurvedic hospital must run an Out Patients Department.

∀x[Ayurvedic(x) Run(x, OPD)]

The first step is to define range variables:

<Ayurvedic hospital> <x>

<OPD> <y>

Now the two guidelines are applied.

Guideline I

The requirements engineer defines one or more triggering actions to cause Ayurvedic(x) to

become true. Let the requirements engineer specify that the action ‘create Ayurvedic

hospital’ does this. By guideline I above, correcting actions must be elicited so that Run(x,

OPD) is true. Let the requirements engineer specify these as:

a) construct OPD

b) use existing OPD

The policy enforcement rules are:

 WHEN create x IF !Run(x, y) THEN start y

 WHEN create x IF !Run(x, y) THEN construct y

 WHEN create x IF !Run(x, y) THEN reuse y

80

As can be seen action ‘create x’ is in the required form with create as verb and ‘x’ as range

variable. Here x is an instance of noun phrase Ayurvedic Hospital. Similarly, correcting

actions ‘start y’, ‘construct y’ and ‘reuse y’ use verbs, start, construct and reuse respectively.

Range variable ‘y’ is an instance of OPD.

 Guideline II

Now, different actions that can cause the RHS to become false are elicited. Let the action

elicited be ‘stop OPD’. In this case, guideline II says that an action is needed to make the

LHS of the policy false. The requirements engineer is presented with this and corrective

action elicited could be:

a) stop being an Ayurvedic hospital

b) re-designate hospital

Thus, the rules are:

 WHEN stop y IF Ayurvedic(x) THEN stop x

 WHEN stop y IF Ayurvedic(x) THEN re-designate x

Complex SC Type Policy

As discussed earlier, in complex SC type policies, the LHS is simple but the RHS is complex

(contains conjunctions, disjunctions, n-adic functions). Eliciting actions for LHS as in the

case of simple policy types continues to be applicable. However, for each complex predicate

on the RHS, elicitation strategies are to be formed.

Fu (Fu et al., 2001) points out that special purpose language cannot have the full expressive

power of general languages and recourse to predefined, standard predicates must be taken.

Consequently, in (Fu et al., 2001) standard predicates have been introduced that can be

81

connected using conjunction and disjunction operators. Following this, standard predicates

are shown in Table 3.3. The elicitation strategy is also shown in this table.

Table 3.3: Elicitation strategies for given RHS predicate

S.No RHS Predicate Elicitation Strategy

1 EQ(F(x),c) If F(x) is less than c then elicit operation to Increase F(x)

If F(x) is greater than c then elicit operation to reduce F(x)

2 LEQ(F(x), c) If F(x) is greater than c then elicit operation to Reduce F(x)

3 LT(F(x),c) If F(x) is equal to c then elicit operation to reduce F(x)

If F(x) is greater than c then elicit operation to Reduce F(x)

4 GT(F(x), c) If F(x) is less than c then elicit operation to Increase F(x)

If F(x) is equal to c then elicit operation to Increase F(x)

5 GEQ(F(x), c) If F(x) is less than c then elicit operation to Increase F(x)

6 NEQ(F(x),c) If F(x) is equal to c then elicit operation to Increase F(x) or

elicit operation to Reduce F(x)

The elicitation strategies of Table 3.3 aim to make the predicate true. For example, in row 1,

if F(x) is less than c, then the attempt is to increase its value so that it satisfies the predicate.

On the other hand, if it is greater, then the correcting action must decrease its value. This

approach is systematically followed in all elicitation strategies of the table.

Now, the manner in which the two guidelines can be used for the SC type of policies is

illustrated below.

Example I: Each private room must have an area of 200 sq ft.

82

∀x [pvtR(x) EQ(area(x),200)]

The range variables are defined as:

<Private Room> <pr>

Guideline I

Let the elicited LHS triggering action be ‘create private room’. Since RHS is a complex

predicate, the first row of Table 3.3 is applicable. It suggests the following

1. Elicit correcting action to Increase F(x). The choice set may be

a. Rebuild private room

b. Expand private room

2. Elicit correcting action to reduce F(x). The elicited action may be

a. Partition private room

From the foregoing, the following three policy enforcement rules are formulated

 WHEN create pr IF LT(area(pr),200) THEN Rebuild pr

 WHEN create pr, IF LT(area(pr),200) THEN Expand pr

 WHEN create pr, IF GT(area(pr),200) THEN Partition pr

Guideline II

Now, consider triggering action ‘share room’ that causes the available area of a room to

reduce. A correcting action is needed to make LHS false. Let this be elicited as ‘relocate

private room’.

The policy enforcement rule is:

83

 WHEN share pr IF ! EQ(area(pr),200) THEN relocate pr

Example II: As a more complex example, consider the semi-private ward policy dealt with

before:

∀xƎB[S(x) LEQ(count(B),3) AND GT(count(B),1) AND belongs(x, B)]

Range variables are:

<Semi-private ward> <spw>

<bed>

Guideline I

Notice that triggering action to be elicited is based on the combined action of LEQ and GT.

Table 3.4 suggests the following for the two predicates LEQ and GT.

When a new semi private ward is created, then since Count(b) is zero, the second row of

Table 3.4 is applicable and elicit actions are as follows:

a. Purchase bed

b. Transfer bed

Table 3.4: Elicitation strategy for LEQ and GT predicates

LEQ GT

True: elicit nothing True: elicit nothing

True: elicit nothing False: elicit operation to increase F(x)

84

False: elicit operation to Reduce F(x) False: elicit operation to increase F(x)

False: elicit operation to Reduce F(x) True: elicit nothing

So the policy enforcement rule is:

 WHEN create spw IF !GT(count(b),1) THEN Purchase b

 WHEN create spw IF !GT(count(b),1) THEN Transfer b

Guideline II

If bed is removed from the ward then it may happen that there is no bed left in the ward, i.e.,

GT(count(b),1) is false. In this case correcting action to falsify the LHS is to be elicited. The

elicited action may be ‘Relocate semi-private ward’. This gives the business rule

 WHEN remove b IF !(GT(count(b),1)) THEN Relocate spw

Example III: For a general ward the bed: nurse ratio must be 8:1

∀xƎBƎN [GW(x) EQ (ratio(count(B),count(N)), ratio(8, 1)) AND belongs(x, B) AND

belongs(x, N)]

Range variables are:

<General ward> <gw>

<nurse> <n>

And ‘b’ as range variable for bed has already been defined in the previous example and so it

need not be re-defined here.

85

Guideline I

When a new general ward is created then the ratio of bed to nurse must be satisfied. Row one

of Table 3.3 is applicable. The suggested actions are as follows:

1. Elicit correcting action to increase count(b)

a. Purchase bed

b. Transfer bed

2. Elicit correcting action to reduce count(n)

a. Transfer nurse

b. Fire nurse

3. Elicit correcting action to increase count(n)

a. Recruit nurse

b. Transfer nurse

4. Elicit correcting action to reduce count(b)

a. Discard bed

The seven policy enforcement rules obtained are:

 WHEN create gw IF !EQ (ratio(count(B),count(N)), ratio(8, 1)) THEN Purchase b

 WHEN create gw IF !EQ (ratio(count(B),count(N)), ratio(8, 1)) THEN Transfer b

 WHEN create gw IF !EQ (ratio(count(B),count(N)), ratio(8, 1)) THEN Transfer n

 WHEN create gw IF !EQ (ratio(count(B),count(N)), ratio(8, 1)) THEN Fire n

 WHEN create gw IF !EQ (ratio(count(B),count(N)), ratio(8, 1)) THEN recruit n

 WHEN create gw IF !EQ (ratio(count(B),count(N)), ratio(8, 1)) THEN Transfer n

 WHEN create gw IF !EQ (ratio(count(B),count(N)), ratio(8, 1)) THEN Discard b

86

Guideline II

Let the elicited triggering action be to remove a bed. The ratio of beds to nurse may not be

8:1, then an operation is needed to be elicited to falsify the LHS.

a) Use ward for some other purpose

The enforcement rule formed is:

 WHEN remove b IF !EQ (ratio(count(B),count(N)), ratio(8, 1)) THEN Reuse gw

Complex CS Type Policy

Here LHS is complex while RHS is simple. The elicitation mechanism used for treating the

RHS in the case of simple policy types continues to be applicable. However, for each

complex predicate on the LHS, elicitation strategies have to be formed. For each of the

standard predicates, these are given in the last column of Table 3.5.

Example I: Provide provident fund to all nurses with a salary of Rs. 15000.

∀x [nurse(x) AND GEQ(salary(x) 15000) provide (x, ProvidentFund)]

The following range variables are defined:

<nurse> <n>

<ProvidentFund> <pf>

Table 3.5: Elicitation strategies for given LHS predicate

S.No Predicate Elicitation Strategy

1 EQ(F(x),c) If F(x) is equal to c then elicit operation to make RHS true

2 LEQ(F(x), c) If F(x) is less than or equal to c then elicit operation to

87

make RHS true

3 LT(F(x),c) If F(x) is less than c then elicit operation to make RHS true

4 GT(F(x), c) If F(x) is greater than c then elicit operation to make RHS

true

5 GEQ(F(x), c) If F(x) is greater than or equal to c then elicit operation to

make RHS true

6 NEQ(F(x),c) If F(x) is not equal to c then elicit operation to make RHS

true

Guideline I

When action ‘recruit nurse’ is taken and salary is fixed at Rs.16000. Row number 5 of Table

3.5 is applicable which says that action is to be elicited to make RHS true. Let this action be

‘include in PF list’. The policy enforcement rule is:

 WHEN recruit n IF !provide (n, pf) THEN Allot pf

Guideline II

Suppose PF is stopped for some employee. A suitable correcting action is to be determined.

1. Elicit action to falsify the LHS

a. Fire nurse

b. Transfer nurse

c. Lower Salary

The policy enforcement rules are:

 WHEN stop pf IF nurse(n) THEN Fire n

88

 WHEN stop pf IF nurse(n) THEN Transfer n

 WHEN stop pf IF housekeeper(hk) THEN Lower Salary

Complex CC Type Policy

This can be looked at as a combination of CS and SC types of policies. Tables 3.3 and 3.5

apply. Consider the following example.

Example: The total number of Wooden or Fibre Panchakarma Tables must be 2.

ƎwtabSetƎftabSet (woodTable(wtabset) AND fibreTable(ftabset)

EQ(Sum(count(wtabSet), count(ftabSet)),2))

where,

wtabSet: is a set of wooden tables

ftabSet: is a set of fibre tables

Range variables are:

<Wooden Table> <wt>

<Fibre Table> <ft>

Guideline I

When a new table of wood or fibre is bought then sum of wooden and fibre tables may not be

equal to 2. Since this a complex predicate row 9 of Table 3.3 is applicable.

1. Elicit action to reduce the sum

a. Discard fibre table

b. Discard wooden table

89

2. Elicit action to increase the sum

a. Purchase wooden table

b. Purchase fibre table

So the enforcement rules are:

 WHEN purchase wt IF !EQ(Sum((count(wtabSet),count(ftabSet)),2)) Then

Discard wt

 WHEN purchase ft IF !EQ(Sum((count(wtabSet), count(ftabSet)),2)) Then

Discard ft

 WHEN purchase wt IF ! EQ(Sum((count(wtabSet), count(ftabSet)),2)) Then

Purchase wt

 WHEN purchase ft IF ! EQ(Sum((count(wtabSet), count(ftabSet)),2)) Then

Purchase ft

Guideline II

Let there be an elicited action that causes the sum to be unequal to 2. Then action must be

elicited to make the LHS false

Elicit action to falsify the LHS

a. Discard wooden table

b. Stop purchasing wooden table

c. Discard fibre table

d. Stop purchasing fibre table

The enforcement rules are:

 WHEN add wt IF woodTable(wt) THEN Discard wt

 WHEN add wt IF woodTable(wt) THEN Stop Purchasing wt

90

 WHEN add wt IF fibreTable(ft) THEN Discard ft

 WHEN add wt IF fibreTable(ft) THEN Stop Purchasing ft

3.4. Early Information SubStage

The requirements engineer needs information in order to select one from the choice set. The

three generic Information elicitation techniques of Chapter 2 are applied to elicit the needed

information.

1. CSFI Analysis: Recall, CSFI analysis is a three step process of (a) determining CSF,

(b) determining information and (c) determining properties of information to Actions. To

illustrate, consider the action “Re-designate x” where x is an instance of AYUSH hospital.

One CSF is to provide patient satisfaction. To assess this factor information needed is total

yearly count of patients. Notice, the decision requirement is <Re-designate x, number of

patients>. Applying the information model, Patient becomes Entity. With the help of this

information the requirements engineer is able to decide whether it is worthwhile to take the

action “Re-designate x”.

2. ENDSI Analysis: Ends analysis is a three step process involving determining a) Ends,

b) Effectiveness of the End, and c) Information to evaluate the effectiveness of the End. This

process continues till information for all the Ends has been determined. Revisit the action

“Re-designate x”, x is an instance of AYUSH hospital. The objective or result of this action

can be to Maximize economic return. The effectiveness of this end can be assessed by

Revenue generated and information needed for the assessment may be cost per lab test,

number of tests, service fees of nurses, consultancy fees of doctors. Applying the information

91

model, Lab Test, Doctor, Nurse become entities with service fees and consultancy fees as

attributes for nurse and doctor entity respectively.

3. MEANSI Analysis: Means analysis is a three step process of a) determining means,

b) determining efficiency measures for the means, and c) determining information to measure

the efficiency of the means. Again consider the action “Re-designate x”, x is an instance of

AYUSH hospital. One means to perform this action is to select another speciality. Efficiency

is expertise needed. Entity is Doctor, Patient, Disease, Nurses and Equipment. Early

information needed is about number of patients with specialized disease, equipment needed,

number of doctors having qualification among others. Disease is to be maintained type wise.

The results of performing steps 1 to 3 above are summarized in Table 3.6. In Table 3.6, CSFI,

ENDSI and MEANSI analysis are performed for the second policy enforcement rule action

re-designate x. The Table has three columns, the first for the action from which information

is being elicited, the second column for the three information elicitation techniques being

applied to the action, and the last column describes the information base. Recall that once

CSFI, ENDSI and MEANSI for an action have been identified, relevant information to

measure the CSF, effectiveness of the end and efficiency of the means is needed. Thus, for

each measure, entity, attribute are identified as part of the Information base. Additional

information is captured as History, Category and Function.

Table 3.6: Early information for action ‘Re-designate x’; x is an instance of AYUSH hospital

Action Elicitation Method Information Base

Entity Attribute History Category Function

Re-

C
S

F
I

Patient Satisfaction Patient Yearly Count

92

designate

 x

E
N

D
S

I

Ends Effectiveness Lab test

Doctor

Nurse

Cost

Salary

Consultancy

fee

Salary

Service fee

 Sum

Sum

Sum

Sum

Sum

Maximize

economic

return

Revenue

generated
M

E
A

N
S

I

Means Efficiency Hospital

Patients

Disease

Doctors

Nurses

Equipment

Specialty

Name

Specialty

Qualification

 Type

Type wise

Count

Count

Count

Count

Count

Count

Select

another

specialty

Expertise

needed

Become

general

hospital

Expertise

needed

Patients

Disease

Equipment

Name

Name

 Type

Type wise

Count

Count

Count

3.5. Late Information SubStage

 ‘Early’ information of the form shown in Table 3.6 needs to be converted into a more

structured form. For this, a two step process to transform early information into an ER

diagram is proposed. The steps are:

 Building individual ER diagrams for each policy enforcement rule

 Integrating individual ER diagrams into a consolidated diagram.

Now that the integrated ER diagram is obtained, a star schema can be constructed by

applying existing techniques. Golfarelli’s algorithm is applied for star schema formation.

Individual ER Diagrams

The following two steps are applied to build individual ER diagrams

93

(1). All nouns of actions in the policy enforcement rule are identified and treated as entity

sets of the ER diagram. This gives us an initial set.

(2). The initial set is augmented with entities and attributes obtained as part of the

information elicitation process for the participating actions

(3). The requirements engineer defines relationships between entities.

The following policy enforcement rule is used illustrate the building of individual ER

diagrams:

<Ayurvedic hospital> <x>

<OPD> <y>

WHEN create x IF !Run(x, y) THEN start y

Let us now apply the foregoing 3 steps to this policy enforcement rule. Applying (1) there are

two actions, create and start. The participating nouns are Ayurvedic Hospital and OPD

respectively. Therefore, we get two entities corresponding to these. Now, let us apply the

second step. The information elicited for create and start is shown in Table 3.7. The column

Entity under the major column Information Base shows the entities elicited. These become

entities of the ER schema by step (2) above. Now, in the third step, the requirements engineer

defines relationships, through stakeholdes interaction, between these entity types. The

resulting ER schema is shown in Fig. 3.2.

Table 3.7: Information elicitation for WHEN create x, IF !Run(x, y) THEN start y

Action Elicitation Method Information Base

Entity Attribute History Category Function

Create

x

C
S

F
I

Provide Quality Care Patient Income Yearly Count

94

E
N

D
S

I

Ends Effectiveness

Equipment

Laboratory

Name

Ward

Count

Count

Provide

treatment to

patients

Facilities

provided
M

E
A

N
S

I

Means Efficiency

Ayurvedic

hospital

Build cost

Space

Sum

Sum

Construct

new

Resources

needed

Hire existing Resources

saved

Ayurvedic

hospital

Rental

cost

 Sum

Start y

C
S

F
I

Provide Quality Care Disease

Doctor

Patient

Name

Speciality

Degree

Month

Yearly

Type

Count

Count

E
N

D
S

I

Ends Effectiveness

Disease

Patient

Name

Month

Yearly

Type

Count

Count
Treat patients

using

Ayurveda

M
E

A
N

S
I

Means Efficiency

OPD

Furniture

Equipment

Doctor

Attendant

Staff

Build cost,

build time,

Space

Name

Name

Type

Count

Count

Count

Count

Count

Construct

new

Land required

Infrastructure

needed

Personnel

needed

Entity OPD is got from (1) and as information from MEANSI analysis. It is assumed that

they are the same entity OPD. For action, create x, entity is Patient by CSFI analysis,

Equipment, Laboratory by ENDSI and Ayurvedic Hospital by MEANSI analysis. The ER

diagram is shown in Fig 3.2.

95

Fig 3.2: ER diagram for the policy enforcement rule WHEN create x IF !Run(x, y) THEN

start y

Integrating ER Diagrams

The view integration technique (Batini, 1986) can be classified into two main streams:

syntactic (Bernstein, 1976), (Raver, 1977), (Casanova, 1983), (Biskup, 1986) and semantic

(Batini, 1984), (Navathe, 1986).

The syntactic approach employs functional dependencies of different database thereby

obviating the need for a full understanding of the database. Its disadvantages are that it is NP

hard and its inability to differentiate between dependencies over the same attributes but

having different meanings.

The semantic approach, adopted in this thesis, uses the meanings of the elements in database

views to perform view integration. Since the semantic approach operates at the entity and

relationship level, and not at the attribute level, the technique is less complicated. The

resultant global schema is also more "natural" and understandable to users and designers. The

disadvantage of the semantic approach is that it requires more users' and designers'

96

interactions to interpret and analyze conflicts.

During integration common entities of individual ER diagrams are combined and are based

on the recognition that attributes of an entity is the collection of all attributes for the entity

found in individual ERD. Similarly, the set of relationships between a pair of entities is union

of the relationships for these entities found across ER diagrams.

To illustrate consider two policy enforcement rules:

 <Ayurvedic hospital> <x>

<OPD> <y>

WHEN create x IF !Run(x, y) THEN start y

 <private room> <pr>

WHEN create pr IF LT(area(pr),200) THEN Expand pr

Early information for PER WHEN create pr IF LT(area(pr),200) THEN Expand pr is in

Table 3.8 and the individual ER diagram is shown in Fig 3.3. Notice, both triggering and

correcting actions gives us the same entity private room.

Table 3.8: Information elicitation for WHEN create pr IF LT(area(pr),200) THEN expand pr

Action Elicitation Method Information Base

Entity Attribute Histor

y

Categor

y

Functio

n

Create

pr

C
S

F
I

E
N

D
S

I

Ends Effectivenes

s

Patient

Income

Count Revenue

Generate

d

Service

provided

M
E

A
N

S
I Means Efficiency

Private

Room

Build time

Build cost

Space

Sum

Sum

Sum

Construc

t new

Resources

needed

97

Hire

existing

Resources

saved

Private

Room

Rental

cost

 Sum

Expan

d pr C
S

F
I

E
N

D
S

I

Ends Effectivenes

s

Disease

Patient

Name

Income

Month

Type

Count

Count

Service

more

patients

Revenue

generated

M
E

A
N

S
I

Means Efficiency

Private

Room

Labour

cost

Space

Sum

Remodel

room

Resources

needed

Fig 3.3: ER diagram for the policy enforcement rule WHEN create pr IF LT(area(pr),200)

THEN Expand pr

The integrated diagram is shown in Fig 3.4. Notice the relationship ‘treated’ and ‘treats’ are

assumed to be the same relationship ‘treats’.

98

Fig 3.4: Integrated ER diagram

3.6. Conceptual Design Substage

Once the integrated ER schema is ready, the next step is to convert it to a star schema. As

stated earlier this can be done by applying existing techniques. This section applies

Golfarelli’s (Golfarelli et al., 1998) algorithm.

A brief overview of the algorithm is as follows. It is a semi-automated methodology to build

a conceptual model from existing ER schemas. The conceptual schema is referred to as a fact

schema with facts, dimensions and hierarchies. Five steps are described to convert ER

schema into fact schema. A fact forms the root of the schema which is identified first. An

entity or an n-ary relationship that are frequently updated can become facts. Those entities or

relationships that represent structural properties or are static do not become facts. For each

fact identified an attribute tree is built. A recursive algorithm has been defined for this.

99

Attributes directly connected to the entity or relationship identified as fact, are added as

children to the attribute tree. Similarly relationships that are many to one are also added as

children. Once the process is complete and the complete attribute tree is built, the tree is

pruned and grafted. Pruning involves dropping a non-relevant subtree. If a vertex, v, does not

represent useful information while its descendants, v’, do, then the descendants are preserved

by moving the subtree, v’, from v to the vertex preceding v. Thus, grafting is achieved.

Finally, dimensions, fact attributes and hierarchies are defined.

According to Golfarelli’s algorithm outlined above, any frequently updated entity or n-ary

relationship can be treated as a fact. Since the relationship, treats, (see Fig. 3.4) is one such in

a hospital environment, we select it to be a fact named ‘Treatment’ in Fig. 3.5. Following the

algorithm, an attribute tree is built that contains the

1. Entities participating in 1: N relationships with treat. From Fig. 3.4 these are Patient,

Disease, OPD, Doctor, and Laboratory.

2. Attributes of the entities are added to the tree, and

Now, after applying pruning and grafting we get the attributes of Treatment from (1) above as

shown in Fig. 3.5. Further, with an unpruned attribute tree, the five entities from (2) form the

dimensions for the fact Treatment as shown in Fig. 3.5. However, the requirements engineer

finds that analysis by patient, disease, doctor and OPD are useful but analysis by laboratory is

not. This is because, a laboratory conducts tests only and therefore laboratory-test wise

treatment does not carry meaning. Laboratory is therefore pruned from the tree to yield the

star schema of Fig. 3.6

100

Fig 3.5: Unpruned Star Schema for Fact Treatment

Fig 3.6: Star Schema for Fact Treatment

Summary

This chapter has shown that the basic framework for decision, information, decision

requirement and associated elicitation techniques present in Chapter 2 can be followed in

PER formulation. In doing so, this chapter defines a representation system for a policy.

101

Thereafter, guidelines for conversion of policies into possible enforcement rules are provided.

The decisional problem is that of selecting the most appropriate rule for the business at hand.

The chapter has also shown the application of the elicitation techniques presented in Chapter

2 to PER formulation. The early information thus obtained was converted into an ER diagram

which, in turn, was converted into star schemas using Golfarelli’s algorithm.

Note: The ideas in this chapter have been published in International Journal of Information System

Modeling and Design (IJISMD) 2015.

102

Chapter 4

Operational Life Cycle

Chapter 3 of the thesis proposed a life cycle for PER decision layer of the continuum.

Continuum implies that once PERs have been formulated, operational level actions have to be

defined as part of the imperative decision layer. Since the models and techniques proposed in

Chapter 2 are generic and are independent to the level of decision-making, these are applied

to operational decisions.

As mentioned in Chapter 1, determination of the set of decisions needed to manage

operational business processes has been done in a number of ways, for example by using goal

modelling and business indicators respectively. However, goal analysis and business

indicator analysis does not guarantee that the set of decisions that these techniques yield

includes the set of decisions yielded by the PER layer. In other words, if the formulated rules

have to be enforced in a business then enforcement decisions need to be taken. These

decisions must be from choice sets that include the actions that participate in the rules.

Therefore, information relevant to these must also be subjected to the information elicitation

process.

This chapter starts off by considering how operational decision-making is related to the

formulated policy enforcement rules. Thereafter, the underlying assumptions of what

constitute operational decisions are articulated and the broad approach to eliciting relevant

information for the operational level is outlined. This discussion lays the basis for the detailed

explanation of the operational life cycle that follows.

103

The purpose of the operational life cycle is to support decision making for business

operations by arriving at DWop. The input to this life cycle is actions of policy enforcement

rules. In a manner similar to the PER life cycle, operational life cycle uses a multi-step

process to discover early information in the RE stage. This early information is converted to

ER diagram which can be used to arrive at the star schema for DWop.

For the first part, a two-step process is proposed. For the latter, existing techniques are

applied to convert ER schema into star schema. The use of early information as an input to

integrating the Data Warehouse for formulating policy enforcement rules and that fro

operational decision-making will be discussed later in chapter 5.

4.1. Decision making at operational level

When a policy enforcement rule has been formulated, then the set of correcting actions to be

taken in the organization is known. At the operational level, decision maker decides on which

action is to be implemented in a given situation to produce the best results. In a given

situation, more than one action may be applicable. Let this set be {action1, action2...} and

thus the choice set formed is {select action1, select action2…….}. In other words, this is a set

of alternatives available to the operational decision maker to address a given situation.

In the metadata of DWop newly discovered actions are linked to the parent action’s PER. So

for action start 2-bed-pw the PER will be that of start pw. This becomes relevant during the

integration life cycle considered in the next Chapter, as there is a decision-rule

correspondence that forms the basis of integration.

104

4.2. PER Actions to Decisions

Recall, decision model of Chapter 2 shows three kinds of decisions, atomic, abstract and

complex. Actions of PER layer can be atomic, abstract and complex. Atomic actions are

those that cannot be decomposed further, abstract actions follow IS/A specialization

principles, and complex actions are composed of other actions which can be atomic, abstract

or complex.

For example, action start pw, is an abstract decision with start 2-bed-pw and start 3-bed-pw

in a specialization relationship with start pw (see Fig 4.1 below)

Fig 4.1: Specialization for action start private ward

start pw is also a complex decision with components choose department, choose location (see

Fig 4.2 below). These atomic actions form Decisions of Table 4.1.

Fig 4.2: Decomposition tree for action start private ward

105

Now, the remaining question is, for what kind of action does information need to be elicited

at the operational level? Recall that complex decision and ISA decision structures are

hierarchies with atomic decisions as leaves. Intermediate nodes of such hierarchies, while

describing the system at intermediate levels of abstraction, shall only contribute to the

determining of the atomic actions. This is in accordance with Means-Ends analysis technique

used to do decision reduction and already discussed in earlier chapters. Thus, the assumption

made here is that business operations shall be carried out at the lowest levels of these

hierarchies, i.e. for atomic decisions only.

Following from this the guidelines adopted in this thesis are:

1. If PER action is atomic, directly elicit information using CSFI, ENDSI and MEANSI

techniques. For example, action expand pr is an atomic action.

2. If PER action is abstract, construct the IS/A hierarchy and arrive at atomic actions.

Elicit information for the atomic actions using CSFI, ENDSI and MEANSI

techniques. For our action start pw, the specialization tree is constructed, like the one

in Fig 4.1. Information is elicited for actions start pw, start 2 bedded pw, start 3

bedded pw.

3. If PER action is complex, construct the AND/OR tree to arrive at atomic actions.

Elicit information for the atomic actions using CSFI, ENDSI and MEANSI

techniques. Again, consider action start pw.. The AND/OR decomposition tree is

constructed as in Fig 4.2 and information is elicited for actions start pw, choose

location, choose department.

Notice, information elicitation is for atomic actions that are arrived at from abstract and

complex actions and from those directly input as atomic actions. As stated in chapter 2,

decision maker at the PER layer is different from that at the operational level. At the PER

106

layer, higher level of management is involved in the decision making process and at the

operational level, lower level of management is involved. This means that CSF, ENDS and

their effectiveness measures, as well as MEANS and their efficiency measures will vary as

one moves from one level of the continuum to another. For the same decision (action),

therefore, different early information is obtained at the two levels. This is why; early

information is elicited in this level even for those actions that are input as atomic actions.

This point is illustrated in section 4.4.

4.3 Operational Life Cycle

Table 4.1 shows Operational life cycle as having three main stages namely, Requirements

Engineering, Conceptual Design and Logical Design stages. The Requirements Engineering

stage itself consists of Decision Formulation Substage, Early information Substage and Late

information Substage. In the conceptual design stage, the ER schema produced by the

Requirements Engineering stage is converted into multi-dimensional schemas. Finally, in the

Logical Design stage the schemas of Data Warehouses are produced.

The three main stages of Table 4.1 are now considered in detail.

Table 4.1: Operational Life Cycle

Stage Input Output

Requirements

Engineering

Decision formulation

Substage

 PER Actions Decisions

Early Information

Substage

 Decisions Early information

Late Information

Substage

 Early information ER Schema

107

Conceptual Design ER schema Multi-dimensional

model

Logical Design Multi-dimensional

model

MOLAP/ROLAP

Requirements Engineering: Table 4.1 shows that the Requirements Engineering phase is

divided into three Substages, Decision Formulation Substage, Early information and Late

information Substage.

The basis of the Requirement Engineering stage considered is that the source of actions is the

PER layer. This illustrated in Fig. 4.3. As seen, the actions of each rule are extracted and each

action, a, of the PER layer is treated as a decision, d, to be taken at the operational level. This

yields the initial set of decisions. Each decision in this set is then subjected to the AND/OR

decomposition process and to the generalization-specialization process, see Fig. 4.3. This

gives rise to decomposition and ISA hierarchies of decisions. For each hierarchy thus

obtained, the leaf nodes are determined. These leaf nodes are atomic and thus, the set of all

decisions at the operational level is obtained. The next task is to elicit information for every

decision. For this, the techniques of CSFI, ENDSI, and MEANSI are deployed. The

reasoning behind why only leaf nodes are considered for information elicitation is explained

later.

108

Fig. 4.3: The Overall process

The Decision Formulation Substage is complete when the set of atomic decision is

determined. Attention now turns to eliciting information relevant to these. Each of these

decisions is now input into the Early information Substage and Early Information EIop is

elicited using the generic information elicitation techniques of Chapter 2.

Fig 4.4: Overall process of arriving at star schema from Decisions

Since EIop is early and unstructured, it is converted into an ER diagram. This overall process

is shown below in Fig 4.4.

Early

Information
Elicitation Information

Convert
to ER

Diagram

ER to Star

Schema
ER Diagram Star SchemaDecision

109

Conceptual Design: Once ER diagram is obtained, it is converted into a star schema. As

already mentioned, techniques like those of Golfarelli and Moody exist for this purpose.

However, conversion from ER to star schema is done using Golfarelli’s algorithm.

The Early Information Substage is described below.

4.4. Early Information Elicitation

Three early information techniques, CSFI Analysis, ENDSI Analysis and MEANSI

Analysis are applied to decisions obtained in the Action formulation Substage.

To illustrate the difference between the information elicited due to difference in the level of

the decision maker, consider an action “Use Existing private ward”. ENDSI and MEANSI

done by the operational level decision maker and PER level decision maker are shown in

Table 4.2 and 4.3 respectively.

Table 4.2: Information elicitation for expand pr at the PER level

Action Elicitation Method Information Base

Entity Attribute History Category Function

Expand

pr C
S

F
I

E
N

D
S

 I

Ends Effectiveness

Patient

Disease

Nurse

Income

Name

Month

Type

wise

Count

Count

Service

more

patients

 Revenue

generated

110

M
E

A
N

S
I

Means Efficiency

Private

room

Space,

Labour

cost

Remodel

room

Resources

Needed

In Tables 4.2, MEANS at the PER level is ‘Remodel room’ with efficiency measure as

resources needed while in Table 4.3 MEANS are ‘Construct barrier’, ‘Break barrier’. Notice,

MEANS is more operational in Table 4.3 than the PER. Thus, early information elicited is

different in both the cases. Now, consider ENDSI analysis. The END for both the tables is the

same, ‘Service more patients’. However, the effectiveness measure is different with ‘revenue

generated’ at the PER level and ‘capacity of patients’ at the operational level. This gives us

different early information.

Table 4.3: Information elicitation for expand pr at the operational level

Action Elicitation Method

Information Base

Entity Attribute History Category Function

Expand

pr C
S

F
I

E
N

D
S

 I

Ends Effectiveness

Patients

Daily

Count Service

more

patients

 Capacity of

patients

M
E

A
N

S
I Means Efficiency

111

Construct

extension

Break

barrier

Cost needed

Cost needed

Private

room

Space

Constructio

n cost per

sq. foot

Breaking

cost per sq.

foot

Sum

4.5. Late Information Elicitation

As with PER early information, early information of Tables 4.2 and 4.3, need to be converted

into a more structured form. Using a two-step process this early information is transformed

into an ER diagram.

 Building individual ER diagrams for each action

 Integrating individual ER diagrams into a consolidated diagram.

Individual ER Diagrams

The following two steps are applied to build individual ER diagrams

(1). Identify noun part of actions as entity sets thus, obtaining an initial set. For action

expand pr, pr represents noun private room. Thus, private room is an entity.

(2). The initial set is augmented with entity and attributes obtained from the information

elicitation process. Again consider action expand pr. Table 4.3 shows the elicitation

process gives entities Patient and Private room. For entity patient, no attributes were

elicited. For Private room attributes elicited are space, Construction cost per sq. foot

and Breaking cost per sq. foot. Notice that private room was also obtained during the

112

previous step. It is assumed that these two entities refer to the same entity private

room.

(3). The requirements engineer defines relationships between entities. For entities Patient

and Private room relationship “occupies” is defined with cardinality of one patient

occupying one private room.

Integrating ER Diagrams

Common entities of individual ER diagrams are combined. Attributes of an entity is the

collection of all attributes for the entity found in individual ERD. Similarly, the set of

relationships between a pair of entities is union of the relationships for these entities found

across ER diagrams.

Now that the integrated ER diagram is obtained, a star schema can be constructed by

applying existing techniques. Golfarelli’s algorithm is applied for star schema formation.

Summary

This chapter considers decision-making for managing business processes not just from the

perspective of what is to be achieved (goal modelling) or from that of what is to be measured

(business indicators). Rather, it says that the aspect of decision-making to ensure compliance

with policy enforcement rules needs to be taken into account. Thus, the set of decisions

needed to manage operational business processes is the union of the decisions from goal

modelling, business indicator determination and policy enforcement.

The decisional problem is common to all the three kinds of decisions. Faced with a situation

requiring decision-making, the decision-maker is to select the most appropriate action to be

taken in a given situation.

113

This chapter shows that the basic framework presented in Chapter 2 can be followed at the

operational decisional level. The application of decision model, information model,

elicitation techniques and decision requirement model led to

1. Discovery of new decisions

2. Discovery of new early information

The work reported here throws up one interesting open problem. This problem pertains to the

sources of operational decisions. The problem is to determine if all three kinds of analysis,

goal, business indicator, and our policy compliance analysis need to be carried out to

determine the set of decisions. Our reasons for believing that this is an open problem are as

follows.

In the context of this thesis, interest is in showing the manner in which requirements

engineering for upstream data warehousing could be done and how upstream and operational

data warehouses could be integrated together. During this, we found that PERs lead us to

operational decisions and we investigated the associated requirements engineering issue that

lies here. However, the problem of this thesis is not to establish a relationship between the set

of decisions derived from the various analysis techniques reported in the literature. Thus, we

believe, this is an open problem and outside the scope of this thesis.

Note: The ideas of this chapter have been published in Information Systems Evolution (2010).

Springer.

114

Chapter 5

Integrating the Warehouses

This chapter first considers the problem of integration. Thereafter, it goes on to show the two

problems of inconsistency and loss of business control that occur. Finally, it proposes to

move the integration problem upstream to integration of Data Warehouse requirements.

5.1 The Integration Problem

The possibility of Data Warehouse/mart integration arises when there are several Data

Warehouses/data marts. According to the CMP white paper (CMP), organizations have

reported between 30 and 100 data marts coexisting after a period of time. These have been

developed using the approach of Kimball (Kimball and Ross, 2002) that envisages a bus

architecture of data marts. Thus, all these data marts exist to solve specific subject oriented

decision issues that arise in managing business operations.

Multiple data marts may exist in a number of other situations (Cabibbo and Torlone, 2004):

 when organizations merge or acquire others: Each organization participating in the

merger/acquisition has built its own Data Warehouse/data mart for managing its

operations. The consolidated organization resulting from merger/acquisition needs to

unify these to manage the integrated operations

 when there is a requirement to combine proprietary with public Data Warehouses:

again, the public and proprietary Data Warehouses are to be integrated.

Multiplicity of data marts leads to inconsistent results. There are two major reasons for this,

schema and data differences. These differences result in users of the two data marts to work

115

with data that is inconsistent with one another. Consequently, managers may end up taking

different decisions because they see different data marts.

The Data Warehouse community has proposed data mart integration for unifying data marts

into one consolidated Data Warehouse. As a result, different schemas are integrated and

differences in data are sorted out. This leads to better decision making in the operations of

the organization.

So far two Data Warehouses, one for PER formulation and the other for business operations,

have been developed. As for the case of data marts, it is possible that there are schema and

data differences between these. As for data marts, PER decision makers and managers of

business operations see the same data as different or as having different logical properties.

Consequently, they may take different decisions because they see different data. This calls for

integration of these Data Warehouses.

Notice that this integration is needed, not for managing business operations, but to ensure

compatibility between the PER and business operations level. The traditional data mart

integration that facilitates decision-making at the same level of business operations is referred

to hereinafter as horizontal integration. In contrast, when integration spans across decision-

making levels, PER and business operations, it is referred to hereinafter as vertical

integration.

Vertical integration is to be contrasted with horizontal integration. The latter refers to

integrating at the same level. Consider the operational level (Fig. 5.1) consisting of data marts

for supporting operational decision making. Since all the data marts are at the operational

level, their integration is referred to as horizontal integration. The upper rectangle in the

figure shows data marts for Policy Enforcement Rules, PER, developed. Again, there is a

horizontal integration problem of these.

116

Since policy enforcement rules regulate operations, PER Data Warehouses support decision

making at a ‘higher’ level than operational Data Warehouses. Again, if there is redundant

information between the marts/warehouses of the two levels, then need for integrating these

will arise. This integration across levels is vertical integration.

Fig 5.1: Horizontal and Vertical integration

The problem of vertical integration arises because of the continuum between PER and

business operations. This continuum says that (a) the two Data Warehouses operate in the

same decision environment and (b) there is a relationship between them: the former provides

the rationale for the latter. The subsequent sections of this chapter show that inconsistency in

these Data Warehouses leads to a special result: loss of business control in the organization. It

is therefore essential, in order to retain business control, to integrate the two kinds of Data

Warehouses.

5.1.1 The Integration Dichotomy in Databases

Experience with solving the integration problem in databases shows that there is a schema-

data dichotomy. According to (Dayal and Hwang, 1984), there are two issues with integration

in multi database systems, differences between the schemas of the several databases and

differences between the data in the data bases. Data differences in the case of overlapping

data require special attention. Specifically, the authors argue, differences between

overlapping data may be due to obsolescence of data in one database, because the same data

Horizontal IntegrationDM1 DMn Operational level

Vertical Integration

Rules formulationHorizontal IntegrationDM1 DMn

117

is really about two different entities of the real world, or because the data are homonyms. The

authors give the example of employee data in two databases. In one database it is empid = 1,

salary = 25 and in the other it is empid =1, salary = 35. Applying the argument, this may be

because the first database contains obsolete information; the reference in the two databases to

empid = 1 actually is to two different employees; salary are homonyms and come from two

different jobs that empid=1 does. The total salary is the sum of the salaries.

Dawyndt (Dawyndt et al., 2005) also pointed out the dichotomy between schema and data

integration in the integration problem. This work was done in the context of microbial data

systems. The authors point out that for database integration to be successful, one requires (a)

development of common schemas so as to obtain a single logical point of access and (b) also

data integration so as to remove duplications and other inconsistencies. Specifically, the

problem of microbial database integration addresses was that of taking joins across databases

by establishing equivalence between identifiers.

To sum up, inconsistencies in multiple database systems may arise due to inconsistencies in

the logical schemas, for example, naming conflicts, data type conflicts or in the data itself, for

example, duplication of data, implicit differences in units etc.

There are two solutions to database integration that are available. The first approach is to do

logical integration but not physical integration. This has been done in Multibase but as

pointed out by Dayal (Dayal and Hwang, 1984), this solution assumes that the local databases

are disjoint. As a result, the assumption is that there are no data differences between the

databases being integrated. The second approach is to do both logical and physical

integration. This assumes that there are both logical and data differences in the databases.

There are two interesting implications of the database experience:

118

1. A point is reached where inconsistencies in multi database systems become so

complex that the organization needs to consider building a Data Warehouse.

Inmon (Inmon, 2005), says that as the number of databases proliferate in an

organization a number of issues with data arise. First there may be independent

databases from which other databases may be populated. Thus, there may not be a

common source of data at all. As databases proliferate, it may get difficult to identify

sources of data. Further, it may not be possible to exercise control on people entering

data. Additionally, there may be an algorithm differential or time differential between

the data in the different databases.

Reed et al (Reed et al, 2010) encountered the inconsistency problem in managing

domestic violence information that was present in four autonomous databases of

different sources, They found that the databases contained inconsistent information

that made management of domestic violence difficult. They go on to integrate the four

databases into one data mart, and eliminating redundancy and inconsistency through

the ETL process.

2. Just as with databases, one can expect that as Data Warehouses/data marts proliferate,

inconsistencies arise and these may be due to logical or data differences. As before, if

the data in the warehouses/marts is disjoint then only logical integration may be

enough. However, when both differences exist then schema as well as data integration

are necessary.

In this regard, the white paper of CMP (CMP) says that the effective method to do

data mart integration is to create a single physical and logical data model for the

119

enterprise. This is done in a two-step process, first by bringing the logical data model

on a common centralized system and then doing integration at both the data and

schema levels.

5.1.2 Integrating Data Marts

In considering DW integration, name conflicts are assumed to be resolved following schema

integration approaches. Since, multi-dimensional modelling basically deals with facts and

dimensions, efforts have been made to match facts and dimensions of fact schema when

performing DW integration:

 It was demonstrated (Cabibbo and Torlone, 2004) that drill across operations

performed over non-conforming dimensions and facts are either not possible or

produce invalid results. They assumed that data marts are available in a variety of

forms, DB2, Oracle, SQL server, etc. and proposed an integration strategy of three

steps consisting of a (a) semi-automated part (Cabibbo et al., 2006) to identify

dimension compatibility (b) verification of compatible dimensions and (c) making

incompatible dimensions compatible. Thus, the integration problem is a semantic

issue.

 The approach of (Riazati et al., 2010) is based on the observation that in many

practical situations, the assumption that in aggregation hierarchies, levels and their

inter-relationships are given does not hold. They infer these levels and inter-

relationships from their data and use them for integration.

 Golfarelli (Golfarelli et al., 2011) position fact/dimension conformity in the larger

context of the functional and physical architecture of the integrated DW and

resolution of the trade-off between technical and user priorities.

 In ORE (Jovanovic et al., 2014), information requirements of the integrated DW are

120

determined as a matrix of facts and dimensions. Each fact row is considered to be an

information requirement and is to be realized in a single data mart. Thus, one gets as

many data marts as the number of fact rows in the matrix. This collection of data

marts is then integrated into the full DW by fact matching, dimension matching,

exploring new multidimensional design and final integration.

The authors propose to use an ontology for available data sources to identify

relationship between concepts.

Summary

The foregoing shows that a proliferation of independently built data marts leads to the

problem of data mart integration. The requirement is to logically and physically unify the

several data marts into one.

The underlying assumptions behind work on data mart integration (Cabibbo et al, 2004) are:

a) Data marts are structured in a uniform way; they use notions of facts and dimensions

only

b) Data quality in a data mart is usually higher than in a database because of the ETL

process

Therefore, the interesting issue is to integrate facts and dimensions across data marts for the

purpose of providing a single logical schema for querying.

5.2 Need for PER-Operations DW Integration

Now consider the two Data Warehouses for policy enforcement rules and business

operations. If the two are independently developed then the problem of inconsistency arises.

As before, this arises because of schema and data differences. Clearly, the same problems as

121

for multiple data marts arise, there is no single point of query due to schema differences and

there are data differences. As a result, PER formulators see different data from business

operations people and rules may be formulated that are not in consonance with operational

realities. Alternatively, operations people may just ignore the formulated rules.

Assume for the moment that there are no schema and data differences between the two Data

Warehouses. As shown below, inconsistency may still arise and may result in loss of business

control.

1. Inconsistent data: The effect of inconsistent data is seen when the refresh times of the

Data Warehouses are different. Let the PER Data Warehouse, DW1 and the operations

Data Warehouse, DW2. Let these contain overlapping information I and to distinguish

between I in DW1 and I in DW2, I1 and I2 shall be used respectively. Let it be that at ETL

time of DW1 and DW2, I1 =I2 = I. Now, let the refresh times of DW1 and DW2 be T1 and

T2 respectively. Then, at T1, I1 changes to I’1 whereas it is only at T2 that I2 changes to I’2

to make I’1 = I’2. Thus, in the time interval (T2 – T1) the two warehouses show

inconsistent values of I.

This leads to data obtained from one warehouse to be different from that obtained in the

other in the window (T2 – T1). Thus, rule formulators and operational decision makers

respectively end up taking decisions on different data in this temporal window. The

larger this window, the longer this inconsistency exists.

That this only happens in the window makes the inconsistency problem worse than if it

were to happen uniformly. It is not possible to get to the source of the problem once the

second Data Warehouse has been refreshed. Thus, the problem is unrepeatable outside

122

this window and may go completely undetected or, if detected, the reason for the

inconsistency may be difficult to find after the window is past.

There is no guarantee that the two Data Warehouses shall be refreshed at the same time.

Further, the operational level Data Warehouse is likely to be refreshed more frequently

than that dealing with formulation of policy enforcement rules. This is because

operational decision-making occurs more frequently than decision making for rules.

Therefore, given operational pressures, operational Data Warehouse is more likely to be

kept refreshed than the rules formulation Data Warehouse.

2. Loss of business control: Inconsistency of data in PER and Operations Data Warehouses

results in loss of business control. Consider the window (T2 – T1). Three cases arise

a. The operations Data Warehouse, DW2 is refreshed and contains latest data.

This data is not in accordance with the policy enforcement rules governing it.

Evidently, either business operations are not in conformity with the

enforcement rules and there is need for better control on the operational

business or the business environment has changed and enforcement rules need

to be reformulated.

b. As before, DW2 is refreshed and contains the latest data. This data is in

accordance with policy enforcement rules. Evidently, this is a benign case

compared to (a): even though the data is different there is no conflict between

PER and operations people.

c. The operations Data Warehouse, DW1 is refreshed and contains latest data.

Therefore, PER formulators are ahead of business operations in so far as

formulating rules are concerned. They may formulate new rules that

123

operations people believe are not needed. Again, this is not a serious problem

and will sort itself out once the operations Data Warehouse is refreshed.

As mentioned above, the operations Data Warehouse is more likely to be refreshed than the

PER Data Warehouse, making case (a) a live possibility. To make case (a) precise, loss of

business control occurs when data of an operations DW calls for decision makers of the

policy enforcement DW to take decisions, but the decisions are not taken because data in the

latter do not suggest this need.

The two problems are illustrated using the following example. Let there be a policy “bed:

nurse ratio must be 8:1”. Consider a Unit in a hospital consisting of 400 beds. According to

the policy, the number of nurses must be 50.

The policy enforcement rule for this policy says that if the ratio falls below 8:1 then an alert

to recruit new nurses is sent out; if it is greater, then an alert about excess staffing is sent out.

Operational information keeps track of the number of nurses, beds, patients registered,

discharged etc.

Inconsistent Data

Let us examine the effect of differing refresh times and show the existence of inconsistency.

Consider Table 5.1 that shows transactions and DW refreshing being carried out at different

times.

124

Table 5.1: Transactions and refresh times for DWop and DWper

Time Transaction Dwop DWper

T1 Delete nurse1

T2 Delete nurse2

T3 Delete nurse3

Tk

 Refresh

To Add nurse4

Tn Refresh

Before the first transaction is executed, let the number of nurses in the hospital be 50. The

first three rows of Table 5.1 show the deletion of three nurses from the transactional system.

At Tk, the operational Data Warehouse, DWop, is refreshed and the number of nurses in this

warehouse is 47. Between Tk and Tn, DWper continues to show that there are 50 nurses. At

this moment the Data Warehouses are inconsistent.

Similarly, the table shows that there is inconsistency again at Tn. At To, a new nurse is

added. At Tn, DWper is refreshed and it contains 48 nurses; DWop contains 47.

Loss of Business Control

Loss of business control occurs in the presence of Data Warehouse inconsistency. Recall that

loss of business control occurs when DWop may ask for a change of policy enforcement rule

but DWper may show no such need.

125

Table 5.2: Data at time T and t’ for DWop and DWper

Time DWop DWper

T Number of nurses = 50 Number of nurses = 50

t’ Number of nurses= 35 Number of nurses = 50

Consider Table 5.2. DWop and DWper at time T show that the hospital has the required

number of nurses that is 50. At time t', DWop shows 35 nurses whereas DWper continues to

show 50.

Consider a possible reaction by decision makers charged with formulating rules, under the

assumption that DWper shows 50 instead of 35. Clearly, there is failure to recruit enough

new nurses as required by the rule. Therefore a new rule is required “if number of nurses is

less than 80% of the required number then transfer nurses from other units”.

Table 5.2 shows that DWop is suggesting the need for a change in a policy enforcement rule

but DWper does not. Thus, loss of business control occurs since appropriate decision making

is inhibited.

5.3 The Approach to Integration

Having shown the problems that occur due to separate Data Warehouses, this section

develops an approach to building a unified Data Warehouse. This approach has two salient

features, (a) it is the ‘build by integrating’ approach and (b) it minimizes integration cost

wherever possible. Each of these two aspects is considered below.

126

5.3.1 Build by Integrating

The approach of Kimball to Data Warehouse development, (see Fig. 1.4) encourages

development of independent data marts. When inconsistencies arise, then integration is to be

done. This can be said to be detection and correction approach: when a problem is detected

it is fixed. Clearly, there is considerable cost in building one single, unified logical and

physical Data Warehouse.

The alternative approach is that of Inmon (see Fig. 1.4) which proposes development of a full

Data Warehouse from which data marts are derived. Since there is a common Data

Warehouse, the inconsistency problem does not arise. In contrast to the approach of Kimball,

this is the inconsistency prevention approach. However, this is a heavy weight approach with

long lead times to deliver working systems.

So, the question is whether there is an approach that, while not being heavy weight is also

relatively cheap? One way of reducing cost is to do integration earlier in the Data Warehouse

life cycle. That is, the approach of Kimball is followed but independent data mart

development is done only until the requirements engineering stage. These are now integrated

to form the requirements of the new Data Warehouse which are then taken into logical and

physical development.

The foregoing can be done pair wise. If there is indeed an operational data mart, then its

requirements specification is obtained and integrated with the independently developed

requirements specification of the new data mart. It can be seen that the cost to physically

build the second data mart is eliminated.

That is, (see Fig. 5.2) when an organization starts on a new data mart DM2, then its

requirements specification, RDM2 is integrated with the requirements specification, RDM1,

127

of the existing DM1. The integrated requirements specification, RDW1, is then taken through

the design and implementation stages of the development life cycle to yield a physically and

logically unified Data Warehouse, DW1. Similarly, when the new data mart DM3 is to be

developed, then its requirements specification RDM3 is integrated with RDW1 to yield

RDW2 and DW2 is built.

Fig. 5.2: Pair-wise integration at the requirements engineering stage

The underlying development principle of the approach is to ‘build by integrating’. Whenever,

a new DM is to be developed, the developer first looks for an existing DW/DM. Initially, the

first DW/DM is logically and physically built since no other DW is found. When the second

DM is to be developed, its requirements specification is integrated with that of the first, and

the new integrated. Logical and physical DW is obtained. This process of integrating the new

DM with an existing DW continues.

Thus, at no time does the approach call for development of intermediate DMs before a final

DM is built. The build by integration approach can thus be seen to do pair-wise integration.

5.3.2 Integrate Early Information

The build by integrating approach moves integration to the requirements engineering phase

thereby reducing wasted effort. In other words, this principle of reducing wasted effort can be

DM1 RDM2RDM1

DW1 RDM3RDW1

RDW2Consistency

Consistency

Requirements Integration

Requirements Integration

DW2

128

applied to integration at the requirements stage itself. In the development life cycle of

chapters 3 and 4, there are TWO possibilities for integration in the RE stage:

(a) integrate ER schemas. Existing ER integration techniques can be used to produce the

integrated ER schema (Batini et al, 1986; Lee and Ling, 1995; Lee and Ling, 2003).

This can then be converted into multidimensional form using existing algorithms of

Golfarelli or Moody.

(b) integrate early information. Convert integrated early information into the ER form

for subsequent development of the multidimensional view.

Shown below is a brief discussion on each approach. Notice that (b) is the most appropriate

approach.

Consider two data marts, DM1 and DM2. Let DM1 be already operational. When

constructing DM2 using strategy (a), determine the ER schema of DM2, obtain the ER

schema of DM1, integrate these and produce the integrated warehouse. Existing ER schema

integration techniques and algorithms for converting ER schemas to multidimensional form

can be exploited. This is shown in Fig 5.3.

Fig 5.3: Strategy (a) integrating at the ER schema point

Using strategy (b) there is further reduction in the work to be done since even the ER schema

is not to be produced. The integrated early information is then converted into the integrated

129

ER diagram for subsequent conversion into the integrated multi dimensional schema of the

DW To-Be.

The proposal here is to take the early information obtained in the two life cycles, EIper from

DWper and EIop from DWop, and produce integrated early information EIintegrated from them.

Thereafter, EIintegrated is converted into the integrated ER diagram for subsequent generation

of multi dimensional schema. This process is shown in Fig 5.4.

Fig 5.4: Strategy (b) integrating Early Information

Notice that whereas prevailing data marts integration approaches work with integration of

facts and dimensions, it is possible, in this case to separate early information from late

information. The former is unstructured information whereas the latter consists of facts and

dimension. The proposal is to do integration of early information. The integrated early

information is then converted into the integrated ER diagram for subsequent conversion into

the integrated multi dimensional schema of the DW To-Be.

5.4 The Vertical Integration Life Cycle

The foregoing is applied in developing an integrated PER/Operations Data Warehouse.

130

The integration technique is organized in four steps. This section details the integration

process using these steps.

5.4.1. Overview of four Components

The four broad steps of the integration approach itself are as follows:

1. Reading requirements specifications of the Data Warehouses. It is assumed that these

are available as part of the metadata. The MetaData Reader reads these

specifications.

2. Proposing correspondence between the requirements specifications. Four

correspondence strategies are defined here from brute force to strong correspondence.

The Correspondence Drafter proposes correspondences.

3. The proposed correspondences are examined to carry out detailed integration of

information. This task is carried out by the Information Mapper.

4. When the Information Mapper throws up situations of conflict, then these are resolved

by the Conflict Resolver.

5.4.2. MetaData Reader

The MetaData Reader assumes that a trace of the information obtained during requirements

engineering is available. Metadata of DWper has:

 Rule: PE rule identifier for which EI has been elicited;

 Analysis Type: analysis method used for eliciting EI, ENDSI, MEANSI, CSFI;

 Analysis value: effectiveness measure for ENDSI, efficiency measure for MEANSI

and CSFI factor for CSFI analysis; and finally

 Early Information: EI identifier.

131

The metadata for DWper is illustrated in Table 5.3. It can be seen that analysis of R1 using

CSFI analysis yielded EIR1,CSFI,A, EIR1,CSFI,B and using ENDSI analysis yielded EIR1,ENDSI,C

whereas analysis of R2 yielded EIR2,CSFI, D.

Table 5.3: Trace Information of PE Rules

Rule Analysis Type Analysis Value Early Information

R1 CSFI A EIR1,CSFI,A

R1 CSFI B EIR1,CSFI,B

R1 ENDSI C EIR1,ENDSI,C

R2 CSFI D EIR2,CSFI, D

The structure of metadata in DWop is similar to the structure of metadata of DWper. Since

decisions are traceable to rules there is an additional column called Decision which is the

decision identifier. An example is shown in Table 5.4. Here two decisions D1 and D2 are

traceable to R1 and R2 respectively. Again, the information obtained for each decision under

different analysis types is available.

Table 5.4: Trace Information of Decisions

Decision Rule Analysis Type Analysis Value Early

Information

D1 R1 CSFI P EID1,CSFI,P

D1 R1 ENDSI Q EID1,ENDSI,Q

D2 R2 CSFI R EID2,CSFI,R

132

The MetaData reader reads the metadata from the two Data Warehouses for use by the

correspondence drafter.

5.4.3. Correspondence Drafter

The correspondence drafter can be based on a number of strategies, from the brute force

strategy to strong correspondence strategy. These strategies are described below:

1. Brute Force strategy: In this strategy each row of one table is compared with every

other row of the second table. Assuming the tables to have m and n rows respectively,

the total number of comparisons will be m*n. For low values of m and n this strategy

is suitable.

2. Weak correspondence strategy (WCS): As the values of m and n of the brute force

strategy become large, there is a need to deploy heuristics. Let there be a rule R; a

decision D; and early information EIR and EID. WCS says that EIR and EID correspond

to one another provided D is traceable to R. Thus, for Table 5.3 and 5.4, the weak

correspondences shown in Table 5.5.

Table 5.5: Weak Correspondence strategy

DWper DWop

EIR1,CSFI,A EIR1,CSFI,B

EIR1,ENDSI,C

EID1,CSFI,P EID1,ENDSI,Q

EIR2,CSFI, D EID2,CSFI,R

Assuming that the amount of EI of a rule and that for a decision derived from it is not

large, this strategy is suitable.

133

3. Average correspondence strategy (ACS): As the early information to be considered

in the WCS rises, there is need for a stronger heuristic. Average correspondence

suggests that early information that has been obtained from the same analysis type for

a rule and that obtained for decisions traceable to this rule is likely to exhibit

correspondence. Formally, let there be a rule R; a decision D; analysis types AT1 as

well as AT2; and early information EIR,AT1 and EID,AT2 . ACS says that EIR,AT1 and

EID,AT2 correspond to one another provided (i) D is traceable to R, and (ii) AT1 =

AT2. Thus, for Table 5.3 and 5.4, the average correspondences shown in Table 5.6.

Table 5.6: Average Correspondence strategy

DWper DWop

EIR1,CSFI,A EIR1,CSFI,B EID1,CSFI,P

EIR1,ENDSI,C EID1,ENDSI,Q

EIR2,CSFI, D EID2,CSFI,R

Assuming that the amount of EI of an analysis type is not very large, this strategy is

suitable.

4. Strong correspondence strategy (SCS): Again, as the amount of early information

to be considered in ACS rises, there is need for an even stronger heuristic. Let there

be a rule R; a decision D; analysis types and values AT1, V1 as well as AT2, V2

respectively; and early information EIR,AT1,V1 and EID,AT2,V2. Now, a strong

correspondence occurs between EIR,AT1,V1 and EID,AT2,V2 provided (i) D is traceable to

R (ii) AT1 = AT2 and (iii) EQV(V1,V2). EQV is defined as follows:

134

 For AT1 = AT2 = CSFI, EQV(V1,V2) if V1 is computed from V2 or V1=V2

 For AT1 = AT2 = ENDSI, EQV(V1,V2) if achievement of V1 contributes to

achievement of V2 or V1=V2

 For AT1 = AT2 = MEANSI, EQV(V1,V2) if V1 is a MEANSI that contributes

to the MEANSI used to achieve V2 or V1=V2

Assume that EQV(A,P), EQV(C,Q), and EQV(D,R). Thus, for Table 5.3 and 5.4, the

strong correspondences are shown in Table 5.7. Notice that the second row shows no

strong correspondence for EIR1,CSFI,B.

Table 5.7: Strong correspondence strategy

DWper DWop

EIR1,CSFI,A EID1,CSFI,P

EIR1,CSFI,B

EIR1,ENDSI,C EID1,ENDSI,Q

EIR2,CSFI, D EID2,CSFI,R

5.4.4. Information Mapper

Once the Correspondence Drafter reports the correspondences, attention shifts to a more

detailed examination of early information. The notion of early information was elaborated in

chapter 2, and it was shown there that early information is described in terms of the following

 Attribute

 History: Whether or not its history is to be maintained

 Categorization

 Functional: use of a function like Count, Max, Min etc.

135

To establish a mapping between correspondences generated by the Correspondence Drafter,

there is a need to ensure that information of one can be mapped to that of the other. This is

the job of the Information Mapper: it compares two pieces of early information, EI1 and EI2

and reports their integration, EIintegrated.

Suppose EI1 has I1, A1, H1, C1, F1 and EI2 has I2, A2, H2, C2, F2. While comparing EI1

and EI2, three possibilities can arise. EI1 and EI2 can be

 Fully mapped: This is the case when I1==I2 and A1==A2, H1==H2, C1==C2,

T1==T2 and F1==F2. In this case EI1=EI2= EIintegrated. One copy of early information

is included in EIintegrated.

 Partially mapped, if I1==I2 and at least one of the other properties are not equal. In

this case there are conflicts that need to be examined and resolved.

 Not mapped: defined as I1<>I2. Here there is no overlap between the information and

EIintegrated = EI1 U EI2.

5.4.5. Conflict Resolver

EI which is partially mapped is sent to the Conflict Resolver. There are the following two

kinds of conflicts.

1. Property present in EI1 and not present in EI2 or vice versa: When such a conflict

arises then the proposed heuristic is to maintain property in EIintegrated. For example,

EI1 shows that history is required and EI2 shows that it is not. Obviously, then,

history in EIintegrated has to be maintained. The requirement of DM2 shall be satisfied

with current data and that of DM1 by current plus back data.

2. Property present in both EI1 and EI2 but with different property values: Table 5.8

shows the different scenarios that can arise. Notice in the case of Attribute,

Categorization and Function, EIintegrated contains A1 U A2, C1 U C2 and F1 U F2. In

136

the case of temporal unit, the value having the lower grain is chosen since roll-up

operations can always be performed at the level of BI tools.

Table 5.8: Conflict resolution

Property EI1 EI2 EIintegrated

Attribute A1 A2 Both A1 and A2

History H1 H2 Lower grain

Categorization C1 C2 Both C1 and C2

Function F1 F2 Both F1 and F2

In conclusion, Metadata Reader reads the metadata, early information, of the two data marts

to be integrated. Correspondence Drafter proposes correspondences between rules and

decisions traceable to their rules. This can be done using the proposed heuristics for either

brute force, WCS, ACS or SCS strategies. Now, for each correspondence EI is examined by

the Information Mapper to generate EIintegrated. For this the Mapper applies heuristics to find if

two given EI are fully mapped, partially mapped or not mapped. Partially mapped ones move

to the conflict resolution stage.

5.4.6 An example showing Integration

The process of integration is shown for the following PER and Decision:

R1: WHEN start x IF !area(x, 200) THEN expand x

D1: Remodel x

where range variable is <private ward> <x>.

137

1. Metadata Reader

Consider the metadata for PER R1 as shown below in Table 5.9. Each row gives information

about a PER, analysis type applied, analysis value obtained and EI identifier. Observe from

Table 5.9 that during PER life cycle EI was elicited, using two CSFI factors, three ENDSI

and three MEANSI analyses. Details of the early information in the last column of Table 5.9

are provided later when we consider Information Mapper because these details are needed

then.

Table 5.9: Trace Information of PE Rules

S.No Rule Analysis

Type

Analysis Value Early Information

1 R1 CSFI Patient Satisfaction EIR1,CSFI,PS

2 R1 CSFI Quality Care EIR1,CSFI,QualC

3 R1 ENDSI Service higher income

group patients

EIR1,ENDSI,IncGrp

4 R1 ENDSI Service more patients EIR1,ENDSI,SPat

5 R1 ENDSI Improve patient care EIR1,ENDSI,PC

6 R1 MEANSI Construct new EIR1,MEANSI,NewRoom

7 R1 MEANSI Hire room EIR1,MEANSI,HireRoom

8 R1 MEANSI Remodel existing

Room

EIR1,MEANSI,RemodRoom

Table 5.10 shows metadata of DWop for decision D1. There is an additional column that

shows the PER from which the decision is derived. In Table 5.10, second column contains the

decision and third column shows the corresponding PER. Also, observe for D1, EI was

138

elicited using two CSFI factors, two ENDSI and four MEANSI analyses EI was elicited.

Again, details of early information aare considered when dealing with Information Mapper.

Table 5.10: Trace Information of Decisions

S.No Decision Rule Analysis

Type

Analysis Value Early

Information

1 D1 R1 CSFI Patient Satisfaction EID1,CSFI,PatSat

2 D1 R1 CSFI Quality Care EID1,CSFI,QC

3 D1 R1 ENDSI Attract higher income

group patients

EID1,ENDSI,Income

4 D1 R1 ENDSI Provide patient

attention

EID1,ENDSI,PatAtt

5 D1 R1 MEANSI Construct new EID1,MEANSI,NewPvt

6 D1 R1 MEANSI Hire existing EID1,MEANSI,HirePvt

7 D1 R1 MEANSI Splitting room EID1,MEANSI,SplitPvt

8 D1 R1 MEANSI Adding section EID1,MEANSI,AddSec

2. Correspondence Drafter

The next step is to find correspondences between PERs and decisions for each row of Tables

5.9 and 5.10. The brute force strategy was not applied and so it is not shown here. This is

because the EI to be integrated was large which made the total number of comparisons also

large.

Applying WCS:

WCS says that EIR and EID correspond to one another provided

(i) D is traceable to R.

139

Table 5.10 shows that D1 is traceable to R1. There is a weak correspondence between EI of

Table 5.9 and Table 5.10. The result is shown in Table 5.11. Note, neither is the analysis type

nor is the analysis value taken into consideration while drafting correspondence.

Table 5.11: Correspondence between EIR and EID using WCS strategy

Dwper Dwop

EIR1,CSFI,PS ,EIR1,CSFI,QualC

EIR1,ENDSI,IncGrp,EIR1,ENDSI,Spat,

EIR1,ENDSI,PC

EIR1,MEANSI,NewRoom;

EIR1,MEANSI,HireRoom;

EIR1,MEANSI,RemodRoom

EID1,CSFI,PatSat, EID1,CSFI,QC

EID1,ENDSI,Income, EID1,ENDSI,PatAtt

EID1,MEANSI,NewPvt;

EID1,MEANSI,HirePvt;

EID1,MEANSI,SplitPvt; EID1,MEANSI,AddSec

Applying ACS:

ACS says that EIR,AT1 and EID,AT2 correspond to one another provided

i. D is traceable to R, and

ii. AT1 = AT2

Consider the first and second rows of Table 5.10. Here D1 is traceable to R1. The analysis

type is CSFI. In Table 5.9, row numbers 1 and 2 have rule as R1 and analysis type as CSFI.

Thus, the correspondence is ACS. Similarly, row numbers 3, 4 of Table 5.10 and row

numbers 3, 4, and 5 of Table 5.9 have ACS between their EIs. The result is shown in Table

5.12. Notice, the analysis value is not taken into consideration here.

Table 5.12: Correspondence between EIR and EID using ACS strategy

Dwper Dwop

EIR1,CSFI,PS ,EIR1,CSFI,QualC EID1,CSFI,PatSat, EID1,CSFI,QC

EIR1,ENDSI,IncGrp,EIR1,ENDSI,Spat, EID1,ENDSI,Income, EID1,ENDSI,PatAtt

140

EIR1,ENDSI,PC

EIR1,MEANSI,NewRoom, EIR1,MEANSI,HireRoom,

EIR1,MEANSI,RemodRoom

EID1,MEANSI,NewPvt, EID1,MEANSI,HirePvt,

EID1,MEANSI,SplitPvt, EID1,MEANSI,AddSec

Applying SCS:

Consider the first row of Table 5.9 and Table 5.10. Applying, the rules for SCS EIR1,CSF,PS

and EID1,CSF,PatSat.

(i) Decision D1 is traceable to R1

(ii) Analysis type for both is CSFI.

(iii) EIR1,CSF,PS has the same analysis value “patient satisfaction” as EID1,CSFI,PatSat.

Thus, according to the rules above, there is equivalence, EQV(PS, PatSat).

All the three conditions for strong correspondences between EIR1,CSFI,PS and EID1,CSFI,PatSat are

satisfied. Similarly for EIR1,CSFI,QualC and EID1,CSFI,QC , and for EIR1,ENDSI,IncGrp and

EID1,ENDSI,Income a strong correspondence is found and shown in the second and third rows of

the table.

The fourth row of Table 5.13 shows no entry against EIR1,ENDSI,SPat. This is because there is no

equivalent analysis value found in Table 5.10.

Table 5.13: Correspondence between EIR and EID using SCS strategy

S.No Dwper Dwop

1 EIR1,CSFI,PS EID1,CSFI,PatSat

2 EIR1,CSFI,QualC EID1,CSFI,QC

3 EIR1,ENDSI,IncGrp EID1,ENDSI,Income

4 EIR1,ENDSI,Spat

141

5 EIR1,ENDSI,PC EID1,ENDSI,PatAtt

6 EIR1,MEANSI,NewRoom EID1,MEANSI,NewPvt

7 EIR1,MEANSI,HireRoom EID1,MEANSI,HirePvt

8 EIR1,MEANSI,RemodRoom EID1,MEANSI,SplitPvt

9 EIR1,MEANSI,RemodRoom EID1,MEANSI,AddSec

To obtain the fifth row of Table 5.13, consider the fifth row of Table 5.9 and the fourth row

of Table 5.10. Again, rules 1 and 2 are satisfied because D1 is traceable to R1 and analysis

type is the same for both, that is ENDS. Notice that achievement of “Provide patient

attention” contributes to achievement of “Improve patient care”. Thus, there is EQV(PC,

PatAtt).

The last two entries of Table 5.13, rows 8 and 9, are obtained because the MEANS “splitting

room” and “adding section” of Table 5.9 contributes to the MEANS “remodel room” of

Table 5.10. Thus, there is EQV(RemodRoom, SplitPvt) and EQV(RemodRoom, AddSec).

3. Information Mapper

Information mapper checks to see if early information to be integrated is fully mapped,

partially mapped, or not mapped.

Mapping Information from WCS:

The information mapper picks one EI from DWper and the other from DWop for integration

at random. If they are fully mapped then only one set is maintained and integrated with the

next EI picked at random by the information mapper. If at any point there is a conflict, then

the conflict resolver resolves the conflicts and integrates EIs. If EIs are not mapped then both

142

the copies are stored. This process is repeated till all the entries of Table 5.11 have been

processed and integrated.

Mapping Information from ACS:

The first row of Table 5.12 has two entries from DWper and two from DWop. The

information mapper picks one from each DWper and DWop at random, integrates and then

picks the remaining two for integration. After it finishes with the first row of Table 5.12 it

proceeds to the second row and follows the same process. Throughout, the rules for fully

mapped, partially mapped and not mapped are followed.

Mapping Information from SCS:

Table 5.13 shows that EIR1,CSFI,PS and EID1,CSFI,PatSat have a strong correspondence. The

process of information mapping for CSFI analysis type is shown below. Consider

information for EIR1,CSFI,PS and EID1,CSFI,PatSat as shown in Table 5.14.

Table 5.14: Early information for EIR1,CSFI,PS and EID1,CSFI,PatSat

Early

Information

Information Attribute History Category Function

EIR1,CSFI,PS Patient Yearly Count

EID1,CSFI,PatSat Patient Yearly Unit-wise

Ward-wise

Department -wise

Count

Clearly, information “Patient” is mapped. Now, is the question of whether it is fully or

partially mapped. Notice here that while patient of EIR1,CSFI,PS is not categorized, patient of

143

EID1,CSFI,PatSat is categorized unit-wise, ward-wise and department-wise. Thus, they are

partially mapped and this conflict is resolved by the conflict resolver. EIintegrated obtained is

shown in Table 5.15.

Table 5.15: Early information after integrating EIR1,CSFI,PS and EID1,CSFI,PatSat

Information Attribute History Category Function

Patient Yearly Unit-wise

Ward-wise

Department –wise

Count

Consider information for EIR1,CSFI,QualC and EID1,CSFI,QC shown in Table 5.16. Information

Disease has the same attribute, history and category and function values in both the rows.

Thus, for information Disease the EI are fully mapped.

Table 5.16: Early information for EIR1,CSFI,QualC and EID1,CSFI,QC

Early

Information

Information Attribute History Category Function

EIR1,CSFI,QualC Disease Name Monthly Type-wise

EID1,CSFI,QC Disease

Doctor

Patient

Name

Speciality

Income

Monthly

Monthly

Monthly

Type-wise

Daily

Count

Doctor and Patient are unique to EIR1,CSFI,J and not mapped. Thus, EIintegrated obtained is shown

in Table 5.17.

144

Table 5.17: Early information after integrating EIR1,CSFI,QualC and EID1,CSFI,QC

Information Attribute History Category Function

Disease Name Monthly Type-wise

Doctor Speciality Monthly Daily

Patient Income Monthly Count

In the next iteration, Tables 5.16 and 5.17 are integrated, conflicts resolved and the resulting

EIintegrated is shown in Table 5.18.

Table 5.18: EIintegrated after integrating from Tables 5.15 and 5.17

Information Attribute History Category Function

Disease Name Monthly Type-wise

Doctor Speciality Monthly Daily

Patient Income Monthly Unit-wise

Ward-wise

Department –

wise

Count

This process is repeated for all the entries of Table 5.13. After EIintegrated is obtained, this

information is converted to ER diagram and then to a star schema. The integrated schema is

presented in Appendix B.

Summary

In contrast to the prevailing ‘fact and dimension conformity’ approach, the proposal in this

thesis is to integrate early information obtained in the requirements engineering stage.

Upstream integration has two advantages over the more traditional methods of data mart

Integration described in Chapter 1.

1. In the latter methods, all data marts to be integrated have to first be independently

developed. Thus, for each data mart a conceptual, logical and physical structure is

145

developed. When integration is to be performed, conformed dimensions are

identified. In other words, the conceptual model is integrated.

Notice, there is considerable downstream activity effort involved in first

developing the data marts and then integrating them. In the method proposed in

this thesis, the new data mart is not built separately. Rather integration is done at

the requirements stage itself. Thus, development effort is saved in producing the

individual data marts.

2. Further, at every increment, a unified logical and physical Data Warehouse is

available, which as pointed out earlier, is highly effective.

This focus on requirements integration coupled with pair-wise DW development minimizes

development effort. It does so by never allowing completely operational data marts to be built

before these are integrated, thereby reducing the wasted effort in throwing away DM designs

and implementations. Further, this approach is a prevention approach. There is no detection

and correction because the occurrence of a problem is pre-empted by not allowing an un-

integrated data mart to be developed.

Note: The ideas of this chapter are in Business and Information Systems Engineering. Springer

(communicated on 04/01/2015)

146

Chapter 6

Validation and Experience

The method proposed in this thesis was validated against a traditional Indian system of

medicine which includes Ayurveda, Yoga and Naturopathy, Unani, Siddha and

Homoeopathy. This system is regulated by AYUSH which is a government of India body

under Ministry of Health and Family Welfare. AYUSH has departments of Ayurveda, Yoga

and Naturopathy, Unani, Siddha and Homoeopathy (thus abbreviated AYUSH). Each

department develops and regulates education and research in their respective areas. Further,

AYUSH body regulates hospitals offering services in the above mentioned areas of medicine.

It does so by defining policies that other hospitals must comply with.

AYUSH policies can be found on their website (AYUSH, 2000). Structural policies are

considered here. There were a total of 151 policies across the various systems of medicine.

These policies were represented in an extended first order logic form defined in Chapter 3.

Using these as input into the Policy Enforcement Rule life cycle DWper was built. The PER

actions formulated were input into the operational life cycle and DWop was built. Finally,

using the integration life cycle, early information bases of DWper and DWop was integrated

to form EIintegrated.

Three tools namely, ELISPE, ELISO and CADEI, whose implementation is described in

Chapter 7, were used to elicit EIper, EIop and EIintegrated respectively. Using ELISPE, the total

effort required to move from policies to PER to DWper was three man months. This included

one domain expert and the author of this thesis. Using ELISO, the total effort required to

move from PER to operational actions and to construct DWop was two man months

147

including the author of this thesis and the domain expert. Using CADEI, the total effort

required to integrate EIper and EIop was 15 days. This was performed by the author of this

thesis and the task was to define equivalences while drafting correspondences. At this stage

only minimal interaction was required with the domain expert.

Sections 6.1 and 6.2 respectively of this chapter, consider the application of the elicitation

and integration techniques. For the former, detailed examples for arriving at DWper have

already been considered, in Chapter 3. Therefore, here only the statistics of the study, lessons

learnt and the result of applying these learning are presented.

Section 6.2 takes up the validation and experiences gained from the integration part of the

AYUSH example. First the manner in which integration can be done through the four step

integration process is shown. This integration yields EIintegrated. Thereafter, experiences

gained are outlined.

6.1 Lessons Learnt during Elicitation

As mentioned above, a sufficiently large example is needed to base the validation on. It was

assumed that an example that dealt with 100 or more policies would bring out the main

features of the approach proposed in this thesis. When the AYUSH example was looked at, a

coherent set of 151 policies was found, coherent because all of these related to the

infrastructural aspects of AYUSH hospital. Thus, the techniques proposed in the previous

chapters and the three tools were used. The policies were expressed in our logic by the author

of this thesis and validated for correctness through interaction with the domain expert. The

effort required for this is included in the three man-months mentioned earlier in this chapter.

148

We found that all the 151 policies could be expressed in our logic. These policies and their

corresponding expressions in the logic are presented in Appendix A.

As already explained in chapter 3, at the PER level, policy enforcement rules are identified

following the two guidelines and each rule throws up a number of actions. A summary of the

case is shown below:

Total number of policies = 151

Total number of Actions (triggering and correcting) = 1624

Total number of policies enforcement rules obtained from guideline 1 = 492

Total number of policies enforcement rules obtained from guideline 2 = 320

Total number of policy enforcement rules = 812

Now, let us consider the lessons learnt. There are two broad lessons, namely (b) the effect of

common actions that might be determined on the elicitation process and (c) the applicability

of the elicitation techniques. Both of these are considered in turn.

Effect of Common Actions: There were a number of situations where the same common

actions were found. Identification of common actions has two effects:

 Improvement in efficiency of the elicitation process: Since the actions are common,

the elicitation process can be done exactly once for these and does not have to be

repeated several times.

 Determination of Non-redundant early information: Since the relevant information is

the same for, early information is obtained exactly once.

The above is illustrated further. Actions can be common between two policy enforcement

rules. This can happen when either triggering action of two policy enforcement rules is the

149

same or when correcting action of two rules is the same. Observe the entries in Table 6.1 and

6.2.

Table 6.1: Information for create x for PER WHEN create x, IF !Run(x, y) THEN start y

Action Elicitation Method Information Base

Entity Attribute History Category Function

Create

x

C
S

F
I

Provide Quality Care Patient Yearly Count

E
N

D
S

I

Ends Effectiveness

Bed

Equipment

Laboratory

Name

Test

Ward

Count

Count

Count

Provide

treatment to

patients

Facilities

provided

M
E

A
N

S
I

Means Efficiency

Ayurvedic

hospital

Build

cost

Space

Sum

Sum Construct new Resources

needed

Hire existing Resources

saved

Ayurvedic

hospital

Rental

cost

 Sum

Table 6.1 shows information elicited for triggering action, create x, for PER WHEN create x

IF !Run(x, y) THEN start y. Table 6.2 shows information for triggering action, create x, for

PER WHEN create x, IF !ratio(count(b), count(n),8, 1) THEN re-designate x. The Range

Variables for both of these rules are: <Ayurvedic hospital> <x> and <OPD> <y>.

Notice, action Create x is common between the two rules and so is the information elicited.

150

Table 6.2: Information for action create x for PER WHEN create x IF !ratio(count(b),

count(n),8, 1) THEN re-designate x

Action Elicitation Method Information Base

Entity Attribute History Category Function

Create

x

C
S

F
I

Provide Quality Care Patient Yearly Count

E
N

D
S

I

Ends Effectiveness

Bed

Equipment

Laboratory

Name

Test

Ward

Count

Count

Count

Provide

treatment to

patients

Facilities

provided

M
E

A
N

S
I

Means Efficiency

Ayurvedic

hospital

Build

cost

Space

Sum

Sum Construct new Resources

needed

Hire existing Resources

saved

Ayurvedic

hospital

Rental

cost

 Sum

It can also happen that an action that acts as a trigger for one rule is the correcting action of

another rule. For example consider the two policy enforcement rules:

1. WHEN remove b IF !(ratio(count(p),count(b),1,6) THEN re-designate x

2. WHEN start pr IF !EQ(count(attbed),1) THEN remove b

For the first policy enforcement rule, action remove b, where b is an instance of bed, is the

triggering action. The same action is a correcting action for the second policy enforcement

rule.

Irrespective of where the common action is, common actions yield same information. In the

case of entries in Table 6.1 and 6.2, action, create x, where x is an instance of Ayurvedic

Hospital, gives the same information. It was observed that action remove b, where b is an

151

instance of bed, yields same information irrespective of whether it is a triggering action or

correcting action. Thus, information elicitation may be done only once.

Identification of common actions can drastically reduce the number of actions to be

considered for information elicitation. In the case of AYSUH, the following was found:

Number of common Actions = 1100

Total number of Actions= Actions-Common Actions =1624-1100=524

Applicability of Elicitation Techniques: Experience here is that not all elicitation

techniques are uniformly applicable to all actions:

 Means Analysis was applicable to almost all the actions. This can be seen in Chapter

3 Tables 3.6, 3.7 and 3.8. Efficiency measures and information could thus be

identified.

 Almost all the Actions had an End. Actions in Tables 3.6, 3.7 and 3.8 have an End

associated with them and the effectiveness of the end could be measured.

 CSF was more difficult to identify for all actions. Whereas for actions create x and

start y (see Table 3.7) CSF could be defined, defining a CSF for expand pr was more

difficult.

Whereas it seems possible to associate ENDs and MEANS with an action, the association of

a CSF with an action is relatively more difficult. A fair amount of pre-work is required to be

carried out that associates CSF with actions. If this pre-work is not done then elicitation

becomes slow and tedious.

152

6.2 Lessons Learnt from Integration

Using pair-wise integration approach, the early information bases of DWper and DWop was

integrated. Recall, the integration approach contains four steps (a) Metadata Reader that

reads off the metadata from DWper and DWop, (b) Correspondence Drafter that finds

correspondences between PER and Decision using Brute Force, WCS, ACS or SCS strategy

as desired by the requirements engineer, (c) Information Mapper examines and checks if

the pair of early information being integrated is fully, partially or not mapped. Naturally, if a

conflict arises, as with partially mapped information, then the fourth component the Conflict

Resolver resolves the conflicts.

Let us now present the main lessons learnt from the integration of DWper and DWop. These

are as follows:

Time taken for drafting correspondences: In SCS, for defining EQV(V1,V2), if the case is

that V1=V2, then the time taken to define equivalence is not high. No interaction with the

requirements engineer is required as the correspondence drafter itself finds the equivalence.

However, for the other cases namely, V1 is computed from V2; V1 contributes to

achievement of V2; and V1 is a means that contributes to the means used to achieve V2;

EQV has to be defined by the requirements engineer. This part is a manual process and time

taking.

In ACS, since it’s a direct text search, there is no intervention required by the requirements

engineer and therefore the time taken to form correspondences is lower than SCS.

In WCS, again there is no intervention required by the requirements engineer and is much

faster than SCS. Between ACS and WCS there is no significant time difference.

153

Number of times Conflict Resolver had to resolve issues: It was found that he number of

times conflicts had to be resolved was the lowest while employing SCS and maximum during

WCS. This was because of the random nature of picking up a pair of EI for integration. By

forming correspondences in ACS and SCS, the random nature of forming an EI pair is

reduced. Note, there is no randomness in SCS strategy. This meant the time taken to form

EIintegrated was maximum in WCS and minimum in SCS.

The Trade-off: There is a trade-off between time taken by the correspondence drafter

and number of conflicts to be resolved. This is shown in Table 6.3.

Table 6.3: Trade-off between different correspondence strategies

Correspondence

Strategy

Time taken for drafting

correspondences

Number of times hit to

Conflict Resolver

WSC Lowest Highest

ASC Average Average

SCS Highest Lowest

Summary

Using the policies of AYUSH regulatory authority, DWper with EIper was built. The actions

of PERs formulated were then used to build DWop with EIop. Finally, EIper and EIop were

integrated. The three correspondence strategies WSC, ACS and SCS were applied and using

the information mapper and the conflict resolver, EIper and EIop was integrated to obtain

EIintegrated.

154

Some of the experience with the example deals with the efficiency and non-redundancy of the

elicitation process. Other experience is with the applicability of the different elicitation

techniques. The reasons behind the partial applicability of the CSFI technique need

investigation and is an open problem falling out of this thesis.

Note: The ideas in this chapter have been published in International Journal of Information System

Modeling and Design (IJISMD) 2015 and in Business and Information Systems Engineering.

Springer (communicated on 04/01/2015)

155

CHAPTER 7

Implementation

Chapter 2 of the thesis presented generic models for decision requirement, decision and

information along with generic information elicitation techniques. These were applied to the

PER and operational layer of the decision continuum to develop two DW systems, DWper

and DWop. Early information of DWper and DWop was integrated to EIintegrated and an

integrated DW system was developed.

This chapter discusses the implementation to arrive at EIper, EIop, and EIintegrated. In this

regard, three tools namely, ELiciting Information Support for Policy Enforcement (ELISPE)

for the first, ELiciting Information Support for Operations (ELISO) for the second, and

Computer Aid for Decision Early Information elicitation (CADEI) respectively were

developed. They were written out in Microsoft .net platform with backend support provided

by Microsoft SQL Server. The details of the code can be obtained from the author.

Chapter 7 is organized into three parts with Part I containing the architecture of ELISPE, Part

II architecture of ELISO and finally, Part III for CADEI.

PART I: ELiciting Information Support for Policy Enforcement (ELISPE)

Recall from chapter 3, the input to PER life cycle is organizational policies for which PERs

have to be formulated. Using guidelines of chapter 3, actions are elicited and PERs are

formulated in the WHEN triggering action IF condition THEN correcting action. In order to

decide which correcting action is to be part of a PER, one among the choice set {select,

156

modify, reject} is to be selected. Early information required for this decision making is

elicited by applying the three techniques, CSFI, ENDSI and MEANSI. Thus, three

components are to be part of ELISPE, one for eliciting actions, second for formulating PER

and third for eliciting early information.

Note, for the late RE phase an existing tool Dia was used for ER schema modelling.

The architecture of ELISPE is shown in Fig. 7.1. There are two parts:

 front end part that formulates enforcement rules and elicits Actions.

 back end part of the tool helps elicit information.

Organizational policies are present in the policy base of Fig. 7.1. These policies are

presented, one by one, in textual form to the requirements engineer. The policy being

presented is processed by the Action Elicitor. For each policy, the Action Elicitor applies the

guidelines discussed in Chapter 3. The Action Elicitor stores each elicited action in the

Action base.

Fig 7.1: Architecture of ELISPE

Early
Information

Base , EIper

Policy
Enforcement

Base

User
Interface

Policy
Base

Action
Elicitor

Action
Base

Policy

Enforcement

Rule Maker

Information
Elicitor

157

These actions are used as input to the policy enforcement rule maker where actions are filled

into the WHEN IF THEN form. These are then stored in the Policy enforcement base. This

forms the front end part of ELISPE.

Notice there are two users of the system, the repository manager and the requirements

engineer. The creation and maintenance of the four bases of Fig 7.1 is done by the repository

manager. Using this, information is made available to the requirements engineer as a service.

That is, if a requirements engineer needs to formulate rules then s/he registers for use of the

system, accesses its contents and formulates them. Naturally, the four bases are created once.

They are populated thereafter.

Detailed below is the role and responsibilities of the repository manager and the requirements

engineer.

Repository Manager

The repository manager creates and maintains the Policy, PER, Action and Early Information

bases. That is, when the repository is to be populated with a new domain, then it is the

repository manager’s task to create the partition in the repository. Now, the repository is

ready to accept different organizations and their policies and rules. The repository manager is

also responsible for registration and de-registration of requirements engineers. When a

requirements engineer is de-registered then the repository ceases to contain information about

the policies and rules for which s/he was responsible.

The repository manager interacts with the four bases through an interface where it is possible

to create a new domain or to select an existing domain from the presented list. An

organization can be created within the domain.

158

Notice that the repository manager has the responsibility to populate the repository with

policies so as to start off use of ELISPE.

Requirements engineer

The requirements engineer’s role is defined in a specific organization with the responsibility

of formulating policy enforcement rules. To get access to the four bases, the requirements

engineer first registers in the repository. Now it is possible to (a) create and (b) update rules.

S/he browses/retrieves policies from the repository, applies guidelines, and formulates PERs

of the organization. Notice that, the requirements engineer role requires familiarity with

extended first order logic. This expertise may exist in the requirements engineer directly or it

may be obtained through appropriately qualified experts.

Each component of ELISPE is discussed below.

Action Elicitor

The user interface for action elicitation is shown in Fig 7.2. The policy for which actions are

being elicited is shown on the top left hand side of the screen. On the left hand side of the

screen range variables already existing in the Action base are shown. A new range variable

can be entered by clicking on the ‘Enter new Range Variable’ radio button. The centre panel

shows guideline 1 being applied and right hand side shows the panel for guideline 2. In both

panels triggering actions and correcting actions are elicited. For each type of action,

triggering and correcting, there are two choices presented to the requirements engineer.

Actions present in the Action base are viewed by selecting ‘Existing actions’ choice. To

insert a new action, the ‘Insert new Action’ radio button is selected.

159

Fig. 7.2: Eliciting Actions for policy “∀x[Ayurvedic(x) Run(x, OPD)]”

Fig 7.2 deals with the policy, “∀x[Ayurvedic(x) Run(x, OPD)]”. Range variables x and y

are displayed where x is an instance of Ayurvedic Hospital and y an instance of OPD. Create

x is a triggering action that already exists in the Action base and is displayed. Similarly,

Construct y is a correcting action that is also displayed as an existing action. When the

requirements engineer selects Insert new Action, then the new action Start y is entered.

Policy enforcement rule maker

Once actions are elicited, policy enforcement rules are formulated in the policy enforcement

rule maker. Actions in the Action base are used as input and policy enforcement rules are

stored in the policy enforcement base. The user interface for policy enforcement rule maker is

shown in Fig 7.3.

160

Fig 7.3: Formulating Policy enforcement rules for policy “∀x[Ayurvedic(x) Run(x,

OPD)]”

Again the policy for which the enforcement rules are being elicited is mentioned on the top

left corner of the screen. Two options are given to the requirements engineer, to either view

already existing rules in the policy enforcement rule base or to insert a new rule. When the

former is selected, a list of the rules is displayed on the left hand side of the screen. The list of

range variables is also displayed. For a new rule to be created, the panel on the right hand

side is displayed. Actions elicited (in Fig 7.3) are presented to the requirements engineer. The

actions are divided depending upon whether they play a triggering or correcting role with the

triggering action on the left most sub-panel and correcting on the right most sub-panel. The

middle sub-panel is where the IF condition is input. The requirements engineer selects the

desired action. The selected actions are highlighted and the IF condition is keyed in. The tool

constructs the rule in the WHEN IF THEN format upon clicking the Generate Policy

Enforcement Rule button.

161

Information Elicitor

Fig 7.4 shows the back-end part of ELISPE tool. As seen the Information Elicitor of Fig 7.1

has been expanded here. Actions in the Action base are the input to the information elicitation

section of the tool. Using three information elicitation techniques, Critical Success Factor

(CSFI), ENDSI and MEANSI analysis, information relevant for an action is elicited. This

information is stored in the early information base.

Fig 7.4: Back End Architecture of ELISPE

The user interfaces for the three information elicitation techniques is shown below.

1. CSFI analysis: Consider the action “start y” where y is an instance of OPD. One CSF

is to provide quality care. To assess this factor information needed is number of doctor,

specialty of doctor, number of patients, type of disease, name of disease. Doctor, Patient and

Disease become entities. Specialty becomes an attribute of entity Doctor and for entity

Disease attribute is name categorized type-wise. With the help of this information the

requirements engineer is able to decide whether it is worthwhile to take the action “start y”.

Early
Information
Base, EIper

Action Elicitor &
Policy Enforcement

Rule Maker

Action
Base

Information
Elicitor

CSFI Analysis

ENDSI Analysis

MEANSI Analysis

162

The user interface for CSFI analysis is shown in Fig 7.5. The top left hand side of the screen

shows the action, along with the relevant range variables, for which information is being

elicited. The requirements engineer is presented with two choices to either choose an existing

CSF or to create a new one.

Fig. 7.5: Eliciting Information by CSFI Analysis

When the former is chosen a list of the existing CSFs are displayed and the desired CSF can

be chosen for modification. When the latter option of creating a new CSF is chosen the panel

in the centre of the user interface is displayed. Here a new CSF is entered. Relevant entity

with its attribute is further entered here. The right most panel is for entering additional

information for the entity.

2. ENDSI Analysis: Revisit the action “start y”, y is an instance of OPD. The objective

or result of this action can be to treat patients using AYUSH. The effectiveness of this end

can be assessed by Capacity of patients and information needed for the assessment may be

daily count of patients.

163

The user interface for ENDSI analysis is similar to the screen used for CSFI analysis and is

shown in Fig 7.6.

Fig 7.6: Eliciting Information by ENDSI Analysis

The right hand top side of the screen shows the action for which the analysis is being done.

Again the two options of either selecting an already existing End or creating a new End are

presented. The former shows a list of existing Ends. For the latter, Ends, effectiveness

measure and relevant entity and attribute is entered in the centre panel that is displayed.

Additional information for the entity is entered through the right most panel.

3. MEANSI Analysis: Again consider the action “start y”, y is an instance of OPD. One

means to perform this action is to construct a new OPD. Efficiency is land required. Entity is

OPD. Information is maximum space needed.

164

Fig. 7.7: Eliciting Information by MEANSI Analysis

Fig 7.7 shows the user interface for MEANSI analysis. The screen is similar to CSF and Ends

analysis. Means, Efficiency measures are input in the centre panel and entity, attribute and

additional information is entered using the screen.

All the information elicited is stored in the early information base, EIper of Fig 7.4. Since each

piece of early information is linked to an action, there is an association between the two. This

is shown in Fig 7.4 by the dotted line between the Action base and EIper.

PART II: ELiciting Information Support for Operations (ELISO)

The architecture of ELISO, based on chapter 4, is shown below in Fig 7.8. The PER actions

in the PER action base are presented to the requirements engineer. These are processed by the

policy hierarchy maker. New actions are discovered from the actions presented and stored in

the OP action base. So the OP action base contains the set of operational actions that are

coming directly from the PER actions and the newly discovered actions.

165

Fig. 7.8: Architecture of ELISO

Each action from the OP action base is input to the Information Elicitor where using CSFI,

ENDSI and MEANSI analysis early information is elicited and stored in the early

information base, EIop. Again each piece of early information elicited is associated with an

action from the OP action base.

Action Hierarchy Maker part of ELISO is discussed below. The Information Elicitor is

similar to the one in ELISPE and so is not discussed here again.

Action Hierarchy Maker

Fig 7.9 below shows the user interface. The screen is divided into three sections. The left

hand side of the screen shows the range variables and the PER actions that are from the PER

action base. The upper panel on the right hand side of the screen is where new range variable

s and new actions are defined. The bottom panel of the screen is where the action hierarchy

is constructed.

New actions may mean defining new range variables. For this, ‘Enter new Range Variable’

button has been provided. On checking the radio button, new range variables can be entered.

Early
Information

Base, EIop

User
Interface

Action
Hierarchy

Maker

CSFI Analysis

ENDSI Analysis

MEANSI Analysis

OP Action

Base

PER Action

Base

166

If an existing range variable can be used, ‘Use existing Range Variable’ button is clicked.

From the list provided the necessary range variable can be selected. New actions are defined

and are ready for use.

Fig. 7.9: Action Hierarchy Maker

The actions are dragged and dropped in the bottom panel of the screen and hierarchies

generated. Fig 7.9 shows action create pr, where pr is an instance of private ward, as the

action selected from the PER action base. Two new actions have been defined namely, create

2-bed pr and create 3-bed pr. Notice no new range variable has been defined. The IS/A

hierarchy can also be seen in the figure.

167

PART III: Computer Aid For Decision Early Information elicitation (CADEI)

The third part of this chapter discusses CADEI that integrates EIop and EIper. This integration

is based on the process discussed in chapter 5.

CADEI has four components, the metadata reader, correspondence drafter, information

mapper and the conflict resolver. The architecture of CADEI is shown below in Fig 7.10 and

7.11. The first two components used in the process namely, metadata reader and

correspondence drafter are shown in Fig 7.10. The architecture involving information mapper

and conflict resolver is shown in Fig. 7.11

Fig 7.10 shows that metadata reader has two sources as input. The first source is PER-action

base and EIper, populated using ELISPE. The second source is OP-Action base and EIop base

populated using ELISO. The metadata reader reads the metadata of the two sources and sends

the two to the correspondence drafter. The requirements engineer is presented with a list of

four strategies to select from, based on which, the correspondence drafter finds

correspondences between the metadata of DWper and DWop and stores the same.

Fig. 7.10: Architecture of CADEI-I

168

The correspondences output from the correspondence drafter of Fig 7.10, along with the two

early information bases to be integrated are the input to the information mapper of Fig 7.11.

In other words, based on the correspondences, pair wise integration of information in EIop and

EIper is performed by the information mapper. For each pair of information being integrated,

the information mapper finds if it is fully, partially or not mapped. For fully mapped

information, one copy is taken into the next iteration of integration. Partially mapped

information is sent to the conflict resolver. Once the conflict is resolved, one copy of the

resolved information is taken into the next iteration of integration. Naturally, for not mapped

information both the pieces of information are taken into the next iteration of integration. The

final set of integrated information is stored in EIintegrated of Fig 7.11.

Fig. 7.11: Architecture of CADEI-II

As far as automation is concerned, no manual intervention is required in the metadata reader

component of CADEI. With respect to the correspondence drafter, manual intervention is

required to select a correspondence strategy. Once this is selected, correspondences are

generated automatically, as discussed in chapter 6, for WCS and ACS strategies. For SCS

manual intervention is required for finding equivalence (refer to chapter 6). No manual

intervention is required in the information mapper component and the conflict resolver

169

component. Thus, CADEI is a semi-automated tool to integrate early information with

manual intervention required in the SCS strategy of the correspondence drafter.

The user interface for Metadata Reader is shown below in Fig 7.12. The left side panel shows

all the data source from where the metadata is being read. The highlighted one shows the

current data source. In Fig 7.12 it is the PER DW. The right hand side panel is the Metadata

of DWper. The left most column shows the rule, the next column is for the analysis type, the

third for analysis value and finally the fourth early information indicator. Since

Fig. 7.12: Metadata Reader for PER data source

The left panel of Fig 7.13 shows metadata being read for Operational data source. There is an

additional column for Decision in the right hand side panel when compared with Fig 7.12.

170

Fig. 7.13: Metadata Reader for Operational data source

On clicking the View Existing Data button on the bottom left hand side of the screen, Top

1000 rows of EI can be viewed.

The correspondences obtained from the correspondence drafter, are stored in a database table.

The information mapper accesses the contents and processes each row and maps information.

For this a table valued function was created. A snippet of the code is shown below.

DECLARE @ROW_ID INT
SELECT * INTO dbo.#TEMP_SCS
FROM dbo.SCS

WHILE EXISTS (SELECT * FROM dbo.#TEMP_SCS)
BEGIN

 SELECT @ROW_ID = (SELECT TOP 1 ID
 FROM dbo.#TEMP_SCS
 ORDER BY ID ASC)

 SELECT * INTO #TEMP_MAPPEDINFO FROM fn_getMappedInformation(dbo.#TEMP_SCS.EI1,
dbo.#TEMP_SCS.EI2)

 DELETE FROM dbo.#TEMP_SCS
 WHERE @ROW_ID = ID
END

171

Summary

This chapter of the thesis discussed the architecture and the working of three tools one for

eliciting EIper, ELISPE, a second one for eliciting EIop, ELISO and finally, CADEI, a tool that

applies the process of Chapter 5 and integrates EIper and EIop.

Note: The ideas in this chapter have been published in International Journal of Information System

Modeling and Design (IJISMD) 2015.

172

Chapter 8

Conclusion, Contribution and Future Scope

The thesis brought out certain limitations in current DWRE techniques. Firstly, it was

observed that Data Warehouse support in terms of RE models and techniques has been

extensively provided for operational level of decision making. However, it has been recently

pointed out by BMM that there are other decisions that are taken in an organization, for

example, deciding on policies and rules of business among others. Notice also, that while

operational daily decision making is done by lower level management, decisions on arriving

at organizations policies and rules of business are taken by relatively higher levels of

management. A study of the available literature shows that DW technology does not address

issues around Data Warehouse support for these ‘alternate’ decisions.

It was observed that DWRE has adopted both decisional and information perspectives but

have not treated the notion of a decision or of information as first class concepts of DWRE.

The consequence of this is that

a. The relationship between the notions of decision and information is not fully

explored. Thus, the decision-information association is left un-articulated and remains

implicit. This inhibits a full investigation into what information is needed for which

decision and vice-versa.

b. Decision models have not been developed. It is therefore difficult to know the

structure of a decision and the semantic notions that go into defining it. The former

means that it is not possible to adopt model driven requirements engineering leading

to relatively poor guidance in the elicitation task. The latter implies that the

conceptual basis for adopting the notion of a decision itself remains weak.

173

c. Information models are assumed to be multi-dimensional in nature. This leads to an

emphasis on determining facts and dimensions at the expense of determining

information properties like required aggregations and historical information needs. As

for decisions, this implies that only partial guidance can be provided in the

information elicitation task.

Not only are the issues of guidance and semantics of concepts important but also important is

the issue of the nature of information elicited. While arriving at multi-dimensional structures

is essential, the thesis argues that considerable pre-work is required before committing to

these. Therefore, the approach adopted is to postpone the structuring of information elicit,

examine and analyse information that is unstructured. It is only once these steps are carried

out to the satisfaction of the requirements engineer that the structuring issue is addressed.

To sum up, the thesis found that there is need to treat decision and information as first class

concepts of RE models, develop decision and information models for conceptual clarity and

effective guidance, and to lay emphasis on eliciting early, unstructured information be before

arriving at multi-dimensional structures.

In addressing these limitations, the thesis offers a solution for addressing both strategic and

operational in the same DW system. In this regard, the thesis starts by establishing the

‘Decision Environment’ and derives a typology of decisions. There are two broad levels of

decisions: Managerial and Tactical. Managerial decisions consist of Policy formulation

decisions and Policy Enforcement level decisions, which enforce the formulated policies.

Interest in this thesis is in the latter. Tactical decisions address operational level decisions.

Thus, there are two kinds of decision support needed, one for policy enforcement rule

formulation decisions and the other for operational decisions.

174

In order to identify the needed information for supporting this decision making, the thesis

proposes a generic platform with ‘Decision Requirement’ as the central concept. Recall, the

RE process is rooted in Decision Requirement which is a tuple <decision, information>. Fig

8.1 shows the generic platform having generic models of Decision Requirement, decision and

information described in Chapter 2.

Fig 8.1: The Generic Platform

Decision Requirement implies that RE process has two steps, first to determine the choice set

of decisions and then to elicit information to choose one from the choice set. The thesis

proposes a set of generic techniques for eliciting information that shall be stored in the DW.

The three information elicitation techniques namely, CSFI, ENDSI and MEANSI therefore

also are part of this generic platform. This information is unstructured and ‘early’. It has to be

converted to a structured multi-dimensional form before DW can be created.

Generic Decision Requirement Model

Generic Decision Model Generic Information Model

PER Formulation technique Operational

Generic Platform for Decision Information

Decision Source: Higher Layer

175

Now, there are two sources of decisions, one from the PER layer and the other from the

operational layer. This forms a higher layer that sits on the generic platform (see Fig 8.1) and

exploits the defined models and information elicitation techniques. PER life cycle formulates

PERs and creates Policy enforcement rule DW with PER base and its own PER early

information base. Operational life cycle creates a DW for operational decision making with

operational action base and information in its own operational early information base.

Information in DWper and DWop are not disjoint. Therefore the issue arose as to whether to

integrate these Data Warehouses or to keep them separate. The thesis found that there are two

problems with keeping separate Data Warehouses:

 Difference in refresh cycles between DWper and DWop can occur because DWop is

for operational decision making and refreshed more frequently than DWper. Thus,

rule formulators and operational decision makers end up taking decisions on different

data in this temporal window. The larger this window, the longer this inconsistency

exists.

 Loss of business control occurs when data of an operational DW calls for decision

makers of the policy enforcement DW to take decisions, but the decisions are not

taken because data in the latter do not suggest this need.

Thus, integration is required to maintain compatibility between PER and operational level.

The thesis shows that there are in fact two forms of integration that can exist, horizontal and

vertical. While the former integrates data marts at the same level of decision making, the

latter integrates data marts across PER and operational levels. For vertically integrating

DWper and DWop, the thesis proposes a ‘build by integrating’ approach which can be seen

as pair-wise. When a new data mart is to be built, its requirements specification is integrated

176

with an existing one. The integrated requirements specification then goes through the

development cycle. Thus, the point of integration is moved upstream into the requirements

stage. The advantage of integrating upstream and in a pair-wise fashion is that downstream

development effort is minimized. Secondly, it never allows completely operational data marts

to be built before these are integrated. The problem of inconsistency detection and correction

is pre-empted by not allowing an un-integrated data mart to be developed. Further, at any

time a complete logical Data Warehouse is available for decision making.

This upstream Requirements level integration can be either done by integrating ER schemas

or by integrating early information. The latter point is chosen for integration because while

integrating ER schemas, development has to proceed until ER schema development. This

latter is a waste of effort from the point of view of the integrated schema. Integration is

proposed to be done as a four-step process consisting of the Metadata reader, Correspondence

Drafter, Information Mapper and Conflict Resolver. The integrated early information

obtained from this process is then converted into an ER schema and finally into the star

schema.

Through vertical integration, an integrated enterprise wide DW is obtained that can be used

by decision makers at both the operational and PER levels. Thus, the thesis has offered a

solution for providing both strategic and operational decision-making in an integrated

manner.

Contribution of the Thesis

A summary of the contributions made in the thesis is as follows:

1. Addressing full decisional making continuum: Data Warehouse support has been

extended from providing just operational support to providing strategic (policy

177

enforcement) and operational support. Policy enforcement level provides the context for

operational level decisions. Decisions at every level of the continuum interact with an

integrated Data Warehouse. Policy enforcement level decisions look at decisions

involving corrective actions that must be taken in the event of policy violation. At the

operational level the alternate actions are input as decisions. Information associated at

both levels is identified individually and later integrated.

2. Elicited Information can be traced back to members of the choice set thereby facilitating

decision making. In the case of policy enforcement rules the choice set is {select A,

modify A, delete A} where A is an action. For each alternative in the choice set

information is elicited. This relates information to a particular member of the choice set.

In the case of operations the choice set is {select A1, select A2, select A3} where again

information is elicited for each alternative in the choice set relating information to a

member of the choice set.

3. Discovery of early information: Information is obtained in a two-step process, early

information elicitation step and late information elicitation step. Early information

elicited from policies and policy enforcement rules is highly unstructured and high level.

Early information has to be converted into a more structured form called late information.

This is done by first converting early information into ER schema. ER to star schema

conversion is done by applying existing techniques.

4. Development of computer aided tools: This thesis developed three tools to semi-automate

PER formulation decisions called ELISPE, operational decisions called ELISO, and

CADEI to integrate early information bases of PER and operational DWs.

178

Future Work and Open Problems

This thesis throws up a number of directions of future work as follows:

1. The decisional environment suggests that managerial decision making consists of Policy

formulation and PER levels of decision-making. Out of these two, the present thesis has

addressed the PER level only. Thus, there is a need to develop DWRE technique for

Policy level of decision making. As far as the generic platform is concerned this means

adding an additional Policy RE technique to the higher decision source.

There is also a need to integrate the Policy DW system with PER and operational Data

Warehouses so as to provide a comprehensive decision making environment. Again the

problem here is one of vertical integration with the Policy layer at a ‘higher’ level than

PER layer and operational layer.

2. One-time DW development carries with it long lead times to deliver. Approaches to agile

development of DW development have been proposed. The incorporation of agility in

development of PER-Operational Data Warehouses is an important issue that may cut

down development lead times.

3. This problem pertains to the sources of operational decisions. Literature suggests two

broad kinds of analysis namely, goal and business indicator as a source of operational

decisions. The thesis proposed a third, policy compliance for operational decisions. There

is need to investigate if all three need to be carried out to determine the set of operational

decisions or is one of them is superset of the other.

4. When applying elicitation techniques, experience showed that while it was easier to

perform MEANSI and ENDSI analysis, CSFI was more difficult to perform. The reasons

behind the partial applicability of the CSFI technique need investigation and is an open

problem falling out of this thesis.

179

References

1. Alshboul, R. (2012). Data Warehouse Explorative Study. Applied Mathematical

Sciences, 6(61), 3015-3024.

2. Antón, A. I. (1996, April). Goal-based requirements analysis. In Requirements

Engineering, Proceedings of the Second International Conference on (pp. 136-144).

IEEE.

3. Antón, A. I., and Potts, C. (1998, April). The use of goals to surface requirements for

evolving systems. In Software Engineering, 1998. Proceedings of the 1998

International Conference on (pp. 157-166). IEEE.

4. Auechaikul T, Vatanawood W (2007). A Development of Business Rules with

Decision Tables for Business Processes. TENCON 2007- 2007 IEEE Region 10

Conference, (pp 1-4). IEEE

5. AYUSH, (2000), Government of India, Department of AYUSH, Ministry of Health

and Family Welfare, No.Z.20018/4/2000-ISM (Tech)/HD Cell, National Competitive

Bidding

6. Batini C , Lenzerini M. (1984), A Methodology for Data Schema Integration in the

Entity Relationship Model, IEEE Transactions on Software Engineering, vol. 10, no.

6, 650-663, 1984

7. Batini, C., Lenzerini, M., & Navathe, S. B. (1986). A comparative analysis of

methodologies for database schema integration. ACM computing surveys

(CSUR), 18(4), 323-364.

8. Bernstein, P. (1976) Synthesizing Third Normal Form Relations from Functional

Dependencies, ACM Transactions on Database Systems, vol. 1, no. 4, 277-298, 1976.

9. Biskup J., Bernhard C. (1986), A Formal View Integration Method, Int'I ACM

SIGMOD Conf, 398-407, 1986

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4428769
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4428769

180

10. Boehm, Barry W. and Philip N. Papaccio. (1988) Understanding and Controlling

Software Costs, IEEE Transactions on Software Engineering, v. 14, no. 10, pp. 1462-

1477

11. Boehnlein, M., and Ulbrich vom Ende, A. (1999, November). Deriving initial Data

Warehouse Structures from the Conceptual Data Models of the Underlying

Operational Information Systems. In Proc. Of Workshop on Data Warehousing and

OLAP (pp. 15-21). ACM

12. Boehnlein, M., and Ulbrich vom Ende, A. (2000). Business Process Oriented

Development of Data Warehouse Structures. In Proceedings of Data Warehousing

2000 (pp. 3- 21). PhysicaVerlag HD

13. Bonifati A.. Cattaneo F., CeriS., A. Fuggetta, and S. Paraboschi (2001). Designing

Data Marts for Data Warehouses. ACM Trans. Software. Eng. Methodology, 10(4).

(pp. 452–483).

14. Boulos, G. S., Burgess J. P., Jeffrey R.C. (2002), Computability and Logic, 4
th

edition, Cambridge University Press, 2002

15. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004).

Tropos: An agent-oriented software development methodology. Autonomous Agents

and Multi-Agent Systems, 8(3), 203-236.

16. BRG, Business Rules Group (2010), The Business Motivation Model: Business

governance in a volatile world, Release 1.4, July 2010

17. Bruckner, R., List, B., &Scheifer, J. (2001). Developing requirements for data

warehouse systems with use cases. AMCIS 2001 Proceedings, 66.

18. Bubenko, J., Rolland, C., Loucopoulos, P., and DeAntonellis, V. (1994, April).

Facilitating fuzzy to formal requirements modelling. In Requirements Engineering,

1994., Proceedings of the First International Conference on (pp. 154-157). IEEE.

181

19. Bullen C.V., Rockart J.F. (1981), A Primer of Critical Success Factors, CISR No. 69

Sloan WP No. 1220-81 Center for Information Systems Research, Sloan School of

Management Massachusetts Institute of Technology, 1981

20. Cabibbo, L., & Torlone, R. (2004, June). On the integration of autonomous data

marts. In Scientific and Statistical Database Management, 2004. Proceedings. 16th

International Conference on (pp. 223-231). IEEE.

21. Cabibbo, L., Panella, I., Torlone, R., & Tre, U. R. (2006, April). DaWaII: a Tool for

the Integration of Autonomous Data Marts. In ICDE (p. 158).

22. Casanova M., Vidal V. (1983), A Sound Approach to View Integration, Proceedings

of the ACM Conference on Principles of Database Systems, 35-47, 1983.

23. Castro, J., Kolp, M., and Mylopoulos, J. (2002). Towards requirements-driven

information systems engineering: the Tropos project. Information systems,27(6), 365-

389.

24. Charette, R.N. (2005) Why software FAILS, IEEE Spectrum, vol. 42, no. 9, pp. 42-

49, 2005

25. CMP., Data Mart Consolidation and Business Intelligence Standardization, available

at www.businessobjects.com/pdf/investors/data_mart_consolidation.pdf

26. Cockburn, A. Structuring Use Cases with Goals, 1997. Journal of Object-Oriented

Programming.

27. Coman, A., and Ronen, B. (2010). Icarus predicament: Managing the pathologies of

overspecification and overdesign. International Journal of Project

Management, 28(3), 237-244.

28. Cooke, Philip, and Kevin Morgan.(1993) "The network paradigm: new departures in

corporate and regional development." Environment and planning D: Society and

space 11,.5 543-564, 1993

182

29. cravero Leal, A., Mazón, J. N., & Trujillo, J. (2013). A business-oriented approach to

data warehouse development. Ingeniería e Investigación, 33(1), 59-65.

30. CREWS Team (1998), The CREWS glossary, CREWS report 98-1, http

://SUNSITE.informatik.rwth-aachen.de/CREWS/reports.htm

31. Dardenne, A., Van Lamsweerde, A., and Fickas, S. (1993). Goal-directed

requirements acquisition. Science of computer programming, 20(1), 3-50.

32. Dawyndt P., Vancanneyt M., Meyer H. D., and Swings J.. (2005). Knowledge

Accumulation and Resolution of Data Inconsistencies during the Integration of

Microbial Information Sources, IEEE Transactions on Knowledge and Data

Engineering, vol. 17, no. 8, 2005, 1111-1126

33. Dayal, U., & Hwang, H. Y. (1984). View definition and generalization for database

integration in a multidatabase system. Software Engineering, IEEE Transactions on,

(6), 628-645.

34. Dayal, U., Castellanos, M., Simitsis, A., & Wilkinson, K. (2009, March). Data

integration flows for business intelligence. In Proceedings of the 12th International

Conference on Extending Database Technology: Advances in Database

Technology (pp. 1-11). ACM.

35. DeMarco, T., Plauger, PJ. (1979). Structured analysis and system specification.

Prentice Hall

36. Elmasri R. , Navathe S.B. (2004), Fundamentals of Database Systems, 4
th

 edition,

Pearson Educaiton Inc. 2004

37. Eric, S. K. (1997). Why Agent-Oriented Requirements Engineering. Proceedings of

3rd Workshop on Requirements Engineering For Software Quality.

38. Flyvbjerg, B. and Budzier, A., (2011). Why your IT project may be riskier than you

think, Harvard businessreview, vol. 89, no. 9, pp. 23-25, 2011

183

39. Fu G., Shao J., Embury S.M., Gray W.A., Liu X.(2001). A Framework for Business

Rule Presentation. In Database and Expert Systems Applications, 2001. Proceedings.

12th International Workshop on (pp. 922-926). IEEE

40. R. Fuller and C. Carlsson (1996), Fuzzy multiple criteria decision making: Recent

developments, Fuzzy Sets and Systems, 78, (1996), pp. 139-153

41. Gam, I., and Salinesi, C. (2006). A requirement-driven approach for designing data

warehouses. Requirements Engineering: Foundation for Software Quality (REFSQ).

42. Gamut L.T.F. (1991), Logic, Language, and Meaning, Volume 2: Intensional Logic

and Logical Grammar, University of Chicago Press, 1991

43. Gbande C.A., Akuhwa P.T. (2015), Decision Theory and Analysis; An Optima Value

Creation Precursor for Organizations, Open Journal of Applied Sciences, 355-367,

2015

44. Giorgini, P., Rizzi, S., Garzetti, M. (2005). Goal-oriented requirement analysis for

data warehouse design. In Proceedings of the 8th ACM international workshop on

Data warehousing and OLAP (pp. 47-56). ACM.

45. Glinz, M. (1995). An integrated formal model of scenarios based on statecharts.

In Software Engineering—ESEC95 (pp. 254-271). Springer Berlin Heidelberg.

46. Goguen, J. A., & Linde, C. (1993). Techniques for requirements elicitation. RE, 93,

152-164.

47. Golfarelli M., Maio D., Rizzi S. (1998, January). Conceptual Design of Data

Warehouses from E/R schemes. In System Sciences, 1998., Proceedings of the Thirty-

First Hawaii International Conference on (Vol. 7, pp. 334-343). IEEE.

48. Golfarelli, M. (2010). From User Requirements to Conceptual Design in Data

Warehouse Design. Data Warehousing Design and Advanced Engineering

Applications: Methods for Complex Construction

184

49. Golfarelli, M., Rizzi, S. (1999). Designing the Data Warehouse: Key Steps and

Crucial Issues. In Journal of Computer Science and Information Management (JCST),

Vol. 2. No.3, 88-100. Springer

50. Golfarelli, M., Rizzi, S., & Turricchia, E. (2011). Modern software engineering

methodologies meet data warehouse design: 4WD. In Data Warehousing and

Knowledge Discovery (pp. 66-79). Springer Berlin Heidelberg.

51. Harel, D. (1987). ‘Statecharts: A visual formalism for complex systems’. Science

of computer programming, 8(3), 231-274.

52. Haumer, P., Pohl, K., and Weidenhaupt, K. (1998). Requirements elicitation and

validation with real world scenes. Software Engineering, IEEE Transactions

on,24(12), 1036-1054.

53. Hayen R., Rutashobya C., Vetter D., (2007), An Investigation Of The Factors

Affecting Data Warehousing Success, Issues In Information Systems, Volume VIII,

No. 2, 547-553, 2007

54. Hickey, A., & Davis, A. (2003). Barriers to Transferring Requirements Elicitation

Techniques to Practice. In 2003 Business Information Systems Conf.

55. Hillman A.j., Hitt M.A (1999), Corporate Political Strategy Formulation: A Model of

Approach, Participation, and Strategy Decisions, Academy of Management Review,

24, 4, 825=842, 1999

56. Holbrook III, H. (1990). A scenario-based methodology for conducting requirements

elicitation. ACM SIGSOFT Software Engineering Notes, 15(1), 95-104.

57. Hooks, I. F., and Farry, K. A. (2001). Customer-centered products: creating

successful products through smart requirements management. AMACOM Div

American Mgmt Assn

185

58. Horkoff J., and Yu E (2012). Comparison and Evaluation of Goal-oriented

Satisfaction Analysis Techniques. Requirement Engineering Journal, 1-24 Springer

59. Horkoff, J., and Yu, E. (2010). Interactive analysis of agent-goal models in enterprise

modeling. International Journal of Information System Modeling and Design

(IJISMD), 1(4), 1-23.

60. Hüsemann, B., Lechtenb¨orger, J., Vossen, G. (2000). Conceptual Data Warehouse

Design. In Proceedings of the International Workshop on Design and Management of

Data Warehouses (DMDW2000) Stockholm, Sweden

61. IBM Business Analytics for Manufacturing, White Paper,2013

62. IEEE Standard, IEEE-Std 610, 1990

63. Inmon, B. (2005) Building the data warehouse, fourth edition. New York: John Wiley

& Sons.

64. Inmon, W. H. (1996). Building the Data Warehouse, New York, Chichester, Brisbane,

Toronto, Singapur.

65. Inmon, W. H., Strauss, D., & Neushloss, G. (2010). DW 2.0: The architecture for the

next generation of data warehousing: The architecture for the next generation of data

warehousing. Morgan Kaufmann.

66. Imhoff, C., & White, C. (2008). Full Circle: Decision Intelligence (DSS 2.0). B-Eye-

Network, Published: August, 27.

67. Jeffrey R.C. (1991), Formal Logic: Its Scope and Limits, 3
rd

 ed. NY, McGraw-Hill,

1991

68. Jones, R.G. and George, J.M (2008) Contemporary Management. 5th Edition,

McGraw-Hill International Edition, McGraw-Hill/Irwin, New York. 2008

186

69. Jovanovic, P., Romero, O., Simitsis, A., Abelló, A., & Mayorova, D. (2014). A

requirement-driven approach to the design and evolution of data

warehouses.Information Systems, 44, 94-119.

70. Kavakli, V., and Loucopoulos, P. (1998, January). Goal-driven business process

analysis application in electricity deregulation. In Advanced Information Systems

Engineering (pp. 305-324). Springer Berlin Heidelberg.

71. R.L. Keeney and H. Raiffa (1993), Decisions with Multiple Objectives: Preferences

and Value Trade-Offs, (Cambridge University Press, 1993)

72. R.L. Keeney (1999), Foundations for Making Smart Decisions, IIE Solutions, 31, No.

5, (1999), pp. 24-30

73. Kimball R. and Ross M. (2002), The data warehouse Toolkit: The Complete Guide to

Dimensional Modeling, Wiley, 2002

74. Kimball, R. (1996): The Data Warehouse Toolkit, New York: J. Wiley & Sons.

75. Kimball, R. (1997): A Dimensional Manifesto, DBMS Online, August, 1997.

76. Kotonya, G. & Sommerville, I., (1998). Requirements engineering: processes and

techniques. John Wiley & Sons, Inc

77. Lapouchnian, A. (2005). Goal-oriented requirements engineering: An overview of the

current research. University of Toronto.

78. Lee, M. L., & Ling, T. W. (1995). Resolving structural conflicts in the integration of

entity-relationship schemas. In OOER95: Object-Oriented and Entity-Relationship

Modeling (pp. 424-433). Springer Berlin Heidelberg.

79. Lee, M. L., & Ling, T. W. (2003). A methodology for structural conflict resolution in

the integration of entity-relationship schemas. Knowledge and information

systems, 5(2), 225-247.

187

80. Leffingwell, D., and D. Widrig. (2000). Managing Software Requirements, Addison-

Wesley.

81. Leite J.C.S.P., Leonardi M.C. (1998, April). Business Rules as Organizational

Policies. In Software Specification and Design, (pp. 68-76) IEEE

82. Lindbloom C.E. (1993), Woodhouse E.J., 3
rd

 edition, Prentice Hall, 1993

83. List, B., Bruckner, R. M., Machaczek, K., & Schiefer, J. (2002, January). A

comparison of data warehouse development methodologies case study of the process

warehouse. In Database and Expert Systems Applications (pp. 203-215). Springer

Berlin Heidelberg.

84. Liu, L., & Yu, E. (2004). Designing information systems in social context: a goal and

scenario modelling approach. Information systems, 29(2), 187-203.

85. Makarov, I., M., Vinogradskaya, T., M., Rubchinsky, A., A., Soko-. lov, V.B. (1987),

“The Theory of Choice and Decision Making”, Mir Publishers, Moscow, 1987

86. Matulevičius, R., and Heymans, P. (2007). Comparing goal modelling languages: An

experiment. In Requirements Engineering: Foundation for Software Quality (pp. 18-

32). Springer Berlin Heidelberg.

87. Mazón, J. N., Pardillo, J., & Trujillo, J. (2007). A model-driven goal-oriented

requirement engineering approach for data warehouses. In Advances in Conceptual

Modeling–Foundations and Applications (pp. 255-264). Springer Berlin Heidelberg.

88. Mcleod R Jr., Schell G. (2001), Management Information Systems, 8
th

 ediction,

Prenticie Hall, 2001

89. Moody L.D., and Kortink M.A.R. (2000), From Enterprise Models to Dimensional

Models: A Methodology for Data Warehouses and Data Mart Design, Proc. of the Intl

188

Workshop on Design and Management of Data Warehouses, Stockholm, Sweden, (pp.

5.1-5.12)

90. Muehlen M Z, Kamp G (2007). Business Process and Business Rule Modeling: A

Representational Analysis. In EDOC Conference Workshop, 2007. EDOC07.

Eleventh International IEEE (pp. 189-196). IEEE.

91. Mullins, L.J. (2010) Management and Organizational Behavior. 9th Edition, England

Pearson Education Limited, London. 2010

92. Mylopoulos, J., Chung, L., & Yu, E. (1999). From object-oriented to goal-oriented

requirements analysis. Communications of the ACM, 42(1), 31-37.

93. Navathe S.B.,, Elmasri R., James L. (1986), Integrating User Views in Database

Design, IEEE Computer, 50-62,  1986

94. Neto, F. M. M., and Morais, M. J. D. O. (2013). An agent-based approach for

supporting the knowledge transfer in the software requirements engineering.

International Journal of Business Information Systems, 12(1), 23-43.

95. Kelly-Newton (1980), Lauren. Accounting policy formulation: the role of corporate

management. Addison Wesley Publishing Company, 1980.

96. Nuseibeh, B., & Easterbrook, S. (2000, May). Requirements engineering: a roadmap.

In Proceedings of the Conference on the Future of Software Engineering(pp. 35-46).

ACM.

97. OMG. (2008). Semantics of Business Vocabulary and Business Rules (SBVR), v1.0,

January

98. Paim, F. R. S., and de Castro, J. F. B. (2003, September). DWARF: An approach for

requirements definition and management of data warehouse systems. InRequirements

Engineering Conference, 2003. Proceedings. 11th IEEE International (pp. 75-84).

IEEE.

189

99. Park Y. T. (2000), National systems of Advanced Manufacturing Technology (AMT):

hierarchical classification scheme and policy formulation process, Technovation,

20,3, 151-159, 2000

100. Plihon, V., Ralyte, J., Benjamen, A., Maiden, N. A., Sutcliffe, A., Dubois, E.,

& Heymans, P. (1998). A reuse-Oriented Approach for the Construction of Scenario

Bases Methods. In Proceedings of International Conference on Software Process (pp.

1-16).

101. Pohl, K. (2010). Requirements engineering: fundamentals, principles, and

techniques. Springer Publishing Company, Incorporated.

102. Pohl, K., & Haumer, P. (1997, June). Modelling contextual information about

scenarios. In Proceedings of the Third International Workshop on Requirements

Engineering: Foundations of Software Quality REFSQ (Vol. 97, pp. 187-204).

103. Potts, C., Takahashi, K., &Antón, A. I. (1994). Inquiry-based requirements

analysis. IEEE software, 11(2), 21-32.

104. Prakash N., and Bhardwaj H. (2012). Early Information Requirements

Engineering for Target Driven Data Warehouse Development. In The Practise of

Enterprise Modeling (pp.188-202). Springer Berlin Heidelberg

105. Prakash N., and Gosain A. (2003). Requirements Driven Data Warehouse

Development, In CAiSE Short Paper Proceedings (pp. 13-17)

106. Prakash N., and Gosain A. (2008). An Approach to Engineering the

Requirements of Data Warehouses. Requirements Engineering Journal, Springer, 13

(1), 49-72

107. Prakash, N., and Bhardwaj, H. (2014). Functionality for Business Indicators in

Data Warehouse Requirements Engineering. In Advances in Conceptual Modeling

(pp. 39-48). Springer International Publishing.

190

108. Prakash, N., Prakash, D., & Sharma, Y. K. (2009). Towards Better Fitting

Data Warehouse Systems. In The Practice of Enterprise Modeling (pp. 130-144).

Springer Berlin Heidelberg.

109. Raver N., Hubbard G. U. (1977), Automated Logical Database Design

methodology and Techniques", IBM Systems Journal, vol. 16, no. 3, 1977.

110. Reed, S. E., Na, D. Y., Mayo, T. C., Shapiro, L. W., Duty, J. B., Conklin, J.

H., & Brown, D. E. (2010, April). Implementing and analyzing a data mart for the

Arlington County initiative to manage Domestic Violence offenders. In Systems and

Information Engineering Design Symposium (SIEDS), 2010 IEEE (pp. 82-87). IEEE.

111. Riazati, D., Thom, J. A., & Zhang, X. (2010, January). Inferring aggregation

hierarchies for integration of data marts. In Database and Expert Systems

Applications (pp. 96-110). Springer Berlin Heidelberg.

112. Ritchie J.R.B. (1988), Consensus policy formulation in tourism: Measuring

resident views via survey research, Tourism Management, 9,3, 199-212, 1988

113. Robertson, S., and Robertson, J. (2012). Mastering the requirements process:

Getting requirements right. Addison-wesley

114. Rosca D, Greenspan S, Feblowitz M, Wild C (1997). A Decision Making

Methodology in Support of the Business Rules Lifecycle. Requirements Engineering,

1997, In Proceedings of the Third IEEE International Symposium on (pp. 236-246).

IEEE

115. Roy B. (1996), Multicriteria Methodology for Decision Aiding, Dordrecht,

Kluwer Academic Publishers (1996)

116. Roy, B. (2005) Paradigms and challenges, Book chapter, In Multiple Criteria

Decision Analysis - State of the Art Survey, Springer. editor(s) J. Figueira, S. Greco,

M. Ehrgott, (2005) 3-24

191

117. Rubin, K. S., and Goldberg, A. (19s92). Object behavior

analysis. Communications of the ACM, 35(9), 48-62.

118. Saaty T.L. (1980), The Analytic Hierarchy Process, NY, McGraw Hill 1980

119. Schaefer, B. C., Tanrıkulu, E., &Breiter, A. (2011). Eliciting user

requirements when there is no organization: a mixed method for an educational data

warehouse project. Procedia-Social and Behavioral Sciences, 28, 743-748.

120. Shoenfield, J. R. (1967), Mathematical Logic, Reading, Massachusetts:

Addison-Wesley, 1967

121. Simon, H., A. (1977), “The new Science of Management Decision”

Englewood Cliffs, NJ: Prentice Hall, 1977

122. Sommerville, I. (1995). Software engineering. 5
th

 edition. Addison Wesley.

123. Sosunovas S, Vasilecas O (2006). Precise Notation for Business Rules

Templates. In Proceedings of 7
th

 International IEEE Baltic Conference on Databases

and Information Systems (pp. 55-60) IEEE.

124. Standish Group (2003): Chaos Chronicles Version 3.0.: West Yarmouth, MA

125. Steen Bas, Pires, L.F., Iacob, M. E. (2010, October). Automatic Generation of

Optimal Business Processes from Business Rules. In Enterprise Distributed Object

Computing Conference Workshops (EDOCW), 2010 14th IEEE International (pp.

117-126). IEEE.

126. Suchman, L., and Jordan, B. (1990). Interactional troubles in face-to-face

survey interviews. Journal of the American Statistical Association, 85(409), 232-241.

127. Sutcliffe, A. (2002). User-centred requirements engineering. Springer.

128. Sutcliffe, A. G., Maiden, N. A., Minocha, S., & Manuel, D. (1998).

Supporting scenario-based requirements engineering. Software Engineering, IEEE

Transactions on, 24(12), 1072-1088.

http://www.informatik.uni-trier.de/~ley/pers/hd/s/Steen:Bas.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Pires:Lu=iacute=s_Ferreira.html

192

129. Turban E., Aronson Jay E. (1998), “Decision Support Systems and Intelligent

Systems” (5th edition) January 1998, Publisher: Prentice Hall

130. van Lamsweerde, A. (2000, June). Requirements engineering in the year 00: A

research perspective. In Proceedings of the 22nd international conference on

Software engineering (pp. 5-19). ACM.

131. van Lamsweerde, A. (2001). Goal-oriented requirements engineering: A

guided tour. In Requirements Engineering, 2001. Proceedings. Fifth IEEE

International Symposium on (pp. 249-262). IEEE.

132. van Lamsweerde, A. (2004, September). Goal-oriented requirements

enginering: a roundtrip from research to practice engineering. In Requirements

Engineering Conference, 2004. Proceedings. 12th IEEE International (pp. 4-7).

IEEE.

133. van Lamsweerde, A., and Willemet, L. (1998). Inferring declarative

requirements specifications from operational scenarios. Software Engineering, IEEE

Transactions on, 24(12), 1089-1114.

134. Wetherbe J.C. (1991). Executive Information Requirements: Getting it Right,

MIS Quarterly, (pp. 51-65).

135. Winter, R., and Strauch, B. (2003, January). A method for demand-driven

information requirements analysis in data warehousing projects. In System Sciences,

2003. Proceedings of the 36th Annual Hawaii International Conference on (pp. 9-pp).

IEEE.

136. Winter, R., and Strauch, B. (2004, March). Information requirements

engineering for data warehouse systems. In Proceedings of the 2004 ACM symposium

on Applied computing (pp. 1359-1365). ACM.

137. Wright, P. (1992). Whats in a scenario?. ACM SIGCHI Bulletin, 24(4), 11-12.

193

138. Yu, E. S. (1997, January). Towards modelling and reasoning support for early-

phase requirements engineering. In Requirements Engineering, 1997., Proceedings of

the Third IEEE International Symposium on (pp. 226-235). IEEE.

139. Yu, E. S., and Mylopoulos, J. (1994, May). Understanding why in software

process modelling, analysis, and design. In Proceedings of the 16th international

conference on Software engineering (pp. 159-168). IEEE Computer Society Press.

140. Zave, P. (1997). Classification of research efforts in requirements

engineering.ACM Computing Surveys (CSUR), 29(4), 315-321.

141. Zhang, Z. (2007). Effective Requirements Development-A Comparison of

Requirements Elicitation techniques. Tampere, Finland, INSPIRE, 225-240.

194

Biography of Author

Deepika Prakash is a research scholar in the Department of Computer Engineering at

Delhi technological University (DTU) formerly, Delhi College of Engineering, New

Delhi, India. She did her M.Tech from IIIT Bangalore in 2009. Her research interests lie

in the area of Requirements Engineering.

She has both teaching (5 years) and industry (more than 2 years) experience. As a

research scholar she has taught many courses to undergraduate students. These include

Data Warehousing and Data Mining, Programming Fundamentals: C and C++. She has

also taken a short course for post graduate students on Software Testing. She has taught

Object oriented software engineering to under graduate students at NSIT, New Delhi.

She is currently working as a Software Engineer in Motherson Sumi Infotech and Design

Ltd where she is in the Enterprise Data Warehouse project. Her strengths lie in upstream

activities in SDLC in Requirements Engineering and Conceptual Modelling and also in

development activities using SQL server. In the EDW project, she is involved in ETL

operations as well as in the development of the conceptual design models.

195

Appendix A

List of AYUSH policies

AYUSH(x): x is a AYUSH hospital

p is a set of patients

n is a set of nurses

b is a set of beds

bedocc is a set of occupied beds

ratio(x,y) : ratio of x to y

perc(x, y): percentage of x/y

belongs(x,y) : y belongs to x

 Total Patient to bed ratio should not be higher than (1:6)

For every AYUSH hospital, the ratio of the number of patients to beds should be less

than or equal to 1:6

∀x b [AYUSH(x)LE (ratio(count(p), count(b)), ratio(1,6)) AND belongs(x,p) AND

belongs(x,b)]

 Category of bed Bed/Nurse Ratio (acceptable standard)

a) General 8:1

b) Semi-Private 4:1

c) Private 4:1

For every general ward, semi-private ward and private ward the ration of bed to nurses

must be equal to 8:1, 4:1, 4:1 respectively.

196

G(x): x is a general ward

S(x): x is a semi-private ward

pvtW(x): x is a private ward

gwb is a set of beds in a general ward

spwb is a set of beds in a semi-private ward

pwb is a set of beds in a private ward

gwn is a set of nurses in a general ward

spwn is a set of nurses in a semi-private ward

pwn is a set of nurses in a private ward

∀x wb wn
G(x) EQ(ratio(ount(wb) ount(wn)) ratio(1))

AND belon s(x wb) AND belon s(x wn)

∀x s wb s wn
S(x) EQ(ratio(ount(s wb) ount(s wn)) ratio(1))

AND belon s(x s wb) AND belon s(x s wn)

∀x wb wn
 t (x) EQ(ratio(ount(wb) ount(wn)) ratio(1))

AND belon s(x wb) AND belon s(x wn)

 Bed occupancy rate (Norm 50%)

For every AYUSH hospital, the percentage of occupied beds out of the number of beds

must be 50%

∀x bedo b
A S (x)EQ (er (ount(bedo) ount(b)) 50)

AND belon s(x bedo) AND belon s(x b)

 All the beds in the hospital should be equipped with adequate facilities such as

bedside lockers, bedside stools, mattresses, pillows etc.

197

bed(x) : x is a bed

lock(x,y) : y is a lock of x

stool (x,y) : y is a stool of x

matt(x,y) : y is a mattress of x

pillow(x,y) : y is a pillow of x

∀x a b d
bed(x) lo (x a) AND stool(x b)
AND att(x) AND illow(x d)

 A semi-private ward should not have more than three beds. A minimum area of 200

Sq.ft. will be required for two beds.

For every semi-private ward, the number of beds must be less than or equal to 3. An area

of 200 Sq.ft is needed for two beds.

∀x [S(x)LEQ(count(spwb),3)) AND belongs(x,spwb)]

∀x spwb[S(x)GEQ(area(x),200) AND EQ(count(spwb),2) AND

belongs(x,spwb)]

 A private ward will house only one bed and an attendance bed. It should have attached

toilet cum bathroom.

attbed is a set of attendance beds

toiletbath(x): x is an attached toilet cum bathroom

∀x attbed tb wb

 t (x) EQ(ount(wb) 1) AND EQ(ount(attbed) 1)
AND toiletbat (tb) AND belon s(x tb)

AND belon s(x attbed) AND belon s(x wb)

198

 The hospital should have a separate compounding section with minimum two qualified

compounders.

For every AYUSH hospital there exists a compounding section and a minimum of two

qualified compounders.

compset: is a set of qualified compounders

compSec(x): x is a compounding section

∀x y compset [AYUSH(x) compSec(y) AND GEQ(count(compset),2)

AND belongs(y,compset)]

 The Hospital should have diagnostic facilities of routine nature, such as blood, urine,

stool, sputum examination.

blooddiag(x,y) : y is a diagnostic facility for blood examination in x

urinediag(x,y) : y is a diagnostic facility for urine examination in x

stooldiag(x,y) : y is a diagnostic facility for stool examination in x

sputumdiag(x,y) : y is a diagnostic facility for sputum examination in x

∀x y n
A S (x) blooddia (x y) AND urinedia (x)

AND stooldia (x) AND s utu dia (x n)

SPACE:

 Out Patient Department - (Consulting rooms, Compounding room,

Pathology Laboratory, treatment Rooms, waiting lounges, toilet)

OPD(x): x is an outpatient department

consul(x): x is a consulting room

199

comp(x): x is a compounding room

pathlab(x): x is a pathology laboratory

trtR(x): x is a treatment room

lounge(x): x is a waiting lounge

toilet(x): x is a toilet

∀x a b d e f

 D(x) onsul(a) and o (b) and
 at lab()and trt (d) and loun e(e) and toilet(f)

AND belon s(x a)AND belon s(x b)AND belon s(x)

AND belon s(x d)AND belon s(x e)AND belon s(x f)

 In Patient Department-

 Semi-private Ward 200 Sq. ft. for 2 beds

300 Sq. ft. for 3 beds

The area of a semi-private ward should be 200 Sq. ft. for 2 beds and 300 Sq. ft. for 2

beds.

∀x s wb
S(x) (EQ(area(x) 00) AND EQ(ount(s wb)))

 (EQ(area(x) 00) AND EQ(ount(s wb))) AND belon s(x s wb)

Private Room 200 Sq. ft.

pvtR(x) : x is a private room

∀x[t (x) EQ(area(x) 00

 Nurses duty Room 100 Sq. ft. per ward.

ward(x): x is a ward

nurroom(x): x is a nurse duty room

200

For every ward, the nurses duty room within the ward must be 100 Sq. ft.

∀x y[ward(x) nurroo (y)AND EQ(area(y) 100) ()

 Compounding Room 500 Sq. ft.

comp(x): x is a compounding room

∀x[o (x) EQ(area(x) 500)

Medical staff requirements for general treatment hospital

Minimum two full time doctors with recognised Post graduate qualifications preferably in

Kayachikitsa, Shalya, Shalakya, Panchakarma, StriRoga & Prasuti Tantra for Ayurveda, and

Maulijat for Unani

Ay(x): x is a Ayurveda centre

UN(x): x is a Unani centre

degree(x, mauli) : x has degree in maulijat

degree(x, prasutiTantra) : x has degree in prasuti Tantra

degree(x, striyoga) : x has degree in striyoga

degree(x, panchakarma) : x has degree in panchakarma

degree(x, kayachikitsa) : x has degree in kayachikitsa

degree(x, shalya) : x has degree in shalya

degree(x, shalakya) : x has degree in shalakya

FTdocA(x): x is a full time doctor of Ayurveda

FTdocU(x): x is a full time doctor of Unani

ftdA is a set of full time doctors of Ayurveda

ftdU is a set of full time doctors of Unani

201

rd is a set of resident doctors

The full time doctor for Unani must have a degree in maulijat. Every Unani hospital must

have at least two full time doctors.

∀x[Tdo () de ree(y auli)

∀x ftd [(x) GEQ(ount(ftd)) AND belon s(x ftd)

The full time doctors of Ayurveda must have a degree in Kayachikitsa, Shalya,

Shalakya, Panchakarma, StriRoga & Prasuti Tantra. Every Ayurvedic hospital must have at

least two full time doctors.

∀

 Tdo A(y) de ree(y rasutiTantra)

de ree(y striyo a) de ree(y an a ar a) de ree(y aya i itsa)

de ree(y s alya) de ree(y s ala ya)

∀x ftdA [Ay(x) GEQ(ount(ftdA) ANDbelon s(x ftdA)

Para-Medical staff

nurse(x): x is a nurse

pharmaA(x): x is a pharmacist in Ayurveda

pharmaY(x): x is a pharmacist in Yoga

pharmaU(x): x is a pharmacist in Unani

pharmaN(x): x is a pharmacist in Naturopathy

degree(x, nursing): x has recognised nursing degree

a. Nurses with recognised nursing qualification.

∀x[nurse(x) degree(x, nursing)]

b. Pharmacist:- Recognised qualification in Pharmacy education of concerned system

A pharmacist must have specialized in Ayurveda or Yoga or Unani or Naturopathy.

202

pharmacist(x):x is a pharmacist

∀ ()
 () ()

 () ()

SPECIALITY TREATMENT IN AYURVEDA

Panchakarma Therapy center

P(x) : x is Panchakarma Therapy center

S1(x) : x is snehan room

S2(x) : x is swedan room

S3(x) : x is snodhan room

S4(x) : x is karma room

S5(x) : x is duty room

S6(x) : x is toilet and bathroom room

Space: (Minimum space)

 Snehan Room: - 100 Sq. ft.

∀x[S1(x) EQ(area(x),100)]

 Swedan Room: - 100 Sq. ft.

∀x[S2(x) EQ(area(x),100)]

 Shodhan Room: - 100 Sq. ft. with attached toilet cum bath room.

∀xƎy[S3(x) EQ(area(x),100) AND S6(y) belon s(x y)]

203

 Room for other Karmas - 100 Sq. ft.

∀x[S4(x) EQ(area(x),100)]

 Duty/Staff Room:- 100 Sq. ft.

∀x[S5(x) EQ(area(x),100)]

 Toilet & Bath Room- 100 Sq. ft.

∀x[S6(x) EQ(area(x),100)]

Indoor department

G(x) : x is a general ward

pvtR(x) : x is a private room

S(x) : x is a semi-private ward

O(x) : x is O.P.D.

M(x) : x is Pharmacy

D(x) : x is a Dispensing room

K(x): x is a Kitchen

pvtS: s is a set of private rooms

gwb is a set of general ward beds

gwp is a set of general ward patients

spwb is a set semi-private ward beds

spwp is a set of semi-private ward patients

pwb is a set private ward beds

pwp is a set of private ward patients

204

General Wards – 600 Sq. ft.(Minimum 10 beds) At least 30 patients

Private Rooms - 200 Sq. ft.(At least 4) At least 4 patients

Semi Pvt. Ward -200 Sq. ft (2 bedded) At least 10 patients

 -300 Sq. ft (3 bedded) At least 6 patients

O.P.D. – 300 Sq. ft.

Pharmacy/Store - 300 Sq. ft

Dispensing Room - 200 Sq. ft.

Kitchen - 100 Sq. ft.

1. For every general ward, the area must be 600 Sq. ft. with a minimum of 10 beds and 30

patients.

∀x wb w

G(x) EQ(area(x) 00) AND GEQ(ount(wb) 10)
AND GEQ(ount(w) 0) AND belon s(x wb)

AND belon s(x w)

2. For every private room, the area must be 200 Sq. ft. with a minimum of 4 beds and 4

patients.

∀x wb w

 t (x) EQ(area(x) 00)
AND GEQ(ount(wb)) AND GEQ(ount(w))

AND belon s(x wb) AND belon s(x w)

3. For every semi-private ward, the area must be either 200 Sq. ft. with 2 beds and a

minimum of 10 patients or 300 Sq. ft. with 3 beds and a minimum of 6 patients.

∀x s wb s w

S(x) (EQ(ount(s wb)) AND EQ(area(x) 00)
AND GEQ(ount(s w) 10))

 (EQ(ount(s wb)) and EQ(area(x) 00)AND
GEQ(ount(s w))) AND belon s(x s wb) AND belon s(x s w)

4. ∀x[O(x) EQ(area(x),300)]

205

5. ∀x[M(x) EQ(area(x),300)]

6. ∀x[D(x) EQ(area(x),200)]

7. ∀x[K(x) EQ(area(x),100)]

 Staff

sanst(x,y): y is a sanitation staff of x

reckep(x,y): y is a record keeper cum clerk of x

kitS(x,y) : y is kitchen staff of x

spM(x) : x is a Male Panchakarma specialist

spF(x): x is a Female Panchakarma specialist

setN24 is a set of round the clock nurses

Psp is a set of specialists

Pmo is a set of rmo

Patt is a set of attendants

Pnurse is a set of nurses

ph is a set of pharmacists

 Panchakarma Specialists (Male & Female) - 2 with (M.D.(Ayu) qualification in

Kayachikitsa or Panchakarma)

One male Panchakarma Specialist with required qualification

∀

 ()

 de ree(y an a ar a) de ree(y aya i itsa)

One female Panchakarma Specialist with required qualification

206

∀

 ()

 de ree(y an a ar a) de ree(y aya i itsa)

 Resident Medical Officer - 1

∀x [P(x) EQ(count(Pmo),1) and belongs(x, Pmo)]

 Masseurs/PanchakarmaAttendents - 4

∀x [P(x) EQ(count(Patt),4) and belongs(x, Patt)]

 Staff Nurses - 4 (Round the clock)

 ∀x setN [P(x) EQ(count(setN24),1) and belongs(x, setN24)]

 Pharmacist - 2

 ∀x [P(x) EQ(count(ph),2) and belongs(x, ph)]

 Sanitation Staff

 ∀ [(x) sanst(x y)

 Record Keeper cum clerk

∀ [(x) re e (x y)

 Kitchen Staff

∀ [(x) (y) ()

List of minimum equipment

fom(x,y) : y is hot fomentation instrument in x

sy(x,y) : y is sirodhara yantra and appliance in x

vy(x,y) : y is vastiyantra in x

batt(x,y) : y is droni bath tub in x

gey(x,y) : y is geyser in x

207

tub(x,y) : y is wooden swedana table for Massage in x

phyl(x,y) : y is physiotherapy instruments in x

hotplate(x,y) : y is hot plate in x

utt(x,y) : y is essential utensil for panchakarma procedures in x

weigh(x,y) : y is weighing machine in x

vess(x,y) : y is a vessel for avaghanasweda in x

inh(x,y) : y is steam inhaler in x

nyapp(x,y) : x is nyasa applicator in x

prscope(x,y) : y is protoscope in x

diag(x,y) : y is diagnostic sets in x

bll(x,y) : y is tool for blood letting in x

wptset is a set of wooden Panchakarma Table for Massage

fptset is a set of fibre Panchakarma Table for Massage

wstset is a set of wooden swedana Table for Massage

fstset is a set of fibre swedana Table for Massage

sry is a set of sirodhara yantra and appliances

 Wooden/Fibre Panchakarma Table for Massage/Pizhichil - 2 Nos.

For every Panchakarma therapy center, there must be a total of 2 Wooden/Fibre tables for

Massage/Pizhichil.

∀

 ()
 ((() ()))

AND belon s(x w tset)AND belon s(x f tset)

 Wooden/Fibre Swedana Table - 2 Nos.

208

For every Panchakarma therapy center, there must be a total of 2 Wooden/Fibre Swedana

tables.

∀

 ()
 ((() ()))

AND belon s(x wstset)AND belon s(x fstset)

 Hot fomentation instruments (Whole body SwedanaYantra) eg. Souna bath

∀ [() ()

 SirodharaYantra & appliances - 2 Nos.

∀ [() (()) ()

 VastiYantra, Droni/Bath tub, Geyser, Tub for bath, Physiotherapy Instruments, Hot

plate, Essential utensils for Panchakarma procedures, Weighing Machine, vessels for

AvagahanaSweda, Steam inhaler, Nasya applicator, Protoscope, Diagnostic sets,

Tools for blood letting.

∀
 () () () ()

 () () ()

∀
 () () () () ()

 () () () ()

YOGA AND NATUROPATHY

Space

yog(x) : x is yoga centre

nat(x): x is naturopathy

209

yh(x) : x is yoga hall

hydro(x): x is a hydropathy section

bath(x): x is a bathroom

stbath(x): x is a steam bath room

ene(x): x is a enema room

wc(x): x is a toilet

mud(x): x is a mud therapy section

room(x): x is a room

terrace(x): x is a terrace

mass(x): x is a massage section

table(x): x is a table

chromo(x): x is a chromotherapy section

elec(x): x is a electrotherapy section

refl(x): x is a reflexology section

Nk(x): x is a naturopathy kitchen

lib(x): x is a library cum reading room

gam(x): x is a indoor gaming facility

br is a set of bathrooms

sbr is a set of Steam bath rooms

eneR is a set of enema rooms

toilet is a set of toilets

rmMT is a set of rooms in a mud therapy section

rmMS is a set of rooms in a Massage section

trrMT is a set of terraces in a mud therapy section

210

tabMS is a set of tables in a massage section

tab is a set of tables

 Total Required - 3600 Sq. ft.

∀ [()

 () () ((() ()) 00)

 Hydrotherapy Section with 4 Bathrooms, 1 Steam Bath Room, 2 enema Rooms and 4

Toilets

∀

 () ()

 (() (()))

 (() (() 1))

 () (())

 () (())

 Mud Therapy Section 1 Room + Terrace.

∀

 () () (()

 (() 1)

 (() (() 1)

 Massage Section 2 Rooms + 4 Tables

∀

 () () (()

 (()))

 (() (()))

 Chromotherapy Section – Terrace

211

∀ [() ()

(() (())

 Electrotherapy & Reflexology Section

∀ [() () ()

 Naturopathy Kitchen

∀ [() ()

 Library cum reading room and indoor games facilities

∀ [(() ()) () ()

Staff

NPhy(x) : x is a naturopathy physician

YTt(x) : x is a yoga therapist

teac(x) : x is a teacher

trtA(x) : x is a treatment assistant

cook(x) : x is a cook

kh(x) : x is a kitchen helpers

naturePath is a set of naturopathy physicians

yogTher is a set of yoga therapist

treatAss1 is a set of Male treatment assistants

treatAss2 is a set of Female treatment assistants

cookSet is a set of cooks

212

kithelp is a set of kitchen helpers

 Naturopathy Physicians 2

∀ [() (()) ()

 Yoga Therapist/Teacher 2

∀ [() (()) ()

 Treatment Assistants 6 Male & 3 Female

 ∀ 1 [() ()

 ((1)) (())

 (1) ()

 Cook 1

∀ [(() ()) (() 1)

 Kitchen helpers/Attendants 2

∀ [(() ())

 (()) ()

Equipment for Yoga and Naturopathy section

Naturopathy section:-

Chromotherapy:-

chlensSet is a set of chromo lens

213

solthermSet is a set of solar thermolium

colebulb60Set is a set of coloured electric bulbs 60W

colebulb100Set is a set of coloured electric bulbs 100W

colbottlesSet is a set of coloured bottles 1 litre capacity

colglassesSet is a set of coloured glasses

tablampSet is a set of table lamps

chromboxSet is a set of chromo boxes

1. Chromo lens - 1 set

∀ [() () (() 1)

2. Solar Thermolium – Sitting/Reclining 1

∀ [()

 () (() 1)

3. Coloured Electric Bulbs(60 watts & 100 watts) 1 set

∀ 0 100 [

 () (0)

 (100)

 ((0) 1)

 ((100) 1)

4. Coloured Bottles (1 litre capacity) 1 set

∀ [()

 () (() 1)

5. Table Lamp and Chromo Box 1

214

∀ [()

 () (() 1)

∀ [()

 () (() 1)

YOGA SECTION:-

darrySet is a set of darry

stjugSet is a set of steel jugs

dhpotSet is a set of dhouti pots

lotaSet is a set of lotas

stglassesSet is a set of steel glasses

buckSet is a set of buckets

stcontSet is a set of hot water steel containers

vastshSet is a set of vastradhouti

dandhSet is a set of sand dhouti

sutneti is a set of sutra neti

towelSet is a set of towels

ghesaltSet is a set of cow’s ghee and salt

1. Darry - 25

∀ [() () (() 5)

2. Steel Jugs - 25

∀ [() () (() 5)

3. Dhouti pots - 20

215

∀ [() () (() 0)

4. Lota for JalNeti- 20

∀ [() () (() 0)

5. Steel glasses - 20

∀
 () ()

 (() 0)

6. Bucket - 20

∀ [() () (() 0)

7. Hot water steel container – 2

∀ [() () (())

8. VastraDhouti -25

∀ [() (asts Set) ((asts Set) 5)

9. DandDhouti - 25

∀ [() () (() 5)

10. Sutra Neti - 10

∀ [()

 () (() 10)

11. Towels - 200

216

∀ [() () (() 00)

12. Cow’s ghee & Salt - 25

∀ [()

 () (() 5)

Unani medicine

Regimental therapy center

Space

Un(x): x is unani regimental therapy center

oalsh(x): x is a room for OaewaIshal

dalk(x) : x is a Room for Dala K

fia(x) : x is a Room for Fasad&IrsaleAlq and AmaleKae

nhm(x): x is a Room for Natolwazarad and Hejamat for male section

nhf(x): x is a Room for Natolwazarad and Hejamat for female section

dis(x): x is a Dispensary Room

 Room for OaewaIshal -180 Sq. ft.

∀ [n(x) oa s (y) AND EQ(area(y) 1 0)

 Room for Dala K -180 Sq. ft.

∀ [n(x) dal (y) AND (area(y) 1 0)

 Room for Fasad&IrsaleAlq and AmaleKae – 100 Sq. ft.

217

∀ [n(x) ia(y) AND EQ(area(y) 100)

 Room for Natolwazarad and Hejamat - 100 Sq. ft.

(One each for male and female section)

∀
 () () AND (() 100) AND

 () AND (() 100)

 O.P.D. – 300 Sq. ft.

∀ [() () AND (() 00)

 Dispensary Room - 150 Sq. ft.

∀ [() ()AND (() 150)

Staff

RTS(x): x is a Regimental Therapy Specialist

UnRMO(x): x is a RMO for Unani

thrass(x): x is Therapy Assistants

Unphar(x): x is anUnani pharmacist

Unsanst(x): x is anUnani sanitation staff

Unreckep(x): x is anUnani record kepper

degree(x, kulliyat): x has an M.D.(Unani) in kulliyat

degree(x,moalijit): x has an M.D.(Unani) in moalijit

Mgender(x, male): x is a male

Fgender(x, female): x is a female

Unrts is a set of Regimental Therapy Specialists

218

Unmo is a set of RMOs

thr is a set of therapy assistants

Unph is a set of pharmacist

 Regimental Therapy Specialists - 2 (With M.D.(Unani) in

Kulliyat/MoalijitHefzaneSehal) (One male & One female)

∀ [() () () ()

 () AND belon s(x y)

∀ [() () AND (() ())

AND () AND belon s(x y)

 R.M.O - 2

∀ [() (()) AND belon s(x y)

 Therapy Assistants/Masseur - 4

∀ [() (()) AND belon s(x y)

 Pharmacist - 1

∀ [() ()

 Sanitation Staff

∀ [() ()

219

 Record Keeper

∀ [() ()

Equipments

wtabset is a set of wooden table

wchset is a set of wooden special therapy chair

flset is a set of focal light

sbchse is a set of sitz bath chair

geyset is a set of geysers

inhset is a set of steam inhalers

akhset is a set of basic equipment/instruments for Fasad, AmlaeKae, Hejamat

bpset is a set of B.P. instrument

bll(x): x is a leech for blood letting

 Wooden Table - 4

∀ [() ((())) AND belon s(x)

 Wooden Special Therapy Chairs - 4

∀ [() ((())) AND belon s(x)

 Focal light - 4

∀ [() ((())) AND belon s(x)

 Sitz bath chairs - 4

∀ [() ((())) AND belon s(x)

220

 Basic OT equipment

∀ () ()

 Geysers - 2

∀ [() ((())) AND belon s(x)

 Steam inhaler - 1

∀ [() (()))

 Basic equipment/instruments for Fasad, AmlaeKae, Hejamat - 2 sets

∀ [() ((())) AND belon s(x)

 Leeches for blood letting

∀ () ()

 B.P.Instruments - 2

∀ [() ((())) AND belon s(x)

221

Appendix B

Integrated Data Warehouse Schema

222

223

224

225

226

227

228

229

230

231

