
Delhi Technological University Page 1

CHAPTER 1

Introduction

Symmetric key & Asymmetric key cryptography are two different techniques available to use

keys or secrets for encryption. Both types of algorithms are used for data encryption and

decryption in cryptography and network security. Symmetric key cryptography is a conventional

encryption technique which is used to encrypt and decrypt the data. The process used to generate

cipher text in Symmetric key algorithms is less complicated due to which these algorithms

execute much faster than Asymmetric key algorithms. The number of bits (i.e. length) used to

define the key determines the strength of the security. A key can be 160-512 bits long. NIST has

provided recommendations regarding the key length. The major challenge in implementing

Symmetric key cryptography is that 2 parties must share the secret key in a secure way.

Fig 1.1 Symmetric Key Encryption

Asymmetric key cryptography uses a pair of mathematically related keys. The key pair contains

a public key and a private key. Public key is known to everyone and the private key is always in

possession of its owner only. The working mechanism of Asymmetric key cryptography takes

away the security risk involved in key sharing between 2 parties. The private key is never

revealed in this process. The message is encrypted by applying the public key before sending.

The encrypted message can only be decrypted by using the corresponding private key. In another

use of Asymmetric key cryptography, a message encrypted with the private key is decrypted by

the corresponding public key. It is virtually impractical to compute the private key even if the

corresponding public key is known.

Delhi Technological University Page 2

Fig 1.2 Asymmetric Key Encryption

A different set of problem is still there-

Fig 1.3 Alice Sending Message to Bob

When a message is received by Bob sent from Alice, 2 things are to be verified

 Is the message authentic (Integrity of the message has not been compromised)

 Has the message originated from Alice herself?

The answer of these questions is the Cryptographic Hash Functions.

A hash (also known as message digest or signature) is a one way function that by some means

computes a fingerprint of the message. It is more widely known as the hash value of the

message.

Delhi Technological University Page 3

Fig 1.4 Signature of Long Message with a Hash Function

So if Alice wants to ensure the integrity of the contents of her document, she can attach the

fingerprint of the message at the bottom of the document. Bob knows the function scheme used

by Alice to generate the hash at his end. If it tallies with the hash value from Alice, Bob confirms

the message is authentic.

Fig 1.5 Checking Integrity at Bob’s End

Some of the popular hash functions are MD4, MD5, SHA-1, and SHA-512.

Certainly there may be many messages that can produce the same hash digest, because a message

can be arbitrarily long and the hash digest will be of some predetermined length, for instance 128

Delhi Technological University Page 4

bits in MD5. For instance, for 1000 bit messages and a 128 bit hash digest, there are on the

average 2
872

 messages that map to any of 2
128

 message digest. So undoubtedly, by trying lots of

messages, one would eventually find two or more messages that can generate the same hash

digest. The problem is that ―lots‖ is so many that it is essentially impossible. Assuming a good

128 bit hash digest function, it would take trying around 2
128

 possible input messages before one

would find a hash collision, or approximately 2
64

 messages before finding two that had the same

hash digest (see Appendix 1).

The message digest of a document is attached as a fingerprint or signature of the document to

detect modification during transport. If you know the digest of the program, then nobody will be

able to amend the program without being detected, because it is not easy to find another program

with the same message digest.

In most applications, to challenge a system an attacker has to find an ambiguous message whose

hash digest matches with a pre-existing message. To find 2 different messages having the same

signature is a risk to the security of the system.

Suppose Alice wants to fire Fred, and writes her administrative officer Bob, to implement her

decision. Alice computes a message digest, and cryptographically sign the message digest using

her private key. Fred may play a trick by replacing the letter saying that Fred is brilliant and his

salary ought to be doubled. However, Fred cannot generate a hash digest signed with Alice’s

private key.

Suppose the message digest function produces only 64 bits long output, and is a good message

digest function. The only way to find two messages with same hash digest would be by trying an

adequate amount of messages that would have the same digest (as in birthday paradox). Total

number of possible input messages is 2
64

. Then using birthday paradox we would have to try

about 2
32

 messages before we found two that matched.

There are sufficient computer generated variants of two letters that Fred can calculate message

digests on various variants until he finds an exact match. It is computationally feasible to

compute and test an order of 2
32

 messages, whereas due to computing limitations, it would not be

feasible to deal with 2
64

 or more messages.

A reasonable way of constructing a hash function is to combine lots of vicious operations into a

potential digest function, and then play with it. If any particular patterns are detected repeatedly

in the output the function perhaps requires a modification or it is summarily rejected.

Ideally, a good hash function should be very easy to compute. However, there is no dimension of

minimal function which is fully secure. It is safer for a hash function to be overload and do a lot

of shuffling beyond what is needed. The function must use all the input data. The hash function

must uniformly distribute the hash values across the entire set of available values. The hash

Delhi Technological University Page 5

digest tend to be calculated in several rounds. The designers find the least number of rounds

necessary to generate a hash output which qualifies various randomness tests, and then do a few

more just to make it more robust and safe.

Surprisingly, the drive for hash digest functions started with public key cryptography. RSA was

invented, which made it possible to calculate digital signatures of messages. However,

computing a signature on a long message with RSA was significantly slow. Instead of computing

a signature over a long message, the message could be condensed into a smaller size by first

computing a hash digest and then computing the RSA of the digest. So MD and MD2 were

designed. MD was proprietary and never published. MD2 was documented in RFC 1319.

Then Ralph Merkle of Xerox designed a hash digest algorithm called SNEFRU that was quite a

lot of times faster than MD2. This persuaded Ron Rivest into developing the MD4 algorithm

documented in RFC 1320. Later weaknesses were found in SNEFRU and MD4. Ron Rivest

decided to strengthen MD4 and created MD5 (RFC 1321), which is a little slower than MD4.

NIST subsequently developed SHA, which is very much analogous to MD5, but more secure and

also a little slower. NIST revised the algorithm at the last hour in an attempt to make it more

secure and called the revised version SHA-1. The latest versions of SHA are SHA3-224, SHA3-

256, SHA3-384 and SHA3-512.

The major difference between a secret key algorithm and a message digest algorithm is that in

secret key algorithm, same key is used to encrypt and decrypt the data whereas a message digest

algorithm is always impossible to reverse.

1.1 Communication Architecture of WSN

A Wireless Sensor Network is generally composed of few hundred to several thousands of tiny

sensor nodes. Such networks are used to monitor environmental conditions. These sensor nodes

are densely deployed to create a communication network in a sensor field. A sensor node

consists of 4 basic parts: a sensing unit, a processing unit, a power unit and a transceiver unit [1].

Sometimes it may have a location tracking system which helps to keep track of the respective

location. It may also have power generator which provide longer power backup. In addition to

these, a node may also have mobilizer (Fig. 1.6). Sensors and analog-to-digital converters

(ADCs) are the two subunits of sensing units. A processing unit is generally consists of

microcontroller or microprocessor and a small storage unit. Its main job is to process the

gathered data and execute the communication protocols. The power unit of a sensor is generally

limited (e.g., a single battery). It is sometimes supported by power scavenging devices (e.g.,

solar cells). For large networks, battery replacement is very difficult or even impossible. A

transceiver unit provides a connection of the node to the network. Most of the sensing tasks and

sensor network routing techniques require knowledge of location, which is provided by a

Delhi Technological University Page 6

location tracking system. Depending upon the application, a mobilizer is sometimes used to

provide movement to the sensor node.

 Fig 1.6 Wireless Sensor

The protocol stack used in sensor nodes contains the following layers [1]

 • Physical layer: responsible for transmission and reception of data, generation and selection of

carrier frequency, signal deflection, modulation, and data encryption & decryption.

• Data link layer: responsible for error detection and correction, the multiplexing of data

streams, detection of data frames, medium access, reliable point-to-point and point-to-multipoint

connections.

• Network layer: responsible for assignment of addresses and specify the process of packet

forwarding to other nodes.

• Transport layer: responsible for the reliable transport of packets from one node to other node.

• Application layer: responsible for the interactions with the end users. It specifies how the data

provided to individual sensor nodes upon request.

Delhi Technological University Page 7

1.2 Constraints in WSN

Nodes of a Wireless Sensor Network are resource constrained as they have restricted computing

capability, communication bandwidth and storage capacity. The small size of sensor node and

limited computing power are 2 greatest constraints. So the security services in a sensor node

must be implemented keeping in view of following hardware constraints of the sensor node:

• Energy:

–Energy is required for the sensor transducer which converts one form of energy into another

–Energy is required to establish communication among sensor nodes

–Energy is also required for microcontroller & microprocessor computation

• Computation:

Conventional complex cryptographic algorithms would require a lot of computing power for

which the processors of sensor nodes is not feasible. Lightweight cryptographic algorithms are

required to reduce the computing burden on sensor node.

 • Memory:

Flash memory and RAM are usually included for the storage purpose in a sensor node. Flash

memory is used to keep downloaded application code and RAM is used to keep sensor data,

storing application programs, and intermediate computations. Generally, after loading OS and

application code there is not sufficient space left to run complex algorithms. Due to the memory

constraint it is not viable to use the majority of traditional cryptographic algorithms.

• Transmission range:

 Limited operating power imposes restrictions on the communication range of sensor nodes. The

actual transmission range of a signal depends on various environmental factors such as weather

and terrain.

Delhi Technological University Page 8

CHAPTER 2

Literature Survey

The most widely used hash functions are one-way functions for which finding an input which

hashes to a pre-specified hash-value is very difficult. Two commonly used hash functions are

MD5 and SHA-1. Both MD5 and SHA-1 are derived from MD4 in which weaknesses have been

identified [3]. MD5 uses a hash algorithm with 128-bit long output hash was designed in 1991

and in 2005 it was shown [4] how rapidly random collisions for MD5 can be computed. MD5 is

also not suitable for applications like SSL certificates or digital signatures. In [5] authors have

revealed that how a couple of X.509 certificates can be produced that result in the same MD5

hash digest. This revelation led the cryptographers recommending the use of other algorithms

like SHA-1 and other hash algorithms of SHA family. SHA-1 has been found to be weak [6] as

well and most U.S. government applications now use the SHA-2 and SHA-3 family of hash

functions [7, 8]. But most of the discussed hash functions are used in large traditional networks.

Contrary to traditional networks, in a short-lived and energy-constrained network like Wireless

Sensor Networks, a number of sensor nodes are deployed [9] in outdoor environment without

human intervention. Reliability and data authenticity becomes the main worry to deal with such

kind of networks. WSN suffers from number of constraints like low computing power, low

battery life, and small memory. Due to these constraints, it is not able to deal with conventional

cryptographic algorithms. So, it becomes compulsory to design a lightweight security hash

algorithm for WSNs. Many similar works are reported towards hash-based security solutions and

some of them [10, 11, 12] are mentioned here. Here [10, 11] prescribes solutions for WSNs

whereas [12] is not usually meant for WSNs.

 In [10], authors have presented a hash-based signature method which can be used to verify the

messages for unicast and broadcast communication. It has claimed that both the signature

generation and verification are quicker than the other existing schemes e.g. ECDSA (elliptic

curve digital signature algorithm). In security analysis of the algorithm, authors have claimed

that the signature scheme is preimage resistant and second preimage resistant. However, the

authors have not claimed that the scheme is collision resistance, which is also another important

property.

In [11] authors have designed a strong and efficient scheme against node capture attack using

hash chain in WSN. The primary idea of the scheme is to use preloaded keys to calculate the

hash value. The hashed key is used as a communication key. This scheme also shows an

improvement in comparison of other existing schemes.

Delhi Technological University Page 9

In another work [12] authors have proposed a cryptographic hash function Whirlwind which can

be easily implemented in software. This method can be considered as an expansion in design

compared to SHA-3 hash functions. This scheme uses large S-boxes which allow proficient

implementation on a wide variety of platforms. The hash function produces 512-bit long hash

digest by incorporating a compress function, computing initialization vector etc. The hash digest

is represented by an 8x4 array of 16-bit elements each. Although the cryptanalysis of this scheme

shows a progress but the performance of software implementation is not very fast compared to

the other competing schemes.

Delhi Technological University Page 10

CHAPTER 3

Applications of Cryptographic Hash Functions

The hash functions are popularly used in following areas-

3.1 Verifying the Integrity of Messages or Files

Hashes are used to verify the authentication of messages or files integrity. Hash functions are

used to calculate hash digest which can help to identify the changes made to a message (or a file)

during transmission. It is achieved by computing the hash digests before sending the data to the

recipient and attach this hash value with the data. At the other end the recipient will re-compute

the hash of the data received and compare it with the received hash to verify the integrity of file

or data. This is how the authenticity of the received data is verified using hash digest.

 MD5, SHA1, or SHA2 hashes are sometimes posted on websites or forums along with the files

to ensure the integrity of the file. This practice establishes a chain of trust so long as the hashes

are posted on a site authenticated by HTTPS [14].

 3.2 Password Verification

Another use of hash digest is verification of passwords used in any application. It was first

invented by Roger Needham. User passwords are not stored as clear text in databases because

clear text storage can lead to a massive security breach if the password file is compromised

somehow. To reduce the risk of breach the hash digest of each password would be stored. During

authentication of a user, when the password is provided by the user, hash digest of the password

is computed and compared with the stored value in database. However it will prevent to retrieve

the original passwords if forgotten. It can only be replaced with new ones. In latest trend, to

calculate the hash value of the password, it is usually concatenated with a random, non-secret

salt value before applying the hash functions. As different users may be using different salt

values, it is not possible to store tables of pre-computed hash values for the common passwords.

Key stretch functions are used for this purpose. It will increase the time needed to execute brute

force attacks on stored password digests.

3.3 Digital Signatures

A digital signature is basically an encrypted hash of the message and used to verify a message.

The recipient can ensure if the message is tampered with. It is done by computing the hash of the

http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/SHA1
http://en.wikipedia.org/wiki/SHA2
http://en.wikipedia.org/wiki/Cleartext
http://en.wikipedia.org/wiki/Precomputation
http://en.wikipedia.org/wiki/Brute_force_attack
http://en.wikipedia.org/wiki/Brute_force_attack
http://en.wikipedia.org/wiki/Brute_force_attack

Delhi Technological University Page 11

received message and comparing this value with the decrypted signature. Digital signatures assist

the safe exchange of electronic data by specifying a way to check both the authenticity and the

integrity of digital information exchanged. There is an explosion of organizations occupied in

electronic data exchange as well as the quantity of data changing hands; the secure exchange of

data has become a focal point for business users across almost all industries. A digital signature

is computed by applying a series of mathematical process that convert data into a unique

message digest. The sender encrypts the hash digest, attaches it to or embeds it in a file, and

sends the parcel to the intended recipient. Once the parcel is received and the hash digest is

decrypted, the authenticity and integrity of the received data can be ensured. If the digital

signature verifies the identity of the sender one can be assured that it was truly sent by the

individual related to the digital signature.

3.4 Pseudorandom Generation and Key Derivation

Pseudorandom bits can be generated using hash functions. It is also used to derive new keys or

passwords. Usually, a pseudorandom function {PRF (p, n) | p ∈ S} consists of polynomial time

functions with a seed p and input variable n. When a cryptographic key Kc is regarded as the

seed, that is, p = Kc, the output of the pseudorandom function can be used as keying material.

Delhi Technological University Page 12

CHAPTER 4

Traditional Hash Algorithms

There are several hash algorithms available these days which are widely in use to verify the

integrity of the message. Two of the most popular algorithms are MD5 and SHA1. This chapter

discuss about the mechanism of these two algorithms.

4.1 MD5 Algorithm

MD5 is a hash digest algorithm developed by Ron Rivest. It was designed to be somewhat more

conservative than MD4 in terms of being less concerned with speed and more concerned with

security. It is similar to MD4. The length of the hash digest it produces is 128 bit long. Several

potential weaknesses have been diagnosed in MD5 by the researchers.

The input text in MD5 is processed in blocks of 512 bits each. This block is further divided into

16 sub blocks of 32 bits each. The algorithm come up with an output of 128 bits long message

digest which is a set of 4, 32 bits sub-blocks.

 Step 1. Append Padding Bits

To make the length of input message congruent to 448, modulo 512 (in bits), padding bits are

added. Padding is always performed even if the length of the input message is already congruent

to 448, modulo 512. To add padding a single "1" bit is followed by as many "0" bits are added so

that the length of the processed text is short of 64 bit of 512 bits.

 Step 2. Append Length

The length of the processed message (after step 1) excluding the padding bits is calculated and

added to the last 64-bit (of 512 bit block) kept for this purpose. Sometimes if the length of the

processed message (after step 1) is greater than 2^64, then only the low-order 64 bits of the

calculated length is considered. The input message along with the padding bits and length of

message become an exact multiple of 512 bits.

Step 3. Initialize MD Buffer

MD5 uses a buffer that consists of four-words (A, B, C, and D). Each of the buffers is 32-bit

long word. Buffers are initialized to the following hex values:

 A= 01 23 45 67

 B= 89 ab cd ef

Delhi Technological University Page 13

 C= fe dc ba 98

 D= 76 54 32 10

Step 4. Process Message in 16-Word Blocks

4.1: Copy the four chaining variables (A, B, C, D) into 4 corresponding temporary variables

a,b,c,d. All the 4 variables (a-d) taken together will be a 128 bit long (32*4). This combined

register is used for holding intermediate as well as final hash result.

4.2: Divide the current 512 bit long block into 16 sub-blocks of 32 bit each M [0] to M [15].

4.3: Now, MD5 consists of 4 rounds. The inputs to each round are

a. M [0]…..M [15] sub-blocks of a particular block

b. All the 4 variable (a-d)

c. Some predefined constants (K) are used

All the 4 rounds of MD5 vary in one major way. Step 1 of the each of four rounds is processed in

different way. The other steps will remain the same.

 In each round, we have 16 input sub-blocks of 32 bits each, named M [0],M [1],....M [15]

 K is an array of constants. The number of elements in K is 64. The width of each element

of K is 32 bit. 16 out of the 64 constants of K are used in each round

Let’s summarize the iterations of all the 4 rounds. There are 16 iterations in each round.

One MD5 round operation can be expressed as-

where

Process F = A non linear operation

M[i] = i
th

 sub block of 32 bit of a 512 bit block

K[k] = A constant

<<<s = circular left shift by s bits

Delhi Technological University Page 14

Fig 4.1 One Round of MD5

Understanding the process of F

Process F is different in the 4 rounds. This process is a collection of some basic Boolean

operations.

Step 5. Output

The combination of A,B,C,D taken together will be the hash digest. We start with the low-order

byte of A, and end with the high-order byte of D. This completes the description of MD5.

Delhi Technological University Page 15

4.2 SHA1 Algorithm

SHA1 stands for ―Secure Hashing Algorithm‖. SHA1 is similar to MD5 which was designed by

NSA and published by NIST. It was first published in 1995 as an improvement over the earlier

version of hash algorithm SHA0. SHA1 is presently the most widely used SHA hash function. It

is presently used in a wide variety of applications.

The algorithm come up with an output of 160 bits long message digest which is a set of 5, 32 bits

sub-blocks.

Step 1. Padding: It is exactly same as in MD5

Step 2. Append Length: It is exactly same as in MD5

Step 3. Initialize MD Buffer: In SHA-1, 5 chaining variables A, B, C, D, E are initialized. In

MD5 hash algorithm, 4 chaining variables A-D (32 *4=128 bits) were used in combination to

keep intermediate as well as final results. As the hash output in SHA-1 is 160 (32*5=160) bits

long, five chaining variables are considered (A-E). These registers are initialized to the following

hex values, (low-order bytes first):

A = 01 23 45 67

B = 89 ab cd ef

C = fe dc ba 98

D =76 54 32 10

E = c3 d2 e1 f0

Step 4. Process Message in 16-Word Blocks

Now the actual algorithm begins. Steps are quite similar to those in MD5.

4.1: Copy the values of five chaining variables (A-E) into 5 corresponding temporary variables

a-e. The 5 variables a-e taken together constitute 160 bit (32*5). This combination of 5

variables is used for holding intermediate as well as final results.

4.2: Divide the current 512 bit block into 16 sub-blocks of 32 bit each.

4.3: Now, we have 4 rounds. Each round consists of 20 steps. The inputs to each round are

a. Current 512 bit block

b. Register abcde

c. Some constants, designated as K[t].

It then updates the content of abcde using the SHA algorithm steps.

Delhi Technological University Page 16

We had 64 constants defined as t in MD5. Here we have only 4 constants defined for K[t], one

used in each of the 4 rounds.

Round Values of t between K[t] in hexadecimal

1 1 & 19 5A 92 79 99

2 20 & 39 6E D9 EB A1

3 40 & 59 9F 1B BC DC

4 60 & 79 CA 62 C1 D6

 Table 4.1 Values of K[t]

4.4: SHA consists of 4 rounds, each round containing 20 iterations. [A total of 80 iterations]

Mathematically, iteration consists of the following operations-

abcde = (e + Process F + s
5
 (a) + W[t] + K[t]), a, s

30
 (b), c, d

where

abcde = register made up of 5 variables

Process F = logical operation (defined below)

s = Circular shift left of 32 bit sub-block by t bits

W[t] = A 32 bit constant derived from the current 32 bit block

K[t] = One of the 4 additive constant

Delhi Technological University Page 17

Fig 4.2 One Round of SHA-1

Step 5. Output

The combination of A,B,C,D & E taken together will be the hash digest. That is, we start with

the low-order byte of A, and end with the high-order byte of E. This completes the description of

SHA1.

Delhi Technological University Page 18

CHAPTER 5

Proposed Light Weight Cryptographic Hash Algorithm for

WSN

Any hash function which has to be evolved is required to satisfy a number of desirable

characteristics.

5.1 Requirements of an Ideal Hash Function

Following are the essential characteristics which a hash calculating functions need to follow-

i. It should accept the arbitrary length inputs.

ii. Its output length must be fixed size.

iii. It should be efficient and its computation must be fast.

iv. Pre-image resistant: It is ―one-wayness‖ property of the hash function (i.e. it should not

be possible to calculate the input from the hash output).A hash function for which

preimage/input cannot be efficiently solved is said to be preimage resistant.

 So, a preimage resistant function must ensure that given h(X), it should not be possible to

calculate X.

v. Second Preimage Resistant (Weak Collision Resistant): Attacker should not be able to

compute X’ which has the same hash as X has. If it is computationally feasible h(X) cannot

be considered as a fingerprint unique to X.

Fig 5.1 Example of Second Preimage Resistance

Delhi Technological University Page 19

Fig. 5.1 explains that given a hash h(X) of a randomly chosen input X, it is hard to find an

input X’ with the same output h(X’) = h(X).

vi. Strong Collision Resistant: The difference between weak and strong collision resistance

is very subtle. This can be clarified using Birthday Paradox (see Appendix 1).

 Given a person (& his birthday), identifying the second person with the same

birthday corresponds to weak collision problem.

(There is a fix X1, finding an another element X2 where h(X1) =h(X2), this instance

corresponds to weak collision)

 Identification of any 2 people in the group having the same birthday corresponds to

the strong collision problem.

(Finding any 2 elements in a group of n elements s.t. h(X1) =h(X2), this instance corresponds to

strong collision)

5.2 Proposed Hash Function

The proposed algorithm takes a message of arbitrary length as input. The output is a 12 byte

(12*8 = 96 bits) hash digest. The steps of the algorithm are as follows-

1. Declare the substitution table STable_1 containing prime numbers chosen randomly. This

table is used in first transformation.

STable_1[] = {521, 997, 983, 733, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,

73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173,

179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,

281, 809, 293, 307, 311, 313,317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397,

401, 409, 863, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509};

2. Declare the substitution table STable_2 which consists of 67 prime numbers chosen

randomly to reduce overhead & ensure uniformity in transformation. This table is used in second

transformation.

STable_2[] = {2895, 2887, 2879, 2871, 2863, 2855, 2846, 2837, 2828, 2818, 2809, 2799, 2788,

2778, 2766, 2756, 2746, 2734, 2723, 2711, 2699, 2687, 2674, 2662, 2649, 2635, 2622, 2608,

2595, 2581, 2567, 2552, 2538, 2523, 2509, 2494, 2478, 2463, 2447, 2431, 2416, 2401, 2386,

Delhi Technological University Page 20

2370, 2354, 2339, 3189, 3173, 3158, 3142, 3127, 2323, 2255, 2240, 2225, 2209, 2195, 2180,

2164, 2149, 2134, 2120, 2105, 2090, 2075, 2059, 2045};

3. Initialize the following variables-

 first_conv = 1;

 second_conv_p3 = 7;

 state[0] = 0x01234567;

 state[1] = 0x89ABCDEF;

 state[2] = 0xFEDCBA10;

where state[0], state[1] and state[2] are 3 variables which help in calculating the final hash value.

4. Preprocess the arbitrary long input message by converting each of the input character into

8 bit binary.

5. Apply the padding in least significant position to make it divisible by 512.

6. Split the message 3 times in a nested manner as follows

7. At first level, split the input message (of any length) in a block size of 512 bit each.

for (i = 0; i < t; i++) , t number of blocks of 512 bits each

8. At second level, split one block into 8 blocks of 64 bits each.

for (j = 0; j < 8; j++) , 8 blocks of 64 bits each

9. At third level, split each of 64 bits of one block into 8 subblocks of 8 bits each.

for (k = 0; k <8; k++) , 8 numbers of 8 bit subblock each

10. Obtain subblock[i][j][k] // result of 3-level split.

11. First substitute the inner most block (8 bit) using substitution table Stable_1 as per

follows and check subblock[i][j][k] contains for at least one 1, update subblock[i][j][k]

accordingly-

if (subblock[i][j][k]!=0) {

 p[k]=abs(subblock[i][j][k]-31) //p[k] value doesn't exceed 97

 subblock[i][j][k]=STable_1[p[k]];

Delhi Technological University Page 21

 }

else {

 p[k]=1;

 subblock[i][j][k]=STable_1[p[k]];

 }

12. Calculate the value of first_conv variable

 first_conv = STable_1[p[k]]* first_conv;

 if (first_conv > 65535)

 first_conv = first_conv % 65536;

13. Once the first conversion is over, second conversion takes place

 second_conv_p1= first_conv % 67;

 if (subblock[i][j][7] = = 0)

 second_conv_p2 = second_conv_p1;

 else

 second_conv_p2 = 67-second_conv_p1;

 second_conv_p3 = second_conv_p3 + (second_conv_p1 + first_conv) % 256;

14. Third conversion takes place and swapping of values are done-

 after_second_conv = (first_conv % second_conv_p3) + first_conv +

 STable_2[second_conv_p2];

 after_third_conv = (after_second_conv % 256) + p[2] + p[0] % 127;

 after_third_conv = after_third_conv^state[0];

 Apply intra-hexnumber hexdigit swapping on each hexnumber.

 state[0] = state[1];

 state[1] = state[2];

 state[2] = after_third_conv;

15. Compute the final hash digest

 for (int i=0; i < 3; ++i) {

 hash[i] = (state[0]>> (i*8)) & 0x0000ff;

 hash[i+4] = (state[1]>> (i*8)) & 0x0000ff;

 hash[i+8] = (state[2]>> (i*8)) & 0x0000ff;

16. Apply inter-hex number swapping on hash output.

The final hash digest is 96 bits long whatever may be the length of input message.

Delhi Technological University Page 22

5.3 Performance Analysis

As discussed in section 5.1, every hash algorithm needs to follow six essential properties. The

strength of the proposed algorithm can be evaluated by discussing the extent of maintaining these

basic properties of a cryptographic hash function.

i. The proposed algorithm follows the first property of a cryptographic hash function as the

input message can be arbitrary long.

ii. It satisfies the second property as it produces fixed length output.

The efficiency of the proposed algorithm can be observed from the implementation part as

follows.

iii. Preimage Resistance - For a given hash digest H with respect to an unknown input, it is

not feasible to find an input message m such that h (m) =H where h (m) is the message

digest of m. It symbolizes the one-way property of a hash function. The final hash digest

is the sum of t times of 12 byte hexadecimal numbers where, t is number of 512 bit

blocks. Let H be the final hash digest.

H=∑ Hi, i varies from 0 to t-1 and Hi is hash digest of each of t number of 512 bit blocks.

There will be
H+t-1

Ct-1 ways to calculate Hi. If t=1, the number of solutions would become

one.

In a brute force attack, upon capturing the digest H, it is attempted to find a message m such that

h(m) = H(given). The attacker has to perform of the order of 2
96

 operations which will take high

amount of time to perform brute force attack. Hence the algorithm is preimage resistant.

iv. Collision Resistance – To find out h(m1) = h(m2) the followings need to be true

i) hexnumberij (m1) = hexnumberij (m2) for all i, j where i ϵ {0,1,…,t-1} and j ϵ {0,1,…7} and

ii) subblockij (m1) ≠ subblockij (m2) for all i, j where i ϵ {0,1,…,t-1} and j ϵ {0,1,…7}

For these conditions to be correct at least one of the following conditions need to be satisfied:

a) first_conv (m1) = first_conv (m2) and sub_blockij (m1) ≠ sub_blockij (m2)

b) after_second_conv (m1) = after_second_conv (m2) and sub_ blockij (m1) ≠ sub_ blockij (m2)

c) after_third_conv (m1) = after_third_conv (m2) and sub_ blockij (m1) ≠ sub_ blockij (m2)

So the only feasible method to satisfy at least one of the above conditions is brute force attack.

Hence our algorithm is collision resistant. 2
48

 operations are to be performed by the brute force

method to compute two messages having the same message digest which would be time

consuming for a sensor node.

Delhi Technological University Page 23

v. Second Preimage Resistance – For a given input message m1, if it is impossible to find

another input message m2 where the hash output of first message is equal to the hash output of

second input message m2 i.e., h (m1) = h (m2).

Second preimage resistance or weak collision resistance is an easier or weaker version of strong

collision resistance. So, a strong collision resistant function would also follow the property of

second preimage resistant.

Delhi Technological University Page 24

 CHAPTER 6

Implementation

Network Simulator (Ver. 2), popularly known as NS2, is an discrete event driven simulation tool.

There is a great need to simulate the protocols and algorithms before their actual implementation.

NS2 has been proved useful in simulating the dynamic nature of communication networks. It is

used to simulate the network functions and protocols of wired as well as wireless network. It

provides the researchers a way to implement network protocols and help them to understand their

corresponding behaviours using simulation. The basic architecture of NS2 is shown in Figure

6.1.

NS2 provides executable command ns (object) which take a Tcl simulation scripting file as an

input argument.

 Fig 6.1 Basic Architecture of NS-2

6.1 Installation of NS2

Unix/Linux based systems are the primary operating systems in which NS2 can be installed

easily. NS2 is also available on Windows platform which requires Cygwin software installed as

prerequisites on the machine. If anyone has both the options to work on a Linux based or a

Windows based system, it is recommended to go for Linux based system. A set of protocols

comes with NS2 and are used in different kind of networks. The current version used is 2.3.5

which comes with a total of 72 various protocols.

6.2 Features of NS2

NS2 is an object oriented discrete event simulator, written in C++ language. The frontend of this

tool is an OTcl interpreter. NS2 follows a class hierarchy in C++ language which is called the

compiled hierarchy. A corresponding class hierarchy within OTcl interpreter is also followed

Delhi Technological University Page 25

which is called as interpreted hierarchy. There is a one-to-one correspondence between both the

hierarchies from user’s perspective. New simulator objects are constructed by the users through

the NS2 interpreter.

 NS2 is an object oriented discrete event simulator

 – Being a discrete event Simulator it executes one event after another.

 – No locking or race around condition occurs as there is a single thread of control to execute

 the events.

 Protocols are mostly implemented using C++ language at back end.

 Most of NS2 source code is in C++ language.

 TCL language is used to write the scripts.

 Protocols implemented in NS2

 – Implementation of Drop tail queue and Interface queue.

 – Implementation of TCP, UDP, Transport layer and traffic agents.

 Scalability

 –To simulate a large network the processing at packet level must be fast enough to produce

 faster result.

 New objects can be added as NS2 is easily extensible.

6.3 Design and Implementation

In this work, cryptographic algorithm along with hash functions are being used to send data

securely between two nodes. MD5, SHA-1 and one more protocol is being simulated while

communicating between two nodes. In this work we have used CESAR cipher, for

encryption/decryption of messages and MD5, SHA-1 and a proposed light weight cryptographic

algorithm to calculate the hash digest. Results are compared. The proposed scheme is tested

against MD5 and SHA-1. From the simulation of the experimental results, we can conclude that

proposed algorithm may be used in Wireless Sensor Network for hashing the data exchanged

between nodes.

6.3.1 Approach

Within the derived class encryption and decryption function for data field in the data packet are

implemented. Message digests are calculated using MD5, SHA1 and the proposed cryptographic

algorithm. These hash digests are used to ensure the integrity of data packet during transmission.

Following the concepts of Object Oriented programming, much of the implementation is done

using the C++ programming language.

Delhi Technological University Page 26

Some of the implemented procedures are as follows:

 A Packet structure is created to carry the payload.

 A new class is inherited from the Agent class of NS2 to process the new packet format.

 Processing includes:

- Message digests generation function

- Encrypting function.

- Decrypting function.

NS-2 packet types are considered as a simple byte arrays and handled accordingly. The instances

of Packet class are created to carry the information from one node to other. A sample code is

follows to add a new packet type in NS2-

struct hdr_Secure

{

char ret_val; //return value

double s_time; //send time

double r_time; //receive time

int sequence; //sequence number

char data[128]; //data of 128 character long string

unsigned char hashvalue[16]; // hashvalue for 16 byte hex for md5

Following is a piece of code from .cc file to show the static binding of the packet.

Delhi Technological University Page 27

Agents are defined to provide an interface with the nodes where network-layer packets are

constructed or consumed. Agents are used in the implementation of protocols at various layers.

The class Agent has an implementation partly in OTcl and partly in C++.

To create a new agent, one has to do define the following:

1. inheritance structure of the code and create the appropriate classes,

2. recv() and command() function,

3. OTcl linkage functions,

4. OTcl code to access the agent.

class SecureAgent: public Agent

{ ***********Declaration for MD5 starts******************/

 unsigned char data[64]; // md5 data

 unsigned long datalen; // md5 data length

 unsigned long bitlen[2]; // md5 bit length

 unsigned long state[4]; // md5 4 initial variables

 unsigned char hash[16]; // md5 16 bytes for hex

 /*********Declaration for MD5 ends*********************/

public:

SecureAgent();

int seq;

int oneway;

/******** To give the control of our C++ object to OTcl***/

virtual int command(int argc,const char* const* argv);

/******** recv function to reveive matching data*********/

virtual void recv(Packet*, Handler*);

/******** encrypt function to encrypt sending data*******/

void encrypt(char*);

/******** decrypt function to decrypt receiving data******/

void decrypt(char*);

/********Functions for md5**************************/

void md5_init();

void md5_transform();

void md5_update(const char* st, size_t len);

void md5_final();

void print_hash();

};

Delhi Technological University Page 28

The command() function must perform the desired action. Two command line arguments are

passed in this function. The argument argc keeps the total no. of arguments passed by the user.

Packet* allocpkt() allocate new packet. It is used to create packets when a node has something

to send to other node. The different fields of a packet are also populated with values before it is

released to other node.

 The argv arguments are used to collect the real arguments passed by the user: there are two

types of command line arguments-

— The name of the command provided by the user in tcl script is collected by the parameter

argv[0].

— The second command line argument argv contains an array of arguments specified by the

user. dispatch_cmd() invokes the command method of Agent Class.

int SecureAgent::command(int argc, const char*const* argv)

{ // chk for the input argument count

if(argc = =3)

 {

 if(strcmp(argv[1],"send") = =0) // send is command string used in tcl script

 {

 Packet* packt = allocpkt(); // New Packet created

 hdr_Secure* header = hdr_Secure::access(packt); // For new packet, access the Secure

 // packet header

 // return field is initialized to 0, so the receiving node would generate Ack packet

 header -> ret_val = 0;

 header -> sequence = sequence++; // Sequence is incremented by 1

 header -> s_time = Scheduler::instance().clock(); // Note the Current time

 // the input string after "send" function in tcl script is argv[2], it is copied to header->data

 strcpy(header -> data, argv[2]);

 /***********************md5 work begins*****************************/

 md5_init(); // md5 function

 md5_update(header ->data, strlen(header ->data)); // md5 function

 md5_final(); // md5 function

 /**************************Ends************************************/

 int indx;

 for (indx = 0; indx < 16; indx++)

 header -> hashvalue[indx] = hash[indx];

Delhi Technological University Page 29

 printf("Sent message %s with hash value ",header->data);

 for (indx = 0; indx < 16; indx ++)

 printf("%02x ",hash[indx]);

 printf("\n");

 /********************** Encryption performed on sending data************/

 encrypt(header->data);

 /***********************Send the packet to other node*******************/

 send(packt,(Handler*)0);

 //return TCL_OK, to inform the calling function that the command has been processed

 return(TCL_OK);

 }

// if the first argument is ―oneway‖

 // command function of the base class is called, in case command is not processed by

 SecureAgent,

 return(Agent::command(argc,argv));

}

The recv() method is the primary entry point for an Agent which receives packets, and is

invoked by upstream nodes while sending a packet. The direction of the packet received by the

recv() method is identified. A callback handler is used for this purpose. If the packet is an

Delhi Technological University Page 30

information packet an acknowledgment is issued. If the received packet is an acknowledgement

one, nothing is required to be done.

/*********************Recv function***************************/

void SecureAgent::recv(Packet*packt, Handler*h)

{//received packet’s IP header and Secure packet header

hdr_ip* headip = hdr_ip::access(packt);

hdr_Secure* header = hdr_Secure::access(packt);

// If packet is received with return value as 0, a reply would be initiated

if(header -> ret_val = = 0) {

 double send_time = header -> s_time; // copied old packet's send time

 char orig_data[128];

 char encrypt_data[128];

// copy the orig data of received packet into "encrypt data"

 strcpy(encrypt_data,header -> data);

 strcpy(orig_data, header -> data);

 int reciv_sequence = header -> sequence;

 // Display the received packet at this node

 unsigned char new_hash[16];

 char output[200];

 char authentic_reslt[50];

 decrypt(orig_data);

 /*******************md5 work******************************/

 md5_init(); // md5 function

 md5_update(orig_data,strlen(orig_data)); // md5 function

 md5_final(); // md5 function

 int indx;

 for (indx = 0; indx < 16; indx++)

 new_hash[indx] = hash[indx];

 indx = 0;

 while(indx < 16)

 {

 if(new_hash[indx] = = header -> hashvalue[indx])

 indx++;

 else

 break;

 }

 if(indx = = 16)

 {

Delhi Technological University Page 31

 printf("\n Data Integrity Ensured,new_hash=");

// print the calculated hash

 for (int c = 0; c < 16; c++)

 printf("%02x ",new_hash[i]);

 strcpy(authentic_reslt,"Message_Accepted");

 }

 else {

 printf("\ndata modified, new_hash=");

 for (int c = 0; c < 16; c++)

 printf("%02x ",new_hash[i]);

 strcpy(authentic_reslt," Integrity Violation Error");

 }

/*********************Prepration for reply************************/

Packet* packt_ret = allocpkt(); //Create a new Packet

//access the header for the new packet

hdr_Secure* header_ret = hdr_Secure::access(packt_ret);

header_ret -> ret_val = 1;

header_ret -> s_time = send_time;

header_ret -> r_time = Scheduler::instance().clock();

header_ret -> sequence = reciv_sequence;

strcpy(header_ret -> data,authentic_reslt);

 for (indx = 0; indx < 16; indx++)

 header_ret -> hashvalue[indx] = new_hash[indx];

send(packt_ret,0); //send the packet

}

/*******************Processing of Acknowledgement**************/

else

{

 char output[200];

Delhi Technological University Page 32

6.3.2. Adding a new Protocol in NS2

A set of steps are required for any procedure to be implemented. Similarly, for the protocol to be

added in the simulation, a systematic set of steps will be required. All the following mentioned

steps must be performed in the same order and not doing so will bring errors in the procedure.

a) Create a new header file Secure.h for the protocol.

b) Create Secure.cc file which contains the required code to execute the protocol.

c) Add the protocol ID to the common/packet.h file of NS2.

d) Edit class p_info() and static void initName() in packet.h.

e) Add the default value of the protocol to ns-default.tcl file.

f) Add an entry for the new protocol packets under the section set protolist in the file ns-

packet.tcl.

g) Add the object file Secure.o under the section OBJ_CC with other object files makefile.in file.

h) Recompile NS2 software

Delhi Technological University Page 33

CHAPTER 7

Demonstration and Results

For the demonstration to be carried out, six nodes have been created. Node 0, 1 will send

message to node 4 and 5 respectively and from node 4 and 5 back to node 0 and 1.An

acknowledgement packet is expected by each sender node from the receiving node. A script is

created using the TCL language to simulate this scenario. The following figures are the proofs to

the demonstration. Figure 7.1 to 7.3 shows the communication of node 0 and 1 with the node 5

and 4 respectively using the hash digest calculated through MD5 algorithm. Corresponding

acknowledgements are also being issued as can be seen in these figures. The second set of

figures Fig 7.4 to Fig 7.6 shows the communication among the nodes using SHA-1 hash

algorithm whereas the set of figures Fig 7.7 and Fig 7.8 replicate the scenario using the proposed

hash algorithm.

Fig 7.1 md5shot1

Delhi Technological University Page 34

Fig 7.2 md5shot2

Delhi Technological University Page 35

Fig 7.3 md5shot3

Delhi Technological University Page 36

Fig 7.4 shashot1

Delhi Technological University Page 37

Fig 7.5 shashot2

Delhi Technological University Page 38

Fig 7.6 shashot3

Delhi Technological University Page 39

Fig 7.7 lightshot1

Delhi Technological University Page 40

Fig 7.8 lightshot2

Delhi Technological University Page 41

CHAPTER 8

Conclusion and Future Scope

In this work the basic requirements to design a lightweight, one-way hash algorithm which

produces a fixed & relatively small length hash digest which is applicable for securing energy-

starved wireless network e.g. WSN are discussed. Operations like MOD and SWAP are used

extensively to make the proposed hash algorithm lightweight. All the basic properties such as

preimage resistance, strong collision resistance and weak or second preimage resistance are

fulfilled in the proposed algorithm. The proposed algorithm is implemented using NS-2

simulator. It is compared with MD5 and SHA-1 has shown significant improvement in terms of

communication overhead and computation speed.

As per Mica2 specification, energy consumption [15] [16] for transmitting one byte of data for

ATMega 128 processor is 16.25µJ and energy required per clock cycle is 3.2nJ or 0.0032µJ. For

the given specification, the energy requirements for all the competing schemes are computed

below:

Communication overhead:

MD5 -- 16.25x128 (bit) = 16.25x16 (byte) = 260 µJ

SHA1-- 16.25x160 (bit) = 16.25x20 (byte) = 325 µJ

Proposed Algorithm—16.25x96 (bit) = 16.25x12 (byte) = 195 µJ

Comparison of Computation Speed:

 Following snapshots clearly indicates that the time taken to calculate the hash of a sample string

―ItisalongmessageIcansend‖ takes approximately 121, 134 and 115 micro seconds using MD5,

SHA1 and the proposed light weight algorithm respectively.

Fig 8.1 md5_time_shot

Delhi Technological University Page 42

Fig 8.2 sha1_time_shot

Fig 8.3 light_time_shot

The significant improvement in the communication and computation overhead has been

observed while implementing the proposed light weight cryptographic hash algorithm in NS2.

As a future extension, more efforts could be made to crosscheck the claim made in performance

analysis using the Simulator.

Delhi Technological University Page 43

Appendix 1

Collision Attacks & the Birthday Paradox

―Collision attacks are much harder to prevent than 2
nd

 preimage attacks‖

Can we have hash functions without collision?

Input space is much bigger than output space. In SHA-1 the output space is 2
160

. So whenever

(2
160

 +1)th input value is considered, there will be a collision (assuming that first 2
160

input

values gives a unique hash output.

 |x|>>|z| => collision must exist

Two more principles are also there-

*Dirichlet’s Drawer Principle: - 9 drawers are available for 10 pairs of socks, definitely there

will be 1 collision.

*Pigeonhole Principle: - 19 holes for 20 pigeons are there. So there will be 1 hole in which 2

pigeons will be there.

We cannot get rid of the collision but the purpose is hard to find.

Birthday Paradox:-

If there are 23 or more people in a room, the odds are better than 50% that 2 of them (any

possible pair of 2 people) will have the same birthday.

Let’s calculate-

P (no collision between 2 people) = (1 – 1/365) [chance to collide=1/365]

P (no collision among 3 people) = (1 – 1/365) (1 – 2/365)

.

. t-1

P (no collision among t people) = ∏ (1 –i/365))

 i=1

 Input Space

 X
Output Space
 Z

Delhi Technological University Page 44

for t=23

. 22

 P (no collision among 23 people) = ∏ (1 –i/365) = 0.507 ≈ 50%

 i=1

 ≈ √365

Another way to represent Birthday Paradox:-

If there are 23 people in a room, the odds are better than 50% that 2 of them will have the same

birthday. Analyzing this parlor trick can give us some insight into hash cryptography.

Let’s assume n inputs (Number of humans in birthday example) and k possible outputs (365 or

366). With n inputs there are n(n-1)/2 pairs of inputs.

Probability for each pair producing the same output= 1/k

About k/2 pairs will be required for the probability to be about 50%, that we will find a matching

pair. That means if n is greater than √k (√365), there is a good chance of matching pair.

Example:

With 23 people in a group there will be 253 pairs in total:

The chance of 2 people having different birthdays is:

Delhi Technological University Page 45

Fig A.1 Birthday Paradox

Birthday Paradox and Cryptographic Hash Functions

The mathematics of birthday paradox is used to guess a brute-force cryptographic attack against

hash functions. This mathematical information may be utilised to speed up the looking up of

hash digests stored in the database. As the hash space is limited in comparison of input space

there can be many collisions of hashes. This is the how hash collision problem is similar to

birthday paradox. The length of hash digest is fixed according to the algorithm used whereas the

input text may be arbitrary long.

 X1, X2, X3,……………………..Xt (t strings)

 2
n
 is the output space (n bit long)

Delhi Technological University Page 46

 t-1

P (no collision) = ∏ (1 –i/2
n
)

 i=1

(Output space is 2
n
 as it was 365 in previous example)

 No. of inputs t = 2
(n+1)/2

 √ln((1/(1- λ))

(λ = probability of at least 1 collision or likelihood of collision)

Example:

Suppose output space is 80 bits long and λ =0.5

t = 2
(80+1)/2

 √ln((1/(1- 0.5))

 =2
(81)/2

 √ln 2

 ≈ 2
40

(only 2
40

input values are required to find a collision on an average)

Conclusion:

Keeping birthday paradox in mind, the input length must be almost half of the hash digest to

avoid the hash collision. This discussion also concludes that the output length of almost all the

hash functions is at least 128 bits long to protect from a second preimage attack. Most of the

modern algorithms used to calculate hash digest produces longer outputs.

 Hash Output Length

 Λ 128 bit 160 bit 256 bit 384 bit 512 bit

0.5 2
65

 2
81

 2
129

 2
193

 2
257

0.9 2
67

 2
82

 2
130

 2
194

 2
258

Table1: Number of input hash values needed for a collision for different hash functions output

length for 2 different collision likelihoods.

Note: λ does not seem to be very important as there is not a big difference in the values for

probability of collision as 50% and 90%.

Delhi Technological University Page 47

REFERENCES

 [1] I. F. Akyildiz et al., ―A Survey on Sensor Setworks,‖ IEEE Commun. Mag., vol. 40, no. 8,

Aug. 2002, pp. 102–114.

[2]. Handbook of Cryptography by A. Menezes, P. van Oorschot, and S. Vanstone, CRC Press,

1996.

[3]. H. Dobbertin: Cryptanalysis of MD4, Journal of Cryptology, vol. 11, No. 4, pp. 253-271,

1998.

[4]. X. Wang and H. Yu: How to Break MD5 and Other Hash Functions, EuroCrypt 2005,

Springer LNCS 3494, pp. 19–35, 2005.

[5]. M. Stevens, A. Lenstra and B. Weger.: Chosen-Prefix Collisions for MD5 and Colliding

X.509 Certificates for Different Identities, EUROCRYPT 2007: 1-22.

[6]. Rijmen, V.Oswald: Update on SHA-1, RSA 2005, LNCS 3376, pp. 58-71.

[7]. R. P. McEvoy, F. M. Crowe, C. C. Murphy and W. P. Marnane: Optimisation of the SHA-2

Family of Hash Functions on FPGAs, IEEE Computer Society Annual Symposium on VLSI:

Emerging VLSI Technologies and Architectures (ISVLSI 06), IEEE Computer Society,

Washington DC, pp. 317-322, 2006.

[8]. Y. Jararweh, L. Tawalbeh, H. Tawalbeh and A. Moh’d: Hardware Performance Evaluation

of SHA-3 Candidate Algorithms, Journal of Information Security, vol. 3 No. 2, 2012, pp. 69-76.

doi: 10.4236/jis.2012.3, 2008.

[9]. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci: Wireless sensor network: a

survey, Computer Networks, vol. 38, pp. 393-422, 2002.

[10]. Erik Dahmen and Christoph Kraus: Short Hash-based Signatures for Wireless Sensor

Networks, 8th International Conference on Cryptology & Network Security (CANS), Kanazawa,

Ishikawa, Japan, December, 2009.

[11]. Tao Qen, Hanli Chen: An Enhanced Scheme against Node Capture Attack using Hash

Chain for Wireless Sensor Network, Information Technology Journal 11 (1), pp. 102-109, 2012.

[12]. Paulo Barreto, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen, Elmar Tischhauser:

Whirlwind: a new cryptographic hash function, Springer, vol. 56, pp.141–162, 2010.

[13]. Amrita Ghosal, Subir Halder & Sipra DasBit, : A Dynamic TDMA based scheme for

securing query processing in WSN, Journal of Mobile Communication, Computation and

Information, vol.18, number 2, pp. 165-186, 2012.

[14]. https://en.wikipedia.org/wiki/Cryptographic_hash_function accessed on 18-07-2015

Delhi Technological University Page 48

[15]. Atmel AVR8-bit Microcontroller ATmega 128 processor datasheet

(http://tools.ietf.org/html/rfc4270).

[16] Amrita Ghosal, Subir Halder & Sipra DasBit, : A Dynamic TDMA based scheme for

securing query processing in WSN, Journal of Mobile Communication, Computation and

Information, vol. 18, number 2, pp. 165-186, 2012

