A Major Project Report On

GROUND WATER EXPLORATION USING GREY WOLF OPTIMIZER

Submitted in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY IN

SOFTWARE ENGINEERING

By

RAHUL DADEIA

(Roll No. 2K13/SWE/24)

Under the guidance of

Dr. Daya Gupta

Professor

Department of Computer Engineering

Delhi Technological University, Delhi

Department of Computer Engineering

Delhi Technological University, Delhi

2013-2015

DELHI TECHNOLOGICAL UNIVERSITY CERTIFICATE

This is to certify that the project report entitled **GROUND WATER EXPLORATION USING GREY WOLF OPTIMIZER** is a bonafide record of work carried out by **Rahul Dadeia** (2K13/SWE/24) under my guidance and supervision, during the academic session 2013-2015 in partial fulfilment of the requirement for the degree of Master of Technology in Software Engineering from Delhi Technological University, Delhi.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to any other University/Institute for the award of any Degree or Diploma.

Dr. Daya Gupta
Professor
Department of Computer Engineering
Delhi Technological University
Delhi

DELHI TECHNOLOGICAL UNIVERSITY ACKNOWLEDGEMENTS

I feel immense pleasure to express my heartfelt gratitude to **Dr. Daya Gupta** for her constant and consistent inspiring guidance and utmost co-operation at every stage which culminated in successful completion of my research work.

I also would like to thank the faculty of Software Engineering Department, DTU for their kind advice and help from time to time.

I owe my profound gratitude to my family which has been a constant source of inspiration and support.

Rahul Dadeia

Roll No. 2K13/SWE/24

TABLE OF CONTENTS

Ce	rtificate		i
Ac	knowledge	ement	ii
Ta	ble of Cont	tents	iii
Li	st of Figure	es	v
Li	st of Tables	s	vi
Ał	stract		vii
1.	Introducti	on	1
	1.1. Motiv	vation	1
	1.2. Relat	ed Work	2
	1.3. Probl	em Statement	3
	1.4. Scope	e of the work	4
	1.5. Organ	nization of thesis	4
2.	Computat	ional Intelligence	6
	2.1. Partic	cle Swarm Optimization	6
	2.1.1.	PSO algorithm for GWD.	7
	2.2. Bioge	eography Based Optimization	8
	2.2.1.	BBO algorithm for GWD	10
	2.3. Cuck	oo Search	11
	2.3.1.	Cuckoo search algorithm for GWD	11
3.	Grey Wol	f Optimizer	14
	3.1. Inspir	ration	15
	3.2. Math	ematical model and algorithm	18
	3.2.1.	Social hierarchy	18
	3.2.2.	Encircling Prey	18
	3.2.3.	Hunting	20
	3.2.4.	Attacking Prey	23
	3.2.5.	Search for Prey	24
4.	Case Base	ed Reasoning	26
	4.1. Case based reasoning.		
	4.2. Components and features of case based reasoning.		27

	4.3. CBR Life Cycle	29
	4.4. Application of CBR.	31
	4.4.1. CBR using nearest neighbour.	31
	4.4.2. CBR using induction.	32
	4.4.3. CBR using fuzzy logic	32
5.	Combination of grey wolf optimizer and case based reasoning	34
	5.1. Geographical Attributes	35
	5.2. Integration of case based reasoning.	37
	5.3. Steps of Algorithm	39
	5.4. Detailed description of algorithm	41
6.	Results and Discussion.	48
	6.1. Comparison of Grey Wolf Optimizer with other algorithms	48
	6.2. Grey Wolf Optimizer-Dataset\	50
	6.3. Implementation	
	6.4. Results	
	6.5. Comparison of GWO with Cuckoo Search	57
7.	Conclusion and Future Scope.	59
	7.1. Conclusion.	59
	7.2. Future Scope.	60
8	References	61

LIST OF FIGURES

Figure 1: Grey Wolves	14
Figure 2: Hierarchy of grey wolf.	15
Figure 3: Hunting Behaviour of grey wolves.	17
Figure 4: 2D and 3D position vectors and their possible next locations	21
Figure 5: Position updading in GWO	22
Figure 6: Attacking prey versus searching for prey	23
Figure 7: CBR System	27
Figure 8: Two Major Component of CBR	28
Figure 9: CBR Cycle	29
Figure 10: A fuzzy preference function	33
Figure 11: Weight of each attribute.	42
Figure 12: Geology attribute values.	43
Figure 13: Landform attribute values	43
Figure 14: Soil attribute values	44
Figure 15: Land use attribute value	44
Figure 16: Slope attribute value	45
Figure 17: Lineament attribute value	45
Figure 18: First window appear at the time of execution of software	52
Figure 19: Purpose of RESET button	53
Figure 20: Result of user's query	54
Figure 21: Cases stored in final case base.	55
Figure 22: Cases after ignoring irrelevant cases	55
Figure 23: Final cases.	56
Figure 24: Objective function vs Search agent (GWO)	56

LIST OF TABLES

Table 1: Six attributes used in dataset.	35
Table 2: Ranking of attributes.	36
Table 3: Cases from the case base.	38
Table 4: Comparison of GWO with PSO, BBO & Cuckoo Search	49
Table 5: Validation dataset of groundwater	51
Table 6: User Query.	53

ABSTRACT

Water is one of the Mankind's most vital resources. An adequate supply of water is one of the pre-requisites for development and industrial growth. In areas where surface water is not available, Groundwater constitutes significant part of active fresh water resources of the world and is obviously dependable source for all the needs. The stress on water resources started due to exploding irrigation, domestic and industrial demands. The finite water resources are being explored to quench the thirst of millions of the populace. In a developing country like India, the minimum daily requirement of a person is 200 litres for domestic use, while an equal or large amount will be needed for other purposes. It is estimated that out of the total of 1122 billion cubic meters of water utilized in India annually, 430 billion cubic meters is met from surface sources and the rest is met from ground water resources. Groundwater is located beneath the ground surface which is precious natural resources. Geoscientist had to know the location of groundwater for extraction of water. Thus we have applied Grey Wolf Optimizer in the exploration of groundwater in various regions. Experts provided us with values of attributes; soil, lineament and other geology features and our algorithm detected the presence of groundwater in particular region. Hence we have evaluated different attribute values of these characteristics as case base and then detected the presence of groundwater of new cases depending on the previous values of our cases.