DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I, Shilpa, Roll No. 2K13/C&I/16, a student of M. Tech. (Control & Instrumentation), hereby declare that the dissertation titled "Automated System for Bottle Filling of Liquid Mixture using PLC" is a bonafide record of the work carried out by me under the supervision of Dr. Mini Sreejeth of Electrical Engineering Department, Delhi Technological University in partial fulfillment of the requirement for the award of the degree of Master of Technology and has not been submitted elsewhere for the award of any other Degree or diploma.

Place: Delhi	(Shilpa)
Date:	

(Dr. Mini Sreejeth)
SUPERVISOR

ACKNOWLEDGEMENT

First and foremost, I express my deep sense of gratitude to my supervisor Dr. Mini

Sreejeth, department of Electrical Engineering for her guidance, support, motivation

and encouragement throughout the period this work was carried out. Her readiness

for consultation at all times, her educative comments, her concern and assistance

has been invaluable.

I also thank all the non-teaching staff of the Electrical Engineering Department for

their fullest cooperation.

I would like to thank all those who have directly or indirectly helped me in

completion of the thesis well in time.

Finally, I wish to thanks my parents for their moral support and confidence showed

in me to pursue M.Tech at an advanced stage of my academic career.

Delhi, 2015

SHILPA

ii

ABSTRACT

Automating the routine tasks in the industries increases the productivity and reduces the probability of error in the system. Traditional methods of bottle filling involved placing bottles manually and filling it. This method is time consuming and expensive. This task needs separate manpower and thus is prone to errors. To automate the control of liquids and mixing two different liquids in defined proportion and finally filling the generated mixer in the bottles automatically and also to reduce human intervention, a PLC based automated bottle filling system is designed. In this bottle filling system, liquids kept in two different reservoir tanks are mixed in a third tank (overhead tank) and mixed liquid is filled in bottles, placed on the conveyor belt. In such process there is no need of labor so there is no human error. Without human error, the quality of product is better and the cost of production would definitely decrease. The implemented automated system has many features such as high level and low level indicators, emergency alarm creations for warning the operator etc. The ON/OFF controls of motors for controlling the liquid level, conveyor belt motor, operation and control of solenoid valve for filling the bottles etc are carried out by PLC programming through ladder logic.

CONTENTS

Certificate	i
Acknowledgement	ii
Abstract	iii
Contents	iv
List of Table	viii
List of Figures	ix
List of Symbols and Abbreviations	xi
CHAPTER 1- INTRODUCTION	
1.1- General	1
1.2- Programmable Logic Controller	1
1.3- Automated Level Controller	3
1.4- Automated Liquid Mixer	3
1.5- Automated Bottle Filling	3
1.6- Project Objective	4
1.7- Organization of Thesis	4
1.8- Conclusion	5
CHAPTER 2- LITERATURE REVIEW	
2.1- General	6
2.2- Literature review	6

2.3- Conclusion	12
CHAPTER 3- PLC AND LADDER LOGIC	
3.1- General	13
3.2- History	13
3.3- Programmable Logic Controller	14
3.3.1- Architecture	15
3.3.2- Input/Output Devices	18
3.3.3- Communication and Networking of PLC	19
3.3.4- PLC Used- GE Fanuc Series 90-30	19
3.4- PLC Operation	22
3.5- Characteristics	23
3.6- System Scale	23
3.7- PLC Applications	24
3.8- Plc Programming Language	25
3.9- Ladder Logic	28
3.9.1- Types of Instructions	29
3.9.2- Ethernet Communication in PLC	31
3.10- Conclusion	33
CHAPTER 4- SYSTEM COMPONENTS	
4.1- General	34
4.2- Hardware Components	34
4.2.1- Solenoid Operated Valve 4.2.1.1- Principle of Operation	35 35

4.2.1.2- Different Parts of a Solenoid Operated Valve	35
4.2.1.3- Working of a Solenoid Valve	37
4.2.2- Infra Red (IR) Sensor Module	37
4.2.2.1- Working Mechanism	38
4.2.2.2- Use as a Proximity Sensor	40
4.2.3- Programmable Logic Controller (PLC)	40
4.2.4- DC Motor (12V)	40
4.2.5- Water Pump	41
4.3- Software Components	41
4.3.1- Ladder Logic	42
4.4- Conclusion	44
CHAPTER 5- DESIGN AND IMPLEMENTATION	
5.1- General	45
5.2- System Architecture	45
5.3- Implementation	49
5.3.1- Products and Features Supported by Proficy	50
5.3.2- Creating a New Program in Proficy Machine Edition	52
5.4- Conclusion	61
CHAPTER 6- OPERATION AND RESULTS	
6.1- General	62
6.2- Sequence of Operation	62

REFERENCES	68
7.2- Future Scope	67
7.1- Conclusion	67
CHAPTER 7- CONCLUSION AND FUTURE SCOPE	
6.5- Conclusion	66
6.4- Results	65
6.3- Flow Chart	63

LIST OF TABLE

Table 3.1 Hardware descriptions of 90-30 GE Fanuc make PLC

17

LIST OF FIGURES

Fig. 1.1 A Block Diagram of PLC	2
Fig. 3.1 GE Fanuc PLC 90-30 Series and the Connectivity Options	15
Fig. 3.2 Architecture of PLC	16
Fig. 3.3 Series 90-30 PLC	20
Fig. 3.4 Operation of PLC	22
Fig. 3.5 PLC sample ladder logic program	29
Fig. 3.6 Ethernet and OSI Model	32
Fig. 4.1 Solenoid valve	36
Fig. 4.2 IR sensor	37
Fig. 4.3 Operation of IR sensor	39
Fig. 5.1 System Architecture	46
Fig. 5.2 Front view of Hardware Architecture	47
Fig. 5.3 Top-view of Hardware Architecture	48
Fig. 5.4 Side view of Hardware Architecture	49
Fig. 5.5 Proficy Machine Edition 5.9 Screenshot	51
Fig. 5.6 Creating a new project	52
Fig. 5.7 Setting of IP address and subnet mask	53
Fig 5.8 Setting of discrete input	54
Fig. 5.9 Software window of PLC program in Offline mode 1	55

Fig. 5.10 Software window of PLC program in Offline mode 2	56
Fig. 5.11 Software window of PLC program in Offline mode 3	57
Fig. 5.12 Downloading of program in plc	58
Fig.5.13 Software window of PLC program in Run mode 1	59
Fig.5.14 Software window of PLC program in Run mode 2	60
Fig.5.15 Software window of PLC program in Run mode 3	61
Fig. 6.1 Mixing and transfer of liquids to overhead tank	65
Fig. 6.2 Picture of filling of bottle	66

LIST OF SYMBOLS AND ABBREVIATIONS

PLC Programmable Logic Controller

HMI Human Machine Interface

SCADA Supervisory Control and Data Acquisition

RTD Resistance Temperature Detector

LVDT Linear Variable Differential Transformer

CPU Central Processing Unit

AC Alternative Current

DC Direct Current

LED Light Emitting Diode

M1 Water Pump of Tank A

M2 Water Pump of Tank B

M3 12V DC Motor for Mixer

M4 12V DC Motor for Conveyor Belt

I/O Input/Output

IR Infra Red