

Department of Electronics and Communication Engineering Delhi Technological University Delhi-110042 www.dce.edu

CERTIFICATE

This is to certify that the report titled **"Study and Analysis of Underwater Wireless Communication Using MIMO System"** is a bonafide record of Major Project-II submitted by Vineet Somani (Roll no: 2K13/MOC/17) as the record of the work carried out by him under my guidance. The said work has not been submitted anywhere else for the award of any other degree or diploma.

Date:

Dr. Rajiv Kapoor (Guide) Professor ECE Department Delhi Technological University

Department of Electronics and Communication Engineering Delhi Technological University Delhi-110042 www.dce.edu

DECLARATION

I hereby declare that work presented in this report, titled "**Study and Analysis of Underwater Wireless Communication Using MIMO System**", in partial fulfillment for the award of degree of M.Tech. in Microwave and Optical Communication Engineering, jointly run by Department of Electronics and Communication Engineering and Applied Physics, Delhi Technological University, Delhi is my own work carried out during December, 2014 - May, 2015 under the guidance of Dr. Rajiv Kapoor, Professor, Department of Electronics and Communication Engineering, Delhi Technological University, Delhi.

Date:

Vineet Somani Roll No: 2K13/MOC/17 M. Tech. (Microwave and Optical Communication Engineering)

ACKNOWLEDGEMENTS

I express my deepest gratitude to my guide **Dr. RAJIV KAPOOR**, Department of Electronics and Communication Engineering, Delhi Technological University whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject. His suggestions and ways of summarizing the things made me to go for independent studying and trying my best to get the maximum in my topic, this made my circle of knowledge very vast. I am highly thankful to him for guiding me in this project.

I am also grateful to **Prof. Prem R. Chadha**, HOD, Electronics and Communication Engineering Department, DTU for his immense support.

Finally, I take this opportunity to extend my deep appreciation to my family and friends, for all that they meant to me during the crucial times of the completion of my project.

Date:

Vineet Somani Roll No: 2K13/MOC/17 M. Tech. (Microwave and Optical Communication Engineering)

ABSTRACT

Now a day though wireless communication technology has turned out to be a part of regular human life, the idea of wireless UW communication system still seems to be fantastical. However, researchers have spent over ten years on structuring the mechanisms for UW wireless information transmission.

In the past decades, the most widely technique is used acoustic wireless communication for underwater wireless communication. Acoustic communication is use physical layer technology for UWCNs. It is use for long distance communication [1], [2], [3]. But it has many disadvantages, such as air bubbles in water and temperature gradients are effect on speed of transmission [4]. Acoustic wireless communication has poor performance in shallow water.

Underwater wireless communication is useful in pollution monitoring, disaster prevention, offshore exploration and other applications. Wireless communication is a part of our life but under water wireless communication is still a lucrative field. The environment of subsea is challenging for wireless communication because the medium in which waves are propagating is not air, it is propagating through different fractions of water having different densities. Magnetic induction (MI) is a technique which is not affected by multipath propagation, large propagation delays and fading. MI communication can be accomplished with small size coil. MI technique creates constant channel condition and This (MI) technique is very useful in reducing path loss. In this paper, we analysis path loss theoretically and numerically. We also analysis, how to change path loss with electrical conductivity in a day and a year.

LIST OF CONTENTS

Certificate	i
Declaration	<i>ii</i>
Acknowledgements	iii
Abstract	iv
Table of Contents	<i>v</i>
List of Figures	<i>vii</i>
List of Tables	<i>ix</i>

Chapter

Page No.

1.	Intro	duction	1
	1.1	Under Water Wireless Network	4
	1.2	Related Work	6
2.	Unde	rwater Sensor Networks	7
	2.1	Two-Dimensional Underwater Sensor Networks	7
3.	Magn	etic Induction for Underwater Wireless Communication	10
	3.1	Magnetic Field Communication System	11
4.	EM U	Inderwater Communication	13
5.	Radio	• Frequency Waves	15
	5.1	Conductivity	16
	5.2	Wavelength	16
	5.3	Existing RF Systems	17
	5.4	Medium Range Phenomenon	17
6.	Overv	view of Underwater Wireless Communication Technologies	19
7.	Benef	ïts and Applications	21
8.	Digita	al Communication	22
	8.1	Binary Phase-Shift Keying	24
	8.2	Frequency Shift Keying	26
	8.3	Bit Error Rate	27
	8.4	Sampling Theory	27

	8.5	Channel Capacity	28
	8.6	Functional Schematic of the Communication System	28
	8.7	DSP Unit	29
9.			32
	9.1	MI CHANNEL CHARACTERISTICS	32
	9.2	EM WAVES PATH LOSS	37
10. MIMO Systems Overview		O Systems Overview	40
	10.1	Forms of MIMO	40
	10.2	The MIMO Channel	43
	10.3	Space Time Coding	46
	10.4	OFDM Signals	48
11.	Simul	ation And Result	54
12. Conclusion			62

LIST OF FIGURES

Figure No. Figure Name

1.1	Navigation, acoustic network and sensing for multiple	
	autonomous underwater robotic vehicles	2
1.2	Multipath Propagation in Shallow Water Undersea	3
2.1	Architecture for 2D underwater sensor networks	8
3.1	The block diagram of the magnetic field communication system	12
4.1	Scenario of a UW-ASN composed of underwater	
	and surface vehicles	14
5.1	Electromagnetic Spectrum	15
8.1	Additive White Gaussian Noise Channel	23
8.2	BPSK Mapping and Constellation Diagram	24
8.3	BPSK Waveform	25
8.4	BFSK Waveform	26
8.5	Functional schematic of a combined transmitter and receiver circuit	29
9.1	Underwater communication system	32
9.2	A dual antenna system with equivalent two-port network	33
9.3	Near-field transmission model	34

10.1	Different forms of MIMO and their configuratio	42
10.2	Simplified scheme of the MIMO channel	44
10.3	Typical block diagram of an OFDM system	49
10.4	Digital Frequency	49
10.5	Example of time interleaving with the original and the interleaved	
	data (top and bottom respectively)	51
10.6	Frequency synchronization in OFDM systems.	53
11.1	Path loss of MI communication changing with	
	the distance and frequency	54
11.2	Path loss of Magnetic induction system in a year	
	with changing conductivity	55
11.3	Path loss of magnetic induction system in a day	
	with changing conductivity	56
11.4	Path loss of Magnetic induction system changing with frequency	56
11.5	Path loss of Magnetic induction system changing	
	with number of turns	57
11.6	EM wave communication path loss as a function of frequency	59
11.7	Path loss for EM comm. as a function of distance	60
11.8	Path loss for EM comm. in a year with changing conductivity	61

LIST OF TABLE

TABLE IPARAMETER VALUES

59