

DESIGN AND IMPLEMENTATION OF EFFICIENT REVERSIBLE MULTIPLIER

USING VEDIC MATHEMATICS TOOL

A

Thesis

Submitted in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

in

VLSI DESIGN & EMBEDDED SYSTEMS

SUBMITTED BY

Ms. DIKSHA RUHELA

University Roll No: 2k13/VLSI/06

UNDER THE GUIDANCE OF

Dr. MALTI BANSAL

(Assistant Professor)

Department of Electronics & Communication Engineering

Delhi Technological University, Delhi

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-42

2013-2015

ii

DELHI TECHNOLOGICAL UNIVERSITY

Department of Electronics & Communication Engineering

CERTIFICATE

 This is to certify that the dissertation entitled “Design and Implementation of Efficient

Reversible Multiplier using Vedic Mathematics Tool” is a bonafide work of Diksha Ruhela

(University Roll No. 2K13/VLSI/06), a student of Delhi Technological University. This project

was carried out under my direct supervision and guidance and forms a part of the Master of

Technology Course in Electronics and Communication Engineering with specialization in

“VLSI Design and Embedded Systems” at Delhi Technological University, Delhi.

To the best of my knowledge, the matter embodied in the thesis has not been submitted to

any other University/ Institute for the award of any Degree or Diploma.

Date: DR. Malti Bansal

 (Project Guide)
 Assistant Professor
 Department Of Electronics &
 Communication Engineering
 Delhi Technological University

iii

Department of Electronics and Communication Engineering

Delhi Technological University

(Formerly Delhi College of Engineering)

Bawana Road, Delhi- 110042

CANDIDATE’S DECLARATION

I, Diksha Ruhela, Roll No. 2k13/VLSI/06, student of M.Tech (VLSI Design and Embedded

Systems), hereby declare that the dissertation entitled “Design and Implementation of Efficient

Reversible Multiplier using Vedic Mathematics Tool”, under the supervision of Dr. Malti

Bansal, Assistant Professor, Electronics and Communication Engineering Department, Delhi

Technological University, in partial fulfilment of the requirements for the award of the degree of

Master of Technology in VLSI Design and Embedded Systems, has not been submitted elsewhere

for the award of any other degree or diploma.

I hereby solemnly and sincerely affirm that all the particulars stated above by me are true and

correct to the best of my knowledge and belief.

Place: Delhi Diksha Ruhela

Date: 2k13/VLSI/06

iv

ACKNOWLEDGEMENT

My deepest respect and appreciation goes to my advisor, Dr. Malti Bansal, Assistant

Professor, Department of Electronics & Communication Engineering, Delhi Technological

University, for her guidance, support and encouragement provided in my expedition towards

the Master’s Degree in Technology. I will forever be grateful for her endless advice, incredible

patience, generosity and friendship. Without her help and guidance, this dissertation would

have never been possible.

I am also grateful to Prof. Prem R. Chadha, (Head of Department) Department of Electronics

and Communication, Delhi Technological University, for his support.

I am grateful to my father, mother and brother for their enduring love, immense moral

support and encouragement throughout my life and especially during this project.

 DIKSHA RUHELA

 2k13/VLSI/06
 M.Tech
 (VLSI DESIGN
 & EMBEDDED SYSTEMS)

v

ABSTRACT

Multiplier is one of the important block in almost all the arithmetic logic units. These

multipliers are mostly used in the fields of the Digital Signal Processing (DSP), Fast Fourier

Transform, convolution, filtering and microprocessor applications. A system's performance is

generally determined by the performance of the multiplier, because the multiplier is generally

the slowest element in the system. Furthermore, it is generally the most area consuming.

Hence, optimizing the speed and area of the multiplier is a major design issue. Since multiplier

is the main component and hence a high speed and area efficient multiplier can be achieve

by using Vedic mathematics. In this work we have implemented the Vedic multiplier using

Chinese Abacus Adder with and without using Reversible logic gates.

Reversible logic is one of the promising fields for future low power design technologies. Since

one of the requirements of all DSP processors and other embedded devices is to minimize

power dissipation multipliers with high speed and lower dissipations are critical.

This work is devoted to the design of a high speed Vedic multiplier using reversible logic gates.

For arithmetic multiplication, various Vedic multiplication techniques like Urdhva

Tiryakbhyam, Nikhilam and Anurupye have been thoroughly discussed. It has been found that

Urdhva Tiryakbhyam Sutra is the most efficient Sutra (Algorithm), giving minimum delay for

multiplication of all types of numbers, either small or large.

Further, the Verilog HDL coding of Urdhva Tiryakbhyam Sutra for 32x32 bits and 64x64 bits

multiplication and their FPGA implementation by Xilinx Synthesis Tool on Spartan 3E kit have

been done. The synthesis results show that the computation time for calculating the product

of 4x4 multiplication is less as compared with other conventional multipliers.

vi

REFEREED PUBLICATIONS

[1] Dr. Malti Bansal, Diksha Ruhela, “High Speed & Area Efficient Vedic Multiplier using

Adiabatic Logic”, Journal of Basic and Applied Engineering Research Volume 1, Number

11; October-December 2014 pp. 14-17.

[2] Diksha Ruhela & Dr. Malti Bansal, “Vedic Multiplier with Chinese Abacus Adder Design

using Reversible Logic Gates”, International Conference on VLSI, Communication and

Network (VCAN-2015), Alwar-301030, ISBN:978-93-84869-55-7, April – 2015 pp. 9-12.

[3] Diksha Ruhela & Dr. Malti Bansal, “Adiabatic Vedic Multiplier Design Using Chinese

Abacus Approach”, International Journal of Advanced Research in Computer and

Communication Engineering, ISSN (Online) 2278-1021 ISSN (Print) 2319-5940 Vol. 4,

Issue 4, April 2015.

vii

TABLE OF CONTENTS

CERTIFICATE…………..ii

CANDIDATE’S DECLARATION……………………………………………………...iii

ACKNOWLEDGEMENT…………...…………………………………………..……....iv

ABSTRACT…………………….………………………………………………………...v

REFEREED PUBLICATIONS…………………………………………………………vi

TABLE OF CONTENTS………………………………………………………………..vii

LIST OF FIGURES……………………………………………………………………...xi

LIST OF TABLES……………………………………………………………………….x

LIST OF ABBREVIATION………………………………………………………….....xiv

CHAPTER 1 1 - 5

INTRODUCTION 1

1.1 Motivation 2

1.2 Objective 5

1.3 Tools Used 5

CHAPTER 2 6 - 19

VEDIC MULTIPLICATION ALGORITHMS 6

 2.1 History of Vedic mathematics 7

 2.2 Algorithms of Vedic mathematics 10

 2.2.1 Vedic multiplication 10

 2.2.1.1 Urdhva Tiryakbhyam Sutra 10

 2.2.1.2 Nikhilam Sutra 16

 2.3 Performance 17

 2.3.1 Power 17

 2.3.2 Speed 18

 2.3.3 Area 18

viii

CHAPTER 3 20 - 27

DESIGN AND SOFTWARE SIMULATION 20

 3.1 Block design of Vedic multiplier of 64x64 bits 21

 3.2 Implementation of Vedic multiplier of 2x2 bits 22

 3.3 Implementation of Vedic multiplier of 4x4 bits 23

 3.4 Implementation of Vedic multiplier of 8x8 bits 25

 3.5 Implementation of Vedic multiplier of 16x16 bits 26

 3.6 Implementation of Vedic multiplier of 32x32 bits 27

CHAPTER 4 30 - 35

 REVERSIBLE LOGIC GATES 31

 4.1 Reversible Logic 32

CHAPTER 5 36 - 41

 CHINESE ABACUS ADDER 37

 5.1 Introduction 37

 5.2 Operation Principle 37

 5.2.1 B/A Module 39

 5.2.2 P/A Module 39

 5.2.3 T/B Module 41

 CHAPTER 6 42 - 45

 ADDERS 42

 6.1 Ripple Carry Adder 43

 6.2 Carry Look Ahead Adder 44

 6.3 Carry Save Adder 44

 6.4 Carry Select Adder 45

 6.5 Carry By-pass Adder 45

ix

 CHAPTER 7 46 - 50

 ARCHITECTURE OF PROPOSED WORK 46

 7.1Architecture of Reversible Urdhva Tiryakbhayam Multiplier 47

 CHAPTER 8 51 - 61

 RESULTS AND CONCLUSION 51

 8.1 Result 61

 8.2 Conclusion & Future scope 61

 REFERENCES 62

APPENDIX A: VHDL CODE OF PROPOSED WORK

APPENDIX B: CERTIFICATE IN CONFERENCE OF IJARCCE-2015

 AND PUBLISHED PAPER

APPENDIX C: CERTIFICATE IN CONFERENCE OF VCAN-2015 AND

 PUBLISHED PAPER

APPENDIX D: CERTIFICATE IN CONFERENCE OF AEPCECE-2014

 AND PUBLISHED PAPER

x

LIST OF FIGURES

Figure No. Title of Figure Page No.

Chapter 2

Figure 2.1: Multiplication of two decimal numbers by Urdhva Tiryakbhyam 12

Figure 2.2: Line diagram for multiplication of two 4 - bit numbers 14

Figure 2.3: Hardware architecture of the Urdhva Tiryakbhyam multiplier 15

Figure 2.4: Multiplication Using Nikhilam Sutra 17

Chapter 3

Figure 3.1: Block diagram of 64x64 Vedic Multiplier 21

Figure 3.2: Block diagram of 2x2 Multiplier 22

Figure 3.3: RTL View of 2x2 Bits Multiplier by ModelSim 23

Figure 3.4: Block diagram of 4x4 Bit Vedic Multiplier 23

Figure 3.5: Algorithm of 4x4 bit Vedic Multiplier 24

Figure 3.6: RTL View of 4x4 Bit Vedic Multiplier by ModelSim 25

Figure 3.7: 8 X 8 Bits decomposed Vedic Multiplier 26

Figure 3.8: 16 x 16 Bits decomposed Vedic Multiplier 27

Figure 3.9: 32 X 32 Bits proposed Vedic Multiplier 28

Figure 3.10: Block diagram of 32X32 Bit Vedic Multiplier 28

Figure 3.11: RTL View of 32X32 bits Vedic Multiplier 29

Chapter 4

xi

Figure 4.1: Block diagram of Reversible Gates 35

Chapter 5

Figure. 5.1: Chinese-abacus coding represents (a) a decimal number and (b) an octal

 Number 38

Figure 5.2: Block diagram of radix-4 abacus adder 39

Chapter 6

Figure 6.1: Block diagram and truth table of full adder 43

Chapter 7

Figure 7.1: Conventional implementation of 2x2 UT Multiplier 48

Figure 7.2: Reversible Implementation of 2x2 UT multiplier 49

Figure 7.3: Reversible logic gate implementation of Chinese Abacus Adder 49

Figure 7.4: Block diagram of proposed 4x4 UT Multiplier using Chinese Abacus Adder 50

Chapter 8

Figure 8.1: Block diagram of 4 bit ripple carry adder 52

Figure 8.2: RTL view of 4 bit ripple carry adder 53

Figure 8.3: Simulation result of 4 bit ripple carry adder 53

Figure 8.4: Block diagram of 4 bit Carry Look Ahead carry Adder 54

Figure 8.5: RTL view of 4 bit Carry look ahead adder 54

Figure 8.6: Simulation result of 4 bit carry look ahead adder 55

Figure 8.7: Block diagram of radix-4 Chinese Abacus Adder 55

Figure 8.8: RTL view of Chinese Abacus Adder 56

Figure 8.9: Simulation result of Chinese Abacus Adder 56

xii

Figure 8.10: Block Diagram of 4x4 Vedic Multiplier Using Chinese Abacus Adder 58

Figure 8.11: RTL view of 4x4 Vedic multiplier without using reversible logic gates 58

Figure 8.12: Simulation Result for 4x4 Vedic multiplier without using reversible logic

 Gates 59

Figure 8.13: RTL view of 4x4 Vedic multiplier using reversible logic gates 59

Figure 8.14: Simulation result of 4x4 Vedic multiplier using reversible logic 60

xiii

LIST OF TABLES

Table No. Title of Table Page No.

Chapter 8

Table 8.1: Comparison of tables 57

Table 8.2: Comparison of UT design with and without using reversible logic gates 60

xiv

LIST OF ABBREVIATIONS

 ADSP : Advanced Digital Signal Processing

 ASIC : Application-Specific Integrated Circuit

 ATE : Automatic Test Equipment

 ATPG : Automatic Test Pattern Generator

 BIST : Built In Self-Test

 CIAF : Computation Intensive Arithmetic Functions

 CLB : Combinational Logic Blocks

 CPLD : Complex Programmable Logic Device

 CUT : Circuit Under Test

 DFT : Design for Test

 DFT : Discrete Fourier Transforms

 DSP : Digital Signal Processing

 FFT : Fast Fourier Transforms

 FPGA : Field Programming Gate Array

 IC : Integrated Circuits

 IFFT : Inverse Fast Fourier Transforms

 IOB : Input Output Blocks

 IOP : Input Output Pins

 ISE : Integrated Software Environment

 JTAG : Joint Test Action Group

 LFSR : Linear Feedback Shift Register

 MAC : Multiply and Accumulate

 NCD : Native Circuit Description

 NGC : Native Generic Circuit

 NGD : Native Generic Database

 ORA : Output Response Analyser

 PAR : Place And Route

xv

 PLA : Programmable Logic Arrays

 PRPG : Pseudo Random Pattern generator

 ROM : Read Only Memory

 RPG : Random Pattern Generation

 RTL : Register Transfer Level

 SOPC : System-On - A - Programmable-Chip

 SR : Signature Registers

 TPG : Test Pattern Generator

 UCF : User Constraints File

 UT : Urdhva Triyakbhyam

 VM : Vedic Mathematics

1

CHAPTER-1

INTRODUCTION

2

1.1 MOTIVATION

Multipliers are one of the most important functional block in digital filters such as Finite

Impulse Response (FIR) and Infinite Impulse Response (IIR) Filters. These filters are used in

a wide variety of Digital Signal Processing (DSP) applications such as A/D converters, signal

modulators, audio signal processing, multimedia, and process control just to name a few.

Digital multipliers are the one of the repeated used essential block in any digital circuit design.

They are having high speed of operation, most reliable and energy efficient components that

are mainly used to utilized for implementing any operation. With the increase in demand of

various DSP application led to increases the demand of high speed processing. One of the vital

function of arithmetic operations in such applications is multiplication and the implementation

of high speed multiplier circuit has been a subject of interest over decades. Arithmetic

operations having higher throughput are essential to achieve the desired performance in many

real-time signal and image processing applications [2]. This work presents different multiplier

architectures comparison with the proposed Vedic multiplier in area, power and speed prospect.

Multiplication-based operations includes Multiply and Accumulate (MAC) operation and inner

product are one of the frequently used Computation- Intensive Arithmetic Functions (CIAF)

currently implemented and designed for many Digital Signal Processing (DSP) applications

that includes convolution, Fast Fourier Transform (FFT), audio signal processing , signal

modulator, filtering and in microprocessors in its arithmetic and logic unit and many others[1].

Currently, multiplication time is still the dominant factor in determining the instruction cycle

time of a DSP chip. Most of the execution time in DSP algorithms is dominated in

multiplication process only, so there is a need of high speed along with less power dissipation

and area efficient multiplier. Reducing the time delay and power consumption are one of the

very essential requirements for many applications [2, 3].

3

Multiplier based on Vedic Mathematic using Chinese Abacus Adder is one of the fast and low

power consumption multiplier. Minimizing power consumption and area for digital systems

involves optimization at all levels of the design. This optimization process includes the

technology used for implementing the digital circuits or digital logic gates, the architecture

view for implementing the circuits, the circuit style and circuit topologies, and at the highest

level of implementation stage, the algorithms that are being implemented for its design of

operation. Multiplier is also available in different type depending upon the arrangement of the

components, thus it provides the availability to the designer to choose the particular type of

multiplier architecture based on the application. Initially multiplication operation was

implemented generally with a sequence of addition, subtraction and shift operations. Many

algorithm proposals have been found in literature to perform multiplication operation, each

offering different advantages and having trade off in terms of speed of operation, circuit design

complexity, area usage and power consumption.

In many DSP operations, the multiplier plays a vital role in determining the speed of operation.

It mainly lies in the critical delay path and ultimately determines the performance of the

algorithm. For any general purpose processor includes DSP the speed of multiplication

operation is of great importance. For many computing system the multiplier is a fairly large

block and therefore minimizing the circuitry involve in its designing is also an area of research.

The amount of circuitry which is involved in designing is directly proportional to the square of

its resolution i.e., a multiplier of size ‘n’ bits has n2 gates. For performing the multiplication

algorithms in DSP applications latency and throughput are the two major concerns area seen

from delay perspective. Latency is defined as the amount of real delay in computing a function,

a measure of how long the inputs to a device remains stable, till the final result available at

outputs. Throughput is defined as the measuring of the count of multiplications performed in a

given period of time. It is found that multiplier is not only a high delay block but also having a

4

source of power dissipation. That’s why it is also one of the major aim of designer to design

the block having minimum power consumption. Delay optimization technique can be used to

reduce the delay associated with the block.

In all the digital signal processors (DSPs), digital multiplier is one of among core component

and the speed of the DSP at high extend is mainly determined by the computation speed of its

multipliers. There are many algorithm design for doing the multiplication in past decades, the

most commonly used multiplication algorithm in the digital hardware are booth multiplication

algorithm and array multiplication algorithm. Booth multiplication is one of the important

multiplication algorithm used in digital hardware. In this algorithm large booth arrays are required

for doing the high speed multiplication and exponential operations which in turns to require large

number of partial sum and partial carry registers. For doing the multiplication of any two n-bit

operands using a radix-4 booth multiplier requires approximately n / (2m) clock cycles to generate

the least significant half of the final product, where m is the number of Booth recorder adder stages.

Thus, it associates a large propagation delay. Whereas in case of Array algorithm the computation

time taken by the multiplier is comparatively less because the partial products which are

generated are calculated independently in parallel. In the array multiplier the delay is basically

associated with the time taken by the signals to propagate through the gates that form the

multiplication array.

In this thesis, to design the high speed & area efficient digital multiplier architecture, Urdhva

Tiryakbhyam Sutra along with the Chinese abacus approach is used. This architecture is seem

to be very similar to one of the popularly designed array multiplier architecture. The

effectiveness of this Sutra is to reduce the NXN multiplier structure into some efficient low

order radix multiplier structures. The proposed multiplication algorithm is illustrated to show

its computational efficiency by taking an example of reducing a 4X4-bit multiplication to a

single 2X2-bit multiplication operation [4]. This proposed work presents a systematic design

5

for fast and area efficient digit multiplier for multiplying binary number system based on Vedic

mathematics using Chinese abacus adder. The Multiplier Architecture is based on one of the

famous Vertical and Crosswise algorithm of ancient Indian Vedic Mathematics [5].

1.2 OBJECTIVE

The objective of this work is to design a high speed, area efficient and less power dissipated

multiplier which can be used in any DSP as well as other processors application. This work deals

with the study, design and implementation of Vedic multiplier using Chinese abacus adder. In this

work, study of Vedic multiplication, has been explored. Architecture of Vedic multiplier based on

speed, area and power dissipation specification is designed here. Hardware Implementation of this

multiplier has been done on Spartan 3E Board.

1.3 TOOLS USED

Simulation Software: Modelsim6.1e has been used for simulation. ISE9.2i (Integrated system

environment) has been used for synthesis and verification.

Hardware used: Xilinx Spartan3E (Family), XC3S500 / XC3S1600 (Device), FG320 / FG484

(Package), -5 (Speed Grade) FPGA devices.

6

CHAPTER-2
VEDIC MULTIPLICATION ALGORITHMS

7

2.1 HISTORY OF VEDIC MATHEMATIC

Sri Bharati Krsna Tirthaji (1884-1960) rediscovered the maths of the ancient system between

the period of 1911 and 1918, known as “Vedic Mathematics”, from the Sanskrit text known as

the Vedas. At the initial period of the twentieth century, when Europe was showing a great

interest in Sanskrit text, Bharati Krsna tells us about some scholars ridiculed certain texts

which were headed 'Ganita Sutras'- which means mathematics. At that time they failed in

finding the mathematics during the translation and dismissed the texts as rubbish. Bharati

Krsna, who was himself a scholar of Sanskrit, Mathematics, History and Philosophy, studied

these texts thoroughly and after lengthy investigation he was able to reconstruct the

mathematics of the Vedas. At his research he found that all of mathematics is based on sixteen

Sutras or word-formulae.

 All the several modern mathematical terms including arithmetic, geometry (plane, co-

ordinate), trigonometry, quadratic equations, factorization and even calculus has been covered

in that. For example, 'Vertically and Crosswise` is one of these Sutras. These formulae have a

great logic for directing one mind in natural way, this formulae actually describe the way mind

naturally works. It is a very appropriate method for studying the maths and generating one

interest in subject.

The interesting feature of the Vedic system is its coherence. The whole system is unified,

systematic and interrelated with each other instead of using the hotch-potch of unrelated

techniques. And these are all easily understood. This unifying quality make it very attractive

and satisfying, it not only makes the mathematics easy but also make it enjoyable and

encourages innovation.

8

In the Vedic system, Vedic method is often used for solving the large sum or 'difficult'

problems. These innovative and striking methods are just make a part of a complete system of

mathematics which is far more systematic, unified and interrelated than the modern 'system'.

Vedic Mathematics manifests the coherent and unified structure of mathematics and the

methods are complementary, direct and easy.

 Because of the beauty of Vedic mathematic which claimed to work on the natural principles

on which the human minds works helps to reduce the cumbersome-looking calculations come

across in conventional mathematics to a very easy simple one. It is one of the beauty of Vedic

mathematics. This is one of the very interesting and attractive field and presents some effective

algorithms which can be used to applied in various branches of engineering such as computing

and digital signal processing [8, 9].

Vedic Mathematics composed the part of Jyotish Shastra which is itself a parts of Vedangas.

The word “Vedic” is originated from the word “Veda” which means the store-house of all

knowledge. Vedic mathematics is generally based on 16 Sutras (or aphorisms) dealing with

various branches of mathematics like arithmetic, algebra, geometry, etc. These Sutras along

with their brief meanings are enlisted below alphabetically.

1) (Anurupye) Shunyamanyat – If one is in ratio, the other is zero.

2) Chalana-Kalanabyham – Differences and Similarities.

3) Ekadhikina Purvena – By one more than the previous One.

4) Ekanyunena Purvena – By one less than the previous one.

5) Gunakasamuchyah – The factors of the sum is equal to the sum of the factors.

6) Gunitasamuchyah – The product of the sum is equal to the sum of the product.

9

7) Nikhilam Navatashcaramam Dashatah – All from 9 and last from 10.

8) Paraavartya Yojayet – Transpose and adjust.

9) Puranapuranabyham – By the completion or non-completion.

10) Sankalana- vyavakalanabhyam – By addition and by subtraction.

11) Shesanyankena Charamena – The remainders by the last digit.

12) Shunyam Saamyasamuccaye – When the sum is the same that sum is zero.

13) Sopaantyadvayamantyam – The ultimate and twice the penultimate.

14) Urdhva-tiryakbhyam – Vertically and crosswise.

15) Vyashtisamanstih – Part and Whole.

16) Yaavadunam – Whatever the extent of its deficiency.

As mentioned earlier, all the above mentioned Sutras were rediscovered from ancient Vedic

texts in the early period of last century. Many Sub-sutras were also discovered at the same time,

which are not discussed here. These methods and ideas which have been discovered during that

period of time can be directly applied to system of mathematical tools like trigonometry, plain

and spherical geometry, conics, calculus (both differential and integral), and applied

mathematics of various kinds.

The multiplier architecture based upon its architecture is generally classified into three

categories. First is the serial multiplier which mainly emphasizes on hardware and minimum

amount of chip area consumption. Second is parallel multiplier (array and tree) which is mainly

used to carries out high speed mathematical operations. But the drawback of parallel multiplier

is the consumption of relatively larger chip area. Third is the combination of serial- parallel

10

multiplier which serves as a good trade-off between the time consuming serial multiplier and

the area consuming parallel multiplier.

2.2 ALGORITHMS OF VEDIC MATHEMATICS

2.2.1 VEDIC MULTIPLICATION

The proposed Vedic multiplier presented in this work is design using the Vedic multiplication

formulae (Sutras). Traditionally in the Vedic mathematics the Sutras have been used for the

multiplication of numbers belongs to the decimal number system. In this work, we apply the same

ideas of multiplication for multiplying the numbers belongs to the binary number system to

make the proposed algorithm compatible with the digital hardware. Vedic multiplication is

based on some algorithms; some are discussed below:

2.2.1.1 URDHVA TIRYAKBHYAM SUTRA

 Urdhva – tiryagbhyam (UT) is the general formula applicable to all cases of multiplication and

also in the division of a large number by another large number. It means “Vertically and cross

wise.” The concept behind of this sutra is the generation of all partial products can be done

with the concurrent addition of these partial products. The operation of parallelism in

generation of partial products and their concurrent addition is obtained using Urdhava

Triyakbhyam explained in fig 2.1. The algorithm can be generalized for order of radix. Due to

parallel operation of the generation of the partial products and their sums, the multiplier is

independent of the clock frequency of the processor. Thus, the multiplier will require the less

amount of time comparative to conventional method to calculate the product and hence is

independent of the clock frequency. The net advantage is that it reduces the frequent

interference of microprocessors to operate at increasingly high clock frequencies. While a

higher clock frequency generally results in increased processing power, its disadvantage is that

11

it also increases power dissipation which results in higher device operating temperatures.

These problems of higher power dissipation can easily be circumvent by adopting this Vedic

multiplier in place of other conventional multiplier by microprocessors designer in order to

avoid catastrophic device failures. Due to regular structure, on increasing the input and output

data bus widths the processing power of the multiplier can be easily varied or increased and

also it can also be easily fabricated in a silicon chip. The Multiplier has the merit that on

increasing the number of bits, area and gate delay increases very slowly as compared to other

multipliers. Therefore it is area, time and power efficient. It is showing that this architecture is

quite efficient in terms of silicon area and speed [10, 4].

1) Multiplication of two decimal numbers- 325*738

To illustrate this multiplication scheme, let us consider two decimal numbers (325 * 738).

Diagram for the multiplication of these number is shown in Fig.2.2. It has been shown below

that the digits on the both sides of the line are multiplied and added with the carry obtained

from the previous step. This generates calculation results into one of the bits of the final result

and a carry. This generated carry of the previous stage is added in the next step of the

calculation and hence the process goes on till all the digits get multiplied. If more than one line

are there in one step, all the results are added to the previously generated carry. In each step,

least significant bit generated acts as the result bit of that product and all other bits act as carry

for the next step. Initially, the carry is taken to be zero. To make this methodology more clear, an

alternate illustration by taking an example is given with the help of line diagrams in figure 2.2

where the dots represent bit “0” or “1”[4].

12

Figure 2.1: Multiplication of two three digits decimal numbers by Urdhva Tiryakbhyam.

2) Algorithm for the multiplication of two 4 x 4 bit Binary number Using Urdhva

Tiryakbhyam (Vertically and crosswise) [10]

13

3) Algorithm for the multiplication of two 8 X 8 Bit Binary number Using Urdhva

Triyakbhyam (Vertically and crosswise) [11]

14

To elucidate the multiplication algorithm, let us consider the example of two binary numbers

a3a2a1a0 and b3b2b1b0. This 4 digit multiplication terms would results in more than 4 bits,

we express it as ..r4r3r2r1r0. Line diagram for the multiplication of two 4-bit numbers is shown

in Fig. 2.2 which is nothing but the one to one mapping of the Fig.2.1 in binary system. For

easily understanding, each bit is represented by a circle. Least significant bit r0 is simply

obtained by multiplying the least significant bits of the four bit multiplicand and the multiplier.

The process is followed according to the steps shown in Fig. 2.1.

Firstly, least significant bits of the multiplicand are multiplied with the least significant bit of

the multiplier which results in the least significant bit of the product (vertical). Then, the next

higher bit of the multiplier is multiply by LSB of the same multiplicand and added with the

crosswise product of LSB and next higher bit of the multiplier and multiplicand respectively.

The sum which generated from this computation is added into second bit of the product and

the carry is generated is added with the output of next stage sum which is obtained by the

crosswise and vertical multiplication and addition of three bits of the two numbers from least

15

significant position. In last, all the four bits are processed likewise with crosswise

multiplication and addition to give the final sum and carry. The resultant sum is the result of

the product of corresponding bit of the multiplicand and multiplier and the carry which is

generated is added to the next stage of multiplication and addition of three bits except the LSB.

The same operation processed with the MSBs until the multiplication of the two MSBs of the

multiplicand and multiplier each results into the MSB of the product. For example, if in some

intermediate step, we get 100, then 0 will act as result bit (referred as rn) and 10 as the carry (referred

as cn). It should be clearly noted that cn may be a multi-bit number.

Thus we get the following expressions:

with c6r6r5r4r3r2r1r0 being results into the final multiplication product. Hence, this is the

general mathematical formula applicable to all cases of multiplication.

16

The hardware realization of a binary number of 4-bit multiplier is shown in figure2.3. It has

been seem that this hardware design shown above is very similar to that of the famous array

multiplier where an array of adders is required to arrive at the final product. All the partial

products in this algorithm are calculated in parallel and the delay associated is mainly the time

consuming process mainly by the carry propagating in each steps through the adders which

form the multiplication array. Clearly, it is seem that it is not an efficient or suitable algorithm

for doing the multiplication of large numbers as a lot of propagation delay is involved in each

consecutive cases and hence led to slow processing speed. To deal with this problem, we now

discuss Nikhilam Sutra which produce an efficient method of multiplying two large numbers

in less propagating carry steps.

2.2.1.2 NIKHILAM SUTRA

Nikhilam Sutra literally means “all from 9 and last from 10”. This sutras is basically more

efficient when the numbers involved for multiplication contain large bits. Since it mechanism

17

involves in finding out the compliment of the large number from its nearest base to perform

the multiplication operation on it. Its basic fundamental is larger is the original number, lesser

the complexity of the multiplication it involves. We first illustrate this Sutra by considering the

multiplication of two decimal numbers, let us considered the example (96 * 93) whose base is

100. Basically the base is chosen according to the given number which is nearest to and greater

than both the given two numbers which has been multiplied.

The right hand side (RHS) of the given product can be obtained by simply multiplying the

numbers of the Column 2 (7*4 = 28) as shown above. The left hand side (LHS) of the product

of the given number can be found by cross subtracting the second number of Column 2 from

the first number of Column 1 or vice versa, i.e., 96 - 7 = 89 or 93 - 4 = 89 as shown above by

line illustration. The final result is obtained by concatenating RHS and LHS (Answer = 8928)

[4].

2.3 PERFORMANCE

2.3.1 POWER:

18

In the study we have found that the Vedic Multiplier requires lesser number of gates

comparative to other algorithm for given NxN bits Multiplier so its power dissipation is very

small as compared to other multiplier architectures studied so far. Because of the less switching

operation of its architecture comparative to other architectures for same operation.

 2.3.2 SPEED:

Vedic multiplier algorithm results in one of the fastest algorithm comparative to the other

algorithm of multiplier like array multiplier and Booth multiplier. As the number of bits

increases from NxN bits to N*2xN*2 bits, the timing delay is greatly reduced comparatively

to the other multiplier. Vedic multiplier has the greatest advantage as compared to other

multipliers on various parameter like gate delays and regularity of structures. In the

comparative study of multiplication for 16 x 16 bit number in Vedic, Booth and array multiplier

it is found that the delay in Vedic multiplier for 16 x 16 bit number is 32 ns while the delay in

Booth and Array multiplier are 37 ns and 43 ns respectively [12]. Thus, this analysis illustrate

that Vedic multiplier shows the highest speed among other conventional multipliers.

 2.3.3 AREA:

In the comparative study and on analysis it is found that the area needed for Vedic square

multiplier is comparatively less as compared to other multiplier architectures i.e., the number

of devices used in Vedic square multiplier are 259 while Booth and Array Multiplier, are 592

and 495 respectively; for 16 x 16 bit number when implemented on Spartan FPGA [12].

Thus, the analysis shows that the algorithm used for Vedic square multiplier is consuming less

area and the high speed of the reviewed architectures. The Vedic square and cube architecture

proved to exhibit improved efficiency in terms of speed and area compared to Booth and Array

Multiplier. Due to its parallel and regular structure, this architecture can be easily be realized

19

on silicon and can work at high speed without increasing the clock frequency. It has the

advantage that as the number of bits increases, the gate delay and area increase very slowly as

compared to the square and cube architectures of other multiplier architecture. Speed

improvements are gained by parallelizing the generation of partial products with their

concurrent summations. It is demonstrated that this design is quite efficient in terms of silicon

area/speed. Such a design should enable substantial savings of resources in the FPGA when

used for image/video processing applications.

20

CHAPTER-3
DESIGN AND SOFTWARE SIMULATION

21

The implementation technique and designing tool used for the designing of the Vedic

Multiplier is based on a novel technique of digital multiplication which is quite different from

the conventional method of multiplication like add and shift, where smaller blocks are used to

design the bigger one. The Vedic Multiplier is designed in Verilog HDL, as its give effective

utilization of structural method of modelling. The individual block is implemented using

Verilog hardware description language. The functionality of each block is verified using

simulation software, ModelSim and ISE.

3.1 DESIGN OF 64X64 BITS VEDIC MULTIPLIER

This block represents the implementation of 64x64 bit Vedic Multiplier.

There are four ports namely, data input (A_IN), data input (B_IN), clock (CLK), data output

(Q_OUT); all signals are active high.

The representation has four ports:

1) A_IN (63:0): It is the first input of 64 bit to the Vedic Multiplier.

2) B_IN (63:0): It is the second input of 64 bit of the Vedic Multiplier.

3) CLK: It is clock input.

4) Q_OUT (127:0): It is the output register of 128 bit Vedic Multiplier.

22

This code was designed using synchronous resets, use in FPGAs. Both numerical accuracy and

performance of the Vedic Multiplier versions of this code have been verified in a Xilinx Spartan

3E XC3s500 / 3E XC3s1600 at 50 MHZ and also by ModelSim6.1e.

3.2 IMPLEMENTATION OF VEDIC MULTIPLIER OF 2X2 BITS

It is clear that this basic building blocks of multiplier consist of one bit multipliers and one bit

adders. One bit multiplication can be performed through two input AND gate and for addition,

full adder can be utilized. The 2 x 2 bit multiplier is shown in figure 3.2.

Let’s take two inputs, each of 2 bits; say A1A0 and B1B0 and the output is of four bits, say

Q3Q2Q1Q0. As per basic method of multiplication, result is obtained after getting partial

product of each bits of multiplicands and doing addition simultaneously of each partial product.

As per the Vedic mathematic algorithm, Q0 is the vertical product of bit A0 and B0, Q1 is

addition of crosswise bit multiplication i.e., A1 & B0 and A0 and B1 respectively, and Q2 is

again vertical product of bits A1 and B1 with the carry generated, if any, from the previous

23

stage of the addition during Q1. Q3 output is nothing but carry generated during Q2 while

calculation. This module is known as 2x2 multiplier block [5].

3.3 IMPLEMENTATION OF VEDIC MULTIPLIER OF 4X4 BITS

For doing the multiplication of the higher no. of bits in the input, some modification is required.

For example:- Divide the no. of bits apply in the inputs in to two equal parts.

24

For analyse 4x4 multiplications, we takes A3A2A1A0 and B3B2B1B0 and the multiplication

result of the given four bits number be Q7Q6Q5Q4Q3Q2Q1Q0. Block diagram of 4x4 Vedic

Multiplier is shown in fig 3.4.

Let four bits number is divided into two small parts says A and B, A3 A2 & A1 A0 for A and

B3B2 & B1B0 for B. Using the fundamentals of Vedic multiplication algorithms, we takes

two bits at a time by using 2 bit multiplier block

Each block of 2x2 bits multiplier is shown above. The inputs of the first 2x2 multiplier are A1

A0 and B1 B0 and for the last block of 2x2 multiplier is fed with inputs A3 A2 and B3 B2. The

middle one shows two, 2x2 bits multiplier with inputs A3A2 & B1B0 and A1A0 & B3B2. So,

the final result of multiplication, which is of 8 bit is results into Q7Q6Q5Q4Q3Q2Q1Q0 [5].

The 4x 4 bit multiplier is structured using 2X2 bit blocks as shown in figure 3.6.

25

Figure 3.6: RTL View of 4x4 Bit Vedic Multiplier by ModelSim

3.4 IMPLEMENTATION OF VEDIC MULTIPLIER OF 8X8 BITS

The implementation of 8x8 bit Vedic multiplier is structured using 4X4 bit multiplier blocks

as shown in figure 3.7. As shown in this figure, the 8 bit multiplicand let say A can be

decomposed into pair of 4 bits let it be AH-AL. Similarly, multiplicand say B can be

decomposed into BH-BL. The resultant 16 bit product can be written as:

P= A x B= (AH-AL) x (BH-BL)

 = AH x BH+AH x BL + AL x BH+ AL x BL

The outputs of each partial 4X4 bit multipliers are added accordingly to obtain the final product

of 8x8 bit multiplier. Thus, in the final stage, two adders are also required for the computation

process [12]. Now the basic building block of 8x8 bits Vedic multiplier is decomposed into

26

4x4 bits multiplier which can be implemented in its structural model. For bigger multiplier

implementation like 8x8 bits multiplier, the 4x4 bits multiplier units have been used as

components which are already implemented in ModelSim6.1e or Xilinx ISE9.2i library.

 RESULT = (Q15- Q8) & (Q7- Q4) & (Q3-Q0)

Figure 3.7: 8X8 Bits decomposed Vedic Multiplier [12].

3.5 IMPLEMENTATION OF VEDIC MULTIPLIER OF 16X 16 BITS

The implementation of 16X16 bit multiplier structured using partial 8X8 bits blocks is shown

in Figure 3.8. In this Figure 3.8 the 16 bit multiplicand A can be decomposed into pair of 8

bits AH-AL as done in case of 8x8 bit multiplier. Similarly multiplicand B can be decomposed

into BH-BL. The outputs of 8X8 bit multipliers are added accordingly to obtain the 32 bits

final product. Thus, in the final stage for doing the summation two adders are required [12].

Similarly, we have extended in a similar manner for input bits 32, 64.

27

RESULT = (Q31- Q16) & (Q15- Q8) & (Q7- Q0)

Figure 3.8: Block diagram of 16x16 Bits decomposed Vedic Multiplier [12].

3.6 IMPLEMENTATION OF VEDIC MULTIPLIER OF 32X32 BITS

In this the 32 bits multiplicand say A is decomposed into pairs of 16 bits AH-AL. Similarly,

32 bits multiplicand B can be decomposed into BH-BL. Block diagram of the architecture of

32x32 bits Vedic Multiplier is shown in figure 3.9.

The outputs of 16X16 bit multipliers are added accordingly to obtain the 64 bits final product.

Thus, in the final stage, two adders are required for computation.

28

 RESULT = (Q63-Q32) & (Q31-Q16) & (Q15-Q0)

Figure 3.9: 32X32 bits proposed Vedic Multiplier.

The 32X32 bit multiplier is structured using small 16X16 bit blocks. The block diagram of 32

x32 bit multiplier is shown below.

Figure 3.10: Block diagram of 32X32 Bit Vedic Multiplier

The implemented RTL view of 32x32 bits Vedic Multiplier by using 16x16 blocks with the

help of ModelSim6.1e Tool is given below:

29

Figure 3.11: RTL View of 32X32 bits Vedic Multiplier

30

CHAPTER-4
REVERSIBLE LOGIC GATES

31

Energy loss is one of the important part of consideration in designing the digital circuit. The

technological non ideality of switches and materials is one of the part which cause the energy

loss in the system. And it is seems that the other cause of the problem arises from Landauer's

principle for which there is no solution. Landauer's Principle [3] states that logical

computations that are irreversible necessarily generate k*T*ln (2) joules of heat energy, where

k is the Boltzmann's Constant (k=1.38xlO-23 J/K), T is the absolute temperature at which the

computation is performed. The heat generated in this although be very small and can be

negligible , But as we know Moore's Law predicts the loss of information with the exponential

growth of heat generated, which will be a very much noticeable amount of heat loss in next

decade. Also, the second law of thermodynamics states that, any process that is reversible in

nature will not change its entropy. If we see from the thermo dynamical grounds, the erasure

of one bit of information from the mechanical degrees of a system must be accompanied by the

thermalization of an amount of k*T*ln (2) joules of energy. The information entropy H can be

calculated for any probability distribution. Similarly the thermodynamic entropy S refers to

thermodynamic probabilities specifically.

Where the gain in entropy always represent nothing more but the loss of information. In simple

language we can say the design that is free from the information loss is called reversible. It

naturally takes care of heat generated due to information loss. Bennett [4] states that by

replacing the network with reversible logic gates zero energy dissipation would be possible.

Thus, in future circuit design technologies reversibility enters and become the essential

property.

In [6], the multiplier is designed using two units; one is the partial product generation unit

constructed using Fredkin gates and other is the summing unit constructed using 4x4 TSG

gates. [8] presented a fault tolerant reversible 4x4 multiplier circuit. For construction of this

32

circuit parity, preserving FRG and MIG gates were used. Multiplier circuit was designed in

two parts. In second part of circuit instead of using half adders and full adders MIG gates were

used. [7] has proposed a design of reversible multiplier which makes use of Peres gate for

generation of partial products as compared to [10], which uses Fredkin gates. For the

construction of adders the HNG gate was devised. [15] proposes low quantum cost realization

of reversible multipliers which mainly uses Peres full adder gate (PF AG) for its design. It also

uses Peres gates for the generation of partial products.

4.1 REVERSIBLE LOGIC

Reversible logic is refers to a promising computing design paradigm which presents a method

for constructing computers that produce no heat dissipation. Reversible computing emerged as

a result of the application of quantum mechanics principles towards the development of a

universal computing machine that produce no heat dissipation. Specifically, the fundamentals

of reversible computing are based on the relationship between entropy, heat transfer between

molecules in a system, the probability of a quantum particle occupying a particular state at any

given time, and the quantum electrodynamics between electrons when they are in close

proximity. The basic principle of reversible computing is to obtained the device with an

identical number of input and output lines which will produce a computing environment where

the electrodynamics of the system allow for prediction of all future states based on known past

states, and the system reaches every possible state, resulting in no heat dissipation.

 A reversible logic gate is an N-input N-output logic device that provides one to one mapping

between the input and the output. It not only helps us to determine the outputs states from the

inputs states but also helps us to uniquely recover the inputs from the outputs. Garbage outputs

are those which do not contribute to the reversible logic realization of the design. Quantum

cost refers to the cost of the circuit in terms of the cost of a primitive gate. Gate count is the

33

number of reversible gates used to realize the function. Gate level refers to the number of levels

which are required to realize the given logic functions.

The following are the important design constraints for reversible logic circuits:

I. Reversible logic gates do not allow fan-outs.

2. Reversible logic circuits should have minimum quantum cost.

3. The design can be optimized so as to produce minimum number of garbage outputs.

4. The reversible logic circuits must use minimum number of constant inputs.

5. The reversible logic circuits must use a minimum logic depth or gate levels.

The basic reversible logic gates encountered during the design are listed below:

I. Feynman Gate [5]:

It is a 2x2 reversible logic gate. It is also known as Controlled Not (CNOT) Gate. It has

quantum cost one and is generally used for Fan Out purposes.

2. Peres Gate [17]:

It is a 3x3 reversible logic gate. It has quantum cost four. It is used to realize various Boolean

functions such as AND, XOR.

3. Fredkin Gate [16]:

It is a 3x3 reversible logic gate. It has quantum cost five. It can be used to implement a

Multiplexer.

4. HNG Gate[7]:

34

It is a 4x4 reversible logic gate. It has quantum cost six. It is used for designing ripple carry

adders. It can produce both sum and carry in a single gate thus minimizing the garbage and

gate counts.

5. NFT Gate[5]

The 3*3 New Fault Tolerant gate (NFT) with quantum cost of 5 and has worst case delay of 3

it has better correction capability. The output states map to the inputs in this manner.

 A = A XOR B, B = AC' XOR B'C, and

 C = AC' XORB C,

6. F2G Gate[5]

The 3*3 Feynman double gate gate with quantum cost of 2 has worst case delay of 3 it has better

correction capability.

35

Figure4.1: Reversible Logic Gates[1][2][3][4][5]

36

CHAPTER-5
CHINESE ABACUS ADDER

37

5.1 INTRODUCTION

The Chinese abacus is one of the very popular and efficient technique used to perform various

arithmetic operations. It is one of the mostly used techniques in China for doing the

mathematical calculation in schools, colleges and other small commercial enterprises. Since

last centuries, it is adopted in many parts of the world. The speed of use is the main feature of

the Chinese abacus which make it competitor with other techniques. A well-trained operator

is often capable of competing with electronic pocket calculators. The time required for

inputting data manually is comparable to the electronic approach, and the generation of the

result in the Chinese abacus is so straightforward that the total computation time is extremely

less.

5.2 OPERATION PRINCIPLE

The design of Chinese abacus is consists of a set of unity elements, each elements representing

the various decade of decimal number. Each element is made up of unity weight five beads and

two beads having a weight of 5. The representation of this shown in Fig.5. 1(a) represents the

number seven. The coding rule is used in this is thermometric; thus, in order to represent a

number below five, then in the main part of units the same number of beads will be raised. For

numbers above five, one bead with having the weight 5 will be lowered. In such a way, a

decimal number comprised in the range from 0 to 15 can be represented using a basic element.

The the use of two beads with weight 5 is one of the key feature of Chinese abacus adder. This

allows the operator to minimize the transmission of rests. A fast implementation of elementary

arithmetic functions such as addition and subtraction can be performed using the thermometric

code.

38

Fig. 5.1. Chinese-abacus coding represents (a) a decimal number and (b) an octal number.

In this work, each basic column element of this abacus adder has three lower beads with a

weight of one and three higher beads with a weight of four. The basic element is able to

represent decimal numbers in the range from 0 to 15 as depicted in figure 5.1(a). In this

methodology, the 4-bit adder only contributes two carry ripple transmissions. One is internal

carry from lower beads to higher beads; the other is external carry from this column element

to next column element.

The function of this abacus adder is divided into three parts as depicted in figure 5.2. The first

part is B/A (binary to abacus) module. The second part is P/A (parallel addition) module. The

third part is T/B (Thermometric to Binary) transformation module. The three modules are

discussed in the following sections.

As shown in figure 5.2 the function of radix-4 abacus adder is completed in four phases. In

first phase, binary input is converted into abacus output known as B/A(binary to abacus)

module. In second phase, parallel additon takes place know as P/A(paralle addition module).

In the last third phase, thermometric input is converted into binary output know as T/B(

thermometric to binary) transformation module.

39

Figure5.2: Block diagram of radix-4 abacus adder.

 5.2.1 B/A module:

This module converts a 4-bit binary number (b3b2b1b0)2 into an abacus representation

(H2H1H0|L2L1L0) abacus. (H2H1H0) represent three higher beads each having the weight of

four. Similarly, (L2L1L0) represent three lower beads each having unity weight. (H2H1H0)

and (L2L1L0) are calculated by the following equations:

where 0 < H2 < H1 < H0 <1 and 0 < L2 <L1 <L0<1.

For example, (0111)2 = (001|111)abacus = (0+0+1)*4 + (1+1+1)*1 = 7.

5.2.2 P/A module:

This block is used to count the lower and higher beads (L2L1L0), (H2H1H0) of the abacus

numbers, respectively. The sum of (H2AH1AH0A) and (H2BH1BH0B), the upper part P/A

40

shown in figure 2, will then be represented as the thermometric transformation

(K5K4K3K2K1K0), where 0 < Ki < Kj < 1 for i > j.

The function of P/A module is modelled in the following equations:

This module has the functionality same as that of multiplexer. The addend A is used as a signal

selector to modify the configuration of augend B resulting in the thermometric sum as shown

in figure 3. The addend A consist of four order each for higher beads (H2AH1AH0A) or lower

beads (L2AL1AL0A), i.e., 000, 001, 011, and 111. The sum of (L2AL1AL0A) and

(L2BL1BL0B), the lower part P/A shown in figure 5.2, it is also representing the thermometric

transformation as per the following equations:

41

For example, higher beads from addend A (H2AH1AH0A) =111 and higher beads from augend

B (H2BH1BH0B) = 011 will activate the segment. The thermometric sum (K5K4K3K2K1K0)

will be (011111). The P/A module as depicted in figure 5.2 are derived from the equations (3)–

(18). This P/A module is used to count all beads simultaneously. Whereas Gang’s abacus adder

count each bead one after one [7].

5.2.3 T/B module:

This module is used to transforms the thermometric sum to binary numbers. Outputs S1 (or

S3), S0 (or S2) and Cout are determined by the following equations

42

CHAPTER-6
ADDERS

43

Arithmetic operations such as addition, subtraction, multiplication and division are widely used

and play a very vital role in various digital systems operation such as digital signal processor

(DSP) architecture, microprocessor and microcontroller and data process unit.

Adders are one of the essential logic circuits designed to perform high speed arithmetic

operations and are one of the basic block in designing of any digital systems because of their

extensive use in several basic operations such as subtraction, multiplication and division. In

many computers and other kinds of processors, adders are used not only in the arithmetic logic

unit, but also in other parts of the processing operation of processor, where they are used to

calculate addresses, table indices, and other same kind of operations. The very basic arithmetic

operation of the adder is the addition of two binary digits, i.e., bits. A combinational circuit

that adds two bits whose the schematic diagram is shown below is called a half adder. The

block diagram and truth table of the full adder is shown in Fig. 6.1. It is used to add three bits,

where the third bit is generated from a previous addition operation i.e., carry coming from

lower order bits after addition [1]-[6].

Figure 6.1: Block diagram and truth table of full adder

 Addition is one of the fundamental arithmetic operation that is used in many VLSI design

systems like DSP architecture, microprocessor, microcontroller and data process unit. For

44

enhancing fast computation process this VLSI system requires fast addition which impacts the

overall performance of digital system. Adder is used for doing this addition operation. Adder

structure is classified in various ways depending upon their execution procedure such as serial

or parallel way. Many studies has been carried out in designing of high-speed, low-area, or

low-power adders [7]-[10]. Some of these types of adders are Ripple Carry Adder (RCA),

Carry-Look ahead Adder (CLA), Carry Save Adder (CSA), Carry Select Adder, Carry-Bypass

Adder or Carry Skip Adder (CSK) etc. discussed in brief [11-22].

6.1. Ripple Carry Adder (RCA)

RCA is simply an array of full adder connected in series so that the carry must propagate

through every full adder before the addition is complete. Each full adder inputs a Cin, which is

the Cout of previous adder. This kind of adder is called as a ripple carry adder, since each carry

bit ripples to the next full adder. RCA is always preferred in terms of power and area when it

appears to be fast enough for its intended purpose. RCAs requires the least amount of hardware

comparative of all other adders, but it is the slowest because of the ripple of carry in each full

adder [11]-[12].

6.2. Carry Look ahead Adder (CLA)

Two come over the drawback of RCA, CLA has been designed. A fast method of adding

numbers is called carry-look ahead. The computation method of this adder is fast because it

does not require the carry signal to propagate stage by stage, causing a bottleneck. Instead it

uses additional logic to expedite the propagation and generation of carry information, allowing

fast addition at the expense of more hardware requirement [15]-[18].

6.3. Carry Save Adder (CSA)

45

CSA is a kind of adder with low propagation delay, it adds three input numbers to an output

pair of numbers instead of adding two input numbers to a single sum output. Where its two

outputs are then summed by a traditional carry-look ahead or ripple carry adder, we receive the

sum of all three inputs. In particular, the propagation delay of a CSA is not affected by the

width of vectors being added. Each full adder’s output S is connected to corresponding output

bit of one output, and it’s output Cout is connected to the next higher output bit of the second

output; the lowest bit of the second output is fed directly from the carry-save’s Cin input [23].

6.4. Carry Select Adder

In the Carry Select Adder the n-bit adder is divided into “k” ripple-carry adders of n/k bits each

and except the lowest order part; all these adder blocks are simulated. The simplest n-bit carry

select adder is built using three n/2 bit ripple carry adders. The first adder is utilized to compute

the lower half of the n-bit sum, while the other two compute the higher half: one based on the

assumption that the input carry is zero, the other based on the assumption that it is one. This

way the computation of the higher half can start immediately without the wait for the lower

half to complete. When the lower half of the sum is computed and the carry input for the next

stage is available, the correct half of the sum is selected by a multiplexer. Because of the

simulation technique, the required area and power consumption of this adder particularly

doubles with respect to RCA [23].

6.5. Carry-Bypass Adder or Carry Skip Adder (CSK)

CSK is very simple but creative adder with a minimum number of additional logic. The n-bit

adder is divided into “k” ripple-carry adder blocks. Each adder block has a group propagate

signal meaning that when this signal is 1, an incoming carry cannot be absorbed and will

propagate through the adder block as an alternative by skipping the adder segment via the skip

logic [14].

46

CHAPERT -7

ARCHITECHTURE OF PROPOSED WORK

47

7.1 ARCHITECTURE OF REVERSIBLE URDHVA TIRYAKBHAYAM MULTIPLIER

The 4x4 Vedic multiplier is design using Urdhva Tiryakbhayam sutra along with the Chinese

abacus methodology for doing the addition of the partial generated products. It may simply use

three 4-bit abacus adders, shown in figure 7.3. The all component of multiplier has been

designed using reversible logic gates. The digital logic implementation of the 2X2 Urdhva

Tiryakbhayam multiplier using the conventional logic gates [11] is as shown in figure 7.1. The

expressions for the four output bits are given below figure 7.1. The block diagram of reversible

logic gate implementation of 2x2 UT multiplier is as shown in figure 7.4. This design does not

consider the fanouts. The circuit requires a total of six reversible logic gates out of which five

are Peres gates and remaining one is the Feynman Gate. The quantum cost of the 2X2 Urdhva

Tiryakbhayam Multiplier is enumerated to be 21. The number of garbage outputs is 9 and

number of constant inputs is 4.

The high speed, area efficient and less power dissipated Reversible 4X4 Urdhva Tiryakbhayam

Multiplier emanates from the 2X2 multiplier. The block diagram of the proposed high speed,

area efficient and less power dissipated 4X4 Vedic Multiplier is shown in the figure 7.4. The

4x4 Vedic Multiplier consists of four 2X2 multipliers, each of which processes four bits as an

inputs; two bits from the multiplicand and two bits from the corresponding multiplier. The

lower two bits of the output of the first 2X2 multiplier are entrapped as the lowest two bits of

the final result of multiplication. Two zeros are concatenated with the upper two bits and fed

as an input to the four bit Chinese abacus adder. The other four input bits for the Chinese abacus

adder are obtained from the second 2X2 multiplier. Likewise, the outputs of the third and the

terminal 2X2 multipliers are given as inputs to the second four bit Chinese abacus adder. The

outputs of these four bit Chinese abacus adders are in turn 5 bits each, which need to be summed

48

up. This is done by a five bit Chinese abacus adder which generates a six bit output. These six

bits form the upper bits of the final result.

The Chinese abacus adder is consummated (realized) using the NFT and F2G Gate. Single NFT

Full Adder (SNFA) is a Fault Tolerant full adder circuit which consists of one New Fault

Tolerant (NFT) gate and three Feynman Double (F2G) gates where the quantum cost is 11 and

the total number of garbage outputs is 3. This design also does not take into consideration the

fanouts of the gates. For this design the quantum cost is calculated to be 162, the number of

garbage outputs will be 62, the total number of gates used will be 36 and the number of constant

inputs will be 29.

Figure 7.1: conventional logic implementation of 2x2 UT multiplier [19]

q0 = a0.b0,

 ql= (a1.b0) xor (a0.bl),

q2= (a0.al.b0.bl) xor (al.bl),

 q3= a0.al.b0.bl,

49

Figure 7.2: Reversible Implementation of 2x2 UT Multiplier

Figure 7.3: Reversible logic gate implementation of Chinese Abacus Adder. [5]

50

Figure 7.4: Block diagram of proposed 4x4 UT Multiplier using Chinese Abacus Adder[34].

51

CHAPTER-8

RESULTS AND CONCLUSION

52

In this work we have implemented and analyse the Vedic multiplier in two ways and compared

the results. In first work, we have compared the ripple carry adder, carry look ahead adder and

Chinese Abacus adder; in the second work we design the Vedic multiplier using Chinese

abacus adder with and without using reversible logic gates and compares the results.

First work:

Comparison of the 4 bit ripple carry adder and Carry Look Ahead Adder with the radix-4

Chinese abacus adder is done and it is found that Chinese abacus adder is much faster than

ripple carry adder and carry look ahead adder. The RTL view and simulation results of both

the adders are shown below:

 Ripple carry Adder:

Figure 8.1: Block diagram of 4 bit ripple carry adder

53

 Figure 8.2: RTL view of 4 bit ripple carry adder

 Figure 8.3: Simulation result of 4 bit ripple carry adder

 Carry Look Ahead Adder

54

 Figure 8.4: Block diagram of 4 bit Carry Look Ahead carry Adder

Figure 8.5: RTL view of 4 bit Carry look ahead adder

55

Figure 8.6: Simulation result of 4 bit carry look ahead adder.

 Chinese Abacus Adder

Figure8.7: Block diagram of radix-4 abacus adder.

56

 Figure 8.8: RTL view of Chinese Abacus Adder

Figure 8.9: Simulation result of Chinese Abacus Adder

57

TABLE 8.1 COMPARISON OF ADDERS

 Methods Ripple Carry Adder Carry Look Ahead Adder Abacus Adder

Number of slices

 4 out of 768 (4%)

 5 out of 768 (3%)

 6 out of 768 (3%)

Number of 4 input

LUTs

 7 out of 1536 (4%) 8 out of 1536 (3%) 10 out of 1536 (3%)

Number of bonded

IOBs

 13 out of 97 (17%) 14 out of 97 (17%) 13 out of 97 (17%)

Net propagation delay 10.923 ns 11.88 ns 9.678 ns

Frequency 91.54 MHz 84.17 MHz 103.32 MHz

Result:

Simulation results shows that although Chinese abacus adder takes larger area as compared to

other ripple carry adder and carry look ahead adder, but results in 11% less propagation delay

& 18.53% less propagation delay compares to ripple carry adder and carry look ahead adder,

respectively.

Second work:

In this work, we have designed the Vedic multiplier with Chinese abacus adder with and

without using reversible logic gates, and compared the results.

58

Figure 8.10: Block Diagram of 4x4 Vedic Multiplier Using Chinese Abacus Adder

 Vedic multiplier without using revesible logic gates

 Figure 8.11: RTL view of 4x4 Vedic multiplier without using reversible logic gates.

59

Figure 8.12: Simulation Result for 4x4 Vedic multiplier without using reversible logic gates.

 Vedic multiplier using reversible logic gates.

 Figure 8.13: RTL veiw of 4x4 Vedic multiplier using reversible logic gates

60

 Figure 8.14: simulation result of 4x4 Vedic multiplier using reversible logic gates

TABLE 8.2: COMPARISON OF UT DESIGN WITH AND WITHOUT USING REVERSIBLE LOGIC

GATES

Methods UT design using conventional

method

UT design using reversible logic

gates

Number of slices
36 out of 768 (4%)

28 out of 768 (3%)

Number of 4 input LUTs 65 out of 1536 (4%) 49 out 1536 (3%)

Number of bonded IOBs 17 out of 97 (17%) 16 out of 97 (17%)

Net propagation delay 20.705 ns 15.830 ns

Frequency 48.297MHz 63.17MHz

61

8.1 RESULT:

Results show that 4x4 UT vedic multiplier designed in this work using reversible logic gates,

consume less area and has high speed as compared to 4x4 UT vedic multiplier design without

using reversible logic gates. Results shows that 4x4 UT vedic multiplier with using reversible

logic gates is 23% faster and takes less area than UT design without reversible logic gates.

8.2 CONCLUSION & FUTURE SCOPE:

Results shows that Vedic multiplier design using UT sutra tailored with the Chinese abacus

adder can be used in designing the application requiers fast computaion and on chip area is not

in much concern. The use of Vedic multiplier approach results in a competitive technique as

compared respect to conventional fast multiplier. The simulation results show that this approach

of Vedic multiplier using Chinese Abacus adder is very efficient for low-power, high-speed

applications. This architecture is also easy for pipeline implementation. Another advantage is

that the methodology may reduce the number of ripple carries and partial product generation in

many steps. It can be inferred that Vedic multiplier using Chinese Abacus adder is quite efficient

as compared to the conventional multiplier, for multiplication operation.

62

REFERENCES

[1] R. Feynman, "Quantum Mechanical Computers," Optics News, Vol.1l, pp. 11-20, 1985.

[2] Peres, “Reversible logic and quantum computers”, Phys. Rev. A 32 (1985) 3266-3276.

[3] E. Fredkin and T. Toffoli,"Conservative Logic", Int'l 1 Theoretical Physics Vo121,

pp.219-253, 1982.

[4] M. Shams, M. Haghparast and K. Navi, Novel reversible multiplier circuits in

nanotechnology. World Appl. Sci. J., 3(5): 806-810, 2008.

[5] Shailja Shukla, Tarun Verma and Rita Jain, “Design of 16 Bit Carry Look Ahead Adder

Using Reversible Logic”, International Journal of Electrical, Electronics and Computer

Engineering 3(1): 83-89(2014).

[6] Franco Maloberti and Chen Gang, "The Chinese Abacus method can we use it for digital

arithmetic", Proceedings of the 8th Great Lakes Symposium on VLSI, pp. 192 - 195 19-

21 Feb. 1998.

[7] Franco Maloberti and Chen Gang, "Use of the Chinese Abacus method for digital

arithmetic functions", Proceedings of the 1998 IEEE International Symposium on

Circuits and Systems, Vol. 5, pp. 213 - 216, vol.5, 31 May - 3 June 1998.

[8] Franco Maloberti and Chen Gang, "Performing Arithmetic Functions with the Chinese

Abacus Approach," IEEE Transactions on circuits and systems-II: Analog and Digital

Signal processing, vol. 46, no. 12, pp. 1512- 1515, Dec. 1999.

[9] B.D. Andreev, E. Titlebaum, Friedman. E.G., "Tapered Transmission Gate Chains for

Improved Carry Propagation,"MWSCAS-2002. The 45th Midwest Symposium on

Circuits and Systems, Volume 3, pp. 449 - 452, Aug. 4-7, 2002.

[10] Behrooz Parhami “Computer Arithmetic-Algorithms and Hardware Designs”, Oxford

University Press, Inc (2000).

63

[11] G Ganesh Kumar and V Charishma, “Design of high speed Vedic multiplier using

Vedic mathematics techniques”, ltn'l J. of Scientific and Research Publications, Vol. 2

Issue 3, pp. 32-36 March 2012.

[12] Somayeh Babazadeh and Majid Haghparast, "Design of a Nanometric Fault Tolerant

Reversible Multiplier Circuit" Journal of Basic and Applied Scientific Research, Vol 2

pp. 25-28 Mar 2012.

[13] Shu-Chung Yi, Kun-Tse Lee, Jin-Jia Chen, Chien-Hung Lin, Chuen-Ching Wang, “The

new architecture of radix-4 Chinese abacus adder”, Proceedings of the 36th International

Symposium on Multiple-Valued Logic (ISMVL’06) on 17 May 2006 IEEE Conference.

[14] Shu-Chung Yi, “Performing Arithmetic Functions with the Chinese Abacus

Approach”, IEEE Transaction on circuits and systems-II on Mar-1, 2012.

[15] Rakshith Saligram and Rakshith T.R. "Design of Reversible Multipliers for linear

filtering Applications in DSP", International Journal of VLSI Design and

Communication systems, Dec-2012.

[16] Harpreet Singh Dhillon Abhijit Mitra, "A Digital Multiplier Architecture using

Urdhava Tiryabhyam Sutra of Vedic Mathematics", International Conference on Design

& Technology of Integrated Systems in Nanoscale Era, Dec-2008.

[17] Purushottam D. Chidgupkar and Mangesh T. Karad, “The Implementation of Vedic

Algorithms in Digital Signal Processing”, Global J. of Eng. Educ., Vol.8, No.2 © 2004

UICEE Published in Australia.

[18] Himanshu Thapliyal and Hamid R. Arabnia, “A Time-Area- Power Efficient Multiplier

and Square Architecture Based On Ancient Indian Vedic Mathematics”, International

Conference on Low Power Design at Graduate Studies Research Center Athens, Georgia

U.S.A. Jul 17, 2011.

64

[19] E. Abu-Shama, M. B. Maaz, M. A. Bayoumi, “A Fast and Low Power Multiplier

Architecture”, The Center for Advanced Computer Studies, Circuit and System, IEEE

39th Midwest Symposium on Vol (1), 18-21 Aug 1996

[20] Harpreet Singh Dhillon and Abhijit Mitra, “A Reduced- Bit Multiplication Algorithm

for Digital Arithmetics”, International Journal of Computational and Mathematical

Sciences 2;2 © www.waset.org Spring 2008.

[21] Shamim Akhter, “VHDL Implementation of Fast NXN Multiplier Based on Vedic

Mathematics”, IEEE Conference on Implementation of Low power Design, Jaypee

Institute of Information Technology University, Noida, Nov-2013.

[22] Charles E. Stroud, “A Designer‟s Guide to Built-In Self-Test”, University of North

Carolina at Charlotte, ©2002 Kluwer Academic Publishers New York, Boston,

Dordrecht, London, Moscow.

[23] Douglas Densmore, “Built-In-Self Test (BIST) Implementations An overview of design

tradeoffs”, University of Michigan EECS 579 – Digital Systems Testing by Professor

John P. Hayes 12/7/01.

[24] Jagadguru Swami Sri Bharati Krishna Tirthji Maharaja,“Vedic Mathematics”, Motilal

Banarsidas, Varanasi, India, 1986.

[25] Himanshu Thapliyal, Saurabh Kotiyal and M. B Srinivas, “Design and Analysis of A

Novel Parallel Square and Cube Architecture Based On Ancient Indian Vedic

Mathematics”, IEEE Conference of Centre for VLSI and Embedded System

Technologies, International Institute of Information Technology, May 2005

[26] Himanshu Thapliyal and M.B Srinivas, “VLSI Implementation of RSA Encryption

System Using Ancient Indian Vedic Mathematics”, Conference of IEEE of VLSI and

Embedded System Technologies, International Institute of Information Technology, May

2004.

65

[27] Himanshu Thapliyal and M.B Srinivas, “An Efficient Method of Elliptic Curve

Encryption Using Ancient Indian Vedic Mathematics”, Conference of IEEE, July 2005.

[28] Deming Chen, Jason Cong, and Peichan Pan, “FPGA Design Automation: A Survey”,

Foundations and Trends in Electronic Design Automation Volume 1 Issue 3, November

2006.

[29] Ken Chapman, “Initial Design for Spartan-3E Starter Kit (LCD Display Control)”,

Xilinx Ltd 16th February 2006.

[30] Goh Keng Hoo, “Verilog design of Input / Output Processor with Built-In-Self-Test”,

Conference of Applied Science in Universiti Teknologi Malaysia, April 2007.

[31] Michael L. Bushnell and Vishwani D. Agrawal, “Essentials of Electronic Testing for

Digital, Memory and Mixed-Signal VLSI Circuits”, Kluwer Academic Publishers, 2002.

[32] Dr. Malti Bansal, Diksha Ruhela, “High Speed & Area Efficient Vedic Multiplier using

Adiabatic Logic”, Journal of Basic and Applied Engineering Research Volume 1,

Number 11; October-December 2014 pp. 14-17.

[33] Diksha Ruhela & Dr. Malti Bansal, “Vedic Multiplier with Chinese Abacus Adder

Design using Reversible Logic Gates”, International Conference on VLSI,

Communication and Network (VCAN-2015), Alwar-301030, ISBN:978-93-84869-55-7,

April – 2015 pp. 9-12.

[34] Diksha Ruhela & Dr. Malti Bansal, “Adiabatic Vedic Multiplier Design Using Chinese

Abacus Approach”, International Journal of Advanced Research in Computer and

Communication Engineering, ISSN (Online) 2278-1021 ISSN (Print) 2319-5940 Vol. 4,

Issue 4, April 2015

66

APPENDIX

67

APPENDIX A

VHDL CODE OF PROPOSED WORK

68

 Ripple Carry Adder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;

--use UNISIM.VComponents.all;

entity rplcarry is port (A0,A1,A2,A3,B0,B1,B2,B3: IN BIT; S0,S1,S2,S3,COUT : OUT BIT);

end rplcarry;

architecture Behavioral of rplcarry is

 COMPONENT threebitadder PORT(A, B, CIN :IN BIT; SUM, CARRY : OUT BIT);

 END COMPONENT;

 SIGNAL CARRY_OUT : BIT_VECTOR(1 TO 3);

 SIGNAL CIN1 : BIT :='0';

begin

 P1: threebitadder PORT MAP(A0, B0,CIN1,S0,CARRY_OUT(1));

 P2: threebitadder PORT MAP(A1, B1,CARRY_OUT(1),S1,CARRY_OUT(2));

 P3: threebitadder PORT MAP(A2, B2,CARRY_OUT(2),S2,CARRY_OUT(3));

 P4: threebitadder PORT MAP(A3, B3,CARRY_OUT(3),S3,COUT);

end Behavioral;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

69

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;

--use UNISIM.VComponents.all;

entity threebitadder is PORT (A , B, CIN: IN BIT ; SUM, CARRY : OUT BIT);

end threebitadder;

architecture Behavioral of threebitadder is

BEGIN

 SUM<= ((A XOR B) XOR CIN);

 CARRY<= (A AND (B XOR CIN)) OR(B AND CIN);

end Behavioral;

 Carry Look Ahead Adder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;

--use UNISIM.VComponents.all;

 ENTITY c_l_addr IS PORT (x_in : IN STD_LOGIC_VECTOR (3 DOWNTO 0);

 y_in : IN STD_LOGIC_VECTOR (3 DOWNTO 0);

 carry_in : IN STD_LOGIC; sum : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);

70

 carry_out : OUT STD_LOGIC);

 END c_l_addr;

 ARCHITECTURE behavioral OF c_l_addr IS

 SIGNAL h_sum : STD_LOGIC_VECTOR (3 DOWNTO 0);

 SIGNAL carry_generate : STD_LOGIC_VECTOR (3 DOWNTO 0);

 SIGNAL carry_propagate : STD_LOGIC_VECTOR (3 DOWNTO 0);

 SIGNAL carry_in_internal : STD_LOGIC_VECTOR(3 DOWNTO 1);

 BEGIN

 h_sum <= x_in XOR y_in;

 carry_generate <= x_in AND y_in;

 carry_propagate <= x_in OR y_in;

 PROCESS (carry_generate,carry_propagate,carry_in_internal)

 BEGIN

 carry_in_internal(1) <= carry_generate(0) OR (carry_propagate(0) AND carry_in);

 inst: FOR i IN 1 TO (3-1) LOOP

 carry_in_internal(i+1) <= carry_generate(i) OR (carry_propagate(i) AND

carry_in_internal(i));

 END LOOP;

 carry_out <= carry_generate(3) OR (carry_propagate(3) AND carry_in_internal(3));

 END PROCESS;

 sum(0) <= h_sum(0) XOR carry_in;

 sum(3 DOWNTO 1) <= h_sum(3 DOWNTO 1) XOR carry_in_internal(3 DOWNTO

1);

 END behavioral;

 Chinese Abacus Adder

entity ADDER is PORT (A0,A1,A2,A3,B0,B1,B2,B3:IN BIT; S0,S1,S2,S3,COUT : OUT

BIT);

end ADDER;

71

architecture Behavioral of ADDER is

 COMPONENT BinTOabc port(A0,A1,A2,A3:IN BIT; H2, H1, H0,L2, L1, L0: OUT BIT);

 end component;

 component PtoA PORT(HA0,HA1,HA2,HB0,HB1,HB2: IN BIT; K0,K1,K2,K3,K4,K5:

OUT BIT);

 end component;

 component TtoB PORT(K0,K1,K2,K3,K4,K5,CIN:IN BIT; B2, B3,COUT: OUT BIT);

 end component;

 SIGNAL HA,HB,LA,LB : BIT_VECTOR(0 TO 2);

 SIGNAL KA,KB:BIT_VECTOR(0 TO 5);

 SIGNAL C1,CIN: BIT;

begin

 Z1: BinTOabc PORT MAP(A0,A1,A2,A3,HA(2),HA(1),HA(0),LA(2),LA(1),LA(0));

 Z2: BinTOabc PORT MAP(B0,B1,B2,B3,HB(2),HB(1),HB(0),LB(2),LB(1),LB(0));

 Z3:PtoA PORT MAP(HA(0),HA(1),HA(2),HB(0),HB(1),HB(2),KA(0),KA(1),KA(2),KA(3),

KA(4),KA(5));

 Z4: PtoA PORT MAP(LA(0),LA(1),LA(2),LB(0),LB(1),LB(2),KB(0),KB(1),KB(2),KB(3),

KB(4),KB(5));

 Z5: TtoB PORT MAP(KA(0),KA(1),KA(2),KA(3),KA(4),KA(5), C1,S2,S3,COUT);

 Z6: TtoB PORT MAP(KB(0),KB(1),KB(2),KB(3),KB(4),KB(5), CIN,S0,S1,C1);

end Behavioral;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;

72

--use UNISIM.VComponents.all;

entity BinTOabc is port(A0,A1,A2,A3:IN BIT; H2, H1, H0,L2, L1, L0: OUT BIT);

end BinTOabc;

architecture Behavioral of BinTOabc is

begin

 H2<=A3 AND A2;

 H1<=A3;

 H0<=A3 OR A2;

 L2<=A1 AND A0;

 L1<=A1;

 L0<=A1 OR A0;

end Behavioral;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;

--use UNISIM.VComponents.all;

entity PtoA is PORT(HA0,HA1,HA2,HB0,HB1,HB2: IN BIT; K0,K1,K2,K3,K4,K5: OUT

BIT);

end PtoA;

architecture Behavioral of PtoA is

begin

 PROCESS (HA0,HA1,HA2,HB0,HB1,HB2)

73

 variable F1,F2: BIT;

 begin

 F1:=(not HA2) AND HA1;

 F2:=(NOT HA1) AND HA0;

 K0<=((not HA0) AND HB0) OR (F2 AND '1') OR (F1 AND '1')OR (HA2 AND '1') ;

 K1<=((not HA0) AND HB1) OR (F2 AND HB0) OR (F1 AND '1') OR (HA2 AND '1') ;

 K2<=((not HA0) AND HB2) OR (F2 AND HB1) OR (F1 AND HB0) OR (HA2 AND '1') ;

 K3<=((not HA0) AND '0') OR (F2 AND HB2) OR (F1 AND HB1) OR (HA2 AND HB0) ;

 K4<=((not HA0) AND '0') OR (F2 AND '0') OR (F1 AND HB2) OR (HA2 AND HB1) ;

 K5<=((not HA0) AND '0') OR (F2 AND '0') OR (F1 AND '0') OR (HA2 AND HB2) ;

 END PROCESS;

end Behavioral;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;

--use UNISIM.VComponents.all;

entity TtoB is PORT(K0,K1,K2,K3,K4,K5,CIN:IN BIT; B2, B3,COUT: OUT BIT);

end TtoB;

architecture Behavioral of TtoB is

begin

 B2<=((NOT K0) AND CIN) OR(((NOT K1) AND K0) AND (NOT CIN)) OR

 (((NOT K2) AND K1) AND CIN)OR (((NOT K3) AND K2) AND (NOT CIN))

 OR (((NOT K4) AND K3) AND CIN) OR (((NOT K5) AND K4) AND (NOT CIN))

 OR (K5 AND CIN);

74

 B3<= K5 OR (K4 AND CIN) OR (((NOT K2) AND K0) AND CIN) OR (((NOT K3) AND

K1) AND (NOT CIN));

 COUT<= K3 OR (K2 AND CIN);

end Behavioral;

75

 UT VEDIC MULTIPLIER DESIGN USING REVERSIBLE LOGIC

GATE

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;

--use UNISIM.VComponents.all;

entity mul_abacus is port(x , y : in bit_vector(0 to 3); q : inout bit_vector(0 to 8));

end mul_abacus;

architecture Behavioral of mul_abacus is

--component ADDER PORT (A0,A1,A2,A3,B0,B1,B2,B3:IN BIT; S0,S1,S2,S3,COUT : OUT

BIT);

--end component;

 component rplcarry port(A0,A1,A2,A3,B0,B1,B2,B3: IN BIT; S0,S1,S2,S3,COUT : OUT

BIT);

end component;

component mux_twobytwo port (a0, a1, b0, b1 : in bit; s0, s1,s2,s3 : out bit);

end component;

 signal link1, link2, link3, link4 : bit_vector(0 to 3);

 signal link5, link6 : bit_vector(0 to 4);

 signal link : bit :='0';

begin

 m1 : mux_twobytwo port map(x(0), x(1), y(0), y(1), q(0), q(1), link1(2), link1(3));

 m2 : mux_twobytwo port map(x(0), x(1), y(2), y(3), link2(0), link2(1), link2(2), link2(3));

 m3 : mux_twobytwo port map(x(2), x(3), y(0), y(1), link3(0), link3(1), link3(2), link3(3));

 m4 : mux_twobytwo port map(x(2), x(3), y(2), y(3), link4(0), link4(1), link4(2), link4(3));

76

 a1 : rplcarry port map(link2(0), link2(1), link2(2), link2(3), link3(0), link3(1), link3(2),

 link3(3),link5(0), link5(1), link5(2), link5(3), link5(4));

 a2 : rplcarry port map(link1(2), link1(3), link, link, link5(0), link5(1) , link5(2),

 link5(3),q(2), q(3), link6(2), link6(3), link6(4));

 a3 : rplcarry port map(link6(2), link6(3), link, link5(4), link4(0), link4(1), link4(2),

 link4(3),q(4), q(5), q(6), q(7), q(8));

end Behavioral;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;

--use UNISIM.VComponents.all;

entity mux_twobytwo is port (a0, a1, b0, b1 : in bit; s0, s1,s2,s3 : out bit);

end mux_twobytwo;

architecture Behavioral of mux_twobytwo is

begin

 s0 <= a0 and b0;

 s1 <= (a1 and b0) xor (a0 and b1);

 s2 <= ((a0 and a1) and (b0 and b1)) xor (a1 and b1);

 s3 <= ((a0 and a1) and (b0 and b1));

end Behavioral;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

77

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;

--use UNISIM.VComponents.all;

entity rplcarry is port (A0,A1,A2,A3,B0,B1,B2,B3: IN BIT; S0,S1,S2,S3,COUT : OUT BIT);

end rplcarry;

architecture Behavioral of rplcarry is

 COMPONENT threebitadder PORT(A, B, CIN :IN BIT; SUM, CARRY : OUT BIT);

 END COMPONENT;

 SIGNAL CARRY_OUT : BIT_VECTOR(1 TO 3);

 SIGNAL CIN1 : BIT :='0';

begin

 P1: threebitadder PORT MAP(A0, B0,CIN1,S0,CARRY_OUT(1));

 P2: threebitadder PORT MAP(A1, B1,CARRY_OUT(1),S1,CARRY_OUT(2));

 P3: threebitadder PORT MAP(A2, B2,CARRY_OUT(2),S2,CARRY_OUT(3));

 P4: threebitadder PORT MAP(A3, B3,CARRY_OUT(3),S3,COUT);

end Behavioral;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;

--use UNISIM.VComponents.all;

78

entity threebitadder is PORT (A , B, CIN: IN BIT ; SUM, CARRY : OUT BIT);

end threebitadder;

architecture Behavioral of threebitadder is

BEGIN

 SUM<= ((A XOR B) XOR CIN);

 CARRY<= (A AND (B XOR CIN)) OR(B AND CIN);

end Behavioral;

79

 UT VEDIC MULTIPLIER DESIGN USING CONVENTIONAL

METHODE

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;

--use UNISIM.VComponents.all;

entity utmulti is port(A0,A1,A2,A3,B0,B1,B2,B3 : IN BIT; S : OUT BIT_VECTOR(0 TO 8));

end utmulti;

architecture Behavioral of utmulti is

 COMPONENT mux_twobytwo port (a0, a1, b0, b1 : in bit; s0, s1,s2,s3 : out bit);

 end component;

 --component rplcarry port (A0,A1,A2,A3,B0,B1,B2,B3: IN BIT; S0,S1,S2,S3,COUT : OUT

BIT);

--end component;

component ADDER PORT (A0,A1,A2,A3,B0,B1,B2,B3:IN BIT; S0,S1,S2,S3,COUT : OUT

BIT);

END COMPONENT;

signal link2, link3, link4, link5 : bit_vector(0 to 3);

signal link1, link6 : bit_vector(2 to 3);

signal link : bit :='0';

SIGNAL CARRY1, CARRY2 : BIT;

begin

 m1: mux_twobytwo port map (A0, A1, B0, B1, S(0), S(1),link1(2), link1(3));

 m2: mux_twobytwo port map (A0, A1, B2, B3, link2(0), link2(1), link2(2), link2(3));

80

 m3: mux_twobytwo port map (A2, A3, B0, B1, link3(0), link3(1), link3(2), link3(3));

 m4: mux_twobytwo port map (A2, A3, B2, B3, link4(0), link4(1), link4(2), link4(3));

 m5: ADDER port map (link2(0), link2(1), link2(2), link2(3), link3(0), link3(1), link3(2),

link3(3),

 link5(0), link5(1), link5(2), link5(3), CARRY1);

 m6: ADDER port map (link1(2), link1(3), link, link, link5(0), link5(1), link5(2), link5(3),

 S(2), S(3), link6(2), link6(3), CARRY2);

 m7: ADDER port map (link6(2), link6(3), link, CARRY1, link4(0), link4(1), link4(2),

link4(3),

 S(4), S(5),S(6),S(7),S(8));

end Behavioral;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;

--use UNISIM.VComponents.all;

entity ADDER is PORT (A0,A1,A2,A3,B0,B1,B2,B3:IN BIT; S0,S1,S2,S3,COUT : OUT

BIT);

end ADDER;

architecture Behavioral of ADDER is

 COMPONENT BinTOabc port(A0,A1,A2,A3:IN BIT; H2, H1, H0,L2, L1, L0: OUT BIT);

 end component;

 component PtoA PORT(HA0,HA1,HA2,HB0,HB1,HB2: IN BIT; K0,K1,K2,K3,K4,K5:

OUT BIT);

 end component;

81

 component TtoB PORT(K0,K1,K2,K3,K4,K5,CIN:IN BIT; B2, B3,COUT: OUT BIT);

 end component;

 SIGNAL HA,HB,LA,LB : BIT_VECTOR(0 TO 2);

 SIGNAL KA,KB:BIT_VECTOR(0 TO 5);

 SIGNAL C1,CIN: BIT;

begin

 Z1: BinTOabc PORT MAP (A0,A1,A2,A3,HA(2),HA(1),HA(0),LA(2),LA(1),LA(0));

 Z2: BinTOabc PORT MAP (B0,B1,B2,B3,HB(2),HB(1),HB(0),LB(2),LB(1),LB(0));

 Z3:PtoA PORT MAP

(HA(0),HA(1),HA(2),HB(0),HB(1),HB(2),KA(0),KA(1),KA(2),KA(3),

KA(4),KA(5));

 Z4:PtoA PORT MAP (LA(0),LA(1),LA(2),LB(0),LB(1),LB(2),KB(0),KB(1),KB(2),KB(3),

KB(4),KB(5));

 Z5: TtoB PORT MAP(KA(0),KA(1),KA(2),KA(3),KA(4),KA(5), C1,S2,S3,COUT);

 Z6: TtoB PORT MAP(KB(0),KB(1),KB(2),KB(3),KB(4),KB(5), CIN,S0,S1,C1);

end Behavioral;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;

--use UNISIM.VComponents.all;

entity mux_twobytwo is port (a0, a1, b0, b1 : in bit; s0, s1,s2,s3 : out bit);

end mux_twobytwo;

architecture Behavioral of mux_twobytwo is

82

begin

 s0 <= a0 and b0;

 s1 <= (a1 and b0) xor (a0 and b1);

 s2 <= ((a0 and a1) and (b0 and b1)) xor (a1 and b1);

 s3 <= ((a0 and a1) and (b0 and b1));

end Behavioral;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;

--use UNISIM.VComponents.all;

entity threebitadder is PORT (A , B, CIN: IN BIT ; SUM, CARRY : OUT BIT);

end threebitadder;

architecture Behavioral of threebitadder is

BEGIN

 SUM<= ((A XOR B) XOR CIN);

 CARRY<= (A AND (B XOR CIN)) OR(B AND CIN);

end Behavioral;

83

APPENDIX B

CERTIFICATE IN CONFERENCE OF

IJARCCE-2015

AND PUBLISHED PAPER

84

APPENDIX C

CERTIFICATE IN CONFERENCE OF

VCAN-2015 AND

PUBLISHED PAPER

85

APPENDIX D

 CERTIFICATE IN CONFERENCE OF

AEPCECE-2014

AND PUBLISHED PAPER

