A Major Project Report II On

A Novel Cryptography Based Security In Cloud Computing

Submitted in Partial Fulfillment of the Requirement

For the Award of the Degree of

Master of Technology

In

Software Engineering

Ву

Raju Kumar University Roll No. 2K13/SWE/14

Under the Esteemed Guidance of

Dr. S. K. Saxena Computer Science & Engineering Department, DTU

2013-2015

COMPUTER SCIENCE & ENGINEERING DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY

DELHI - 110042, INDIA

DECLARATION

I hereby declare that the Major Project-II work entitled "A Novel Cryptography Based Security In Cloud Computing" which is being submitted to the Delhi Technological University, in partial fulfillment of requirements for the award of degree of Master of Technology (SWE) in the Department of Computer Science & Engineering, is a bonafidereport of the Major Project-II carried out by me. The material contained in this report has not been submitted to any University or Institution for the award of any degree.

Raju Kumar Roll no:- 2K13/SWE/14 M.Tech.(Software Engineering) Email:-yadavraju03@yahoo.com

CERTIFICATE

This is certify that the Major Project-II Report entitled "A Novel Cryptography Based Security In Cloud Computing" is the work of Raju Kumar (Roll no. 2K13/SWE/14). This project was completed under my supervision and form a part of Master of Technology (Software Engineering) course curriculum in the Department of Computer Science & Engineering, Delhi Technological University, Delhi.

Date:

(**Dr. S. K. Saxena**)
Project Guide
Dept. of Computer Science & Engineering
Delhi Technological University

ACKNOWLEDGEMENT

First of all, I would like to express my deep sense of respect and gratitude to my

project supervisor Dr. S.K.Saxena for providing the opportunity of carrying out this

project and being the guiding force behind this work. I am deeply indebted to him for

the support, advice and encouragement he provided without which the project could

not have been a success.

Secondly, I am grateful to **Dr. O.P.Verma**, HOD, Computer Engineering Department,

DTU for his immense support. I would also like to acknowledge Delhi Technological

University library and staff for providing the right academic resources and

environment for this work to be carried out.

Last but not the least I would like to express sincere gratitude to my parents and

friends for constantly encouraging me during the completion of work.

Date: Raju Kumar

University Roll no: 2K13/SWE/14

M.Tech (Software Engineering)

Department of Computer Science & Engineering

Delhi Technological University, Delhi – 110042

ABSTRACT

Cloud computing is in demand nowadays because of its reliability. It provide us better platform for sharing data, messages, hardware, software and so on without fear of losing data. The number of users in cloud environment and number of threats on their cloud data are also increasing. In cloud computing, most of the researchers focused mainly on three areas, namely security at client's side, security at network and security at server's side. In this research I have focused both on security aspect of outsourced data and minimization of the duplication data, which also impacts the security of cloud. I have proposed an effective cryptography based security model which is more effective and secure than existing models in terms of performance and reliability. I have used a novel cryptography technique at client side before transmitting the data for increasing the trust of data owner as well as providing the security. I have also used a hashing function for checking the duplication of data so as to minimize space and bandwidth needed to store and upload the duplicate file.

Keywords: Cloud Computing, Network Security, Hashing, Cryptography.

CONTENTS

Declaration	
Certificate	
Acknowledgment	
Abstract	
Contents	
List of Figures	
List of Tables	
Chapter 1	
INTRODUCTION	
1.1 An Overview	01
1.2 General Concept	02
1.3 Motivation	03
1.4 Related Work	03
1.5 Problem Statement	05
1.6 Scope of Work	05
1.7 Organization of Thesis	06
Chapter 2	
CLOUD COMPUTING OVERVIEW	
2.1 Cloud Definitions	07
2.2 History of Cloud	08
2.3 Cloud Models	09
2.3.1 Deployment Models	09
2.3.2 Service models	12

2.4 Advantage of Cloud Computing	14
2.5 Issue in Cloud	15
Chapter 3	
CRYPTOGRAPHY & NETWORK SECURITY OVERVIEW	
3.1 Security Goals	19
3.1.1 Confidentiality	19
3.1.2 Integrity	19
3.1.3 Availability	19
3.2 Attacks	19
3.2.1 Inside Attack	19
3.2.1 Outside Attack	19
3.3 Attacks Threatening Confidentiality	20
3.3.1 Snooping	20
3.3.2 Traffic Analysis	20
3.4 Attacks Threatening Integrity	20
3.4.1 Modification	20
3.4.2 Masquerading	20
3.4.3 Replaying	20
3.4.4 Repudiation	21
3.5 Attacks Threatening Availability	21
3.6 Cryptography	21
3.6.1 Symmetric-Key Cryptography	21
3.6.2 Asymmetric-Key Cryptography	22
3.6.3 Hashing	22
3.7 Security on Cloud	22
Chapter 4	

PROPOSED METHODOLOGY

4.1 Block Status Table	
4.2 Proposed Symmetric Key Algorithm	
4.2.1 Encryption	
4.2.2 Decryption	
4.3 Proposed Cryptographic Hash Function Algorithm	
4.4 Proposed framework	
4.5 Proposed Model	
Chapter 5	
IMPLEMENTATION AND RESULT ANALYSIS	
5.1 Tools Used	
5.2 Snapshots	
5.3 Objectives	
5.4 Advantages of Proposed Algorithm	

LIST OF FIGURES

Figure 1: Cloud computing	07
Figure 2: Cloud computing architecture	08
Figure 3: Public Cloud	10
Figure 4: Private cloud	10
Figure 5: Hybrid cloud	11
Figure 6: Community Cloud	11
Figure 7: Efficiency & cost related to Cloud service models	14
Figure 8:Block Diagram or Data Encryption and Decryption in Cloud System	37
Figure 9: Client Side Encryption	40
Figure 10: TTPA Table1	40
Figure 11: Decryption	41

7.1. OT 1.1	
List of Tables	
Table 1: Deployment models comparison	12