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Chapter 1 
 

 

                                               CARBON NANOTUBES 

 

1.1 Discovery of Carbon Nanotubes 

Carbon is a very interesting element which has plays a very important role in our living or 

non living world. Carbon is present in various forms in 0-D, 1-D, 2-D and 3-D materials, 0-D 

such as small clusters and fullerenes, 1-D as carbon nanotube, 2-D as graphene and graphane 

and 3-D as nano diamonds. Carbon is being shaped not only in soccer molecules but also in 

cylindrical tubes. Carbon atoms can be used to build long cylindrical tubes and these were 

called buckytubes and in present time they are called as carbon nanotube, in short CNT. 

 

1.2 Carbon Nanotubes (CNTs) 

The 1-D form of carbon was observed under a transmission electron microscope. Carbon 

nanotubes can be defined as cylinders which are made of graphite sheets with closed at the 

ends. So the carbon nanotubes can consider as folding of a graphite sheet, just as one roll of a 

piece of paper into a cylinder form.  

 

 

 

 

Fig. 1.1 Structure of Carbon Nanotube 
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In graphite sheet, the carbon atoms are spread in hexagonal arrangement. If there are many 

concentric cylinders which form a nanotube, are known as Multi Walled Carbon Nanotubes 

(MWCNTs). The distance between of MWCNT wall is around 0.334 nm. These MWCNTs 

are most common and are easily formed. In some conditions, there is a single folding of 

graphite, which is known as Single Wall Carbon Nanotubes (SWCNTs). By using some 

etching methods, MWCNTs can be turned into SWCNTs. 

 

1.3 Structure of Carbon Nanotubes 

In ideal case, we can consider a graphene sheet (graphene is a poly aromatic mono atomic 

layer which consists sp
2
-hybridized carbon atoms that are formatted in hexagons) and it is to 

be rolled into a cylinder, in such a way that the hexagonal rings are localized in contact with 

each other. Then two caps that are hemispherical of the suitable diameter are varnished at 

both ends of the nanotube. 

1.3.1 Single-Walled Nanotubes (SWNT) 

Single Walled Nanotubes are defined as tubes of rolled graphite sheet in which the tubes are 

capped at both the ends with hemispherical structure. The structure of the SWNT could be 

imagined a layer of graphite sheet in which the graphite sheet is rolled into a cylinder. 

 

SWNT have unique mechanical and electronic properties which can be used in so many 

applications like field emission displays, logic elements, nano composite materials and nano 

sensors. 

 

In some Single Walled Nanotubes diameter is 0.4 nm and these nanotubes have been 

successfully synthesized.  The length of the tube is very longer. 
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Fig. 1.2 Single-Walled Nanotube 

 

1.3.2 Multi-Walled Nanotubes (MWNTs) 

These are nanotubes that can be in the form of a coaxial arrangement of SWNT which is 

similar to a coaxial pipe of different radius. The inner diameter of the multi walled nanotube 

is generally in the range of 1.5 nm to 15 nm and the outer diameter of the MWNT is in the 

range of 2.5 nm to 50 nm. MWNT can be easily produced when it is in high volume 

quantities than SWNT. MWNT has a greater complex structure so the structure of this tube is 

not easliy understood. SWNTs have a better performance than MWNTs.  

 

Fig. 1.3 Multi-Walled Nanotube 
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1.4 Nanotube Geometry  

There are many ways in which we can roll a graphene sheet into a single-walled nanotube. 

There is plane of symmetry in parallel as well as in perpendicular ways with the nanotube 

axis as shown in figure (a) and (b) while in figure (c) there is no line of symmetry. Therefore 

a term hC  which is the vector of helicity is defined mathematically when the graphene sheet 

is rolled into tubes in the different ways in which the angle of helicity is  . 

 

       ⃗⃗ ⃗⃗      ⃗⃗ ⃗⃗  

     
    

 √        
 

 

Where   ⃗⃗ ⃗⃗  and   ⃗⃗ ⃗⃗    are primitive lattice vector. 

 

 

                  

Fig.1.4 Structure of Single Walled Carbon Nanotube 

 

Depending on their chirality or the way of folding, the carbon nanotubes are classified in 

three ways as Zigzag CNT, Armchair CNT and Helical CNT. 
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1.4.1 Zigzag CNT 

These CNTs are formed for  0   and chirality (n, 0), where n = 0, 1, 2, 3, …… Because of 

the zig zag arrangement of carbon atoms, these are termed as zig-zag CNTs. 

 

1.4.2 Armchair CNT 

These CNTs are formed for / 6   and chirality (n, n). 

 

1.4.3 Helical CNT 

These CNTs are formed for the angle which is anywhere in between 0 and / 6  and the 

chirality is (n, m) where n   m. 
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These structures are shown in the figure below 

 

 

 

                         

(a)Armchair arrangement              (b) Zig-zag arrangement                (c) Chiral arrangement 

 of carbon atoms                             of carbon atoms                             of carbon atoms  

                                                

Fig. 1.5 Nanotubes Geometry 

 

1.5 Synthesis of CNT 

Synthesis of carbon nanotubes can be done by three methods i.e. Arc-discharge method, 

Laser-ablation method and Catalytic growth. The multi walled carbon nanotubes were first 

discovered by Arc-discharge method. For the production of carbon fibres and fullerenes, Arc-

discharge method has been used. Bundle of aligned single walled carbon nanotubes with 
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small diameter was synthesized by Laser-ablation method which was a significant progress. 

Yacaman used the Chemical Vapour Decomposition (CVD) for Catalytic growth of 

nanotubes. So these are the three techniques of the synthesis of the CNT.  
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Chapter 2 
 

 

                                                      THEORY OF FIELD EMISSION 

 

2.1 Field Emission 

When electrons are extracted from a metal or a semiconducting surface by applying a very 

high electric field, this process is called field emission. In other words, by applying a very 

high electric field, the emission of the electrons from a metal or semiconductor into a vacuum 

or in a dielectric is called the field emission. In this process, electrons tunnel across a 

potential barrier. This effect is completely analog. It occurs when the wave function of an 

electron decays exponentially into the barrier (electron’s potential energy is greater than 

electron’s total energy) the wave function of electrons does not disappear at the classical 

turning point. So the electron will found at the outside of the barrier. 

Field emission, which is also termed as field electron emission or electron field emission, is 

the emission of electrons that are induced in the existence an electrostatic field. The field 

emission can change from solid or liquid surfaces into air or any conducting or non 

conducting dielectric. When the electrons move from the valance band to conduction band, 

under the induced field promotion, then this process of semiconductors can also be termed as 

a field emission of electrons. 

In pure metals, for field emission, a very high electric field is required such as the gradients 

must be higher than 1 G V/m and should be dependent on the work function. Electron sources 

have a lot of applications when they are based on the field emission. Later, the quantum 

tunnelling of electrons explained the field emission. This was one of the major success of the 

quantum mechanics. 

For a parallel flat electrode, the field is 910  V/m. If the separation between anode and 

cathode is 1 nm then the voltage will be approximately 1000 KV. The electrons can be 

emitted at a low applied electric field when the cathode has a very high point. The electrons 

can tunnel across the energy barrier which is near the Fermi level and under the influence of 

high electric field, the electrons goes to the vacuum level. The width of potential barrier is 

reduced when the field is applied to a cathode surface as shown in the figure. 
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Fig. 2.1  Effect of electric field on the energy barrier for electrons. 

 

By quantum mechanical tunnelling, the carriers can pass through the barrier. The first 

generally accepted explanation of field emission in terms of quantum mechanics is provided 

by Fowler-Nordhiem (F-N) which they applied for the electronic energy levels in metal to the 

sommerfeld model. They defined a relationship between the field emission current density 

and applied electric field. 

The Fowler-Nordhiem ( F-N ) equation for the field emission current density ( J ) is given by  

2 3/2

expt

t

aE b
J

E





 
  

 
, 

where  

6 21.56 10  a AV eV   , 

7 3/2 16.83 10  b eV Vcm   , 

tE   Electric field at the tip,  

  = work function. 
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As tE  is written as E , where E is V/d, is the applied field and the term   is the field 

enhancement factor and this can be written as h / r, where h is the height of the tip and r is the 

radius of the curvature. So the J can be rewritten as  

2 3/2( )
exp

a E b
J

E

 

 

 
  

 
. 

As nanotubes produce very high current densities and show low operating voltage so they 

compare with the other field emission sources. 
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Chapter 3 
 

 

FIELD EMISSION OF ELECTRONS FROM 

HEMISPHERICAL CONDUCTING CNT TIP 

 

3.1 Introduction 

Carbon nanotubes have excellent properties which are, having good chemical stability, good 

mechanical strength, and high thermal conductivity and high aspect ratio. They also have 

unique electrical properties. So due to these excellent properties, they are being extensively 

studied. In recent years, the growth mechanism of carbon nanotube is a very important field 

of research in the plasma environment. Different studies have stated that the carbon 

nanotubes emit high current densities as 10 mA/cm
2
. 

 

As carbon nanotubes have very high values of the current density as compared to the other 

field emission devices, the field emission properties is then another important area of 

research. When carbon nanotube is substituted by nitrogen then the field emission properties 

can be improved, when the substituted tube have a lower work function. The field emission is 

studied from the patterned CNT films and revealed that the field emission is depend on the 

density and morphology of the carbon nanotube and a low current is yield by low and high 

density films due to the screening effects. 

 

By studying the properties of field emission of single walled nanotubes, the current density is 

obtained and the value of this current density is 10 mA/cm
2
. The carbon nanotubes shows 

very good emission properties when the field emitters are desined by carbon nanotubes and at 

lower electric field, field emitters emit current densities of 10 mA/cm
2
. 

 

The dimension of single wall nanotubes has a great effect on the field emission properties of 

the carbon nanotubes. When the carbon nanotube is replaced with nitrogen then the field 

emission properties could be improved because the substituted tube has a very low work 

function. 
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The electric field distributed on the top of the surface of the carbon nanotube can be used to 

determine the field emission from a carbon nanotube. For device application, the emission 

performance from array of nanotubes is limited by field screening effect. The field emission 

properties of carbon nanotubes and the role of the extrinsic atoms in the morphology have 

been studied. The carbon atoms can be replaced by the dopant nitrogen in the multiwall 

carbon nanotube then the electron density is increased, the effect of this is that the field 

emission properties are enhanced. The concentration of the electrons and holes are increased 

when Boron is inserted into the carbon nanotube. 

 

The image method is introduced for solving the field enhancement factor. It is done at the 

apex. The result of this is that the field enhancement factor is marginally affected by the 

distance between the cathode and anode and when this distance is decreased, a low threshold 

voltage is obtained. The anode and the emitter tip make an arrangement of parallel plate when 

the anode is brought at the emitter tip then the field enhancement factor reaches to unity. The 

field enhancement factor decreases with the carbon nanotube radius from the multi walled 

carbon nanotubes. 

 

Carbon nanotubes have good electronic structure, good chemical inertness and a very aspect 

ratio, so they have excellent field emission properties. The field enhancement factor is 

affected in a distribution of carbon nanotube by the length of carbon nanotubes and the 

spacing between them. There are many experiments have been carried out for the field 

enhancement factor to see the effect of the length of carbon nanotubes and the spacing 

between them. By using screening effect, Bonard have revealed the expression to calculate 

the field enhancement factor. 

 

So here we study the potential energy and the field emission current density function of 

emitted electrons from a hemispherical conducting carbon nanotube tip in the absence of 

image force. So in the absence of image force, here we develop a theoretical model for the 

potential and then the potential energy of an emitted electron at a distance r from the centre of 

a hemispherical carbon nanotube of radius    and having charge  . After that for the solution 

of the transmission probability of the emitted electrons, we use the time independent 

Schrodinger equation using the JWKB approximation. After that the field emission current 

density function   has been derived. Results and discussion part is given in chapter 4. 
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3.2 MODEL 

Consider a conducting CNT with a hemispherical cap of radius   in a vacuum and with the 

potential energy of an electron of charge   at a distance   from the surface of the spherical 

C N T .  

 

 

 

Fig. 3.1 Schematic diagram of Hemispherical CNT tip 

 

Let us consider a ring in this hemisphere of width ad . The distance of the point to the 

centre of the hemisphere is  . By analysing this diagram the distance of the point P to the 

centre of the small ring will be ( cos )h a a   . If   is surface charge density then the 

charge on this ring will be 

 

2 sindq a ad      , 

 

Hence the electric field at point P due to this small ring will be 

 

3

2 2 20 2

1 2 sin ( cos )

4
{( sin ) ( cos ) }

a ad h a a
dE

a h a a

    


 

   


  

 , 
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3

2 2 2 2 20 2

1 2 sin ( cos )

4
{ sin (1 cos ) 2 (1 )}

a ad h a a
dE

a h a ah cos

    


  

   


    

 , 

 

2

3

2 2 2 2 2 2 20 2

sin ( cos )

2
{ sin cos 2 cos 2 2 cos }

a h a a d
dE

a h a a a ah ah

   


   

 


     

 , 

 

2

3

2 2 20 2

sin ( cos )

2
{2 2 cos 2 (1 cos )}

a h a a d
dE

a h a ah

   


 

 


   

 , 

 

2

3
2 20 2

3

2 2

sin ( cos )

2

2 1 2 cos 2 (1 cos )

a h a a d
dE

a a a
h

h h h

   



 

 


 
    

 

 , 

 

We can put 
2

2
0

a

h
 , because radius of carbon nanotube will be in nano meter and distance 

from top will be in micro meter. 

So we can write  

 

2

3

0 2
3

sin ( cos )

2
1 2 (1 cos )

a h a a d
dE

a
h

h

   




 


 
  

 

 , 

 

So the electric field will be 

 

/22

33

0 0 2

sin ( cos )

2
1 2 (1 cos )

a h a a d
E

h
a

h


   




 


 
  

 

  , 

 

 

 

 



 

15 
 

Calculating this integral we find the electric field 

2

2

0

1

2 2
1

a
E

h a

h








 .     

 

Now we have to find out the potential at hemispherical CNT tip at distance r. So from basics 

of potential of charged ring we know that the potential at any point on the axis of a ring is 

 

 

                              

Fig. 3.2 Electric Potential of charged ring 

 

2 2

kQ
V

x a



,               where 

0

1

4
k


 . 

 

where Q is total charge on the ring, x is the distance from the centre of ring to the point at 

which we are calculating the potential, and   is the radius of the ring. 

So by applying this concept in our problem, we can find out the potential of hemispherical 

CNT tip at distance r from the surface of the tip. 

 

 
1

2 2 2
0

2 sin

4 ( sin ) ( cos )

a ad
dV

a h a a

   

  

 


  

 , 
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 

2

1
2 2 2 2 2

0

2 sin

4 sin ( cos ) 2 ( cos )

a d
dV

a h a a h a a

   

   



    

 , 

 

 

2

1
2 2 2 2 2 2 2 2

0

2 sin

4 sin cos 2 cos 2 (1 cos )

a d
dV

a h a a a ha

   

    



     

 , 

 

 

2

1
2 2 2 2

0

2 sin

4 2 2 cos 2 (1 cos )

a d
dV

h a a ha

   

  



   

 , 

 

2

1
2 2 2

0 2 2

sin

2 1 2 2 cos 2 (1 cos )

a d
dV

a a a
h

h h h

  

  



 
    

 

 ,                                                             ( a ) 

 

We can put 0
a

h
 , because radius of carbon nanotube will be in nano meter and distance 

from top will be in micro meter. 

So we can write  

 

2

0

sin

2

a d
dV

h

  


  , 

So 

/22

0 0

sin
2

a
V d

h




 


   , 

 

2

02

a
V

r




 . 

 

So this is the potential of hemispherical CNT tip at distance r from the surface of the tip but 

for more accurate potential we can put 
2

2
0

a

h
  instead of 0

a

h
 so from equation (a) we have 
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2

1

2

0

sin

2 1 2 (1 cos )

a d
dV

a
h

h

  

 



 
  

 

 , 

So 

 

/22

1

0 0 2

sin

2
2

1 (1 cos )

a d
V

h
a

h


  






 
  

 

  , 

 

1
/22

2

0 0

2
sin 1 (1 cos )

2

a a
V d

h h




  




 
   

 
  , 

 

By applying binomial theorem 

 

/22

0 0

1 2
sin 1 (1 cos )

2 2

a a
V d

h h




  


 
   

 
  , 

 

/22

0 0

sin 1 (1 cos )
2

a a
V d

h h




  


 
   

 
  , 

 

Let 1 cos x   , 

      sin d dx   , 

 

Limit 0 0x    , 

          / 2 1x     , 

 

12

0 0

(1 )
2

a a
V x dx

h h




   , 

 

2

0

1
2 2

a a
V

h h





 
  

 
 .                                                                                                   

So this is the potential of hemispherical CNT tip at distance   from the surface of the tip. 
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Now 
22

q

a



  , 

So  

0

1
4 2

q a
V

h h

 
  

 
. 

 

The potential energy is 

 

2

0

( ) 1
4 2

q a
V h

h h

 
  

 
. 

 

Normalizing this equation as let        , 

 

2

0

( ) 1
4 ( ) 2( )

q a
V r

r a r a

 
  

  
  .                                                                                          (1) 

 

So the plot for variation of the potential energy V(r) with respect to the radial distance r is 

shown below 

 

  

 

Fig. 3.3 Variation of the potential energy w.r. t. the radial distance 
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Let us consider the time-independent Schrodinger wave equation. The time-independent 

Schrodinger wave equation for the region     is given by 

 

2
2

2

0

2
( , , ) 1 ( , , ) 0

4 ( ) 2( )

em q a
r E r

r a r a
     



  
      

   
,                for r > a           (2)  

 

where  is / 2h  , h is the Planck’s constant, em  is the mass of the electron, and ( , , )r   is 

the wave function of electrons which is emitted from the conducting carbon nanotube. Now 

to separate the radial and angular term of this Schrodinger equation, we use the separation of 

variable method. So we can write 

 

( )
( , , ) ( ) ( , ) ( , )

U r
r R r Y Y

r
        ,                                                                                (3) 

from equation (2) and (3), we can write 

 

2 2 2

2 2 2

0

2( )
1 ( 1) ( ) 0

4 ( ) 2( ) 2

e

e

md U r q a
E l l U r

dr r a r a m r

  
       

   
,           for r > a       (4) 

 

where l is the angular momentum quantum number of the electron, and the term 

2

2
( 1)

2 e

l l
m r

  is the angular energy. 

 

Substituting  

2

2
( 1)

2
r

e

E l l E
m r

   ,                                                                                                            (5) 

where rE  is the radial energy, (4) can be rewritten as  

 

2 2

2 2

0

2( )
1 ( ) 0

4 ( ) 2( )

e
r

md U r q a
E U r

dr r a r a

  
     

   
,             for r > a                            (6) 

 

Now we can normalize the above equation using /r a   for    , we have 
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22 2

0

2 2

0 0 0

2( )
1 ( ) 0

4 ( ) 2( )

e
Em V ad U q a

U
d V V a a a a




   

  
     

   
,                                   (7) 

 

22 2

0

2 2

0 0 0

2( ) 1
1 ( ) 0

4 ( 1) 2( 1)

e
Em V ad U q

U
d V V a




   

  
     

   
,                                       (8) 

 

2

0

2

2 em V a
 ,                                                                                                                          (9) 

 

0

E

V



 ,                                                                                                                                (10) 

 

2

0 04

q

V a



 ,                                                                                                                         (11) 

 

And 

 

2
2

2

( )
( ) 0

d U
U

d





  ,                                                                                                          (12) 

 

Here  is given by 

2 1
1

( 1) 2( 1)



 

 

  
     

   
. 

 

 

3.3 Electron transmission coefficient 

The probability of electronic tunnelling ( )T  , from the hemispherical conducting carbon 

nanotube tip and using the JWKB approximation, can be given as  

 

2

1

2( ) exp 2T d







 
 

   
 
 

              for r > a                                                                      (13) 
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Now we have to find out the probability of electronic tunnelling for which we need the values 

of   and   for different radius of carbon nanotube. So here is the calculation: 

 

2

0

2

2 em V a
  , 

 

In CGS unit           289.1 10em gm  , 

                              12

0 5 eV = 5 1.6 10  ergV    , 

                              
271.05 10  sec.erg    

For   = 0.5 nm 

 

32.765  , 

0.576  , 

 

For   = 1 nm 

 

131.0625  , 

0.288  , 

 

For   = 1.5 nm 

 

297.14  , 

0.192  , 

 

For   = 2 nm 

 

524.25  , 

0.144  , 
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So now calculating the Transmission coefficient, ( )T   as a function of normalized radial 

energy,   at the tip of the carbon nanotube, at the radius of the hemispherical conducting 

CNT (i.e.,   = 0.5 nm): 

 

For   = 0.5 nm 

The Transmission coefficient, ( )T   is defined by 

2

1

2( ) exp 2T d







 
 

   
 
 

 , 

where 

2 1
1

( 1) 2( 1)



 

 

  
     

   
. 

 

So we are calculating the integral using MATHEMATICA software taking values of radial 

energy from 0.01 to 0.035 at regular intervals of 0.005. 

 

For   = 0.5 nm 

32.765  , 

0.576  , 

 

At different radial energies, corresponding transmission coefficients are given in the table 

below 

 

 

Radial Energy (  ) Transmission Coefficient ( )T   

0.010 0.0660 

0.015 0.0681 

0.020 0.0702 

0.025 0.0724 

0.030 0.0747 

0.035 0.0771 

 

Table 3.1 Radial energy w.r.t. Transmission coefficient for 0.5 nm 
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So the transmission probability, ( )T   variation with the normalized radial energy,  at the 

hemispherical conducting CNT tip at the radius 0.5 nm is shown below 

0.010 0.015 0.020 0.025 0.030 0.035

0.066

0.068

0.070

0.072

0.074

0.076

0.078

 

Fig. 3.4 Variation of transmission coefficient with normalized radial energy of radius 0.5 

nm 

 

For   = 1 nm 

Calculating the integral of Transmission coefficient using MATHEMATICA software taking 

values of radial energy from 0.01 to 0.035 . 

 

131.0625  , 

0.288  , 
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At different radial energies, corresponding transmission coefficients are given in the table 

below 

 

Radial Energy (  ) Transmission Coefficient ( )T   

0.010 0.0233 

0.015 0.0255 

0.020 0.0279 

0.025 0.0306 

0.030 0.0337 

0.035 0.0372 

 

Table 3.2 Radial energy w.r.t. Transmission coefficient for 1 nm 

 

So the transmission probability, ( )T   variation with the normalized radial energy,  at the 

hemispherical conducting CNT tip at the radius 1 nm is shown below 
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Fig. 3.5 Variation of transmission coefficient with normalized radial energy of radius 1 

nm 

 

For   = 1.5 nm 

Calculating the integral of Transmission coefficient using MATHEMATICA software taking 

values of radial energy from 0.01 to 0.035. 
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297.14  , 

0.192  , 

At different radial energies, corresponding transmission coefficients are given in the table 

below 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3 Radial energy w.r.t. Transmission coefficient for 1.5 nm 

 

So the transmission probability, ( )T   variation with the normalized radial energy,  at the 

hemispherical conducting CNT tip at the radius 1.5 nm is shown below 

0.010 0.015 0.020 0.025 0.030 0.035
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Fig. 3.6 Variation of transmission coefficient with normalized radial energy of radius 

1.5 nm 

 

Radial Energy (  ) Transmission Coefficient ( )T   

0.010 0.0110 

0.015 0.0130 

0.020 0.0155 

0.025 0.0186 

0.030 0.0225 

0.035 0.0275 
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For   = 2 nm 

Calculating the integral of Transmission coefficient using MATHEMATICA software taking 

values of radial energy from 0.01 to 0.035. 

 

524.25  , 

0.144  , 

 

At different radial energies, corresponding transmission coefficients are given in the table 

below 

 

Radial Energy (  ) Transmission Coefficient ( )T   

0.010 0.00635 

0.015 0.00829 

0.020 0.0109 

0.025 0.0148 

0.030 0.0205 

0.035 0.0263 

 

Table 3.4 Radial energy w.r.t. Transmission coefficient for 2 nm 

 

So the transmission probability, ( )T   variation with the normalized radial energy,  at the 

hemispherical conducting CNT tip at the radius 2 nm is shown in the graph. 
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0.010 0.015 0.020 0.025 0.030 0.035

0.005

0.010

0.015

0.020

0.025

0.030

 

Fig. 3.7 Variation of transmission coefficient with normalized radial energy of radius 2 

nm 

 

 

3.4 Field Emission Current Density 

When the temperature of the cathode is 0 K, then the emitted electrons from the cathode 

produces a current, which is known as field emission current density. So the field emission 

current density is given by 

 

  2

03

0

4
, , ( ) ( ) ( )

f

e
f f

m e
J T V T d



    


        . 

 

Here the current density J is the function of the radial energy  , Fermi energy, f  and the 

transmission coefficient. The current density function   is given as 

 

0

( ) ( )

f

f T d



        . 

 

 

 

Normalized radial energy  

T
ra

ns
m

is
si

on
 P

ro
ba

bi
li

ty
 

(
)

T


 



 

28 
 

The value of coefficients are 

289.1 10  gmem   , 

104.8 10  esue   , 

12

0  5 eV = 5 1.6 10  ergV    , 

271.05 10  erg-sec.  , 

 

2 23

03

4
3.03 10em e

V


  . 

 

Now we are calculating the current density function for different radius. 

 

For   = 0.5 nm 

The fourth order polynomial of transmission coefficient for calculating current density 

function from software origin 8 is  

2 3 4

1 2 3 4( ) interceptT B x B x B x B x      , 

So for   = 0.5 nm 

Intercept = 0.06127, 

1B  = 0.54693, 

2B = -10.41667, 

3B = 337.03704, 

4B = -3333.33333, 

Hence the current density function is 

 

   ∫                                                            
     

    

 

=                           

 

where y is the Fermi energy and x is the radial energy. 
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The variation of the current density function  , with respect to the normalized Fermi energy, 

f  at the hemispherical conducting CNT tip at the radius 0.5 nm is shown below 

 

 

 

 

 

Fig. 3.8 Variation of current density function with normalized Fermi energy at radius 

0.5 nm 

 

 

For   = 1 nm 

Intercept = 0.01873, 

1B  = 0.51474, 

2B = -9.41667, 

3B = 396.2963, 

4B = -3333.33333, 

 

Hence the current density function is 
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The variation of the current density function  , with respect to the normalized Fermi energy, 

f  at the hemispherical conducting CNT tip at the radius 1 nm is shown below 

 

 

 

 

 

Fig. 3.9 Variation of current density function with normalized Fermi energy at radius 1 

nm 

 

For   = 1.5 nm 

Intercept = 0.0086, 

1B  = 0.10833, 

2B = 15.83333, 

3B = -333.33333, 

4B = 6666.66667, 

 

Hence the current density function is 

 

   ∫                                                             
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The variation of the current density function  , with respect to the normalized Fermi energy, 

f  at the hemispherical conducting CNT tip at the radius 1.5 nm is shown below 

 

 

 

 

 

Fig. 3.10 Variation of current density function with normalized Fermi energy at radius 

1.5 nm 

 

For   = 2 nm 

Intercept = -0.0063, 

1B  = 2.58094, 

2B = -192.56667, 

3B = 6862.2222, 

4B = -77333.3333, 

 

Hence the current density function is 
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The variation of the current density function  , with respect to the normalized Fermi energy, 

f at the hemispherical conducting CNT tip at the radius 2 nm is shown below 

 

 

 

 

 

Fig. 3.11 Variation of current density function with normalized Fermi energy at radius 

2 nm 
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Chapter 4 
 

 

RESULTS 

 

4.1 Results 

We have used a number of the CNT parameters to find out the potential, potential energy, 

transmission coefficient and the field emission current density function. Figure shows the 

variation of potential of an emitted electron with the radial distance from the hemispherical 

conducting CNT tip for    , where   is the distance of point at which the potential is 

calculated to the centre of hemispherical CNT tip and a is the radius of the CNT. From  figure  

3.3 we can say that the potential energy decreases with the radial distance, which is the actual 

behaviour of the potential energy of charged particles. 

From equations we have plotted the figures of the transmission coefficient of electrons from 

the hemispherical conducting CNT tip with the normalized radial energy for the different 

radius of the hemispherical CNT tip as   = 2, 1.5, 1, 0.5 nm. Graphs illustrates that the 

electron transmission probability increases with the normalized radial energy. The graph (Fig. 

4.1) also illustrates that the transmission coefficient decreases as the radius of the 

hemispherical conducting CNT tip is increased. 
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Fig. 4.1 Comparison of all four transmission probabilities 

 

Using equations we plot the graphs of current density function with the normalized Fermi 

energy by varying the radius of the hemispherical CNT tip such as    = 2, 1.5, 1, 0.5 nm. By 

observing these figures we can illustrates that the field emission current density function 

increases with the normalized Fermi energy and also when we increases the hemispherical 

CNT radius, the field emission current density decreases which is shown in Fig. 4.2. 
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Normalized Fermi energy, f  

Fig. 4.2 Comparison of all four current density functions 
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