A

Dissertation

On

Light Weight One Way Cryptographic Hash Algorithm for Wireless Sensor Network

Submitted in Partial Fulfillment of Requirement

For the Award of the Degree of

Master of Technology

in

Computer Science and Engineering

by

Manoj Kumar

University Roll No. 2K12/CSE/27

Under Esteemed Guidance of

Vinod Kumar

Associate Professor, Computer Engineering Department, DTU

Delhi Technological University
Delhi-110042, India

ABSTRACT

Authentication of a message is a great research challenge in today's advanced wire and wireless communication. Cryptographic hash functions are used to protect the authenticity of information. Some of the most popular and commonly used cryptographic hash algorithms are MD5 and SHA1. These hash algorithms are used in a wide variety of security applications e.g. securing node/message in traditional networks.

However, the commonly used hash algorithms require huge computational overhead which is not affordable by applications in energy-starved network e.g. wireless sensor network (WSN). In these applications the major constraints are communication, computation and storage overheads; out of which communication and computation overheads consume high energy. Keeping this fact in mind, in this work, a light-weight, one-way, cryptographic hash algorithm is suggested with a target to produce a hash-digest with fixed and relatively small length for such an energy-starved wireless network. The primary focus is making the algorithm light-weight so that upon using it in application of network like WSN, the nodes can successfully run the algorithm with low energy. It is suggested that such algorithm must fulfill all the basic properties such as preimage resistance, collision resistance of a one-way hash function. The proposed algorithm is developed using NS2 simulation tool and results were compared with MD5 and SHA1.

ACKNOWLEDGMENT

I take this opportunity to express my sincere gratitude to all those who have been instrumental

in the successful completion of this project for their invaluable efforts, supports and

encouragements.

I am deeply indebted to my mentor, **Mr. Vinod Kumar**, Associate Professor who has always

guided me for successful completion of this project from the beginning of my study till the

end. I am deeply indebted to him for the support, advice and encouragement he provided

without which the project could not have been a success.

I would also like to express my sincere thanks to Mr. R. K. Yadav, Assistant Professor, who

helped and inspired me at several occasions. His support is highly appreciated.

I wish to thank, Mr. Manoj Kumar, Associate Professor who helped make me to learn the

basic concepts of Security and Cryptography and in several other ways.

I am grateful to **Prof. O.P.Verma**, HOD, Computer Engineering Department, DTU for his

immense support. I would also like to acknowledge Delhi Technological University Library

and staff for providing the right academic resources and environment for this work to be

carried out.

Last but not the least I would like to express sincere gratitude to my parents and friends for

constantly encouraging me during the completion of work. Surely it is almighty's grace to get

things done fruitfully.

Manoj Kumar

Roll No. 2K12/CSE/27

M.Tech (Computer Science & Engineering)

Department of Computer Engineering

Delhi Technological University

Delhi-110042

iii

CERTIFICATE

This is to certify that the project report entitled "Light Weight One Way Cryptographic Hash Algorithm for Wireless Sensor Network" is a bonafide record of work carried out by Manoj Kumar (2K12/CSE/27) under my guidance and supervision in partial fulfillment of the requirement for the award of the degree of Master of Technology in Computer Science & Engineering from Delhi Technological University, Delhi. The matter embodied in this report has not been submitted for the award of any other degree.

Vinod Kumar
Associate Professor
Department of Computer Engineering
Delhi Technological University
Delhi-110042

Table of Contents

Abstract	ii		
Acknowledgement Certificate List of Figures			
		Chapter 1: Introduction	1
		1.1 Communication Architecture of WSN	5
1.2 Constraints in WSN	7		
Chapter 2: Literature Survey	8		
Chapter 3: Applications of Cryptographic Hash Functions	10		
3.1 Verifying the Integrity of Messages or Files	10		
3.2 Password Verification	10		
3.3 Digital Signatures	10		
3.4 Pseudorandom Generation and Key Derivation	11		
Chapter 4: Traditional Hash Algorithms	12		
4.1 MD5 Algorithm	12		
4.2 SHA1 Algorithm	15		
Chapter 5: Proposed Light Weight Cryptographic Hash Algorithm for WSN	18		
5.1 Requirements of an Ideal Hash Function	18		
5.2 Proposed Hash Function	19		
5.2 Performance Analysis	22		
Chapter 6: Implementation	24		
6.1 Installation of NS2	24		
6.2 Features of NS2	24		
6.3 Design and Implementation	25		
6.3.1 Approach	25		
6.3.2 Adding a new Protocol in NS2	32		

Chapter 7: Demonstration and Results	33
Chapter 8: Conclusion and Future Scope	41
APPENDIX 1	43
REFERENCES	47

List of Figures

Fig.1.1 Symmetric Key Encryption	1
Fig.1.2 Asymmetric Key Encryption	2
Fig.1.3 Alice Sending Message to Bob	3
Fig.1.4 Signature of Long Message with a Hash Function	3
Fig.1.5 Checking Integrity at Bob's End	3
Fig.1.6 Wireless Sensor	6
Fig.4.1 One Round of MD5	14
Fig.4.2 One Round of SHA1	17
Fig.5.1 Example of Second Preimage Resistance	18
Fig.6.1 Basic Architecture of NS-2	25
Fig.7.1 md5shot1	33
Fig.7.2 md5shot2	34
Fig.7.3 md5shot3	35
Fig.7.4 shashot1	36
Fig.7.5 shashot2	37
Fig.7.6 shashot3	38
Fig.7.7 lightshot1	39
Fig.7.8 lightshot2	40
Fig.8.1 md5_time_shot	41
Fig.8.2 sha1_time_shot	42
Fig.8.3 light_time_shot	42