
A Major Project Report On

Parallelizing Genetic Algorithm on Map Reduce

Architecture

Submitted in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

By

Satyam Kashyap

(2K13/CSE/22)

Under the guidance of

Dr. Kapil Sharma

Asst. Professor

Department of Computer Science

Delhi Technological University, Delhi

Department of Computer Engineering

Delhi Technological University, Delhi

2012-2014

i

DELHI TECHNOLOGICAL UNIVERSITY

CERTIFICATE

This is to certify that the project report entitled Parallelizing Genetic Algorithm on Map

Reduce Architecture is a bona fide record of work carried out by Satyam Kashyap

(2K13/CSE/22) under my guidance and supervision, during the academic session 2013-2015

in partial fulfilment of the requirement for the degree of Master of Technology in Computer

Science from Delhi Technological University, Delhi.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to

any other University/Institute for the award of any Degree or Diploma.

Dr. Kapil Sharma

Asst. Professor

Department of Computer Science

Delhi Technological University

Delhi

ii

DELHI TECHNOLOGICAL UNIVERSITY

ACKNOWLEDGEMENTS

I feel immense pleasure to express my heartfelt gratitude to Dr. Kapil Sharma for his

constant and consistent inspiring guidance and utmost co-operation at every stage which

culminated in successful completion of my research work.

I also would like to thank the faculty of Computer Science Department, DTU for their kind

advice and help from time to time.

I owe my profound gratitude to my family which has been a constant source of inspiration

and support.

 Satyam Kashyap

Roll No. 2K13/CSE/22

3

Index

Abstract

1. Chapter 1- Introduction

2. Chapter 2- Evolutionary Algorithms and H.D.F.S.

 2.1 Genetic Algorithms (Simple)

 2.2 Genetic Algorithm 2 (Modified)

 2.3 Genetic Algorithm 3 (Extension)

 2.4 H.D.F.S.

3. Chapter 3- Map Reduce

 3.1 Map Reduce for Simple GA

 3.2 Map reduce for Modified GA

4. Chapter 4- Analysis and Evaluation

 4.1 GA1(Simple)

 4.2 GA2(Modified)

 4.3 GA3(Extended)

5. Chapter 5- Related Works

6. Chapter 6- Conclusion

References

4

Abstract

Data-intensive computation has evolved as a key component of processing large volumes of data

taking advantage of massive parallelism. This computing frameworks have showcased how

processing of terabytes to petabytes of raw data can be attained routinely with ease. However,

Not much efforts have been done on exploring effects of evolutionary algorithms on data

intensive processes. Evolutionary Algorithms like can be merged with other algorithms(presently

in use) to produce better and more accurate results . Here we have presented a detailed step-by-

step explanation of evolutionary computation algorithms and how they can be translated into the

Map Reduce Architecture. Results have show that (1) Hadoop Architecture along with

evolutionary algorithms yields better results than other contemporary algorithm in use especially

in case when problem is very large and hence proves to be an excellent choice, and (2) thanks to

inherent parallel processing feature of evolutionary algorithms due to which transparent linear

speedups are attainable without changing the underlying data-intensive flow.

5

Chapter 1

Introduction

The data surge which is happening across the world in different domains of technology is forcing

to rethinking of methodologies to manipulate and process large volumes of data or Big Data a

modern term for the same. Most of the computing frameworks that deals with data-intensive

computing [30, 7] have a common characteristic that is processing in data flow manner.

Execution and nature of parallelism is derived by availability of data.

The tremendous growth of internet has brought together researchers from all disciplines of

science to deal with volumes of data which can be converted to create valuable information

where it seems that the only viable path is utilization of data-intensive frameworks [41, 4, 10,

29]. Though many big organizations are working on research and development of parallelizing

evolutionary computation algorithms[5, 1] yet there has been very little real research work that

has been done so far [25].Parallelism is inherent characteristic of evolutionary algorithms which

makes them one of the optimal candidates for processing of large volumes of data [5].

Moreover, we will outline in this thesis the evolutionary algorithm(Genetic Algorithm) which

serves best for this purpose and its inherent need to deal with large volumes of data, irrespective

of if it takes the form of samples of a probabilistic distribution or populations of individuals in

either case it will be greatly benefitted with computation model which is data intensive.

In this thesis further we will examine the usage of Yahoo!’s Hadoop model and its Map-

Reduce Architecture along with implementation. This Architecture is inspired by the map and

reduce methodologies both of these are primitives which are part of functional languages, Later

Google proposed the Map-Reduce [8] concept which is easy to implement and empowers user to

easily develop and design large distributed applications with ease.

In the proposed model computation is done though key/value pairs as input set, and produces

corresponding output key/value pairs with respect to every input key value pair. Here in Map-

Reduce two basic functions of the library are used that is Map and Reduce. Map in the function

written by user and hence maps function can be modified a number of times according to the

requirement of algorithm. Input pairs are fed into Map function which produces a set of

6

key/value pairs while these key value pairs are intermediate and will be modified in later stages

of Map-Reduce framework. All the intermediate values created in former step will be grouped

together to form Intermediate Key 1 which is now ready fed to Reduce function. Intermediate

key I and a set of corresponding values are accepted by Reduce function which is also written by

user.

Now merger of both of them will take place, together these values forms as smaller set of values

as possible. The iterator delivers the intermediate values to reduce function which is created by

user. Through this the model handles values and their list which are too large to fit into the

RAM or main memory otherwise.

map(k1, v1) → list(k2, v2)

reduce(k2, list(v2)) → list(v3)

Automatically partitioning of the input data is done and data is divided into a set of M number

of splits, Now the Map function invocations are sent and distributed across multiple machines

which makes use of this partitioning. Due to the partitioning of data the input splits can be

processed on different machines in parallel. Invocations of Reduce function are sent and

distributed by partitioning the intermediate key space into R pieces. Hash-key partitioning

function is used in the default Hadoop configuration which is which is hash(key)%R (which we

can override according to our needs).User can define number of Partitions (R) and partition.

Figure 1.1 shows data flow in Map-Reduce framework along with other important components

of Map-Reduce. For making fault tolerant and data management scalable Map Reduce

framework can be accompanied with distributed file system like GFS, though through use of

HDFS we need not use GFS at all.

Here in this thesis we have selected Genetic Algorithm and developed its equivalent Map-

Reduce implementations to demonstrate the benefits of the evolutionary computation and such

approaches. We have paid special attention that the properties of these algorithms maintained

and the fundamental mechanics should not be altered.

7

The three algorithms transformed were: a simple genetic algorithm [13, 14], the genetic

algorithm 2 [18], and genetic algorithm 3 [19]. We will show how a simple genetic algorithm

[13, 14] can be remodelled into Hadoop’s MapReduce approach using data intensive computing.

Reviews of following will be done (1) Steps involved in transformation of original algorithm to

the algorithm which can cater data intensive framework , (2) Development and designing of data

intensive components which can will yield optimal benefit in data driven approach, and (3)

hence analysis of the achieved. The second example, the genetic algorithm 2 which is sibling of

the simple genetic algorithm here we focus on how Hadoop’s Map-Reduce modelling can help

scaling it being a clear competitor of traditional in use high performance computing version.

It is worthy to notice that all of these algorithms have different nature and profiles. For example

the simple genetic algorithm is better in dealing with large populations, it can tackle very huge

amount of data problems, but here operators in use are pretty easy and straight forward. The 2
nd

version i.e. genetic algorithm 2 in comparison with Genetic Algorithm 1 is more memory

efficient though it is required that simple probability distributions should be appropriately

updated

Lastly, when you scale your problem size the genetic algorithm3 is optimal as it can deal with a

very large population and for which a detailed model is required, to achieve the probability

distribution set as target. The massive parallel data driven execution will be focused that allows

users to get optimal performance in modern times of multi core processors— which has created a

window to cater problems of even the scale of peta bytes— without modifying the fundamental

structure of evolutionary algorithm.

In the remaining of this thesis content organization is as follows: Chapter 2 is the introduction to

the three evolutionary algorithms which are genetic based. In our experimentation we will use 2

frameworks introduced above:

a) Simple genetic algorithm

b) Genetic algorithm2(Modified)

c) Genetic algorithm3(Hybrid)

8

In Chapter 3 all of the above algorithms will be implemented in parlance with Data intensive

framework.Chapter 4 is about the presentation of analysis and evaluation of results achieved by

using the data intensive executions displaying that scalability is only constrained by the

availability of resources while easily achievable part is its speedup. Finally some related work

and future work possible is mentioned in Chapter 5 and Chapter 6 presents conclusions of the

thesis.

 Figure 1.1

Map-Reduce Architecture

9

Chapter 2

Related Works

There are many models like fine grain [28], coarsed grained [24] and distributed models [23]

which have been proposed for implementation of parallel GAs. Message Passing Interface (MPI)

was used traditionally for parallel GAs Implementation. Problem with this framework is that

MPIs don’t scale very well on clusters where failure is the normal and not an rare phenomenon

which it should be. In MPI failure of a node in a cluster results in failure of whole program and

hence the whole program has to be restarted. When we are dealing with a large cluster iyt is

more likely that we will get failures more often, to counter which efficient fault tolerance

mechanism should be used. Hence, User is forced to opt for complex checkpoint methodology .

MapReduce [8] is a model which empowers the users to develop large-scale distributed

applications with ease. An open source implementation of Map-Reduce mode is Hadoop. Many

other implementations of Map-Reduce are available in market to facilitate other architectures as

well like CGL Map-Reduce for steaming applications and Phoenix for multi-core architecture.

Only sincere attempt made so far to the best of our knowledge is MRPGA ,Which tries to

combine Gas and Map-Reduce. However, According to them it is not possible to express Gas in

terms of Map-reduce, Their implementation changes the very structure of Mapreduce which is

never desired.. There are few shortcomings in their approach:

Firstly, fitness evaluation of genetic algorithm is done by mapper function and function of reduce

here is to do local and global selection. Though many important functions are handled by single

coordinator these important functions are Mutation, evaluation, cross over and convergence

criteria. Due to inherent serial components scalability in their approach can not exceed beyond

32 nodes. Secondly, extension which they have proposed need not be implemented as traditional

Map-Reduce have that property in built .Combiner in Map-reduce framework has same

functionality as of local reduce so it is redundant.

Our approach is different, Our approach isto accommodate GAs into Map-Reduce framework

rather than changing the very structure to Map-Reduce to make GAs fit into. We have

implemented GAs in Hadoop, whichs is de-facto standard MapReduce implementation and is

10

used in commercial purpose in industries. Further we have talked about extension on GAs to

multiprocessor architectures like NUMA and Phoenix and GAs inherently supports parallelizing

feature and less efforts are required to manifest them.

11

Chapter 3

Evolutionary Algorithms(Genetic) and H.D.F.S.

In this chapter we will present the simple genetic algorithm, followed by genetic Algorithm1 and

genetic algorithm 2 in detail.

3.1 Genetic Algorithms

Simple genetic algorithms [13, 14], one of the most simple forms of Genetic Algorithms, it use

uses selection and recombination methodology of GAs. The data intensive approach of this basic

algorithm is summarized as follows:

1. Random initialization of the individuals of population..

2. Evaluation of fitness value of each individual takes place.

3. Optimal or better solutions are selected by using S-wise tournament and it should be without

replacement as after this process we will get optimal solution from pool of possible solutions

4. New population of individuals in created using crossover and recombination. Here we are

using uniform crossover.

5. Fitness evaluation takes place for each individual we got in offspring population

6. Step No.3 to Step No.5 are repeated until optimal result is found.

12

3.2 Genetic Algorithm 2

This is modified genetic algorithm [18] and it is most simplest distribution algorithms for

estimation (EDAs) [33, 22]. Similar to other EDAs, this GA replaces commonly used variation

operators of genetic algorithms. Here in this algorithm we build a probabilistic model which can

yield more promising solutions and with sampling the model so that new candidate solutions can

be generated. We are assuming a pc=1.05,where pc is crossover probability. Probabilistic model

uses vector of probabilities to represent the population and hence implicitly each gene is

assumed) to be not dependent or independent of other genes. Actually, vector element represents

the ratio of ones for every gene position.

The uses of probability vectors monitor more searches by generation of new candidate solutions

according to the values of frequency variable by variable . The genetic algorithm2 comprises of

the following steps:

1. Initialization: The population is generally initialized with the random individuals in simple

Genetic algorithms but in genetic algorithm 2, initially a probability vector are set to 0.5. On the

other hand ,other initializing processes can also be used in a direct manner.

2. Model sampling: Two candidate solutions are generated by sampling of teach of he

probability vector. The procedure is analogous to uniform crossover in simple Genetic

algorithms.

3. Evaluation: The appropriateness or the quality of each individual are measured and

calculated.

4. Selection: Similar to traditional genetic algorithms, compact genetic algorithm is a selection’s

scheme, as only the better individual is allowed to effect the resulting generation of candidate

solutions. The basic clue is that a ―survival-of-the-fittest‖ mechanism is used to bias the

generation of new individuals. We typically use tournament selection [16] in genetic algorithm 2.

5. Probabilistic model update: Afterwards selection, the percentage of winning alleles is

augmented by 1/n. Take a note that the probabilities of the genes that are different between the

two competitors are updated only.

13

The probabilistic model of GA2 is analogous to those used in population-based incremental

learning (PBIL)[2, 3] and the unilabiate marginal distribution algorithm (UMDA) [32, 31].

As an alternative of shifting of the vector components proportionately to the distance from either

0 or 1, each components of the vector is updated by shifting its value by the input of a single

individual to the whole frequency assuming a particular population proportions.

Moreover, GA2 considerably decreases the memory necessities when paralleled with simple

genetic algorithms and PBIL. Whereas the simple Genetic algorithms required to store in the

bits, GA2 merely needs to keep the proportion of ones, a finite set of n numbers that can be

stored in log2 n for each of the ` gene positions. With PBIL’supdate rule, an element of the

probability vector can have any arbitrary precision, and the number of values that can be stored

in an element of the vector is not finite.

In another place, it has been revealed that GA2 is operationally equivalent to the order-one

behavior of simple genetic algorithm with stable state selection and uniform crossover [18].

Therefore, the theory of simple genetic algorithms can be directly used to estimate the factors

and behavior of the GA2. For determining the parameter we can use an approximate procedure

of the gambler’s ruin population-sizing2 model.

3.3 Genetic Algorithm 3

The extended compact genetic algorithm (GA3), is based on a crucial idea of the selection of a

good probability distribution. It is corresponding to the linkage learning [19]. The amount of a

good distribution is quantified based on minimum description length (MDL) models. The vital

theory MDL models is that the given all things are equal, simple distributions are superior than

the complex ones. The MDL constraints penalizes both inaccurate and complex models, thereby

leading to an optimal probability distribution. The probability distribution used in GA3 is a class

of probability models called marginal product models (MPMs).

MPMs are formed as a product of marginal distributions on a partition of the genes. MPMs also

enable a direct linkage map with every partition untying tightly linked genes.

14

1. Initialization of the population with random individuals.

2. Evaluation of the fitness value of the individuals.

3. Good solutions selection by by means of s-wise tournament selection without replacement

[16].

4. Building of the probabilistic model: In _-GA3, both the structure of the model as well as the

parameters of the models are examined. A greedy search is used to search for the model of the

selected individuals in the population.

5. Creation of new individuals by sampling of the probabilistic model.

6. Evaluation of the fitness value of all offspring.

7. Repeatition of steps 3–6 until some convergence criteria are met.

The materialistic exploration experimental used in _-GA3 starts with a simple model assuming

all the variables to be independent and consecutively merges subsets until the MDL metric no

longer progresses.

As soon as the model is built and the marginal probabilities are computed, a new population is

produced based on the optimal MPM as follows, population of size n(1 − pc) where pc implies

the crossover probability which is occupied by the best individuals in the current population. The

rest n・pc individuals are produced by random selection of subsets from the current individuals

rendering from the probabilities of the subsets as designed in the model.

One of the important parameters which determines the success of GA3 is the population size.

Analytical models have been established for prediction of the population-sizing and the

scalability of GA3 [36].

The models predict that the population size required to solve a problem with m building blocks

of size k with a

failure rate of _ = 1/m is given by

15

3.4 Hadoop Distributed File System

3.4.1 Introduction

Hadoop is an Apache project; all components are available via the Apache open source license.

Yahoo! has developed and contributed to 80% of the core of Hadoop (HDFS and MapReduce).

HBase was originally developed at Powerset, now a department at Microsoft. Hive [15] was

originated and develdeveloped at Facebook. Pig [4], ZooKeeper [6], and Chukwa were

originated and developed at Yahoo! Avro was originated at Yahoo! and is being co-developed

with Cloudera. HDFS is the file system component of Hadoop. While the interface to HDFS is

patterned after the UNIX file system,faithfulness to standards was sacrificed in favor of

improved performance for the applications at hand. HDFS stores file system metadata and

application data separately. As in other distributed file systems, like PVFS [2][14], Lustre [7]

and GFS [5][8], HDFS stores metadata on a dedicated server, called the NameNode. Application

data are stored on other servers called DataNodes. All servers are fully connected and

communicate with each other using TCP-based protocols. Unlike Lustre and PVFS, the

DataNodes in HDFS do not use data protection mechanisms such as RAID to make the data

durable. Instead, like GFS, the file content is replicated on multiple DataNodes for reliability.

While ensuring data durability, this strategy has the added advantage that data transfer bandwidth

is multiplied, and there are more opportunities for locating

computation near the needed data. Several distributed file systems have or are exploring truly

distributed implementations of the namespace. Ceph [17] has a

cluster of namespace servers (MDS) and uses a dynamic subtree partitioning algorithm in order

to map the namespace tree to MDSs evenly. GFS is also evolving into a distributed namespace

implementation [8]. The new GFS will have hundreds of

namespace servers (masters) with 100 million files per master. Lustre [7] has an implementation

of clustered namespace on its roadmap for Lustre 2.2 release. The intent is to stripe a directory

over multiple metadata servers (MDS), each of which contains a disjoint portion of the

namespace. A file is assigned to a particular MDS using a hash function on the file name.

16

3.4.2 Architecture

NameNode

The HDFS namespace is a hierarchy of files and directories. Files and directories are represented

on the NameNode by which record attributes like permissions, modification and access times,

namespace and disk space quotas. The file content is split into large blocks (typically 128

megabytes, but user selectable file-by-file) and each block of the file is independently

replicated at multiple DataNodes (typically three, but user selectable file-by-file). The

NameNode maintains the namespace tree and the mapping of file blocks to DataNodes (the

physical location of file data). An HDFS client wanting to read a file first contacts the

NameNode for the locations of data blocks comprising the file and then reads block contents

from the DataNode closest to the client. When writing data, the client requests the NameNode to

nominate a suite of three DataNodes to host the block replicas. The client then writes data to the

DataNodes in a pipeline fashion. The current design has a single NameNode for each cluster.

The cluster can have thousands of DataNodes and tens of thousands of HDFS clients per cluster,

as each DataNode may execute multiple application tasks concurrently. HDFS keeps the entire

namespace in RAM. The inode data and the list of blocks belonging to each file comprise the

metadata of the name system called the image. The persistent record of the image stored in the

local host’s native files system is called a checkpoint. The NameNode also stores the

modification log of the image called the journal in the local host’s native file system. For

improved durability, redundant copies of the checkpoint and journal can be made at other

servers. During restarts the NameNode restores the namespace by reading the namespace and

replaying the journal. The locations of block replicas may change over time and are not part of

the persistent checkpoint.

DataNodes

Each block replica on a DataNode is represented by two files in the local host’s native file

system. The first file contains the data itself and the second file is block’s metadata including

17

checksums for the block data and the block’s generation stamp. The size of the data file equals

the actual length of the block and does not require extra space to round it up to the nominal block

size as in traditional file systems. Thus, if a block is half full it needs only half of the space of the

full block on the local drive. During startup each DataNode connects to the NameNode and

performs a handshake. The purpose of the handshake is to verify the namespace ID and the

software version of the DataNode. If either does not match that of the NameNode the DataNode

automatically shuts down.The namespace ID is assigned to the file system instance when it is

formatted. The namespace ID is persistently stored on all nodes of the cluster. Nodes with a

different namespace

ID will not be able to join the cluster, thus preserving the integrity of the file system. The

consistency of software versions is important because incompatible version may cause data

corruption or loss, and on large clusters of thousands of machines it is easy to overlook nodes

that did not shut down properly prior to the software upgrade or were not available during the

upgrade. A DataNode that is newly initialized and without any namespace ID is permitted to join

the cluster and receive the cluster’s namespace ID. After the handshake the DataNode registers

with the NameNode. DataNodes persistently store their unique storage IDs. The storage ID is an

internal identifier of the DataNode, which makes it recognizable even if it is restarted with a

different IP address or port. The storage ID is assigned to the DataNode when it registers with

the NameNode for the first time and never changes after that. A DataNode identifies block

replicas in its possession to the NameNode by sending a block report. A block report contains the

block id, the generation stamp and the length for each block replica the server hosts. The first

block report is sent immediately after the DataNode registration. Subsequent block reports are

sent every hour and provide the NameNode with an up-todate view of where block replicas are

located on the cluster. During normal operation DataNodes send heartbeats to the NameNode to

confirm that the DataNode is operating and the block replicas it hosts are available. The default

heartbeat interval

is three seconds. If the NameNode does not receive a heartbeat from a DataNode in ten minutes

the NameNode considers the DataNode to be out of service and the block replicas hosted by that

DataNode to be unavailable. The NameNode then schedules creation of new replicas of those

blocks on other DataNodes. Heartbeats from a DataNode also carry information about total

storage capacity, fraction of storage in use, and the number of data transfers currently in

18

progress. These statistics are used for the NameNode’s space allocation and load balancing

decisions. The NameNode does not directly call DataNodes. It uses replies to heartbeats to send

instructions to the DataNodes. The instructions include commands to:

• replicate blocks to other nodes;

• remove local block replicas;

• re-register or to shut down the node;

• send an immediate block report.

These commands are important for maintaining the overall system integrity and therefore it is

critical to keep heartbeats frequent even on big clusters. The NameNode can process thousands

of heartbeats per second without affecting other NameNode operations.

HDFS Client

User applications access the file system using the HDFS client, a code library that exports the

HDFS file system interface. Similar to most conventional file systems, HDFS supports

operations to read, write and delete files, and operations to create and delete directories. The user

references files and directories by paths in the namespace. The user application generally does

not need to know that file system metadata and storage are on different servers, or that blocks

have multiple replicas. When an application reads a file, the HDFS client first asks the

NameNode for the list of DataNodes that host replicas of the blocks of the file. It then contacts a

DataNode directly and requests the transfer of the desired block. When a client writes, it first

asks the NameNode to choose DataNodes to host replicas of the first block of the file. The client

organizes a pipeline from node-to-node and sends the data. When the first block is filled, the

client requests new DataNodes to be chosen to host replicas of the next block. A new pipeline is

organized, and the client sends the further bytes of the file. Each choice of DataNodes is likely to

be different. The interactions among the client, the NameNode and the DataNodes are Unlike

conventional file systems, HDFS provides an API that exposes the locations of a file blocks. This

allows applications like the MapReduce framework to schedule a task to where the data are

located, thus improving the read performance. It also allows an application to set the replication

factor of a file. By default a file’s replication factor is three. For critical files or files which are

19

accessed very often, having a higher replication factor improves their tolerance against faults and

increase their read bandwidth.

20

Image and Journal

The namespace image is the file system metadata that describes the organization of application

data as directories and files. A persistent record of the image written to disk is called a

checkpoint. The journal is a write-ahead commit log for changes to the file system that must be

persistent. For each client-initiated transaction, the change is recorded in the journal, and the

journal file is flushed and synched before the change is committed to the HDFS client. The

checkpoint file is never changed by the NameNode; it is replaced in its entirety when a new

checkpoint is created during restart, when requested by the administrator, or by the

CheckpointNode described in the next section. During startup the NameNode initializes the

namespace image from the checkpoint, and then replays changes from the journal until the image

is up-to-date with the last state of the file system. A new checkpoint and empty journal are

written back to the storage directories before the NameNode starts serving clients. If either the

checkpoint or the journal is missing, or becomes corrupt, the namespace information will be lost

partly or entirely. In order to preserve this critical information HDFS can be configured to store

the checkpoint and journal in multiple storage directories. Recommended practice is to place the

directories on different volumes, and for one storage directory to be on a remote NFS server. The

first choice prevents loss from single volume failures, and the second choice protects against

failure of the entire node. If the NameNode encounters an error writing the journal to one of the

storage directories it automatically excludes that directory from the list of storage directories.

The NameNode automatically shuts itself down if no storage directory is available. The

NameNode is a multithreaded system and processes requests simultaneously from multiple

clients. Saving a transaction to disk becomes a bottleneck since all other threads need to wait

until the synchronous flush-and-sync procedure initiated by one of them is complete. In order to

optimize this process the NameNode batches multiple transactions initiated by different clients.

When one of the NameNode’s threads initiates a flush-and-sync operation, all transactions

batched at that time are committed together. Remaining threads only need to check that their

transactions have been saved and do not need to initiate a flush-and-sync operation.

21

Checkpoint Node

The NameNode in HDFS, in addition to its primary role serving client requests, can alternatively

execute either of two other roles, either a CheckpointNode or a BackupNode. The role is

specified at the node startup. The CheckpointNode periodically combines the existing checkpoint

and journal to create a new checkpoint and an empty journal. The CheckpointNode usually runs

on a different host from the NameNode since it has the same memory requirements as the

NameNode. It downloads the current checkpoint and journal files from the NameNode, merges

them locally, and returns the new checkpoint back to the NameNode. Creating periodic

checkpoints is one way to protect the file system metadata. The system can start from the most

recent checkpoint if all other persistent copies of the namespace image or journal are

unavailable. Creating a checkpoint lets the NameNode truncate the tail of the journal when the

new checkpoint is uploaded to the NameNode. HDFS clusters run for prolonged periods of time

without restarts during which the journal constantly grows. If the journal grows very large, the

probability of loss or corruption of the journal file increases. Also, a very large journal extends

the time required to restart the NameNode. For a large cluster, it takes an hour to process a week-

long journal. Good practice is to create a daily checkpoint.

 BackupNode

A recently introduced feature of HDFS is the BackupNode. Like a CheckpointNode, the

BackupNode is capable of creating periodic checkpoints, but in addition it maintains an

inmemory,

up-to-date image of the file system namespace that is always synchronized with the state of the

NameNode. The BackupNode accepts the journal stream of namespace transactions from the

active NameNode, saves them to its own storage directories, and applies these transactions to its

own namespace image in memory. The NameNode treats the BackupNode as a journal store the

same as it treats journal files in its storage directories. If the NameNode fails, the BackupNode’s

image in memory and the checkpoint on disk is a record of the latest namespace state. The

BackupNode can create a checkpoint without downloading checkpoint and journal files from the

active NameNode, since it already has an up-to-date namespace image in its memory. This

22

makes the checkpoint process on the BackupNode more efficient as it only needs to save the

namespace

into its local storage directories. The BackupNode can be viewed as a read-only NameNode. It

contains all file system metadata information except forblock locations. It can perform all

operations of the regular NameNode that do not involve modification of the namespace or

knowledge of block locations. Use of a BackupNode provides the option of running the

NameNode without persistent storage, delegating responsibility for the namespace state

persisting to the BackupNode.

 Upgrades, File System Snapshots

During software upgrades the possibility of corrupting the system due to software bugs or human

mistakes increases. The purpose of creating snapshots in HDFS is to minimize potential damage

to the data stored in the system during upgrades. The snapshot mechanism lets administrators

persistently save the current state of the file system, so that if the upgrade results in data loss or

corruption it is possible to rollback the upgrade and return HDFS to the namespace and storage

state as they were at the time of the snapshot. The snapshot (only one can exist) is created at the

cluster administrator’s option whenever the system is started. If a snapshot is requested, the

NameNode first reads the checkpoint and journal files and merges them in memory. Then it

writes

the new checkpoint and the empty journal to a new location, so that the old checkpoint and

journal remain unchanged. During handshake the NameNode instructs DataNodes whether to

create a local snapshot. The local snapshot on the DataNode cannot be created by replicating the

data files directories as this will require doubling the storage capacity of every DataNode on the

cluster. Instead each DataNode creates a copy of the storage directory and hard links existing

block files into it. When the DataNode removes a block it removes only the hard link, and block

modifications during appends use the copy-on-write technique. Thus old block replicas remain

untouched in their old directories. The cluster administrator can choose to roll back HDFS to the

snapshot state when restarting the system. The NameNode recovers the checkpoint saved when

the snapshot was created. DataNodes restore the previously renamed directories and initiate a

background process to delete block replicas created after the snapshot was made. Having chosen

23

to roll back, there is no provision to roll forward. The cluster administrator can recover the

storage occupied by the snapshot by commanding the system to abandon the snapshot, thus

finalizing the software upgrade.

System evolution may lead to a change in the format of the NameNode’s checkpoint and journal

files, or in the data representation of block replica files on DataNodes. The layout version

identifies the data representation formats, and is persistently stored in the NameNode’s and the

DataNodes’ storage directories. During startup each node compares the layout version of the

current software with the version stored in its storage directories and automatically converts data

from older formats

to the newer ones. The conversion requires the mandatory creation of a snapshot when the

system restarts with the new software layout version. HDFS does not separate layout versions for

the NameNode and DataNodes because snapshot creation must be an all cluster effort rather than

a node-selective event. If an upgraded NameNode due to a software bug purges its image then

backing up only the namespace state still results in total data loss, as the NameNode will not

recognize the blocks reported by DataNodes, and will order their deletion. Rolling back in this

case will recover the metadata, but the data itself will be lost. A coordinated snapshot is required

to avoid a cataclysmic destruction.

24

Chapter 4

Map-Reduce

In this chapter, Transformation and implementation of simple model of genetics algorithm is

being done with the help of Map-Reduce along with discussion of some of the fundamentals that

are necessary to be taken into account.

4.1 MapReduce SGAs

Map Reduce job is summarized separately in each repetition of genetic algorithm. The

acceptance the command-line parameters by client than creation of the population and finally

submission of the Map-Reduce job.

One of the simplest forms of Genetic algorithm is Selecto-recombinative genetic

algorithms[13,14], which chiefly depend on the use of selection and recombination. We selected

it to start with because they are presented with a minimum set of operators that will support us

illustrate the formation of a data-intensive flow complement or counterpart.

4.1.1 Map

The fitness function Evaluation for the population (Steps 2 and 5) matches the Map function,

which has to be computed independently of other illustrations. The Map evaluates the fitness

level of the given individual, as shown in the algorithm in Algorithm 1.

Also, it preserves track of the fittest individual and lastly, writes it to a global dossier in the

Hadoop Distributed File System (HDFS). The client, who has started the job, reads these values
from all the mappers at the end of the Map-Reduce and checks if the convergence criteria has

been fulfilled.

25

4.1.2 Partitioner

For selection operation of Genetic Algorithm Step 3 is locally performed on every node, to

reduce selection pressure spatial constraints are artificially introduced in it. Both the reasons

mentioned above results in increase on convergence time of genetic algorithm. Therefore

decentralized and distributed selection operation is preferred .In Whole map reduce model the

only time at which real global communication takes place is at the time of shuffle of Map-

Reduce.

Figure below presents

At the final phase of Map, key/value pairs are shuffled by Map-Reduce framework via

partitioner to reducers. Intermediate key/value pairs are splitted by partitioner. Now reducer is

responsible for processing of given set of key/value pairs,function getPartition() returns the

reducer. The Hash(key) % num is used as the default. This is used as default so that all the

values corresponding to a given key converge on single reducer.

26

There are 2 reasons because of which genetic algorithm is not suited for it:

 First is that the Hash function we are using partitions the N individuals into r number of

distinct classes given by : N0,N1, . . . ,Nr−1 where Ni = {n : Hash(n) = i}. though individuat

inside a partition is away from individuals in other partitions. Thus we can say that Hash

Partitioner brings artificial spatial constraint which in lower bits. The result of which is

convergence of iterations may take longer amount of time or may not converge ever.

Second reason is, as the algorithm proceeds individuals with better fitness scores start to

dominate flow of algorithm . Due to which reducers will get overloaded as all the copies are sent

to same reduced. Thus, as the algorithm progress distribution becomes more skewed which starts

deviating from the distribution which desired to be produced in a GA i.e uniform distribution

(uniform distribution can maximize use of parallelism). Finally, at the time of convergion of Gas

all the individuals will be targeted to ward same reducer which will overload it and result will be

more execution time per iteration.

For these above given reasons we need to override the default partitioner and provide our own

partitioner, our partitoner is expected to shuffle more randomly hence share load of all the

reducers

4.1.3 Reduce

Tournament selection without replacement is used in our algorithm. Among S randomly chosen

individual a tournament is conducted and the winner is selected. We repeat as many times as the

number of populations. Since arbitrarily choosing candidates it is equivalent to first randomly

shuffling and then processing all the individuals sequentially, reduce function which we have

formulated goes works sequentially on all the individuals. Individuals are buffered for the final

rounds Initially, and after the window of tournament is full, two basic operation of GAs are done

to bring out new populations i.e. Selection And Crossover . The Uniform Crossover operator is

used When the crossover window is full. In our implementation we haveset the S to 5 and

consecutively selected parents are selected among which crossover is done.

27

\\\

4.1.4 Optimizations

After initial experimentation, we noticed that for larger problem sizes, the serial initialization of

the population takes a long time. According to Amdahl’s law, the speed-up is bounded because

of this serial component.Amdahl’s law states: if p is the proportion of a program that can be

made parallel (i.e. benefit from parallelization), and (1 − p) is the proportion that cannot be

28

parallelized (remains serial), then the maximumspeed-up that can be achieved by using n

processors in the limit, as n tends to infinity tends to 1/(1 − p).

Thus, the speed up is bound by fraction of time of serial component.

Hence, we create the initial population in a separate MapReduce phase, in which the Map

generates

random individuals and the Reduce is the Identity Reducer1. We seed the pseudo-random

number generator for each mapper with mapper id ・ current time. The bits of the variables in

the individual are compactly represented in an array of long long ints and we use efficient bit

operations for crossover and fitness calculations. Due to the inability of expressing loops in the

MapReduce model, each iteration consisting of a Map and Reduce, has to executed till the

convergence criteria is satisfied.

4.2 MapReducing Genetic algorithm 2s

We encapsulate each iteration of the GA2 as a separate single MapReduce job. The client accepts

the command-line parameters, creates the initial probability vector splits and submits the

MapReduce job. Let the probability vector be P = {pi : pi = Probability of the variable(i) = 1}.

Such an approach would allow us to scale in terms of the number of variables, if P is partitioned

into m different partitions P1, P2, . . . , Pm where m is the number of mappers.

4.2.1 Map

Generation of the two individuals matches the Map function, which has to be computed

independent of other instances. As shown in the algorithm in Algorithm 3.2.1, the Map takes a

probability split Pi as input and outputs the tournament .Size individuals splits, as well as the

probability split. Also, it keeps track of the number of ones in both the individuals and writes it

to a global file in the Distributed File System (HDFS). All the reducers later read these values.

29

 Chapter 5

Analysis and Evaluation

In this chapter, the conclusion of the experiments done for the evaluation of the algorithms

presented in the previous chapter will be described.

 We instigated the Map-Reduce algorithms on Hadoop (0.19)1 and ran it on our 16 core (8

nodes) Hadoop cluster. Each one of the node runs two dual Intel cores that is 6GB RAM and

1TB hard disks. These integrated nodes are Distributed File System (HDFS) which produces a

potential single image storage space of 2*8/3 = 0.53 TB (since the replication factor of HDFS is

set to 3). A meticulous explanation of these cluster setup can be found elsewhere. Each and

every node can run 5 mappers and 3 reducers in parallel at the same time.

Due to disk contention, network traffic, or extreme computation loads some of the nodes despite

being fully functional can be slowed down. Therefore, Hypothetical execution should be used to

run the jobs assigned to these slow nodes, on idle nodes in parallel. Whichever node finishes

first, output is written by that node and the other speculated jobs are killed. For each experiment,

the population for the GA is set to n log n where n is the number of variables.

5.1 Simple Genetic Algorithm

The One Max Problem also known as Bit Counting, is a simple problem involved in maximizing

the number of ones of a bit string. Formally this problem is described as finding an string x =

{x1, x2, . . . , xN}, with xi 2 {0, 1}, that maximizes the following equation:

30

Here OneMax problem is used for evaluation and implementation of our simple genetic

algorithms and in performing of the following experiments:

5.1.1 Convergence Analysis

In this experiment, we display the progress in terms of the number of bits set to 1 by the GA for a

104 variable One MAX problem. As shown in Figure 4.1, the GA converges in 220 iterations

taking an average of 149 seconds per iteration.

5.1.2 Scalability and continuous load per node

In this experiment, load is kept 1,000 variables per mapper, as displayed in Figure 4.2. The time

per iteration rises at first and then it stabilizes to about 75 seconds. This increases the problem

size, as more resources are added which does not change the iteration time. As each and every

node can run a maximum of 5 mappers making the overall map capacity as 5・52(nodes) = 260.

Therefore around 250 mappers time per iteration is increased due to the lack of resources to

accommodate so many mappers.

31

5.1.3 Scalability with constant overall load

In this experiment, the problem size is kept fixed to 50,000 variables and the number of mappers

is increased.

As shown in Figure 4.3, the time per iteration decreases As more and more mappers are added,

the time per iteration decreases Thus, adding more resources keeping the problem size fixed

decreases the time per iteration. Again, saturation of the map capacity causes a slight increase in

the time per iteration after 250 mappers. However, the overall speedup gets bounded by

Amdahl’s law introduced by Hadoop’s overhead (around 10s of seconds to initiate and terminate

a MapReduce job). However, as seen in the previous experiment, the MapReduce model is

extremely useful to process large problems size, where extremely large populations are required.

32

33

5.1.4 Scalability with increasing the problem size

Here, maximum resources are utilized and the number of variables are also increased. As

presented in Figure 4.4, our implementation scales to n = 105 variables, keeping the population

set to n log n. Addition of more nodes would allow us to scale larger problem sizes. The time per

iteration will be increases abruptly as the number of variables is increased to n = 105 as the

population increases super-linearly (n log n), which is more than 16 million individuals.

Figure 4.5

34

5.2 Genetic Algorithms2

For better understanding of the behavior of the Hadoop implementation of GA2, we repeat the

two experiment sets which were done in the case of the Hadoop SGA implementation. For each

experiment, the population for the GA2 is set to n log n where n is the number of variables. As

done earlier, first the load set is kept to 200,000 variables per mapper. As shown in Figure 4.5,

the time per iteration increases at first and then stabilizes around 75 seconds.

Thus, increasing the problem size as more resources are added does not change the iteration

time. Since, each node can run a maximum of 5 mappers, the overall map capacity is 5 ・

52(nodes) = 260. Hence, around 250 mappers, the time per iteration increases due to the fact that

no available resources (mapper slots) in the Hadoop framework are available. Thus, the

execution must wait till mapper slots are released and the remaining portions can be executed,

and the whole execution completed.

In the second set of experiments, we utilized the maximum resources and increase the number of

variables. As shown in Figure 4.6, our implementation scales to n = 108 variables, keeping the

population set to n log n.

35

5.3 Genetic Algorithm 3

We here are reporting our results of the experiments with MapReducing GA3 algorithms.

5.3.1 Convergence

In order to confirm the accuracy of our parallel implementation of the GA3 algorithm, we ran an

experiment on a problem with 16 bit variables and it is converged in three iterations for attaining

the best possible fitness. We demonstrate the model building process that resulted in the last

iteration in the following listing:

36

37

5.3.2 Caching

In this experiment, we measure the advantages of caching in the model building phase of the

GA3 algorithm. In the first iteration, we compute the marginal probabilities of each building

block in the map phase and the the marginal probabilities of each pair-wise combination of the

building block. If we don’t cache these marginal probabilities, they are computed in every

iteration of the model building process. This is demonstrated in the ―No-Cache‖ line in Figure

4.7. We can cache most of this information for the next iteration, as only the merged building

block will have different marginal probabilities. This results in upto 80% lesser time per

iteration, as is demonstrated in the ‖File-cache‖ line in the same figure.

5.3.3 Scaling the model building with problem size

In this experiment, we analyze the average time per iteration in the model building process for

different problem sizes. Our results show that for problem sizes up to 128, the start-up overhead

of the MapReduce results in similar execution times for the no-cache and file-cache versions as

shown in Figure 4.8. The difference becomes more prominent for larger problem sizes. Our

implementation scales up to 1024 bit variable problems. We found that beyond this value, the

memory overhead of maintaining marginal probabilities for each pair-wise merge of building

blocks becomes the bottleneck.

5.3.4 Scaling the model building with number of

mappers

In this Experiment we can see effect of increasing number of mappers on the scalability. Figure

4.9 shows as the number of mappers are increased relative effect on average time per iteration. It

can be observed from the figure that as the number of mappers is small, load per mapper is high

38

and hence time per iteration is also high correspondingly. And when the same amount of work is

distributed on several number of machine, load on per mapper reduces as the result time of

execution per iteration also decreases. Though there is a thresh hold up to which this is followed

i.e. after certain no of mappers(120) time per iteration starts to rise. This is due to the fact now

for simple task more reading has to be done which is overhead.

39

40

Chapter 6

Conclusion

It has been shown that implementation of evolutionary algorithms is possible in parlance to

data-intensive computing standard with efficiency. We have shown Step by step transformation

of 3 algorithms which based on genetic algorithms in presented .All 3 of the proposed algorithms

are compared and analysis is done. It has been shown that evolutionary computational algorithms

like GA can me remodeled into Hadoop Map-reduce model and resulting algorithm is easily

scalable and hence promote parallelization .in addition to it our results have also shown that

when an algorithm which has inherit feature for parallel implementation engineered properly can

produce better result than other contemporary ones and can exploit cores in modern multi cored

processors better parallel implementation without changing original nature of data flow.

Results have also shown that when we have to deal with the larger problems Hodoop is the

correct and optimal choice provided resources are always available, though iteration time should

remain same and should not depend on size of problem. Thanks to inherent property of genetic

algorithms even linear speedups are possible on data intensive computing.

We can see by our algorithms that not only multi core architectures can be benefitted by this

algorithm but also multiprocessor architectures like NUMA .Future work is possible in

computation intensive Map phase and random number generation which is possible to be

performed in parallel with the Reduce on the Central processing units. Practical implementation

of scalable GAs can also be considered for future works.

41

REFERENCES

[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Longman Publishing Co., Inc., 1989.

[2] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Third. Prentice

Hall, 2010.

[3] J. H. Holland, Adaptation in Natural and Artificial Systems. The University of Michigan

Press, 1995.

[4] T. White, Hadoop: The Definitive Guide, Third. O’Reiily, 2012.

[5] J. Dean and S. Ghemawat, ―Mapreduce: simplified data processing on large clusters‖,

OSDI, 2004.

[6] C. Jin, C. Vecchiola, and R. Buyya, ―Mrpga: an extension of mapreduce for parallelizing

genetic algorithms‖, in eScience, 2008. eScience ’08. IEEE Fourth International

Conference on, IEEE, 2008, pp. 214–221.

[7] A. Verma, X. Llor`a, D. E. Goldberg, and R. H. Campbell, ―Scaling genetic algorithms

using mapreduce‖, in Intelligent Systems Design and Applications, 2009. ISDA’09. Ninth

International Conference on, IEEE, 2009, pp. 13–18.

[8] S. Di Martino, F. Ferrucci, V. Maggio, and F. Sarro, ―Towards migrating genetic

algorithms for test data generation to the cloud‖, in. IGI Global, 2012, ch. 6, pp. 113–135.

[9] G. Luque and E. Alba, Parallel Genetic Algorithms, Theory and Real World Applications.

Springer, 2011.

[10] L. Di Geronimo, F. Ferrucci, A. Murolo, and F. Sarro, ―A parallel genetic algorithm based

on hadoop mapreduce for the automatic generation of junit test suites‖, in Software

Testing, Verification and Validation (ICST), 2012 IEEE Fifth International Conference on,

IEEE,2012, pp. 785–793.

[11] D. Cutting, Data interoperability with apache avro, Cloudera Blog, 2011. [Online].

Available:http://blog.cloudera.com/blog/2011/07/avro-data-interop.

[12] M. A. Hall, ―Correlation-based feature selection for machine learning‖, PhD thesis, The

University of Waikato,1999.

[13] J. Dean and S. Ghemawat, ―Mapreduce: Simplified data processing on large clusters‖,

Communications of ACM, 51(1):107–113, 2008.

42

[14] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, ―Scalable multiobjective optimization test

problems,‖ in Proceedings of Congress on Evolutionary Computation, 2002, pp. 825-830.

[15] S. Di Martino, F. Ferrucci, C. Gravino, V. Maggio, F. Sarro, ―Using MapReduce in the

Cloud to enhance effectiveness and scalability of genetic algorithms for test data

generation,‖ available at http://www.dmi.unisa.it/people/sarro/www/research/SBST

Cloud.html

[16] G. Fraser, A. Arcuri, ―Evolutionary generation of whole test suite,‖ in Proceedings of the

11th International Conference On Quality Software, 2011, pp. 31-40.

[17] D. E. Goldberg, ―Genetic Algorithms in Search, Optimization, and Machine Learning,‖

Addison-Wesley, 1989.

[18] GoogleAppEngine, http://code.google.com/appengine/

[19] CUDA on Hadoop MapReduce, http://wiki.apache.org/hadoop/CUDA%20On%20Hadoop

[20] M. Harman, ―The current state and future of search-based software engineering,‖ in

Proceedingd of Future of Software Engineering 2007, pp. 342-357

.

[21] M. Harman, P. McMinn, ―A theoretical and empirical study of search based testing: local,

global and hybrid search,‖ IEEE Transactions on Software Engineering, 36(2), 2010, pp.

226-247.

[22] C. Jin, C. Vecchiola, R. Buyya: ―MRPGA: An Extension of MapReduce for Parallelizing

Genetic Algorithms,‖ in Proceedings of IEEE Fourth International Conference on eScience,

2008, pp. 214-

[23] D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, and B.-S. Lee. Efficient hierarchical parallel

genetic algorithms using grid computing. Future Gener. Comput. Syst., 23(4):658–670,

2007.

[24] S.-C. Lin, W. F. Punch, and E. D. Goodman. Coarse-grain parallel genetic algorithms:

Categorization and new approach. In Proceeedings of the Sixth IEEE Symposium on

Parallel and Distributed Processing, pages 28–37, 1994.

[25] X. Llor`a. Data-intensive computing for competent genetic algorithms: a pilot study using

meandre. In GECCO ’09: Proceedings of the 11th Annual conference on Genetic and

evolutionary computation, pages 1387–1394, New York, NY, USA, 2009. ACM.

[26] X. Llor`a, B. ´Acs, L. Auvil, B. Capitanu, M. Welge, and D. E. Goldberg. Meandre:

Semantic-driven dataintensive flows in the clouds. In Proceedings of the 4th IEEE

International Conference on e-Science, pages 238–245. IEEE press, 2008.

[27] X. Llor`a, A. Verma, R. H. Campbell, and D. E. Goldberg. When Huge Is Routine: Scaling

Genetic Algorithms and Estimation of Distribution Algorithms via Data-Intensive

http://www.dmi.unisa.it/people/sarro/www/research/SBST

43

Computing. In F. Fernndez de Vega and E. Cant-Paz, editors, Parallel and Distributed

Computational Intelligence, chapter 1, page 1141. Springer-Verlag, Berlin Heidelberg,

2010.

[28] T. Maruyama, T. Hirose, and A. Konagaya. A fine-grained parallel genetic algorithm for

distributed parallel systems. In Proceedings of the 5th International Conference on Genetic

Algorithms, pages 184–190, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers

Inc.

[29] C. A. Mattmann, D. J. Crichton, N. Medvidovic, and S. Hughes. A software architecture-

based framework for highly distributed and data intensive scientific applications. In ICSE

’06: Proceedings of the 28th international conference on Software engineering, pages 721–

730, New York, NY, USA, 2006. ACM.

[30] J. P. Morrison. Flow-Based Programming: A New Approach to Application Development.

Van Nostrand Reinhold, 1994.

