SUBSYNCHRONOUS RESONANCE DAMPING USING INDUCTION MACHINE DAMPING UNIT

DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY IN POWER SYSTEM

Submitted by:

Sanjeet Kumar Mahto

(2K13/PSY/16)

Under the supervision of

Prof. Narendra Kumar

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

2015

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CERTIFICATE

I, Sanjeet Kumar Mahto, Roll No. 2K13/PSY/16 student of M. Tech. (Power System), hereby declare that the dissertation titled "Subsynchronous Resonance Damping Using Induction Machine Damping Unit" under the supervision of Prof. Narendra Kumar, Professor, Department of Electrical Engineering, Delhi Technological University in partial fulfilment of the requirement for the award of the degree of Master of Technology has not been submitted elsewhere for the award of any Degree.

Place: Delhi Date:

SANJEET KUMAR MAHTO

Prof. Narendra Kumar Professor (Former Head, EED) Department of Electrical Engineering Delhi Technological University

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Prof. Narendra Kumar for his guidance and assistance in the dissertation. The technical discussions with him were always been very insightful, and I will always be indebted to him for all the knowledge he shared with me. His prompt responses and availability despite his constantly busy schedule were truly appreciated. He always helped me in all the technical and non-technical issues during the production of this dissertation. Without his consistent support, encouragement and valuable inputs, this dissertation would not have become possible.

I would like to express my deep gratitude to Prof. Madhusudan Singh, Head, Department of Electrical Engineering for providing his support during my project.

I would also like to thank my batch-mates and friends who encouraged and helped me in completing the dissertation. A special mention to Saurabh, Anuj, Sidhant and Faizan for their continued support and motivation.

Finally, I express my deep sincere thanks to my Parents, my brother who motivated and encouraged me for higher studies, without which it wouldn't have been possible.

SANJEET KUMAR MAHTO (2K13/PSY/16) M.Tech (Power System)

CONTENTS

CERTIFICATE	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
CONTENTS	iv
LIST OF FIGURES	vii
LIST OF TABLES	viii
Chapter 1 Introduction	1
1.1 General	1
1.2 Subsynchronous Resonance	2
1.2.1 Types of Subsynchronous interactions	4
1.2.2 Subsynchronous Resonance analysis Tools	5
1.2.3 Counter measures to Subsynchronous Resonance Problems	8
1.3 FACTS Devices	11
1.4 Induction Machine Damping Unit	12
1.5 Objective and scope of thesis	13
1.6 Outline of thesis	13
Chapter 2 Literature Review	15
2.1 General	15
2.2 Literature Survey	15
Chapter 3 Modeling of Synchronous Machine	20
3.1 Introduction	20
3.2 Stator Modeling	20
3.3 Flux Linkage Equations	24
3.4 State Equations of Generator	
3.5 Modeling of Mechanical system (Generator)	27
3.6 State Equations of Generator Mechanical System	27

Chapter 4 Modeling of Excitation System, Mechanical System, SVS and		
Network	29	
4.1 Modeling of Excitation System	29	
4.1.1Introduction	29	
4.1.2 IEEE TYPE- 1 Excitation System		
4.1.3 State Equations		
4.2 Modeling of Network	31	
4.2.1 Introduction	31	
4.2.2 State Equations		
4.3 Modeling of SVS	35	
4.3.1 Introduction	35	
4.3.2 State Equations		
4.4 Modeling of Mechanical System		
4.4.1 Introduction		
4.4.2 State Equations	40	
4.5 Modeling of IMDU	41	
4.6 Development of System Model	41	
Chapter 5 Results and Discussion	44	
Chapter 6 Conclusion and Future Scope	54	
REFERENCES	55	
APPENDIX	59	

ABSTRACT

Power transmitted through a power system network is influenced by three parameters namely voltage, impedance and phase difference. Development of high voltage and high current power semiconductor devices has led to flexible AC transmission systems (FACTS). Series compensation has been widely used to enhance the power transfer capability. However, series compensation gives rise to dynamic instability and subsynchronous resonance (SSR) problems. Many preventive measures to cope with this dynamic instability problem in series compensated lines have been reported in literature. Induction machine damping unit can be used to damp out SSR oscillations. This is best suited for study of induction generator effect and torsional interaction effects.

The main focus of this thesis is to analyse IMDU characteristics to damp subsynchronous resonance. IMDU is coupled to T-G shaft. The advantage of using IMDU to damp SSR is that we need no other controller. The IEEE First Benchmark Model for subsynchronous studies is used to study Eigenvalues analysis and time domain simulations. The optimal location of IMDU along the T-G shaft has been determined by performing Eigenvalues analysis. It is found that locating IMDU after the IP turbine yields the maximum damping effect.

LIST OF FIGURES

Figure No.	Name	Page No
Fig 1.1	Series Compensated Power Transmission Line	3
Fig 1.2	IMDU connected system	12
Fig 3.1	Schematic layout of windings of synchronous machine	21
	and their two axis representation	
Fig 3.2	Circuit Model for the stator of Synchronous Machine	22
Fig 4.1	Excitation System block diagram	29
Fig 4.2	IEEE Type- 1 Excitation System	30
Fig 4.3	α – axis Representation of Series compensated Network	32
Fig 4.4	Six Spring – Mass model to Turbine Generator Shaft	38
Fig 4.5	Electrical Analogous of Six Spring Mass Turbine	39
	Generator Model	
Fig 4.6	Interconnection of Various Subsystems in Overall System	42
	Model	
Fig 5.1	Eigenvalues of System Matrix Without IMDU	48
Fig. 5.2	Stable and Unstable Modes of System without IMDU	48
Fig. 5.3	Eigenvalues of System with IMDU installed before HP	49
	Turbine	
Fig. 5.4	Stable and Unstable Modes with IMDU before HP	49
	Turbine	
Fig. 5.5	Eigenvalues of System with IMDU installed after HP	50
	Turbine	
Fig. 5.6	Stable and Unstable Modes with IMDU after HP Turbine	50

Fig. 5.7	Eigenvalues of System with IMDU installed in between	51
	IP and LPA turbine	
Fig. 5.8	Stable and Unstable Modes with IMDU in between IP	51
	and LPA Turbine	
Fig. 5.9	Eigenvalues of System Matrix with IMDU in between	52
	LPA and LPB	
Fig. 5.10	table and Unstable Modes with IMDU in between LPB	52
	and LPB	
Fig. 5.11	Eigenvalues of System Matrix with IMDU in between	53
	LPB and Generator	
Fig. 5.12	table and Unstable Modes with IMDU in between LPB	53
	and Generator	

LIST OF TABLES

Table No.	Name	Page No
Table 1.1	SSR counter Measures and their Suitability	11
Table 5.1	Load Flow Study at $PG = 800 \text{ MW}$	45
Table 5.2	Load Flow Study at $PG = 500 \text{ MW}$	45
Table 5.3	Load Flow Study at $PG = 200 \text{ MW}$	45
Table 5.4	System Eigenvalues without any Damping Scheme/	46
	Controller	
Table 5.5	Eigenvalues with IMDU connected at various locations	47