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ABSTRACT 

 

 

The primary objective of this work is development and validation of a code for lattice level 

calculations using the method of characteristics (MOC) in 2-dimensions. The code solves the 

characteristic neutron transport equation for a 2-dimensional pin cell to compute the neutron flux 

values in different spatial regions of the problem domain, and uses the distribution so obtained to 

determine the effective multiplication factor for the region of interest. The problem is subdivided 

into smaller, triangular, unstructured meshes using Delaunay triangulation and mesh refinement 

techniques. 

 

Qualified reactor physics codes are essential for the study of all existing and envisaged designs 

of nuclear reactors. Such codes estimate neutron fluxes in different regions of the problem 

domain as a function of space, angle, energy and time dependence. This provides a holistic 

description of all processes occurring in the reactor core and subsequent prediction of thermal–

mechanical response and degradation of various components of the core. Thus, such codes are 

indispensable for thorough safety analysis and verification of economic feasibility of reactor 

design and operation. 

 

The solution of the transport equation or linear Boltzmann equation for most practical problems 

must be obtained using numerical methods. Most computational schemes are based on two 

fundamentally different approaches, namely the deterministic and the stochastic or Monte Carlo. 

Major existing deterministic techniques are the spherical harmonics or Pn method, the discrete 

ordinates or SN method, the collision probability (CP) or Pij method and the method of 

characteristics (MOC). The method of characteristics (MOC) has been chosen over other 

available methods due to the many advantages associated with it. The spherical harmonics or Pn 

method leads to complicatedly coupled linear system of equations for 2- and 3-dimensional 

problems. The discrete ordinates or SN method requires powerful pre-conditioners and 

acceleration strategies to ensure convergence. The collision probability (CP) or Pij method, 

although capable of handling unstructured geometries unlike the Pn and SN methods, requires 
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isotropic sources in LAB and is only practically feasible for few-region problems. Monte Carlo 

simulations are accurate but are computationally expensive to set-up and run. MOC offers 

solution of neutron transport equation for unstructured geometries containing 

isotropic/anisotropic sources in LAB with reasonable accuracy at feasible computational costs. 

 

The MOC-based lattice level code developed has been benchmarked for many two energy-group 

problems and the results have been compared with reference solutions obtained from DRAGON 

V4. The benchmark problems have 3 to 4 regions with varying material compositions. Problems 

with different fuel materials like uranium metal / uranium – plutonium mixed oxide MOX with 

varying geometrical size has been analyzed using this code. 
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INTRODUCTION 

 

 

The fundamental problem in design and analysis of nuclear reactors is the detailed prediction of 

neutron and photon distribution, as a function of space, angle, energy and time dependence, in all 

components of the reactor. Neutrons are responsible for propagating the chain reaction and 

releasing energy through fission, and also induce a thermal–mechanical response in the reactor 

core due to various nuclear and non-nuclear interactions. Consequently, degradation of the 

structural components, fuel rods, and control systems takes place through fuel depletion, fission 

product build up and radiation damage which, further affects the distribution of the neutron field 

through feedback mechanisms. A holistic description of all nuclear and non-nuclear processes is 

thus indispensable for safe and economically feasible operation and development of nuclear 

power plants and drives much of the need for development of an apposite mathematical and 

computational framework for adequate description of neutron distribution. 

 

The process of transport of neutrons through matter is extremely well characterized by the 

transport equation, a linear version of the particle transport equation originally developed by 

Boltzmann for the kinetic theory of gases. It is an integrodifferential equation in seven 

independent variables, whose exact solution can be determined only for simple problems. The 

solution of the transport equation or linear Boltzmann equation is not smooth and thus, all 

problems of neutron transport of practical interest require a numerical solution. These numerical 

methods utilize a few approximation techniques, such as finite differences for differential 

operator, quadrature formulas for integral operators, or expansion methods. 

 

Codes for reactor analysis are broadly classified as lattice level codes, and core level codes. 

Lattice level codes principally involve the generation of characteristics of representative cell in 

the core, which could be a simple pin-cell, or a super-cell or a complete assembly. Once the cell 

calculations are complete, the cell is effectively replaced by a homogeneous material whose 

cross sections and diffusion coefficients are constant on the complete cell volume. Hence, the 

lattice level code plays a very important role in reactor analysis. The core level code is used to 

model the coupled neutronics and thermal-hydraulics behavior of the entire reactor core during 
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steady state and transient operation. It uses the homogenized cross sections developed by lattice 

code and analyses the overall behavior of the core, estimating the flux and power distribution as 

a function of burnup. 

 

NEUTRON TRANSPORT EQUATION 

 

The 3-dimensional neutron transport equation describes the neutron transport based on 7 

independent variables, which are the three spatial components of position vector   , two angles of 

directional unit vector   , kinetic energy  , and time  . The time dependent linear Boltzmann 

equation is given as, 

 

 

 

             

  
                                        

                                           

  

 

 

  
        

  
                                           

  

 

 

  
 

  
                   

 

   

               

            (1)  

where, 

   = Angular neutron flux 

    = Precursor density of a specific group 

   = Independent neutron source 

    = Total macroscopic cross section 

    = Macroscopic differential scattering cross section 

     = Macroscopic production cross section 

   = Delayed neutron fraction  

     = Radioactive decay constant of a specific precursor group 
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       = Prompt neutron fission spectrum and delayed neutron fission spectrum of     

precursor respectively 

 

The neutron transport equation is a simple particle balance equation which conserves the number 

of particles flowing through incremental volume of 6-dimensional phase space,         about 

          at any time  . The first term on the LHS represents the rate of change of number of 

neutrons, the second term represents the rate of neutron loss due to leakage, while the last term 

on LHS represents the rate of neutrons consumed in any interaction, mainly scattering, fission or 

absorption. Similarly, the terms on the RHS describe the rate at which neutrons are gained due to 

in-scattering source, prompt fission source, delayed fission source, and independent source, 

respectively. Thus, according to equation (1), rate of change of neutron number is equal to the 

difference of rate of gain of neutrons and the rate of loss of neutrons. Neutrons are lost due to 

leakage and collisions while are gained due to the processes of in-scattering, prompt fission, 

delayed decay of daughter nuclei and any independent sources.  

 

In steady state, however, the rate of gain of neutrons is equal to the rate of loss of neutrons and 

thus, the rate of change of neutrons becomes zero. Neglecting the delayed fission neutrons, the 

steady state form of neutron transport equation is obtained as follows: 

 

                                      

                                            

  

 

 

  
        

  
                                 

  

 

 

               

            (2) 

 

Various numerical methods have been developed since late 1950s and early 1960s to 

appropriately model and solve the neutron transport equation. These are as follows: 

1. Spherical Harmonics or Pn Method 
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Spherical harmonics or Pn method is the oldest method, and evolved into reactor physics by 

Gelbard (1968) [1] and Lewis and Miller (1984) [2] from a similar approach used in 

astrophysics in the early twentieth century. It is based on the discretization of differential 

form of the neutron transport equation by expanding the angular flux and neutron sources in 

real spherical harmonics up to   terms. However, application of Pn method to 2- and 3-

dimensional problem leads to a system of linear equations with complex couplings between 

discretized spatial and angular unknowns. An efficient, closely related approximation, based 

on the solution of the simplified Pn or SPn equation as proposed by Gelbard (1960) [3], 

produces a simplified linear system which can be effectively solved for 2- and 3-dimensional 

cases, has been applied for full-core calculations. It is based on the expansion of angular flux 

in an incomplete basis of orthogonal functions. 

2. Discrete Ordinates or SN Method 

The Discrete ordinates or SN method is also based on discretization of differential form of 

linear Boltzmann equation by discretizing the angular flux to a suitable directional quadrature 

and further evaluating neutron flux along each specific angular base point. It was adapted 

into neutron transport theory by Carlson and Bell (1958) [4] from a technique developed by 

Chandrasekhar (1960) [5] in radiation transfer theory for stellar atmospheres. A fixed-point 

iterative scheme is used to solve the difference relations obtained for every direction. 

However, powerful pre-conditioners and acceleration strategies must be employed to ensure 

convergence in most practical applications. 

3. Collision Probabilities or Pij Method 

Collision probability (CP) or Pij method, given by Carlvik (1965) [6], is based on the spatial 

discretization of multi-group form of integral transport equation assuming isotropic sources. 

The probability of neutrons born in region  , undergoing a collision in region   is determined 

resulting to a square CP matrix of order       in each energy group for a problem with   

regions. This technique is well suited for treating general unstructured meshes, unlike the Pn, 

SPn and SN methods, but is practically feasible only for few region problems since the 

complexity and computational expenses increase as O(N
2
). Sanchez and McCormick (1982) 

[7] proposed the interface current (IC) method, in which the problem is subdivided into 

uncoupled cells, for each of which CP matrices are determined. The detailed flux is then 

reconstructed using the interface currents associated with each cell. 
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4. Method of Characteristics (MoC) 

The method of characteristics (MoC) is based on the iterative calculation of neutron flux by 

solving the multi-group characteristic form of transport equation along straight neutron 

streaming paths or trajectories. This approach was proposed by Askew (1972) [8]. It can be 

effectively applied to unstructured domains, like the collision probability (CP) method, but 

does not require determining computationally expensive square CP matrices. It can also treat 

anisotropic sources, and is preferred when the number of regions is either large (more than a 

few hundred) or the sources are not isotropic in the LAB. The CACTUS module of WIMS-E 

by Halsall (1980) [9], MOCC module of DRAGON V3 by Roy (1998) [10], MCCG module 

of DRAGON V4 by le Tellier and Hébert (2006) [11] and OpenMOC [12] are some of the 

implementations of this approach.   

5. Monte Carlo Method 

Unlike all the previous techniques which form a part of the class of deterministic solvers of 

neutron transport, the Monte Carlo method is a stochastic solver in which the process of 

neutron transport is modeled by applying known distribution functions to simulate the 

random histories of a large number of fictitious Monte Carlo particles, and averaging the 

results over all histories. It, thus, simulates the actual physical process and no approximate 

mathematical model, like the neutron transport equation, is required. If the geometry of the 

system and cross section data are available, the results of Monte Carlo simulations suffer 

only from statistical noise. However, the statistical error, which decreases as square root of 

number of Monte Carlo particles, is orders of magnitude larger than the actual physical 

process due to the limitation on the number of particles that can be simulated. The method is 

widely used due to its ability to treat arbitrary geometries, relatively easy implementation, 

and high accuracy. But, the simulations using this method are very slow and costly to set up 

and to run. Some implementations of the approach to reactor physics problems are by Carter 

and Cashwell (1975) [13], Kalos and Whitlock (1986) [14], Lux and Koblinger (1991) [15], 

Spanier and Gelbard (2008) [16] and the X-5 Monte Carlo team (2003) [17]. 

 

Hence, in this work, the method of characteristics has been preferred for solving the neutron 

transport equation for lattice level problems over the other available techniques due to the many 

advantages associated with it. 
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PROBLEM UNDER CONSIDERATION 

 

The objective of this work is to develop a module for solving the neutron transport equation for a 

single square pin-cell using the MoC to obtain its effective multiplication factor. Figure 1 

represents a typical region of interest. 

 

 

Figure 1 - Typical region of interest 

 

ORGANIZATION OF THE THESIS 

 

Chapter 1, entitled Characteristic Form of Neutron Transport Equation, provides the theoretical 

framework used for developing lattice level transport equation solver using the method of 

characteristics. It gives a derivation of the characteristic form of neutron transport equation from 

the original linear Boltzmann equation. The chapter then describes the analytical solution of the 

characteristic neutron transport equation to determine the desired quantities of interest, angular 
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and scalar neutron flux values. It concludes with broad outline of the steps generally followed for 

method of characteristics based lattice level calculations. 

 

Chapter 2, is entitled Delaunay Triangulation, and focuses on the meshing technique used for 

dividing the problem geometry into smaller triangular regions. It gives a detailed description of 

the algorithms developed for initial meshing, and further mesh refinement to obtain good quality 

meshes which conform to optimal shape and size parameters. 

 

Chapter 3 is entitled Ray Tracing and explains the next stage of the work. It provides an 

exhaustive explanation of the technique used for selecting the directional quadrature for suitably 

representing 3-dimensional neutron motion and insertion and tracking of characteristic paths 

signifying neutron trajectories through the region of interest. 

 

Chapter 4, entitled Flux and Multiplication Factor Calculations, explains the final stage of the 

lattice code developed. It describes inner – outer iteration scheme using the analytical solution of 

the characteristic neutron transport equation as described in chapter 1, to determine required flux 

values in each mesh, which are thereafter utilized for obtaining the effective multiplication factor 

for the region of interest. 

 

Chapters 5 is entitled Benchmarks Analyzed. It provides details of the each of the several 

benchmarking problems solved and analyzed by the developed code to test and validate its 

operation for future use. The solution of each benchmarking problem is also discussed in this 

chapter. 

 

The chapters are followed by conclusion and future scope of the work undertaken. 
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CHAPTER 1 

 

 

CHARACTERISTIC FORM OF NEUTRON TRANSPORT EQUATION 

 

 

1.1 METHOD OF CHARACTERISTICS 

 

Method of characteristics (MoC) is a mathematical technique of numerical treatment of partial 

differential equation based on an analytical approach. Application of MoC on any partial 

differential equation simplifies it to an ordinary differential equation, which is generally much 

easier to handle. Simplification of the original partial differential equation is done by analytically 

solving it along certain characteristic curves or characteristics. Characteristic curves or 

characteristics are      -dimensional surfaces (curves) in  -dimensional space which exhibit 

certain special property, and this property is used advantageously for simplification via analytical 

means. In case of the neutron motion, these characteristic curves are the streaming paths along 

which the neutrons traverse through any region of interest. 

 

1.2 DERIVATION OF CHARACTERISTIC NEUTRON TRANSPORT EQUATION 

 

The integrodifferential form of Boltzmann transport equation describes the motion of neutrons as 

observed from a fixed reference point. This leads to the partial derivative in the streaming term. 

However, if the streaming operator,      , is integrated along a straight line in direction    

corresponding to the trajectory of neutron motion, the characteristic form of neutron transport 

equation is obtained. If the neutron is assumed to be at distance s from a reference point    on its 

characteristic path   , its actual position is given as        . 

 

But, 

 

  
  

  

  

 

  
  

  

  

 

  
  

  

  

 

  
 

            (1.1) 
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            (1.2) 

Taking the dot product of equation (1.2) with   ,   , and   , 

 

           

            (1.3a) 

           

            (1.3b) 

           

            (1.3c) 

 

Substituting equation (1.3) in (1.1) 

 

 

  
        

 

  
         

 

  
         

 

  
       

            (1.4) 

 

Using (1.4) in equation (2), the backward characteristic form of neutron transport equation is 

obtained as 

 

               

  
                                             

            (1.5) 

where, all source terms have been absorbed in               , and are not given explicitly. 

 

The first term on the L.H.S. of the neutron transport equation signifies the rate at which neutrons 

are lost out of the region of interest due to leakage; mathematically the rate of change of neutron 

flux along the characteristic path or ray or track segment while the second term signifies the loss 

due to scattering, absorption and those causing fission. The term on the R.H.S. denotes the rate 

of addition or generation of neutrons due to the presence of any sources (scattering, fission, 
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actual sources). The forward characteristic form of neutron transport equation can be derived 

similarly. 

 

1.2.1 Angular Flux 

 

Dropping all indices, the characteristic neutron transport equation simplifies as follows,  

  

  

  
         

            (1.6) 

 

Assuming that the source of neutrons is constant within the region of interest, the solution of the 

above differential equation is analytically obtained as 

 

                 
 

  

          

            (1.7) 

where,       is the location of neutron at initial time,      . 

 

If the neutron crosses through regions of different material composition, and having varying 

neutron source, as represented in Figure 1.1, the angular flux can be obtained by dividing the 

neutron trajectory into smaller regions with piecewise uniform properties, then  

 

  
       

            
  

    

             

            (1.8) 

where,  

     = Outgoing angular flux for a region 

    = Incoming angular flux for a region 

  = Material or region index 
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Figure 1.1 - Trajectory of neutron motion through regions with different material composition. Each individual region 

has piecewise uniform properties. 

 

In multi group form, 

    
         

              
    

      

               

            (1.9) 

 

1.2.2 Average Angular Flux 

 

The average angular flux along the neutron streaming path along track segment extending from   

to   is, thus, obtained as the ratio of integration of the angular flux values at every point along the 

track segment to the length of the track segment and is given as 

 

    
         

 

 

    
 

 

 

            (1.10) 

 

 

 

 



12 
 

Using equation (1.7), 

     
 

  
 

          

   
 

            (1.11) 

where, 

   =  Average angular flux along the track segment 

  =             

 

Thus, average angular flux for any region  , is given as, 

 

      
  

    
 

  
      

   

      
  

  

    
 

  

      
 

            (1.12) 

where, 

  =            

 

In multi group form,  

        
    

      
 

    
        

   

        
  

    

      
 

    

        
 

            (1.13) 

 

1.2.3 Scalar Flux 

 

After average angular flux is determined in each direction, the scalar neutron flux in the region 

of interest is then calculated as the sum of average angular neutron flux in every direction 

weighted by the respective directional weights and is given as 

 

            

  

 

where,  

     =  Weight associated with a particular direction    
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In discrete form, 

 

            

   

    
    

  
 

    

      
 

 

      

            (1.14) 

where, 

      =  Discrete directional weight equivalent of differential weight    ;             

dir = Subscript representing direction 

 

Hence, scalar flux of different material regions is determined using, 

 

               

   

    
      

    
 

      

          
 

   

      

            (1.15) 

 

In multi group form, equation (1.14) becomes 

 

                   

   

    
        

      
 

        

            
 

   

      

            (1.16) 

 

Under the assumption of neutron motion with isotropic scattering, the modified expressions for 

angular flux, average angular flux and scalar flux are obtained by replacing total macroscopic 

cross section by transport corrected cross section as: 

 

    
         

               
        

       

                

            (1.17) 
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            (1.18) 

                   

   

    
        

       
 

        

             
 

   

      

            (1.19) 

 

1.3 GEOMETRY ROUTINE 

 

Prior to solving the characteristics form of neutron transport equation by means of computational 

schemes, some pre-processing steps are essential. These are as follows: 

 

1. Problem region is divided into a suitable number of cells which are generally, the basic 

building blocks or lattices which can be repeated to regenerate the entire problem area. 

2. Each cell is further divided into material regions and material IDs assigned to each such 

region of the problem. 

3. Each material region is subdivided into a suitable number of meshes such that the flat source 

and flat flux approximations are applicable. 

4. Streaming paths for the neutrons i.e. paths along which neutrons travel are laid down. 

a. First the streaming paths are laid down in azimuthal direction (plane of the problem) 

b. After calculating path length,   ’s, each path is raised in various polar directions by 

taking ratio of each of the path lengths with the sine of the various polar angles to obtain 

true path length in each direction of motion,    . Number of directions is obtained from 

the total number of azimuthal angles,  , and total number of polar angles,  . 

True path length, τ, is, thus, given by 

  
  

     
 

           (1.20)  

5. Symmetry of the problem geometry can be used advantageously to simplify and reduce the 

number of directions for which flux calculation must be performed after making necessary 

and appropriate adjustments. 
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Figure 1.2 illustrates the broad stages using which the above mentioned geometry routine has 

been implemented in the code.   

 

 

Figure 1.2 - Basic methodology (a) Reconstruction of the cell geometry from its input specifications (b) Subdivision of the 

cell into smaller meshes (c) Ray tracing throughout the cell followed by the flux calculations 
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CHAPTER 2 

 

 

DELAUNAY TRIANGULATION 

 

 

2.1 MESHING 

 

Most physical phenomena in science and engineering are modeled by linear/non-linear, 

ordinary/partial differential equations. Solution of such equations can be numerically 

approximated by replacing the continuous system with a discrete system of a finite number of 

coupled linear/non-linear equations. This process of discretization involves partitioning of the 

problem domain into small regions of simple shapes, known as meshes, which are usually 

triangles or quadrilaterals (in two-dimensions). The solution of the discrete linear/non-linear 

equations accumulated over the entire problem domain provides the required approximated 

numerical solution. 

 

It is desired that the process of mesh generation possesses certain properties. Firstly, it should 

generate meshes which can faithfully reproduce the problem domain being modeled, however 

complex its shape maybe. Secondly, it should provide as much flexibility as possible on the size 

of individual meshes and be able to offer rapid size-gradation from large to small meshes over 

relatively short distances. This gives control over mesh density depending upon behavior of the 

physical phenomena and hence, an important tradeoff between computation time and accuracy. 

The third, and probably the most difficult to achieve, is to generate meshes that are relatively 

“round” in shape, i.e. the ratio of its area to perimeter (in 2-dimensions) or volume to surface 

area (in 3-dimensions) should be as large as possible. The need for such a requirement stems out 

from the fact that elements with extremely large or small angles can degrade the quality of the 

numerical solution. While large angles can cause large discretization error and large errors in 

derivatives of the solution, as shown in Figure 2.1, small angles may yield ill-conditioned 

coupled systems of algebraic equations and introduce round-off errors. As shown by Babuška 
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and Aziz [18], convergence might be prevented if mesh angles approach 180º even with 

decreasing mesh size. 

 

 

Figure 2.1 - Nodal values depicted may represent accurate estimate of correct solution. Nevertheless, as the large angle 

approaches 180º, the vertical directional derivative, estimated via linear interpolation, shows arbitrarily large error. 

 

Meshes or grids can be broadly classified into two main classes, i.e. structured mesh and 

unstructured mesh. They are defined as follows: 

1. Structured Mesh is defined as the one in which the indices of neighboring nodes can be 

determined using a simple formula. The internal mesh nodes exhibit a uniform topological 

structure and are connected to neighbors independent of their position. 

2. Unstructured Mesh is defined as the one in which neighboring elements can’t be determined 

using a formula, which necessitates storage of neighbor list of each node. Such meshes lack a 

regular topological structure and the pattern of connections varies from point to point. 

 

Each of the above types has its own set of pros and cons. Although, unstructured meshes do 

suffer from a few drawbacks, they are perfectly suited to the nature of the physical system, the 

square pin-cell of a reactor core. The advantages and disadvantages associated with unstructured 

meshes are listed below. 

Advantages of unstructured meshing: 

1. It can effectively reproduce irregularly shaped domains due to which at times it is the 

preferred or even indispensable method. This aspect becomes even more pronounced when 

working with 3-dimensional geometries. 

2. It offers rapid gradation of mesh size giving a great degree of control on mesh number and 

density. Thus, an optimization can be achieved between speed and accuracy. 

3. It also offers far better multi-scale resolution and flexible tailoring conforming to complexity 

of the problem under consideration. 
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These very desirable advantages of unstructured meshing come at the cost of following 

disadvantages: 

1. Determining neighboring nodes is a complex task since no direct formula can be used and 

might require extensive algorithms and complex data structures itself. 

2. It is extremely expensive in terms of storage space and memory traffic demands due to the 

need to store neighboring nodes list of individual nodes. 

3. It is extremely difficult to parallelize computation because of the irregular structure of such 

meshes. Sophisticated partitioning algorithms and parallel unstructured solvers may be 

required for this purpose. 

Also, since it is desired that the characteristic form of neutron transport equation be solved in 2 

dimensions, 2-dimensional unstructured meshing becomes an obvious choice. 

 

Triangles are the simplest 2-dimensional objects and numerous triangulation algorithms exist in 

engineering and computational geometry literature. Delaunay triangulation introduced by 

Russian mathematician Boris Delaunay in 1934 [19], has been an extremely popular technique 

since the very early stages of development of mesh generation techniques. This geometric 

structure, which is a geometric dual of Dirichlet Tessellations or Voronoi Diagrams [20], has 

been extensively researched and widely used in two dimensions due to its ability to generate 

good quality meshes. Extensions to higher dimensions have enjoyed no less popularity. 

 

In two dimensions, triangulation of a set V of vertices results in a set T of triangles whose: 

1. vertices collectively are V, 

2. interiors don’t intersect each other, and 

3. union is the convex hull of V,  

if every triangle intersects V only at the triangle’s vertices. Figure 2.2 represents triangulation of 

a set of vertices. 



19 
 

 

Figure 2.2 - Triangulation of a set of vertices 

 

Any circle in a plane is said to be empty if it encloses no vertices of V. An edge is said to be 

Delaunay if it has at least one empty circum-circle. Figure 2.3 shows a Delaunay edge, one of 

whose circum-circles does not contain any vertex in its interior. 

 

 

Figure 2.3 - Delaunay Edge 

 

Similarly, a triangle is said to be Delaunay if and only if its circum-circle is empty. Figure 2.4(a) 

shows two Delaunay triangles formed from a set of 4 vertices while Figure 2.4(b) shows two 

non-Delaunay triangles from the same set of four vertices. It should also be noted that the 

common edge e of the two triangles formed, satisfies empty circum-circle property when the 

triangles are Delaunay but not otherwise and flipping e converts non-Delaunay triangles on the 

right to Delaunay triangles on the left. 
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Figure 2.4 - (a)Delaunay and (b)non-Delaunay triangle 

 

If every triangle of a triangulation of a set of vertices V is Delaunay, then it is said to be 

Delaunay Triangulation D of V, as given in Figure 2.5. Circum-circle of every triangle of the 

triangulation shown is empty. 

 

 

Figure 2.5 - Delaunay Triangulation of a set of vertices 

 

Use of Delaunay triangulation as a mesh construction technique and a guide to refinement by 

new vertex insertion has been intensively studied in the engineering community since the 1980s 

and, with the improvement in power and capability of computers, began attracting interest from 

the computational geometry community since the 1990s. Continued popularity of the technique 

stems out from the several favorable characteristics associated with it. These are as follows: 
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1. The most important feature of Delaunay triangulation is its ability to maximize minimum 

angle among all possible triangulations of a set of vertices due to which meshing is of better 

quality. 

2. It is extremely suited to adaptive solution strategies and can be flexibly tailored according to 

the requirement of the problem geometry and the nature of the physical process being 

modeled. 

3. The insertion of a new vertex, being a local operation, in one part of the mesh does not 

unnecessarily disturb a distant part of the mesh, and hence is inexpensive except in unusual 

cases. 

4. Another great advantage which is much less obvious is that connections are made between 

nearest neighbors and new vertices are inserted “as far away from other vertices as possible”. 

5. Due to all the above features, Delaunay triangulation has been extensively studied resulting 

in the availability of numerous good algorithms, which simplifies the process significantly. 

 

2.2 INITIAL MESH NODES GENERATION 

 

First and the foremost step for meshing of the problem geometry is generation of initial mesh 

points/nodes from the input specifications which are later triangulated, or connected together to 

form triangular shaped meshes using Delaunay Triangulation technique. 

 

The specifications of the lattice are provided by the user in the form of an input file, 

pin_cell_geom_params.in. Figure 2.6 gives a snapshot of the input file. The dimensions and the 

number of segments of each material region is input by the user through this file, which is read 

by the subroutine, pin_cell_mesh_nodes_generator. 
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Figure 2.6 - Snapshot of input file for geometry specifications 

 

The subroutine processes this information to generate the coordinates of mesh nodes, the 

underlying philosophy being to divide the boundaries of each region in segments of equal size. 

Each point is also assigned a type, which basically specifies the boundary on which the point is 

located. This information is useful to determine the material type of each mesh required during 

calculations. The points, thus, generated are stored in an output file, pin_cell_mesh_nodes.out, 

which is used further to generate meshes. Figure 2.7 gives a snapshot of the output file. 

 

The complete process of generating initial mesh nodes is depicted by the block diagram as given 

in Figure 2.8. 
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Figure 2.7 - Snapshot of output file containing initial mesh vertices 
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Figure 2.8 - Block diagram of process for generating initial mesh nodes 

 

2.3 MESH GENERATION 

 

Delaunay triangulations can be constructed using a variety of algorithms, easiest being 

incremental insertion algorithms, divide-and-conquer and sweepline techniques being the other 

two. Incremental insertion algorithms are based on the local nature of vertex insertion. The 

principle of operation is simply to maintain Delaunay triangulation of the grid in which mesh 

nodes are being inserted one at a time. Earliest such algorithm, applicable to 2-dimensions, was 

introduced by Lawson [21]. However, a more convenient procedure, which can be generalized to 

higher dimensions, is the Bowyer [22] and/or Watson [23] algorithm. 

 

The Bowyer-Watson algorithm is a “reconnection” method based on the empty circum-circle 

property of Delaunay triangulation. All triangles of the existing graph, whose empty circum-

circle property is violated and hence, no longer remain Delaunay, because of the insertion of new 

vertex, are eliminated. All other triangles remain Delaunay and are not disturbed. Bowyer [22] 

and Watson [23] have shown that: 

1. All these affected triangles are contiguous and located in the local neighborhood of the new 

vertex, and form a connected cavity surrounding it. 

2. Connecting the new vertex to each edge of the enclosing cavity always gives Delaunay 

triangles and the triangulation, thus obtained is again Delaunay. 
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A sequential repetition of this process until all mesh nodes have been inserted leads to a 

Delaunay triangulation. The initial triangulation so obtained, however, may contain poor quality 

triangles that are either not size and shape optimal or unsuitable for numerical solution and 

associated assumptions involved. More about this will be discussed in later chapters. In order to 

overcome this problem, refinement of the initial triangulation is required. Thus, the process of 

mesh generation is divided into: 1) initial triangulation of the system, 2) mesh refinement to 

improve quality of triangulation 

 

2.4 INITIAL TRIANGULATION ALGORITHM 

 

The basic Bowyer-Watson algorithm lacks the ability to deal with the degeneracy case. Hence, a 

modified form of the algorithm, which can handle the degenerate vertices, has been employed 

for triangulation of the initial mesh nodes. This algorithm is implemented through a subroutine 

which gives an initial Delaunay triangulation. The process is depicted through the block diagram 

given in Figure 2.9. 

 

 

Figure 2.9 - Block diagram of process of obtaining initial triangulation 

 

In an n-dimensional space, infinitely many “circum-spheres” pass through a set of n points and 

there always exists a unique “circum-sphere” which passes through n+1 points. If more than n+1 

points lie on the same “circum-sphere”, they are said to be degenerate and a degeneracy is said 

to have occurred. In 2-dimensional space, a line segment has infinitely many circum-circles and 

every triangle has a unique circum-circle, as shown in Figure 2.10. But if 4 or more points share 

a common circum-circle, then these points are said to be degenerate. Figure 2.11 represents a set 

of degenerate points. 
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Figure 2.10 - Set of possible circum-circles for 2 points (line segment) and 3 points (triangle) lying on a 2-dimensional 

plane 

 

 

Figure 2.11 - A set of degenerate points in a plane 

 

Since occurrence of the degeneracy case is certain due to the geometry of the pin-cell, 

modifications have been made to the basic Bowyer-Watson algorithm. The initial triangulation 

algorithm is as follows: 
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STEP 1 – Obtain first triangle from any three corner nodes of the pin cell 

STEP 2 – For each vertex in the mesh node list,  

STEP 3 – Check whether Degeneracy case or Bad Triangle case 

STEP 4 – Address particular case appropriately 

STEP 5 – Repeat steps 3 and 4 till all initial vertices have been inserted 

 

Degeneracy Case 

 

STEP 1 – If all triangles in the existing triangulation share a common circum-circle, 

STEP 2 – Then, if distance of new vertex from the “common” circum-center is equal to the 

circum-radius 

STEP 3 – Then, prioritize existing vertices in ascending order of distance from new vertex 

STEP 4 – Connect new vertex to the 2 highest priority vertices to create a new triangle 

STEP 5 – Add new triangle to existing triangulation 

 

Bad Triangle Case 

 

STEP 1 – For each triangle in existing triangulation, 

STEP 2 – If new vertex violates empty circum-circle property of the triangle, 

STEP 3 – Then, add bad triangle to bad triangle list 

STEP 4 – Repeat steps 2 and 3 till all bad triangles have been identified 

STEP 5 – Identify polygonal hole (open/closed) formed by these bad triangles; all non-shared 

edges among bad triangles form the boundary of this polygonal cavity 

STEP 6 – Delete all bad triangles from existing triangulation list 

STEP 7 – Connect each boundary edge of the polygonal hole to new vertex, forming a 

triangle with each edge 

STEP 8 – Add each new triangle, thus, created to the triangulation. 

 

Figure 2.12 illustrates the classification of a triangles as good or bad based on its empty circum-

circle property. 
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Figure 2.12 - (a) Bad Triangle ABC since vertex D lies in the interior of its circum-circle (b) Good Triangle ABC since 

vertex D lies either on or outside its circum-circle 

 

 

Figure 2.13 - Illustration of degeneracy case (a) Existing triangulation (b) New vertex (in black) being inserted is 

degenerate with all existing vertices and all triangles (in green) are affected (c) New vertex connected to 2 highest priority 

nodes (d) New updated triangulation 

 

 

Figure 2.14 - Illustration of bad triangle case (a) Existing triangulation (b) All triangles that become “bad” (in green) due 

to insertion of the new vertex (in black) (c) Polygonal cavity formed by all contiguous bad triangles (d) Reconnection of 

new vertex with edges of polygonal hole (e) New updated triangulation 
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After all mesh nodes have been added, initial Delaunay triangulation is obtained. Figure 2.13 and 

Figure 2.14 give illustration of algorithms for handling degeneracy case and bad triangle case, 

respectively. 

 

The initial mesh nodes generated from the specifications of the problem domain are read from 

the file, pin_cell_mesh_nodes.out, by the subroutine initial_triangulation to create initial 

Delaunay triangles. Figure 2.15 provides an implementation of the initial triangulation algorithm 

i.e. the modified Bowyer-Watson algorithm. 

 

 

Figure 2.15 - Illustration of modified Bowyer-Watson algorithm to obtain initial triangulation 

 

2.5 MESH REFINEMENT ALGORITHM 

 

Mesh refinement is the process of identifying all poor quality meshes in the initial triangulation 

and replace them with triangles of better quality. Categorization of meshes as poor or not is 
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based on their size and minimum angle. A triangle is considered to be of poor quality if, either it 

is too large, or it is a skinny triangle. 

 

A triangle is skinny if it contains extremely small or large angles i.e. it is too thin. Miller et al 

[24] have shown that the most natural and elegant measure for analyzing Delaunay mesh quality 

is the aspect ratio, β, of the simplex defined as the circum-radius r to shortest edge d ratio of the 

simplex. 

   
 

 
 

 

It is desirable to have meshes with this ratio as small as possible and Delaunay refinement 

algorithms naturally optimize this metric. In 2-dimensions, the minimum angle α of the triangle 

increases with decreasing value of aspect ratio as: 

 

   
 

     
 

 

Thus, any triangle having aspect ratio greater than the maximum allowed aspect ratio,  
   

, is 

classified as skinny triangle, as shown in Figure 2.16. A value of  
   

    has been used 

which ensures           . 

 

 

Figure 2.16 - Skinny triangles having large aspect ratio 
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A triangle is poor if: 

1. Its aspect ratio is greater than the maximum allowed aspect ratio i.e. it is a skinny triangle. 

2. Size of any of the sides exceeds the maximum mesh size allowed. 

 

The choice of the two quality parameters is a tradeoff between speed, accuracy and memory 

costs. No characteristic rays may pass through a skinny triangle, as shown in Figure 2.17(a), or a 

small displacement in the streaming path might bring a large change in track segment length, as 

shown in Figure 2.17(b), which can cause large error, especially in case of strongly absorbing 

media. Thus, the maximum aspect ratio must depend upon the minimum angle requirement and 

desired mesh density and guarantee of termination of the refinement process. 

 

 

Figure 2.17 - (a) No characteristic rays passing through a skinny triangle (b) Large change in length of track segment 

formed in a skinny triangle due to small displacement in position of streaming path 

 

Similarly, validity of the flat flux and flat source approximations may be compromised if the 

mesh size is too large which can in turn lead to an error. Maximum mesh size for each material 

type should be such that the approximations remain valid along with having minimum number of 

meshes possible. Thus, maximum mesh size should be a function of the sum of all macroscopic 

cross-sections of all reactions in which neutrons are either consumed or generated by nuclei of 

the mesh material, primarily, capture and fission. This can be determined from the nuclear data 

associated with material of the mesh. 

 

Despite the different nature of the two metrics on which mesh quality is decided, the manner in 

which the quality is improved is the same for both cases. To obtain meshes of better quality, the 

poor quality triangles are split. Under this process, a new vertex is inserted at the circum-center 
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of the poor quality triangle. The insertion of the new vertex requires re-triangulation to remove 

all triangles, whose Delaunay property is violated as a result. The modified Bowyer-Watson 

algorithm, developed for initial triangulation, is again utilized for re-triangulation. Mesh 

refinement is undertaken in the subroutine improve_triangulation which takes the initial 

triangulation as input and gives the final, good quality Delaunay triangulation as output. The 

mesh refinement algorithm is as given below: 

 

STEP 1 – Read nuclear data from file. 

STEP 2 – Calculate maximum mesh size for each region/material. 

STEP 3 – For each triangle in triangulation list, 

STEP 4 – If triangle is skinny; aspect ratio is greater than maximum aspect ratio, 

STEP 5 – Then, split triangle 

STEP 6 – If triangle size exceeds maximum mesh size, 

STEP 7 – Then, split triangle 

STEP 8 – Repeat steps 4 to 7 till all triangles satisfy desired aspect ratio and size criteria 

 

Maximum Mesh Size 

 

STEP 1 – Determine absorption cross-section for each material in each group 

    
         

            
   

 

    

 

 (Assuming Total cross-section = Absorption cross-section + Scattering cross-

section)  

STEP 2 – Determine maximum cross-section for each material among all groups 

STEP 3 – Determine maximum mesh size for each material as reciprocal of the maximum 

cross-section, as calculated in step 2 

 

Split Triangle 

 

STEP 1 – Insert new node at circum-center of the triangle 

STEP 2 – Determine node type of new node 
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STEP 3 – Update mesh nodes list with new vertex and number of mesh nodes 

STEP 4 – Re-triangulate using modified Bowyer – Watson algorithm 

 

At the end of mesh refinement, final Delaunay triangulation is obtained after all poor quality 

triangles have been eliminated. Figure 2.18 gives an illustration of the split triangle algorithm, 

respectively. Figure 2.19 provides an illustration of the improve_triangulation i.e. mesh 

refinement algorithm. 

 

 

Figure 2.18 - Illustration of split triangle algorithm (a) Existing triangulation (b) Poor quality triangle (in blue) identified 

to be split (c) New vertex (in black) to be inserted at circum-centre of poor quality triangle (in blue). All triangles that 

become “bad” (in green) due to insertion of new vertex (d) Polygonal cavity formed by all contiguous bad triangles (e) 

Reconnection of new vertex with edges of polygonal hole (f) New refined triangulation 
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Figure 2.19 - Improvement of mesh quality through implementation of mesh refinement algorithm 
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CHAPTER 3 

 

 

RAY TRACING 

 

 

MOC technique of solving neutron transport equation for lattice level calculation involves 

solving for neutron flux along each characteristic neutron streaming path. The complete process 

of inserting a desired number of parallel rays, in every desired direction so as to appropriately 

model the neutron motion in 3-D space, and determining and storing the intersection made by 

each characteristic path with different meshes is referred to as ray tracing. Thus, after the 

completion of ray tracing, complete information about the number, length and order of track 

segments and the mesh in which each track segment lies in the x-y plane of the problem is 

available. Information about all the characteristic rays passing through each mesh is also 

obtained which is required during the flux and multiplication factor calculations. 

 

Insertion of rays, determining the initial triangle in which the ray enters, and also the subsequent 

triangles in which the ray proceeds requires the knowledge of the boundary triangles as well as 

neighbors of each mesh. Also, since the region of interest is only bounded in 2-dimensions, and 

extends infinitely along the z-axis, rays must be traced only in the azimuthal plane of the 

problem and can be subsequently raised out of the plane of the problem into different polar 

directions. 

 

3.1 DIRECTION QUADRATURE 

 

The neutrons always travel in three-dimensional space irrespective of the dimensionality of the 

problem being considered. The dimensionality of the problem is determined by the number of 

dimensions in which material boundaries exist; i.e. in case the material region is bounded only 

along one axis, then the problem is one dimensional, for existence of boundaries along two 

coordinate axes, the problem becomes two dimensional and so on. However, the neutrons always 

have motion in all the three dimensions regardless of the existence of material boundaries. 
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Thus, in order to model neutron transport, characteristic streaming paths must be considered in 

all possible directions in 3D space (i.e. in all 4π directions) and calculation of angular flux is 

done along each streaming path. However, since only a finite number of directions can be 

considered during calculations to approximate the complete problem domain, these should be 

chosen in such a manner so as to appropriately model neutron motion. This is done by choosing a 

set of desired number of azimuthal angles and similarly, a set of polar angles, which together 

determine each unique direction of motion, as represented in Figure 3.1. 

 

 

Figure 3.1 - Typical quadrature ball 

 

3.1.1 Azimuthal Angles 

 

Generally, the azimuthal angles in the method of characteristics are evenly spaced in the xy-plane 

of the problem. The boundaries of motion, thus, occur at intervals given by 
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            (3.1) 

where, 

I  =  Total number of azimuthal directions of motion 

 

The azimuthal direction of motion lies along the center of two neighboring boundaries. Thus, 

azimuthal direction is obtained as 

     
 

 
          

            (3.2) 

 

All neutrons that travel at angles between the two neighboring boundaries are represented by the 

associated azimuthal direction of motion. This is accounted for by the weight associated with 

each direction of motion which is given as,       

    
  

 
 

            (3.3) 

 

Figure 3.2 shows the representative azimuthal directions for       case. 

 

 

Figure 3.2 - Azimuthal directions for     
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3.1.2 Polar Angles 

 

Polar angles of motion can be chosen in a variety of ways ranging from simple but not-so 

accurate to complex but more accurate methods. Some of the methods available are 

 

3.1.2.1  Equal Weights Quadrature Set 

 

In this method, the polar directions are chosen such that the weights associated are equal in all 

directions. More emphasis is laid on neutrons streaming at angles close to the plane of the 

problem. The weights can be calculated from the differential area of a unit sphere subtended by 

all boundaries for a given direction. The differential area on a unit sphere with an arbitrary 

direction     is 

 

       
           

            (3.4) 

where 

   =  Polar angle associated with     

   =  Azimuthal angle associated with     

      are the differential spreads in polar and azimuthal directions respectively 

 

For a unit sphere,       , and thus 

 

                

            (3.5) 

The total area subtended on the unit sphere associated with direction     then is 

 

      

  

    

  

    

              

  

    

  

    

                            

            (3.6) 
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Since spacing between azimuthal angles,           , is equal and equal areas on unit 

sphere require 

   
  

   
 

            (3.7) 

where, I and J are the number of azimuthal and polar angles respectively. 

 

Thus, 

                
  

      
 

  

        
  

                 
 

 
           

            (3.8) 

 

Since the polar direction of motion should pass through the centroid of the surface area 

subtended by the polar boundaries, they are given as 

 

  
        

 

 
                 

            (3.9) 

 

The corresponding associated weights are the differential areas on the surface of the unit sphere 

created by the polar boundaries  

 

                 

            (3.10) 

 

3.1.2.2  Equal Angles Quadrature Set 

 

In the equal angles quadrature, the angles are distributed equally in the polar directions. Equal 

emphasis is laid on neutrons irrespective of the directions that they stream in. The polar 

boundaries of motion, thus, occur at intervals given as 
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            (3.11) 

where, the polar boundaries extend from      to     ; J being the total number of polar 

directions of motion 

 

The polar direction of motion lies along the center of two neighboring boundaries. Thus, polar 

direction is obtained as 

 

  
        

 

 
                 

            (3.12) 

 

Also, the associated weights can be easily calculated as 

 

                 

            (3.13) 

 

Both of the quadrature sets are perfectly acceptable although the number of polar angles might 

differ to obtain the same amount of accuracy. Equal angles quadrature set is preferable for three-

dimensional transport equation due to its symmetric treatment in all directions where as equal 

weights quadrature set is more preferable for one and two-dimensional equation as the angles are 

weighted towards the plane of the problem. 

 

3.1.2.3  Legendre Quadrature 

 

Legendre and Gaussian quadratures provide an even better distribution of angles for one- and 

two-dimensional problems. Thus, the polar directions are taken as an input from the user along 

with the number of polar directions required. A 16-point double angular quadrature set (DP7), 

symmetric about the azimuthal plane of the problem, has been used for better modeling neutron 



41 
 

motion out of the azimuthal plane in various polar directions [25]. Table 3.1 gives the DP7 

quadrature. 

 

Table 3.1 - 16-point double angular quadrature set (DP7) [25] 

COSINE OF POLAR ANGLE         DIRECTIONAL WEIGHT      

.98014493 0.05061427 

.89833324 0.11119052 

.76276620 0.15685332 

.59171732 0.18134189 

.40828268 0.18134189 

.23723380 0.15685332 

.10166676 0.11119052 

.01985507 0.05061427 

 

 

3.2 SINGULARITIES 

 

Any ray may enter or exit a triangle either across one of its edges or through one of its vertices. 

Also, the ray may or may not have the same slope as one of the triangle edges. Thus, the possible 

ways of passage of a ray through a mesh have been given in Table 3.2 and illustrated through 

Figure 3.3. 

 

 

Figure 3.3 - Possible ways of passage of a characteristic ray through a mesh (a) Case I, (b) Case II, (c) Case III, (d) Case 

IV and (e) Case V 

 

 



42 
 

Table 3.2 - Possible ways of passage of a characteristic ray through a mesh 

CASE RAY ENTRY RAY EXIT PARALLEL 

I Across Edge Across Edge No 

II Across Edge Across Edge Yes 

III Across Edge Through Vertex No 

IV Through Vertex Across Edge No 

V Through Vertex Through Vertex Yes 

 

However, whenever a ray passes through a vertex i.e. case III and case IV, an ambiguity arises 

which is referred to as a vertex-based singularity and special consideration is required as 

multiple meshes may share a vertex. In the special case when a ray lies along an edge, case V, an 

edge-based singularity occurs and it is even more difficult to handle. In both cases the ray can be 

associated with multiple meshes and thus, multiple material properties. 

 

Vertex-based singularity is treated by associating the ray with the mesh to which it proceeds. The 

triangle to which the ray proceeds can be identified by determining whether the angle, θ0, 

between the two triangle edges which form the vertex is equal to the sum of angles, θ1 and θ2, 

made by the ray with these edges, where φ, φ1 and φ2 are the angles of the ray and the 2 edges 

w.r.t. X-axis, as shown in Figure 3.4. Values of θ0, θ1 and θ2 can be calculated as, 

 

              

             

             

 

Ray proceeds to the mesh which satisfies the condition,           . 
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Figure 3.4 – Identification of mesh to which a ray proceeds after passing through the common vertex 

 

As far as edge-based singularities are concerned, if the edge along which the ray passes is shared 

between triangles having the same material composition, then the ray is associated to either of 

the two. However, when the material composition of the two triangles differs, the ray is 

associated to the mesh belonging to the inner regions of the problem geometry. 

 

3.3 NEIGHBORHOOD AND BOUNDARY TRIANGLES 

 

Neighborhood of each mesh is identified based on the vertex criterion, according to which, any 

two meshes which share at least one vertex classify as neighbors. Vertex criterion has been 

employed because a ray may exit a mesh and enter into the neighboring mesh through common 

vertex, and not necessarily pass from one mesh to another across its edge. The algorithm for 

determining mesh neighborhood is as follows: 

 

STEP 1 – For each triangle 

STEP 2 – For each vertex of the triangle 

STEP 3 – If vertex is also a vertex of the triangle whose neighborhood is being determined 

STEP 4 – Then, add triangle to neighbor list 

STEP 5 – Repeat steps 2 to 4 till all neighbors have been identified 

 

Figure 3.5 shows the vertex neighbors of red colored triangle using this algorithm. 
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Figure 3.5 - Neighboring triangles of triangle in red. All triangles in yellow share only 1 vertex with the red triangle; all 

blue triangles share 2 vertices with the red triangle 

 

All triangles lying on the boundary of the pin cell are the boundary triangles. As in case of mesh 

neighbors, any triangle having at least one vertex on the boundary of region of interest is 

classified as a boundary triangle. Vertex criterion has been employed because a ray may enter the 

problem domain through either a vertex located on the boundary or through a triangle edge lying 

on the boundary. The algorithm for determining mesh neighborhood is as follows: 

 

STEP 1 – For each triangle 

STEP 2 – For each vertex of the triangle 

STEP 3 – If vertex is a corner vertex of the region of interest 

STEP 4 – Then, add triangle to both boundary lists on which the corner is located and EXIT 

STEP 5 – If vertex is located on one of the boundaries of the region of interest but is not a 

corner vertex 

STEP 6 – Then, add triangle to respective boundary list on which it is located and EXIT 

STEP 7 – Repeat steps 2 to 6 till all boundary triangles have been identified 

 

Figure 3.6 shows a sample illustration of this algorithm. 
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Figure 3.6 - Boundary triangles. All blue triangles have 1 vertex located on the boundary; all green triangles have more 

than 1 vertices located on the boundary 

 

3.4 INTER – RAY SPACING AND ALIGNMENT 

 

 

 

Figure 3.7 – Inter–ray spacing  

Since multiple parallel characteristic rays must be inserted in every azimuthal direction and 

spread uniformly throughout the region of interest, the inter-ray spacing is a function of 

azimuthal direction and the desired number of parallel rays ‘N’ per direction. The inter-ray 

spacing, d, in every direction, φ, as shown in Figure 3.7, is obtained as: 

 

   
              

 
 

where, 

X  = Horizontal size of the system 

Y = Vertical size of the system 
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However, the end of each incident characteristic ray must be aligned precisely to the beginning 

of its reflective counterpart to ensure perfect reflection under reflective boundary conditions. To 

achieve this, track separation and azimuthal angle must be altered appropriately based on the 

overall dimensions of the problem. This process of alignment illustrated in Figure 3.8, is 

achieved using the following set of equations: 

 

 

Figure 3.8 - Alignment of rays with their reflective counterpart 

 

Total number of horizontal system lengths scanned, nx, and vertical system lengths scanned, ny, 

is given, respectively, as: 

    
      

 
 

    
      

 
 

 

For the streaming paths to align to their reflective counterparts at the boundaries, nx and ny must 

be integers. This can be done by rounding off nx and ny, as obtained above, to the nearest 

integers. Thus, 
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This causes a slight adjustment in the angle of streaming and the updated azimuthal angle, φ’, is 

calculated as: 

          
      

      
  

            (3.14) 

 

The new adjusted inter-ray spacing is thus, obtained as: 

      
 

   
 

 

   
 

   
 

 

 

            (3.15) 

 

The entire process of ray alignment is repeated for each azimuthal angle. Using the 

corresponding updated track separations and azimuthal angles, parallel, equidistant tracks, which 

are perfectly aligned to their reflective counterparts at the boundaries, are laid across x-y plane of 

the problem. 

 

3.5 RAY DISTRIBUTION 

 

The process of ray distribution involves determining the initial point, c0, for each parallel ray in a 

particular direction. This is the first step to be undertaken for laying down streaming paths and 

tracing each of these through the geometry. If the starting point of any of the parallel rays is 

known, then the rest can be obtained easily by shifting it appropriately along the concerned 

boundary. 

 

A simple choice for the initial point of first ray in a particular direction is a point located at a 

distance equal to half inter-ray spacing along the corresponding boundary away from the corner 

of the region. However, such a choice may cause the following problems: 

1. Rays near the corners at certain angles may create tracks of very small lengths 

2. Number of rays actually inserted, for some angles, may be less than the desired number as a 

few rays do not intersect the problem geometry at all. 
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3. Rays at certain angles may not be uniformly spread across the region of interest as a large 

portion may remain vacant.  

 

In order to ensure that the rays are uniformly spread through the azimuthal plane of the problem, 

a more prudent choice is to determine the distance of starting point of first ray from the corner as 

a function of azimuthal angle of the ray rather than fixing it as half the separation along the 

concerned axis. In accordance with the given argument, ray distribution is started along the 

vertical boundaries and the distance of initial point of the first ray from the corner is determined 

as the spacing fraction times the inter-ray separation along vertical boundary, where, spacing 

fraction is defined as: 

 

                 

 
 
 

 
 

       
 

  
                 

   
     

 
  

                  

  

            (3.16) 

 

Once the initial point of the first ray is known, the initial point of all the remaining rays can be 

determined using size of projection of inter-ray spacing along suitable boundary. Initial point is 

found along the vertical boundary till the point remains within the extent of the boundary. When 

the initial point surpasses the boundary extremities, the intersection of this ray with apposite 

horizontal boundary becomes initial point of this ray. The process is now repeated, but, along the 

horizontal boundary using inter-ray separation along horizontal boundary, till desired number of 

rays has been distributed. The algorithm of ray distribution is as follows: 

 

STEP 1 – Determine inter-ray spacing along vertical and horizontal boundaries 

STEP 2 – Determine spacing fraction 

STEP 3 – Determine c0 for first ray on vertical boundary 

STEP 4 – Determine c0 for next ray on vertical boundary 

STEP 5 – If c0 lies on boundary 

STEP 6 – Then, repeat steps 4 and 5 
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STEP 7 – Else, find intersection of this ray on horizontal boundary 

STEP 8 – Initial point of ray, c0, is equal to intersection point 

STEP 9 – Determine c0 for next ray on horizontal boundary 

STEP 10 – Repeat step 9 till desired number of rays has been distributed 

 

3.6 INITIAL MESH IDENTIFICATION 

 

After the ray distribution is completed in each azimuthal direction, i.e. initial points of all rays 

have been determined, the next step is to use this information coupled with the list of boundary 

triangles to identify the initial mesh in which the ray enters the region of interest. The initial 

point, c0, could be either a vertex or any other point located on the boundary. In the former case, 

technique for identifying mesh to which a ray proceeds when it passes through a vertex, as 

discussed in Section 3.2, is employed for every triangle on suitable boundary till the initial mesh 

is successfully identified. To identify the initial triangle in the latter case, a check is made on 

each triangle on the concerned boundary about whether or not c0 lies on its edges. The algorithm 

is as follows: 

 

STEP 1 – Identify boundary on which initial point, c0, is located 

STEP 2 – For each triangle on the appropriate boundary (identified in step 1) 

STEP 3 – Check whether c0 is a vertex of the triangle or not 

STEP 4 – Address each case appropriately 

STEP 5 – Repeat steps 3 and 4 till initial mesh determined 

 

Initial point, c0, is a triangle vertex 

 

STEP 1 – Determine the 2 triangle edges containing c0 

STEP 2 – Determine angle of inclination of the 2 edges w.r.t. +ve X-axis, φ1 and φ2 

STEP 3 – Determine angle between the 2 edges containing c0, θ0 

STEP 4 – Determine angle between ray and the 2 edges, θ1 and θ2 

STEP 5 – If           , then current triangle is the required initial mesh 
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Initial point, c0, is a not a triangle vertex 

 

STEP 1 – Determine edges of triangle 

STEP 2 – For each edge of triangle 

STEP 3 – Check if edge lies on boundary 

STEP 4 – Repeat step 3 till boundary edge identified 

STEP 5 – If boundary edge identified 

STEP 6 – Then, if initial point, c0, lies on the boundary edge 

STEP 7 – Then, current triangle is the required initial mesh 

 

 

3.7 TRACE RAY 

 

Once the initial point, c0, and initial mesh of a ray have been identified, the process of identifying 

successive track segments formed by a ray is undertaken. This involves determining the points of 

intersection made by the ray with successive meshes through which it passes. The knowledge of 

in-point of a track segment and the mesh in which it lies is used to determine the next 

intersection point, i.e. out-point of the segment. After determining out-point of the segment, the 

next triangle along the path of the ray is ascertained which can be done by determining the 

neighboring triangle containing edge on which out-point is located. However, to determine the 

mesh to which the ray proceeds when out-point is a triangle vertex, the method for handling 

vertex-based singularities as described in Section 3.2 has been adopted. Out-point for current 

track segment and its next triangle so determined become the in-point and mesh, respectively, for 

next track segment. These steps are repeated till the ray egresses the region of interest. The 

algorithm for trace ray process is given below  

 

STEP 1 – Assign initial point, c0, and initial mesh as in-point and triangle for track segment 1 

STEP 2 – Determine out-point for track segment 

STEP 3 – Check whether out-point is a triangle vertex or not 

STEP 4 – Determine next triangle to which ray proceeds, appropriately 

STEP 5 – Add segment to track segment list of ray 
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STEP 6 – Update in-point for next track segment with out-point of current segment 

STEP 7 – Update triangle for next track segment with next triangle of current segment 

STEP 8 – Repeat steps 2 to 7 till the ray exits the region of interest at the opposite boundary 

 

Determining out-point 

 

STEP 1 – Formulate equation describing ray from its azimuthal angle and in-point 

STEP 2 – Determine edges of triangle in which track segment lies 

STEP 3 – For each edge 

STEP 4 – Formulate equation describing edge 

STEP 5 – If ray is not parallel to edge 

STEP 6 – Then, determine intersection point of the two lines 

STEP 7 – If intersection point lies between the edge vertices i.e. within the range of edge 

STEP 8 – Then, out-point = intersection point 

STEP 9 – If ray is parallel to edge 

STEP 10 – If in-point is also an end point of the edge 

STEP 11 – Then, out-point = other end point of edge 

 

Out-point is a triangle vertex 

 

STEP 1 – For each neighboring triangle of mesh in which track segment lies 

STEP 2 – Determine the 2 triangle edges containing out-point 

STEP 3 – If 2 such edges do not exist, move to next neighbor 

STEP 4 – Determine angle of inclination of the 2 edges w.r.t. +ve X-axis, φ1 and φ2 

STEP 5 – Determine angle between the 2 edges containing out-point, θ0 

STEP 6 – Determine angle between ray and the 2 edges, θ1 and θ2 

STEP 7 – If           , then current neighboring triangle is the required mesh to which 

ray proceeds next 

 

Out-point is not a triangle vertex 
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STEP 1 – For each neighboring triangle of mesh in which track segment lies 

STEP 2 – Determine edges of triangle 

STEP 3 – For each edge of triangle 

STEP 4 – If out-point lies between the edge vertices i.e. lies on the edge 

STEP 5 – Then, then current neighboring triangle is the required mesh to which ray proceeds 

next 

 

3.8 REFLECTED RAYS 

 

After establishing the path made by every ray, i.e. finding and storing the list of successive track 

segments made by each ray during its passage through the problem under consideration, the 

process of ray tracing is essentially complete. However, another step, although not necessary, is 

undertaken. The reflective counterpart of each ray is identified and stored. This information is 

useful during the flux and multiplication factor calculations since the ray to which the final 

angular neutron flux along a given ray is transferred under reflective boundary conditions is 

known apriori. To determine the reflected ray for each incident ray, a simple yet effective 

scheme is used in which the azimuthal angle of the possible reflected ray is first calculated 

followed by verifying if the initial point, c0, of the reflected ray is same as the point at which the 

incident ray exits the geometry, as shown in Figure 3.9. 

 

Figure 3.9 - Identification of reflective counterpart of an incident ray 

 

For any incident ray with azimuthal angle φinc, crossing a square pin cell, the region of interest, 

the azimuthal angle of its reflective counterpart φref, can either be given as           or 

        . This is because for reflection off left or right boundaries,                and for 
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ray reflection off top or bottom boundaries,              . Table 3.3 lists all the possible 

cases for ray reflection in a square pin cell and the possible combinations of φinc and φref in the 

form of a reflection matrix.  

 

Table 3.3 – Reflection matrix for φinc and φref 

AZIMUTHAL ANGLE OF 

INCIDENT RAY        
REFLECTING BOUNDARY 

QUADRANT RANGE BOTTOM RIGHT TOP LEFT 

I          
Not 

applicable 

I 

          

II 

           

Not 

applicable 

II  
        

Not 

applicable 

Not 

applicable 

III 

           

I 

          

III        
   

II 

           

Not 

applicable 

Not 

applicable 

IV 

          

IV   
         

I 

           

III 

          

Not 

applicable 

Not 

applicable 

 

Hence, φinc belonging to a particular quadrant, the corresponding φref can only belong to one of 

the two neighboring quadrants and never lie in the diagonally opposite quadrant of the azimuthal 

plane. Thus, any ray on reflection at the boundaries of a square geometry may only have a 

reflective counterpart belonging to either of its neighboring quadrants. This is represented in 

Table 3.4. 

 

Table 3.4 - Relationship between quadrants of φinc and φref 

QUADRANT OF 

AZIMUTHAL ANGLE OF 

INCIDENT RAY        

QUADRANT OF AZIMUTHAL ANGLE OF INCIDENT RAY 

       

I II III IV 

I No Yes No Yes 

II Yes No Yes No 

III No Yes No Yes 

IV Yes No Yes No 
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The algorithm for determining the reflective counterpart of each ray, designed on the basis of this 

reflection matrix, is as follows: 

 

STEP 1 – Determine possible azimuthal angles for reflected ray 

STEP 2 – For each characteristic ray 

STEP 3 – If out-point of last track segment of incident ray is same as initial point c0, of the 

ray 

STEP 4 – If azimuthal angle of ray is equal to the possible azimuthal angles of reflective 

counterpart, as determined in step 1 

STEP 5 – Then, current ray is the required reflective counterpart and EXIT 

 

3.9 ALGORITHM 

 

The final algorithm for ray tracing involves laying down the desired number of rays in each 

azimuthal direction. Once rays have been spread uniformly throughout the problem domain, an 

ordered list of intersection points and thus, track segments made by each of these is stored which 

is further used during flux and multiplication factor calculations. In addition to the basic 

procedure, the reflective counterpart of each ray is also identified and stored.  

 

The steps of ray tracing algorithm are given below: 

 

STEP 1 – Determine neighbors of each mesh 

STEP 2 – Identify all triangles lying on different boundaries of the problem geometry 

STEP 3 – Determine azimuthal directions in which xy-plane is divided 

STEP 4 – Calculate inter-ray spacing for rays of each direction and adjust it to ensure perfect 

alignment of all rays to reflective counterparts 

STEP 5 – Generate and distribute the desired number of rays in each azimuthal direction 

STEP 6 – For each characteristic ray 

STEP 7 – Identify initial mesh 

STEP 8 – Determine trace list i.e. trace ray 
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STEP 9 – Determine reflected counterpart 

 

Figure 3.10 represents an implementation of the ray tracing algorithm for a Delaunay 

triangulated region of interest. 

 

 

Figure 3.10 - Ray tracing in 4 azimuthal directions with 20 parallel rays per direction 
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CHAPTER 4 

 

 

FLUX AND MULTIPLICATION FACTOR CALCULATIONS 

 

 

4.1 SOLUTION TO THE CHARACTERISTIC EQUATION 

 

Essentially, the problem is to obtain solution of the following equation for each mesh, 

 

                 
 

     

           

            (4.1) 

where, 

       = Outgoing angular flux for the mesh 

      = Incoming angular flux for the mesh 

    = Length of track segment formed by the characteristic ray in the mesh 

      = Transport corrected macroscopic cross section 

 

The above equation is solved under the following assumptions: 

1. All scattering can be modeled as isotropic and is transport corrected. 

2. All sources are inherently isotropic. 

3. Flat flux approximation, i.e., angular and, hence, scalar flux is constant within a mesh. 

4. Flat source approximation, i.e., scalar neutron source is constant within a mesh. 

 

The first term on the RHS represents the number of neutrons that stream across the mesh without 

undergoing a collision; and the second term on the RHS is the number of neutrons that are 

picked up along the track from scatterings and sources as track passes through the mesh. The 

sum of these two terms gives the number of neutrons that exit the mesh at the end of the track 

represented by the LHS. 
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In order to obtain the angular flux value exiting the mesh along the track, Фout, only angular flux 

entering the mesh at the beginning of the track, Фin, and total source term within the mesh, q, is 

further required since transport corrected cross-sections are known beforehand while the track 

length, τ, can be readily calculated by raising its projection in the azimuthal plane, τ’, which has 

already been calculated in the ray tracing routine, in the desired polar direction using, 

 

   
  

     
 

            (4.2) 

where,  

    = j
th

 polar direction 

 

4.2 FLUX AND MUTIPLICATION FACTOR INITIALIZATION 

 

Initial flux values are required due to the need of Фin and q values in order to solve the 

characteristics equation. An initial guess of scalar flux in every mesh, starting angular flux along 

each ray and multiplication factor is a pre-requisite to beginning the iterative solution process. 

So, a seed value of       is set for every energy group, in every mesh and thus,            

in all groups, in all directions along the problem geometry. Also, the initial value of 

multiplication factor is set to       

 

4.3 SOURCE TERM CALCULATION 

 

The total angular source term comprises of three separate sources: 

1. Scattering source 

 

                                                              

  

 

 

 

 

            (4.3) 
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2. Fission source 

                                                         

 

 

 

            (4.4) 

3. Fixed external source 

                                

            (4.5) 

 

These must be calculated prior to solving the characteristic equation to plug in the values of total 

scalar source term, q. 

 

4.3.1 Scattering Source 

 

All scattering is assumed to be isotropic and effects of anisotropic scattering are accounted for by 

transport-correcting the self scattering and total cross-sections. Thus,  

                       
 

  
               

            (4.6) 

and scattering source term is reduced to 

                
 

  
                             

 

 

 

            (4.7) 

Since the entire energy range is discretized into energy groups,  

      
 

  
            

  

 

            (4.8) 

where, 

             =  Total number of neutrons in energy group g’, which get scattered into 

energy group g, and only 1/4π of these are travelling in direction Ω.  
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4.3.2 Fission Source 

 

Neutron generation due to fission is assumed to be an isotropic process, and thus, the fission 

source term becomes  

                           
             

  
              

 

 

 

            (4.9) 

In discretized multi-group form, 

      
  

  
           

  

 

            (4.10) 

 

4.3.3 External Source 

 

Isotropic distribution of neutrons due to an external source with energy E, located at position      , 

with total strength           , is obtained as 

                  
          

  
 

            (4.11) 

 

In multi-group form, 

        
  

  
 

            (4.12) 

 

Source term calculation is repeated over each mesh,  , which gives respective source terms as 

follows: 

Scattering Source, 

        
 

  
                

  

 

            (4.13) 
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Fission Source, 

        
    

  
               

  

  
         

  
      

  

  

            (4.14) 

where,  

                         

            (4.15) 

 

External Source, 

          
    

  
 

            (4.16) 

However, external source is usually not considered. 

 

4.3.4 Total Source for Multiplying System 

 

In a multiplying system, external sources may or may not be present. The total source term, in 

presence of external source, is given as 

 

                                         
         

  
            

  

 

            (4.17) 

where, 

   =  Infinite multiplication factor 

 

In absence of an external source, the total scalar source can be expressed as 

                               
         

  
       

  

 

            (4.18) 
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Infinite multiplication factor is the ratio of the total number of neutrons born through fission to 

the total number of neutrons absorbed in the system. 

 

    
                 

                
 

            (4.19) 

where, 

    =  Volume of n
th

 mesh 

 

Thus, the characteristic transport equation, equation (4.1), may now be solved as all required 

quantities have been calculated. 

 

4.4 BOUNDARY CONDITIONS 

 

Like any other differential equation, boundary conditions must be applied on the characteristic 

transport equation to obtain the exact solution. In the method of characteristics, boundary 

conditions are applied to the angular flux only. There are three types of boundary conditions 

available for any system in a reactor core. The choice of which boundary condition is applied to 

the system is made on the basis of the physical environment in its neighborhood. The boundary 

conditions can be broadly classified as: periodic, reflective and vacuum. 

 

4.4.1 Periodic Boundary Condition 

 

Periodic boundary condition is applied when the physical system is infinite and exhibits a 

periodic structure due to which, the angular flux itself is spatially periodic. As a result, angular 

flux for the complete system can be determined by solving the transport equation for an 

equivalent problem on a single lattice cell which is periodically repeated. 

 

Periodic boundary condition, is expressed mathematically as, 

 
     
 

       
          

 
       

   

            (4.20) 
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Thus, periodic boundary condition require the value of angular flux in group g; in the direction 

          
   , leaving a system across some boundary from mesh n to be equal to the value of 

angular flux in group g; in the same direction           
   , entering at the opposite system 

boundary in mesh n’, as illustrated in Figure 4.1. 

 

 

Figure 4.1 - Periodic boundary condition 

 

4.4.2 Reflective Boundary Condition 

 

In case, the physical problem possesses planar symmetry, solution can be obtained for only a sub 

region of the system using reflective boundary condition to determine the flux profile of the 

entire system. For each plane of symmetry that exists, the size of the sub region is half the size of 

its parent, which greatly improves the efficiency of simulation.  

 

Mathematically, reflective boundary condition is expressed as, 

 

     
 

                      
 

       
   

            (4.21) 
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Thus, reflective boundary condition requires a fraction α, of the value of angular flux in group g; 

hitting the boundary of the system along the characteristic path travelling in the direction  

          
   to be reflected along its companion characteristic along the direction     

           .           . For the problem of interest,     is obtained from    by substituting      

          or              , as shown in Figure 4.2. Also, reflection being a planar 

phenomenon,         
  and thus, no change in polar direction takes place between the incident 

and the reflected rays. The primes on the azimuthal and polar angles represent the reflective 

counterparts to the incident angles. Perfectly reflecting boundaries occur in the special case with 

    while     represents the perfect vacuum condition where no reflection takes place. 

 

 

Figure 4.2 - Reflective boundary condition. Change in direction when reflection occurs off (a) top (or bottom) boundaries 

(b) left (or right) boundaries 

 

4.5 TRACK ANGULAR FLUX CALCULATION 

 

Calculation of angular flux along a track segment involves determining the value of both, the 

outgoing Фout and average Фavg angular flux along the track segment. Figure 4.3 shows the 

significance of both the quantities. Outgoing angular flux can be easily determined using 

equation (1.9) as discussed in Section 1.2.1 once the incoming angular flux along a track 

segment is known, while Фavg can be calculated using Фout and Фin. The expressions used are, 

          
               

                      
    

       

                       

            (4.22) 
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            (4.23) 

 

where, n, g, dir and r are the indices representing mesh, energy group, direction and parallel 

characteristic ray in a given direction, respectively. 

 

 

Figure 4.3 - Angular flux along a track segment (Фout) (a) Outgoing angular flux (b) Average angular flux (Фavg) 

 

This process is repeated for every track segment along a given ray beginning with the incoming 

angular flux at the point where the ray enters the region of interest to get the desired angular flux 

values for track segment 1. The outgoing angular flux for track segment 1 then becomes the 

incoming angular flux for track segment 2 along the characteristic and thus, angular flux is 

calculated for every track segment until the ray exits the problem domain at the opposite 

boundary, as depicted in Figure 4.4. 
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Figure 4.4 - Angular flux along a characteristic ray 

 

4.6 AVERAGE MESH ANGULAR FLUX 

 

Once the angular flux calculation is completed along all parallel neutron streaming paths in one 

direction, the average angular flux associated with each mesh,          , in the direction under 

consideration is determined. The average mesh angular flux is nothing but the weighted average 

of           
   

, the average angular flux along a track segment, along all rays passing through mesh 

  in the direction of interest, as shown in Figure 4.5. The area of region represented by a ray 

forms the corresponding weight. 

 

 

Figure 4.5 - Average angular flux (Ф        ) associated with a mesh through which multiple parallel characteristics in a 

given direction pass 
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The average mesh angular flux is, thus, given as: 

 

           
           

   
                       

                       
 

            (4.24) 

where, 

        = Width associated with a characteristic r in direction dir, i.e. inter-

ray spacing in direction dir 

                 = Area of region represented by track segment made by each ray; 

corresponding weight for respective average angular flux values 

 

4.7 MESH SCALAR FLUX 

 

Mesh scalar flux,     , for a mesh, is the summation of average mesh angular flux,          , in 

all the directions, weighted by appropriate directional weight,     , for a given mesh.  The 

average mesh angular flux, as obtained previously, is determined in all directions for every mesh 

and weighted by the associated directional weight. The summation of this quantity in all 

directions is hence, used to compute the scalar flux. Mathematically, 

 

                     

   

 

            (4.25) 

where, 

     = Directional weight of direction dir 

 

Also,  

     

   

                                       

where, 

        = Weight of polar component of direction dir, or polar weight 

           = Weight of azimuthal component of direction dir, or azimuthal weight 
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4.8 MULTIPLICATION FACTOR 

 

After mesh scalar flux,     , for all meshes in every energy group has been resolved, 

multiplication factor of the system,     , can be determined as per its definition, as given in 

Section 4.3.4 using equation (4.19). However, another expression can be used to estimate      

using the value of multiplication factor as calculated in the previous outer iteration. This is as 

follows: 

 

    
         

    
             

          

             
          

 

            (4.26) 

where, 

    
    = Multiplication factor of previous outer iteration 

    
    = Scalar flux at the end of inner convergence loop of current outer iteration 

    
    = Scalar flux at the end of inner convergence loop of previous outer iteration 

 

4.9 FLUX AND MULTIPLICATION FACTOR ITERATION SCHEME 

 

Flux and multiplication factor calculations are implemented in the form of an inner – outer 

iteration scheme. The outer iteration involves calculation of the source term for each mesh from 

the old scalar flux values in each mesh in each group while in the inner loop, the scalar flux 

value of every mesh is updated using the source term calculated in the current outer iteration. 

The inner loop is repeated till the scalar flux in every mesh is converged while the outer iteration 

ends only on meeting desired convergence criteria for multiplication factor. The outer iteration 

consists of an inner loop for each energy group while to determine updated scalar flux in the 

inner iteration, outgoing and average angular flux is calculated along every track segment formed 

by every characteristic ray in every direction. Figure 4.6 gives the flowchart of the inner – outer 

iteration scheme used for calculating scalar flux and multiplication factor, implemented using the 

following algorithm. 
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STEP 1 – Outer convergence loop 

STEP 2 – For each energy group (g = 1, G) 

STEP 3 – Calculate fission source,     
 

, in each mesh n = 1, N 

STEP 4 – Inner convergence loop 

STEP 5 – Calculate scattering source,     
 

, in each mesh n = 1, N 

STEP 6 – For each direction (dir) 

STEP 7 – For each parallel ray (r = 1, R) 

STEP 8 – For each track segment on ray (k = 1, K(r)) 

STEP 9 – Calculate outgoing angular flux,           
    

STEP 10 – Calculate average angular flux,           
   

 

End of track segment loop 

STEP 11 – Transfer outgoing angular flux of last track segment to 

reflective counterpart 

End of parallel rays loop 

STEP 12 – For each mesh (n = 1, N) 

STEP 13 – Calculate average mesh angular flux,           

End of mesh loop 

End of direction loop 

STEP 14 – For each mesh (n = 1, N) 

STEP 15 – Calculate scalar flux,      

End of mesh loop 

STEP 16 – Check scalar flux convergence 

End of inner convergence loop 

End of energy groups loop 

STEP 17 – Calculate multiplication factor 

STEP 18 – Check multiplication factor convergence 

End of outer convergence loop 
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Figure 4.6 - Flowchart of inner–outer iteration scheme for scalar flux and multiplication factor calculations   
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4.10 CONVERGENCE 

 

Since the seed values of inward angular flux along a boundary surface, scalar flux in each mesh 

and multiplication factor provided to initiate the solution process are merely a guess (which may 

or may not be correct), the characteristic equation must be iteratively solved until the true 

solution has been obtained. 

 

A measure of closeness of the solution to the true solution is the convergence of the iterative 

solution. The difference among the solution obtained at the end of the present iteration to that 

obtained at the end of the previous iteration can be used to represent the degree of closeness to 

the true solution. Thus, if this difference, for all inward directions, along the boundaries of the 

system lies within a certain criterion, ε, the solution is said to have converged. The convergence 

criterion is given as: 

 
                   

         
     

 

4.10.1  Convergence of Scalar Flux  

 

At the end of every inner iteration, convergence of scalar flux is tested for each energy group, g. 

Scalar flux for each energy group, g, at the beginning of the iteration,     
    , is used to calculate 

the source term,     . The new scalar flux,     
    , is then obtained as discussed above in Section 

4.7 using equation (4.25). The convergence criterion for scalar flux in each mesh is, thus, given 

as: 

 
    

        
   

    
         

 

4.10.2  Convergence of Multiplication Factor  

 

The multiplication factor,     , for the old flux distribution is calculated at the beginning of every 

outer iteration.      converges along with the fission source term which itself takes place as a 
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result of the convergence of scalar flux. The convergence criterion for multiplication is, thus, 

given as: 

 
                      

           
      

 

Multiplication factor, however, essentially converges if the flux distributions converge. 
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CHAPTER 5 

 

 

BENCHMARKS ANALYZED 

 

 

The quality assurance of any code developed for analysis of reactor systems is mainly achieved 

by validating it against experimental data, or if such data is not available, against some standard 

numerical benchmarks. The choice of benchmarks depends on the intended application/s of the 

code, and must be such that a broad spectrum of problems is considered. 

 

As a part of the validation process, the MOC-based lattice level code developed has been 

benchmarked for many two energy-group problems and the results have been compared with 

those obtained from DRAGON V4. The benchmark problems consist of a square pin cell having 

3 to 4 regions having varying material compositions and annular fuel geometry, as shown in 

Figure 1. They include uranium metal, uranium – plutonium MOX, as fuel material; H2O, D2O, 

as moderator and coolant material; different clad material like aluminium, zircalloy; and have 

varying geometrical size. A total of five square pin cell problems have been analyzed using this 

code. Sections 5.1 to 5.5 present benchmark problems 1 to 5 respectively. 

 

5.1 BENCHMARK PROBLEM 1 

 

Benchmark problem 1 is a two – energy group problem consisting of three regions, as shown in 

Figure 5.1. The identification of materials of which the various regions of the problem are 

composed is not known. However, the dimensional specifications and nuclear data specifications 

are provided in Table 5.1 and Table 5.2, respectively. 
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Figure 5.1 - Benchmark Problem 1 

Table 5.1 – Dimensional specifications of benchmark problem 1 

PARAMETER DIMENSION (in cm) 

Fuel Pellet Radius 0.39306 

Cladding Outer Radius 0.45802 

Pin Pitch 1.26209 

 

Table 5.2 - Nuclear data specifications of benchmark problem 1 

REGION MATERIAL 

ENERGY 

GROUP 

    

   
     

(in cm
-1

) 

      

(in cm
-1

) 

       

(in cm
-1

) 

       

(in cm
-1

) 

1 1 
1 1.0 0.22222 0.0 0.19222 0.02 

2 0.0 0.83333 0.135 0.0 0.75333 

2 2 
1 0.0 0.16667 0.0 0.12667 0.04 

2 0.0 1.11111 0.0 0.00015 1.10111 

3 2 
1 0.0 0.16667 0.0 0.12667 0.04 

2 0.0 1.11111 0.0 0.00015 1.10111 
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5.1.1 Result 

 

The number of triangles formed in every region of the problem as obtained after the initial 

triangulation and mesh refinement along with the user-specified number of segments on each 

material boundary are listed in Table 5.3. Table 5.4 provides a comparison of the multiplication 

factor calculated using this code with respect to the results obtained from DRAGON V4. The 

number of azimuthal directions and number of rays per direction used have also been mentioned. 

 

Table 5.3 - Number of Delaunay triangles formed for benchmark problem 1 

REGION 
NO. OF TRIANGLES IN INITIAL 

TRIANGULATION 

NO. OF TRIANGLES IN REFINED 

TRIANGULATION 

1 88 140 

2 100 100 

3 250 528 

 

BOUNDARY NO. OF SEGMENTS 

Region 1 50 

Region 2 50 

Region 3 horizontal 50 

Region 3 vertical 50 

 

Table 5.4 - Comparison of multiplication factor for benchmark problem 1 

Reference    (  ) 1.199 

Calculated    (  ) 1.1983342 

Relative Error (in %) 

        

  

       
5.554 x 10

-2
 

Number of Azimuthal Directions 12 

Number of Rays per Direction 100 
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5.2 BENCHMARK PROBLEM 2 

 

Benchmark problem 2 is also a two – energy group problem consisting of three regions, as 

shown in Figure 5.2. The fuel material is not known but the clad region consists of Pt + gap and 

the coolant or moderator material is heavy water (D2O). The dimensional specifications and 

nuclear data specifications associated with different material regions of the problem are listed in 

Table 5.5 and Table 5.6, respectively. 

 

 

Figure 5.2 - Benchmark Problem 2 

Table 5.5 – Dimensional specifications of benchmark problem 2 

PARAMETER DIMENSION (in cm) 

Fuel Pellet Radius 4.1275 

Cladding Outer Radius 5.5216 

Pin Pitch 22.86 
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Table 5.6 - Nuclear data specifications of benchmark problem 2 

REGION MATERIAL 

ENERGY 

GROUP 

    

   
     

(in cm
-1

) 

      

(in cm
-1

) 

       

(in cm
-1

) 

       

(in cm
-1

) 

1 1 
1 1.0 2.8327e-1 5.5988e-3 2.6864e-1 2.3582e-3 

2 0.0 4.4071e-1 9.3182e-2 1.0652e-4 3.6181e-1 

2 2 
1 0.0 1.0259e-1 0.0 1.0159e-1 1.5817e-4 

2 0.0 1.1418e-1 0.0 3.8957e-5 1.1177e-1 

3 3 
1 0.0 2.5423e-1 0.0 2.4304e-1 1.1171e-2 

2 0.0 3.8498e-1 0.0 5.4575e-5 3.8451e-1 

 

5.2.1 Result 

 

The number of triangles formed in every region of the problem as obtained after the initial 

triangulation and mesh refinement along with the user-specified number of segments on each 

material boundary are listed in Table 5.7. Table 5.8 provides a comparison of the multiplication 

factor calculated using this code with respect to the results obtained from DRAGON V4. The 

number of azimuthal directions and number of rays per direction used have also been mentioned. 

 

Table 5.7 - Number of Delaunay triangles formed for benchmark problem 2 

REGION 
NO. OF TRIANGLES IN INITIAL 

TRIANGULATION 

NO. OF TRIANGLES IN REFINED 

TRIANGULATION 

1 178 378 

2 200 336 

3 300 802 

 

BOUNDARY NO. OF SEGMENTS 

Fuel Pellet 100 

Clad 100 

Pin cell horizontal 50 

Pin cell vertical 50 
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Table 5.8 - Comparison of multiplication factor for benchmark problem 2 

Reference    (  ) 0.95 

Calculated    (  ) 0.95056271 

Relative Error (in %) 

        

  

       
5.9233 x 10

-2
 

Number of Azimuthal Directions 4 

Number of Rays per Direction 150 

 

 

5.3 BENCHMARK PROBLEM 3 

 

Benchmark problem 3 is also a two – energy group problem consisting of three regions, as 

shown in Figure 5.3. Uranium oxide (UO2), zirconium (Zr) and light water (H2O), respectively 

constitute the fuel (region 1), clad (region 2) and coolant (region 3). The material specifications, 

dimensional specifications and nuclear data specifications associated with different material 

regions of the problem are given in Table 5.9, Table 5.10, and Table 5.11, respectively. 
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Figure 5.3 - Benchmark Problem 3 

 

Table 5.9 – Material specifications of benchmark problem 3 

REGION MATERIAL COMPOSITION 

Fuel U
235

, U
238

, O
16

 (UO2) 

Clad Zr
91

 

Coolant H
1
, O

16
, B

10
 (H2O + Boron) 

 

Table 5.10 - Dimensional specifications of benchmark problem 3 

PARAMETER DIMENSION (in cm) 

Fuel Pellet Radius 0.39306 

Cladding Outer Radius 0.45802 

Pin Pitch 1.26209 
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Table 5.11 - Nuclear data specifications of benchmark problem 3 

REGION MATERIAL 

ENERGY 

GROUP 

    

   
     

(in cm
-1

) 

      

(in cm
-1

) 

       

(in cm
-1

) 

       

(in cm
-1

) 

1 1 
1 1.0 3.7489e-1 1.0928e-2 3.4989e-1 9.1375e-4 

2 0.0 4.8509e-1 1.1999e-1 6.3921e-4 3.9240e-1 

2 2 
1 0.0 2.4462e-1 0.0 2.4302e-1 3.0198e-4 

2 0.0 2.5044e-1 0.0 3.8882e-4 2.4614e-1 

3 3 
1 0.0 6.0615e-1 0.0 5.7716e-1 2.8167e-2 

2 0.0 1.7624e0 0.0 1.1758e-3 1.73117e0 

 

5.3.1 Result 

 

The number of triangles formed in every region of the problem as obtained after the initial 

triangulation and mesh refinement along with the user-specified number of segments on each 

material boundary are listed in Table 5.12. Table 5.13 provides a comparison of the 

multiplication factor calculated using this code with respect to the results obtained from 

DRAGON V4. The number of azimuthal directions and number of rays per direction used have 

also been mentioned. 

 

Table 5.12 - Number of Delaunay triangles formed for benchmark problem 3 

REGION 
NO. OF TRIANGLES IN INITIAL 

TRIANGULATION 

NO. OF TRIANGLES IN REFINED 

TRIANGULATION 

1 88 140 

2 100 100 

3 250 528 

 

BOUNDARY NO. OF SEGMENTS 

Fuel Pellet 50 

Clad 50 

Pin cell horizontal 50 

Pin cell vertical 50 
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Table 5.13 - Comparison of multiplication factor for benchmark problem 3 

Reference    (  ) 0.6624341 

Calculated    (  ) 0.66279911 

Relative Error (in %) 

        

  

       
5.5101 x 10

-2
 

Number of Azimuthal Directions 8 

Number of Rays per Direction 80 

 

 

5.4 BENCHMARK PROBLEM 4 

 

Benchmark problem 4 is also a two – energy group problem, but, unlike the previous three cases, 

is made up of four regions, as shown in Figure 5.4. Uranium (U-metal), aluminium (Zr) and light 

water (H2O), respectively constitute the fuel (region 1), clad  (region 3) and coolant (region 4). 

The material specifications, dimensional specifications and nuclear data specifications associated 

with different material regions of the problem are given in Table 5.14, Table 5.15 and Table 

5.16, respectively. 
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Figure 5.4 - Benchmark Problem 4 

 

Table 5.14 – Material specifications of benchmark problem 4 

REGION MATERIAL COMPOSITION 

Fuel U
235

, U
238

 (U-metal) 

Clad Al
27

 

Coolant H
1
, O

16
 (H2O) 

 

Table 5.15 - Dimensional specifications of benchmark problem 4 

PARAMETER DIMENSION (in cm) 

Fuel Pellet Radius 0.9525 

Cladding Inner Radius 0.9695001 

Cladding Outer Radius 1.0225 

Pin Pitch 2.3878 
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Table 5.16 - Nuclear data specifications of benchmark problem 4 

REGION MATERIAL 

ENERGY 

GROUP 

    

   
     

(in cm
-1

) 

      

(in cm
-1

) 

       

(in cm
-1

) 

       

(in cm
-1

) 

1 1 
1 1.0 4.3868e-1 2.0767e-2 4.0581e-1 2.2427e-4 

2 0.0 6.7533e-1 3.4309e-1 9.2262e-4 4.3455e-1 

2 2 
1 0.0 1.0e-8 0.0 1.0e-10 1.0e-10 

2 0.0 1.0e-8 0.0 1.0e-10 1.0e-10 

3 3 
1 0.0 1.5476e-1 0.0 1.5422e-1 1.8625e-4 

2 0.0 8.8524e-2 0.0 1.3047e-4 7.9783e-2 

4 4 
1 0.0 9.4568e-1 0.0 9.0755e-1 3.7733e-2 

2 0.0 2.72043e0 0.0 8.8535e-4 2.70547e0 

 

 

5.4.1 Result 

 

The number of triangles formed in every region of the problem as obtained after the initial 

triangulation and mesh refinement along with the user-specified number of segments on each 

material boundary are listed in Table 5.17. Table 5.18 provides a comparison of the 

multiplication factor calculated using this code with respect to the results obtained from 

DRAGON V4. The number of azimuthal directions and number of rays per direction used have 

also been mentioned. 
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Table 5.17 - Number of Delaunay triangles formed for benchmark problem 4 

REGION 
NO. OF TRIANGLES IN INITIAL 

TRIANGULATION 

NO. OF TRIANGLES IN REFINED 

TRIANGULATION 

1 98 250 

2 250 250 

3 250 250 

4 300 576 

 

BOUNDARY NO. OF SEGMENTS 

Fuel Pellet 100 

Air gap 150 

Clad 100 

Pin cell horizontal 50 

Pin cell vertical 50 

 

Table 5.18 - Comparison of multiplication factor for benchmark problem 4 

Reference    (  ) 0.9745523 

Calculated    (  ) 0.97552953 

Relative Error (in %) 

        

  

       
1.0027 x 10

-1
 

Number of Azimuthal Directions 4 

Number of Rays per Direction 160 

 

 

5.5 BENCHMARK PROBLEM 5 

 

Benchmark problem 5 is also a two – energy group problem consisting of four regions, as shown 

in Figure 5.5. Fuel (region 1) is composed of uranium - plutonium MOX (U-Pu-MOX), fuel 

cladding (region 3) is composed of zircalloy (Zr, Sn, Fe, Cr, O), and coolant  (region 4) is 

composed of light water (H2O). Table 5.19, Table 5.20 and Table 5.21 provide the material 
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specifications, dimensional specifications and nuclear data specifications associated with 

different material regions of the problem, respectively. 

 

 

Figure 5.5 - Benchmark Problem 5 

Table 5.19 – Material specifications of benchmark problem 5 

REGION MATERIAL COMPOSITION 

Fuel U
235

, U
238

, Pu
239

, Pu
240

, Pu
241

, Pu
242

, O
16

 (U – Pu - MOX) 

Clad Zr
91

, Sn
118

, Fe
56

, Cr
52

, O
16

 

Coolant H
1
, O

16
 (H2O) 

 

Table 5.20 - Dimensional specifications of benchmark problem 5 

PARAMETER DIMENSION (in cm) 

Fuel Pellet Radius 0.4285 

Cladding Inner Radius 0.4375 

Cladding Outer Radius 0.4965 

Pin Pitch 1.3215 
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Table 5.21 - Nuclear data specifications of benchmark problem 5 

REGION MATERIAL 

ENERGY 

GROUP 

    

   
     

(in cm
-1

) 

      

(in cm
-1

) 

       

(in cm
-1

) 

       

(in cm
-1

) 

1 1 
1 1.0 4.0283e-1 4.1718e-2 3.5711e-1 6.0950e-4 

2 0.0 1.84233e0 2.61407e0 1.8484e-3 4.0275e-1 

2 2 
1 0.0 1.0e-6 0.0 1.0e-8 1.0e-8 

2 0.0 1.0e-6 0.0 1.0e-8 1.0e-8 

3 3 
1 0.0 2.7391e-1 0.0 2.7215e-1 2.1081e-4 

2 0.0 2.8486e-1 0.0 9.7459e-4 2.7902e-1 

4 4 
1 0.0 8.8557e-1 0.0 8.5059e-1 3.4576e-2 

2 0.0 2.53925e0 0.0 1.7204e-3 2.52504e0 

 

 

5.5.1 Result 

 

The number of triangles formed in every region of the problem as obtained after the initial 

triangulation and mesh refinement along with the user-specified number of segments on each 

material boundary are listed in Table 5.22. Table 5.23 provides a comparison of the 

multiplication factor calculated using this code with respect to the results obtained from 

DRAGON V4. The number of azimuthal directions and number of rays per direction used have 

also been mentioned. 
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Table 5.22 - Number of Delaunay triangles formed for benchmark problem 5 

REGION 
NO. OF TRIANGLES IN INITIAL 

TRIANGULATION 

NO. OF TRIANGLES IN REFINED 

TRIANGULATION 

1 98 296 

2 225 225 

3 225 275 

4 300 672 

 

BOUNDARY NO. OF SEGMENTS 

Fuel Pellet 100 

Air gap 125 

Clad 100 

Pin cell horizontal 50 

Pin cell vertical 50 

 

Table 5.23 - Comparison of multiplication factor for benchmark problem 5 

Reference    (  ) 1.382806 

Calculated    (  ) 1.38289184 

Relative Error (in %) 

        

  

       
6.2077 x 10

-3
 

Number of Azimuthal Directions 8 

Number of Rays per Direction 101 

 

 

5.6 CPU EXECUTION TIME ANALYSIS 

 

The results obtained from analysis CPU execution time analysis of each benchmark problem 

(with least absolute relative error) are listed in Table 5.24. The table also provides a comparison 

of these results with those obtained from DRAGON V4. 
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Table 5.24 - Module wise CPU Execution Time 

PROBLEM 

CPU EXECUTION TIME (in s) 

DELAUNAY 

TRIANGULATION 
RAY TRACING 

FLUX AND    

CALCULATIONS 

Benchmark 1 0.516 1.077 300.234 

Benchmark 2 0.749 0.749 178.355 

Benchmark 3 0.483 0.593 127.950 

Benchmark 4 0.828 0.671 104.344 

Benchmark 5 0.827 0.952 218.978 
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CONCLUSION 

 

 

This work is primarily aimed at developing and validating a MOC-based code for lattice level 

calculations for a 2-dimensional pin cell. The code solves the characteristic neutron transport 

equation for a 2-dimensional pin cell to compute the neutron flux values in different spatial 

regions of the problem domain, and uses the distribution so obtained to determine the effective 

multiplication factor for the region of interest. Delaunay triangulation and mesh refinement 

techniques have been used to subdivide the problem into smaller, triangular, unstructured 

meshes. Once the meshes are available, a suitable quadrature set of azimuthal and polar 

directions is selected and a user defined number of characteristic neutron streaming paths or rays 

are inserted in each direction, and the track segments made in various meshes are identified and 

stored using the ray tracing routine. This information is used for the calculation of neutron flux 

and multiplication factor values. The developed code has been tested and validated against a 

variety of pin cells which cover a broad spectrum of fuel, clad, coolant/moderator and 

dimensional specifications. 

 

The code requires following three input files from the user: 

1. pin_cell_geom_params.in provides the dimensional specifications of the region of interest 

including the number of segments required to be made on each region boundary. The number 

of azimuthal directions and number of rays per direction are also given in this file. 

2. polar_angle.in provides the polar quadrature to be used. Double angular 16-point quadrature 

set (DP7), symmetric about the azimuthal plane of the problem, has been used for accurately 

modeling neutron motion out of the azimuthal plane in various polar directions. 

3. nuclear_data.in provides the nuclear data i.e. macroscopic group-wise transport, production, 

and scattering cross – sections and the neutron fission spectrum associated with the different 

materials constituting the problem domain. 

 

Five infinite square pin cell benchmarks were chosen for the analysis. All the problems analyzed 

are two energy-group having three or four material regions. The infinite multiplication factor 
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     calculated using the developed code was compared with benchmark solutions computed 

using DRAGON V4. 

 

In general, the MOC-based code was found to perform satisfactorily irrespective of the material 

number and type, and dimensional specifications. The    values predicted by this code were in 

good agreement with those obtained from DRAGON V4. The relative error was found to be 

small, <  1%. A maximum absolute relative error of 1.0027 x 10
-1

 % was obtained in 

benchmark problem 4. 

 

The region of interest is faithfully reproduced by Delaunay triangulation and mesh refinement. 

The triangular meshes formed have optimal size and aspect ratio specifications. The theoretical 

bound on minimum angle in a mesh is      . The maximum mesh size for each mesh is 

automatically computed as a function of its material composition. However, no minimum size 

bound is available for the meshes, and it is only governed by the number of segments specified 

by the user. The meshes also show fast size gradation over short distances, as expected. 

 

The CPU execution time for different modules of the code was also obtained. Delaunay 

triangulation and mesh refinement, and ray tracing modules of the code require negligible time 

as compared to the inner – outer iteration scheme used in the flux and multiplication factor 

calculation module. 
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SCOPE FOR FUTURE STUDIES 

 

 

Currently, the MOC-based code solves the neutron transport equation for square pin cell to 

obtain the infinite multiplication factor      using few group homogenized cross section. It will 

be interesting to extend the code to obtain fluxes in individual regions and reaction rates thereof. 

Also the extension of this code may include solution for the neutron transport equation in 

hexagonal pin cell. At a later stage the code can be extended to solve for the current 

configuration of lattices (17x17 as in western PWR or VVER). 

 

It is also essential to include periodic and vacuum boundary conditions for analysis of problems 

having asymmetric material composition. It would be interesting to study the behavior of 

accuracy of the result as a function of number of azimuthal directions by inclusion of anisotropic 

scattering effects over and above the currently considered isotropic scattering. 

 

It will also be interesting to prescribe an optimum track density to the user via minimization of 

the error between actual volume of a region/mesh and approximate volume obtained from the 

characteristic rays. This would help improve the robustness of the code and also reduce the 

dependence of the results on user-defined inputs. 
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APPENDIX I 

 

 

DATA STRUCTURES 

 

 

A modular programming approach has been used for implementation of the algorithms for the 

three modules of the code, namely, Delaunay triangulation and mesh refinement, ray tracing and 

flux and multiplication factor calculations, as discussed in chapters 2, 3 and 4 respectively. The 

code has been developed in FORTRAN 90, which lacks advantageous concepts of object 

oriented programming (OOP). However, since OOP considerably simplifies code development 

and extension, its basic concept of laying emphasis on data rather than procedure has been 

improvised in the code to ensure robustness, versatility and ease of modification. Thus, all data 

associated with one physical entity is put into one container, and referred using a single entity 

name. This further reduces the number of variables required by a considerable amount, and 

hence simplifies book keeping of variable names within the code.  The various data structures 

and their significance used in the code are listed below in Table I.1 and are described in the 

following sections. 

 

Table I.1 - List of data structures used 

NAME TYPE SIGNIFICANCE 

tri_id_list 
LIFO 

Linked List 
Linked list of triangle IDs based on LIFO principle 

ray_id_list 
LIFO 

Linked List 

Linked list of ray IDs of different rays based on LIFO 

principle 

point 
Derived 

Data Type 
Represents a real world point in 2-D space 

edge 
Derived 

Data Type 

Represents a real world line segment formed from 2 

end-points 

triangle 
Derived 

Data Type 
Represents a triangle formed from 2 vertices or points 
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NAME TYPE SIGNIFICANCE 

edge_list 
LIFO 

Linked List 
Linked list of edges based on LIFO principle 

triang_list 
FIFO 

Linked List 
Linked list of triangles based on FIFO principle 

track_segment 
Derived 

Data Type 

Represents a track segment formed due to passage of 

the ray through a mesh 

trace_list 
FIFO 

Linked List 
Linked list of track segments based on FIFO principle 

ray 
Derived 

Data Type 
Represents a characteristic neutron streaming path 

psi Array 
Represents angular flux values along a ray at its points 

of intersection with different mesh boundaries     

 

 

I.1 TRIANGLE ID LIST 

 

tri_id_list is a linked list which works on LIFO principle. It consists of a list of IDs of 

triangle/mesh which satisfy some specific criteria. Its component variables are given in Table I.2. 

 

Table I.2 - Elements of tri_id_list 

VARIABLE NAME DATA TYPE SIGNIFICANCE 

tri_id Integer Triangle ID 

next tri_id_list pointer Address of the next element in the list 

 

 

I.2 RAY ID LIST 

 

Similarly ray_id_list is also a linked list which works on LIFO principle. But it represents a list 

of ray Ids. Its component variables are given in Table I.3. 
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Table I.3 - Elements of ray_id_list 

VARIABLE NAME DATA TYPE SIGNIFICANCE 

tri_id Integer Ray ID 

next ray_id_list pointer Address of the next element in the list 

 

 

I.3 POINT 

 

point is a derived data type which represents a real world point in 2-dimensional space. All initial 

mesh nodes, intersection points and new vertices inserted for mesh refinement are represented 

using this data type. Its component variables are given in Table I.4. 

 

Table I.4 - Elements of point 

VARIABLE NAME DATA TYPE SIGNIFICANCE 

X Real X – coordinate of point  

Y Real Y – coordinate of point  

p_type Integer Region in which the point is located 

 

 

I.4 EDGE 

 

edge is a derived data type representing a line segment formed from two points which are its end 

points. All triangle edges may be represented using this data type. Its component variables are 

given in Table I.5. 

 

Table I.5 - Elements of edge 

VARIABLE NAME DATA TYPE SIGNIFICANCE 

end_point Integer array Vertex IDs of the 2 end-points which form the edge  
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I.5 TRIANGLE 

 

triangle is another derived data type created to represent a triangle. All the meshes, being 

triangular shaped, are represented using this data type. Its component variables are given in 

Table I.6. 

 

Table I.6 - Elements of triangle 

VARIABLE 

NAME 
DATA TYPE SIGNIFICANCE 

vert Integer array Vertex IDs of the 3 vertices of the triangle 

c_center Point Center of circum-circle of the triangle 

c_rad Real Radius of the circum-circle of the triangle 

mat_type Integer ID of material constituting the mesh 

nbor_head tri_id_list Header element of list of mesh IDs of every triangle neighbor  

ray_head ray_id_list 
Header element of list of ray IDs of all rays passing through the 

triangle  

 

 

I.6 EDGE LIST 

 

edge_list represents a LIFO – based linked list of edges. The list is mainly used while finding the 

boundary edges of the polygonal cavity formed by contiguous bad triangles due to the process of 

new vertex insertion in an existing Delaunay triangulation. It enables us for determination and 

modification of the list of edges of the polygonal hole.  Its component variables are given in 

Table I.7. 

 

Table I.7 - Elements of edge_list 

VARIABLE 

NAME 
DATA TYPE SIGNIFICANCE 

e edge Represents an edge, which forms one element of the list 

next edge_list pointer Address of the next element in the list 
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I.7 TRIANGLE LIST 

 

triang_list represents a FIFO – based linked list of triangles. The list is used for the Delaunay 

triangulation of the region of interest. The existing triangulation formed from all mesh 

nodes/vertices that have been inserted is stored using this data structure. Thus, easy deletion of 

bad triangles and insertion of new triangles is possible. Its component variables are given in 

Table I.8. 

 

Table I.8 - Elements of triang_list 

VARIABLE 

NAME 
DATA TYPE SIGNIFICANCE 

t Triangle Represents a  triangle, which forms one element of the list 

next triang_list pointer Address of the next element in the list 

 

 

I.8 TRACK SEGMENT 

 

track_segment is a data structure designed to store all information related a track segment. Its 

component variables are given in Table I.9. 

 

Table I.9 - Elements of track_segment 

VARIABLE 

NAME 
DATA TYPE SIGNIFICANCE 

in_pt Point In-point of the ray in some mesh 

out_point Point Out-point of the ray in the same mesh 

tri_id Integer Mesh/triangle ID of the mesh through which the ray passes 
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I.9 TRACE LIST 

 

trace_list is also a FIFO – based linked list of the track segments formed due to the passage of a 

ray through the region of interest. The ray intersects triangles successively till it finally exits the 

problem geometry. Its component variables are given in Table I.10. 

 

Table I.10 - Elements of trace_list 

VARIABLE 

NAME 
DATA TYPE SIGNIFICANCE 

segment track_segment 
Represents one track segment along a ray, which forms one 

of the several elements of the list 

Next trace_list pointer Address of the next element in the list 

 

 

I.10 RAY 

 

ray represents a derived data structure used to assemble all data related with a characteristic 

streaming path. Its component variables are given in Table I.11. 

 

Table I.11 - Elements of ray 

VARIABLE 

NAME 
DATA TYPE SIGNIFICANCE 

fi Real Angle of inclination of the ray w.r.t +ve X – axis 

c0 Point Initial point of a ray on the problem geometry 

tri_id_0 Integer ID of initial mesh in which the ray enters 

n_track_segments Integer Number of track segments formed by the ray 

reflected_ray_id Integer ID of reflective counterpart of the ray 

rt_head triang_list pointer Header element of the trace list of the ray 

rt_tail triang_list pointer Tail (last) element of the trace list of the ray 
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I.11 PSI 

 

psi is a dynamic array which contains the angular flux values along a ray at various points of 

intersection of ray with the triangular meshes, size being the number of track segments,        , 

or             . 

 


