"EXPERIMENTAL INVESTIGATION OF SOLAR DISTILLATION SYSTEM AND DOMESTIC HOT WATER IN COGENERATION PROCESS"

Submitted to Delhi Technological University in Partial Fulfillment of the Requirement for the Award of the Degree of

Master of Technology

In

Mechanical Engineering

With specialization in Renewable Energy Technology

By

JIGMET LODOE (2K13/RET/03)

Under the guidance of

MR. RAGHAVENDRA GAUTAM

(Assistant Professor)

Department of Mechanical Engineering

DELHI TECHNOLOGICAL UNIVERSITY

Shahabad Daulatpur

Bawana Road, Delhi-110042, INDIA

SESSION 2013-15

CERTIFICATE

This is to certify that the project entitled "Experimental Investigation of Solar Distillation system and Domestic Hot Water in Cogeneration Process" being submitted by me, is a bona fide record of my own work carried by me under the guidance and supervision of Mr. Raghavendra Gautam (Assistant Professor) in partial fulfillment of requirements for the award of the Degree of Master of Technology in Production Engineering from Department of Mechanical Engineering, Delhi Technological University, Delhi.

The matter embodied in this project either full or in part have not been submitted to any other institution or University for the award of any other Diploma or Degree or any other purpose what so ever.

> Jigmet Lodoe Registration Number: DTU/13/M-Tech/194 University Roll Number: 2K13/RET/03

This is to certify that the above statement made by the candidate is correct to the best of our knowledge.

MR. RAGHAVENDRA GAUTAM (Assistant Professor)

DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY

Shahabad Daulatpur, Bawana Road, Delhi-110042, India

ACKNOWLEDGEMENT

I have a great pleasure in expressing my deep sense of gratitude and indebtedness to Mr. Raghavendra Gautam of Mechanical Engineering Department, Delhi Technological University for his continuous guidance, invaluable suggestion and exquisite time at all stages from conceptualization to experimental and final completion of this project work. I also wish to place on record the patience and understanding shown by Sir at critical situations. Along with academics, I learnt from him the resilience to undertake challenges that the research world would be putting my way.

I am also grateful to Prof. (Dr.) R. S. Mishra, Head, Department of Mechanical Engineering, Delhi Technological University for providing the experimental facilities. His constant support, co-operation and encouragement for successful completion of this work.

My special thanks to Dr. Rajesh Kumar and Dr. Mohit Tyagi for their valuable time and very useful critical comments from their experience has helped me to do the project work on time. They have guided me for fundamentals and provided many technical papers on the subject matter and thus inculcated the interest and quest for knowledge of this work. I also express my deepest respect and obligation to Mr. Umakant Sahoo, (Senior Scientist, NISE) for his assistance and facilities provided at National Institute of Solar Energy formerly Solar Energy Center (Ministry of New and Renewable Energy) for experiments, required for the completion of this special subject.

This research work would not have become possible without strong cooperation, immense support and keen involvement of my friends and colleagues specially Mr. Parvesh, Santosh, Sandeep, Shailesh, Shashank, Sanchit and Lobzang.

All my academic pursuits become a noticeable just because of my parents, Mr. Tsering Angdus and Tashi Dolma, my younger brother Sonam Tundup and special thanks to Stanzin and Losal who played a crucial role at each step providing encouragement and support. My sincere thanks to entire dear and near for their contribution directly or indirectly for accomplishing this arduous task.

Above all, I owe it all to Almighty God for granting me the wisdom, health and strength to undertake this research task and enabling me to its completion.

Jigmet Lodoe

University Roll Number: 2K13/RET/08

ABSTRACT

Flat Plate Solar Water Distillation (FPSWD) system works on the simple principle of evaporation and condensation process .Unlike other types of distillation system which works either by consuming electrical energy or by burning fossil fuels, it works simply on thermal energy provided by the Sun which is free in nature. The hot waste brackish water is cogenerated. It takes brackish or impure water as an input to the system and fresh water as well as hot brackish water as an output. The simple design of the system makes it suitable for disaster situations mainly flood, where the water is plenty but unsafe to drink. This system which consists of 10 panels i.e. area of 30 m^2 has been evaluated and observations were recorded on the basis of field data collected at the Out -Door Test Bed of (period of 8-10 hours) in the month of May,2015 at National Institute of Solar Energy (Latitude: 28⁰25[°]N, Longitude: 77⁰9[°]E), Haryana (India) by taking reading of daily fresh water production corresponding to variation of temperature ,wind speed, solar intensity and ambient temperature during daytime for every hourly basis during daylight from (9.00a.m. to 5.00 p.m.) The inlet feed water that comes from tank is 360 ppm and out let of fresh water & hot brackish water reached at zero ppm & 650 ppm respectively. The fresh water has been achieved 5.2 litres/day m^2 at the titled global radiation of 6.2kWh/m². The average temperature of hot water (brackish water) is 47 ^oC at the ambient temperature of 24° C. The fresh water output is 4.68 litres/day m² and collected hot water (brackish water) is reached approximately 480 litres/day at 48^oC, which can be used for domestic proposes.

INDEX

TITLE		PAGE NO.
Certificate		ii
Acknowledgement		iii
Abstract		V
Index		vi
List of Figures		ix
List of Tables		xi
Abbreviation xii		xii
CHAPTER-1	Introduction	1-12
1.0	Need for Solar Water Distillation System	1
1.1	Importance of Water	1
1.1.1	Water Sources	2

1.1.2	Brackish Water	3
1.1.3	Water Quality	3
1.2	Solar Distillation	5
1.2.1	Types of Solar Distillation System	5
1.2.2	Renewable Energy Technologies	6
1.2.3	Distillation Using Solar Energy	6
1.3	Solar Energy in Indian Scenario	8
1.3.1	Different Types of Solar Collectors	8
1.3.2	Flat Plate Collector	8
1.3.3	Evacuated Tubular Collector	9
1.3.4	Parabolic Trough Collector	10
1.3.5	Parabolic Dish Collector	11
1.3.6	Linear Fresnel Reflector	12
CHAPTER-2	2 Literature Review	13-22
2.0	Introduction	13

2.1	Reviewed Papers	13
2.2	Research Gap	22
CHAPTER-3	Experimental Setup	23-28
3.0	System Description	23
3.1	Process involved in FPSWDs	25
3.2	Instruments and its Specification	25
3.2.1	Pyranometer	25
3.2.2	Data Logger	27
3.2.3	Anemometer	28
CHAPTER-4	Result and Discussion	29-48
4.0	Performance Analysis	29
4.1	Experimental Performance Data	29
4.2	Effect of the FPSWD SYSTEM	45
4.2.1	Effect of Inlet Water Temperature	47
4.2.2	Effect of Solar Radiation	47
4.2.3	Effect of Gap Distance	47
4.2.4	Effect of Ambient Temperature	48
4.2.5	Effect of Wind Velocity	48
CHAPTER-5	Conclusion and Scope for Future Improvement	49-50
5.0	Conclusion	49
5.1	Scope for Future Improvement	50
References		51-55

LIST OF FIGURES

S. No.	Title	Page No.
Figure 1.1	Per Capita Consumption of Water	3
Figure 1.2	Utilization of Solar Energy	7
Figure 1.3	Flat Plate Collectors	9
Figure 1.4	Evacuated Tubular Collectors	10
Figure 1.5	Parabolic Trough Collectors	11
Figure 1.6	Parabolic Dish Collectors	11
Figure 1.7	Linear Fresnel Reflector	12
Figure 3.1	Experimental setup of FPSWDs	24
Figure 3.2	Block Diagram of FPSWDs	25
Figure 3.3	Field Pyranometer	26
Figure 3.4	Data Logger	27
Figure 3.5	Data Logger with Anemometer	28
Figure 4.1	Graphical analysis of Hot Water Production	30
Figure 4.2	Graphical analysis of Fresh Water	31
Figure 4.3	Graphical analysis of FPSWDs, 06 May 2015	32
Figure 4.4	Graphical analysis of FPSWDs, 07 May 2015	33
Figure 4.5	Graphical analysis of FPSWDs, 08 May 2015	34
Figure 4.6	Graphical analysis of FPSWDs, 09 May 2015	35
Figure 4.7	Graphical analysis of FPSWDs, 10 May 2015	36
Figure 4.8	Graphical analysis of FPSWDs, 11 May 2015	37
Figure 4.9	Graphical analysis of FPSWDs, 12 May 2015	38

Figure 4.10	Graphical analysis of FPSWDs, 13 May 2015	39
Figure 4.11	Graphical analysis of FPSWDs, 14 May 2015	40
Figure 4.12	Graphical analysis of FPSWDs, 15 May 2015	41
Figure 4.13	Graphical analysis of FPSWDs, 16 May 2015	42
Figure 4.14	Graphical analysis of FPSWDs, 17 May 2015	43
Figure 4.15	Graphical analysis of FPSWDs, 18 May 2015	44

LIST OF TABLES

S. No.	Title	Page No.
Table 1.1	Fresh Water Distribution in our Hydrosphere	2
Table 1.2	Per Capita water availability in India	2
Table 1.3	The Salinities of various Samples	3
Table 1.4	Purity Standards of Water	4
Table 3.1	Specifications of Instruments	26
Table 4.1	Experimental data of Hot Water	29
Table 4.2	Experimental data Fresh Water Production	30
Table 4.3	Experimental data of FPSWDs on 6 May 2015	32
Table 4.4	Experimental data of FPSWDs on 7 May 2015	33
Table 4.5	Experimental data of FPSWDs on 8 May 2015	34
Table 4.6	Experimental data of FPSWDs on 9 May 2015	35
Table 4.7	Experimental data of FPSWDs on 10 May 2015	36
Table 4.8	Experimental data of FPSWDs on 11 May 2015	37
Table 4.9	Experimental data of FPSWDs on 12 May 2015	38
Table 4.10	Experimental data of FPSWDs on 13 May 2015	39
Table 4.11	Experimental data of FPSWDs on 14 May 2015	40
Table 4.12	Experimental data of FPSWDs on 15 May 2015	41
Table 4.13	Experimental data of FPSWDs on 16 May 2015	42
Table 4.14	Experimental data of FPSWDs on 17 May 2015	43
Table 4.15	Experimental data of FPSWDs on 18May 2015	44
Table 4.16	Average Daily Fresh Water Production	46

ABBREVIATION

°C	Degree Celsius
ETCs	Evacuated Tubular Collector
ED	Electrodialysis
EHPTs	Evacuated Heat Pipe Tubes
FPSWDs	Flat Plate Solar Water Distillation System
FPCs	Flat Plate Collector
LFRs	Linear Fresnel Reflector
PTCs	Parabolic Trough Collector
TDS	Total Dissolved Solids
MSF	Multiple Stage Flash
MSF-BR	Multi-stage Flash with Brine Circulation
MSF-OT	Multistage Flash Once Through Process
MEB	Multiple Effect Boiling
ml	Milliliter
m	Meter
RO	Reverse Osmosis
VC	Vapour Compression
NISE	National Institute of Solar Energy