"DESIGN AND PERFORMANCE ANALYSIS OF PORTABLE SOLAR DISTILLATION SYSTEM AND DOMESTIC HOT WATER IN CO-GENERATION PROCESS"

Submitted to Delhi Technological University in Partial Fulfilment of the Requirement for the Award of the Degree of

Master of Technology

In

Mechanical Engineering

With specialization in Renewable Energy Technology

By

SANTOSH KUMAR (2K13/RET/08)

Under the guidance of

Dr. RAJESH KUMAR (Associate Professor)

Department of Mechanical Engineering

DELHI TECHNOLOGICAL UNIVERSITY

Shahabad Daulatpur

Bawana Road, Delhi-110042, INDIA

SESSION 2013-15

CERTIFICATE

This is to certify that the project entitled "Design and Performance analysis of Portable Solar

Distillation System and Domestic Hot Water in Co-generation Process" being submitted by me,

is a bonafide record of my own work carried by me under the guidance and supervision of Dr.

Rajesh Kumar (Associate Professor) in partial fulfilment of requirements for the award of the

Degree of Master of Technology in Production Engineering from Department of Mechanical

Engineering, Delhi Technological University, Delhi.

The matter embodied in this project either full or in part have not been submitted to any other

institution or University for the award of any other Diploma or Degree or any other purpose what

so ever.

Santosh Kumar

Registration Number: DTU/13/M-Tech/199

University Roll Number: 2K13/RET/08

This is to certify that the above statement made by the candidate is correct to the best of our

knowledge.

Dr. RAJESH KUMAR

(Associate Professor)

DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

Shahabad Daulatpur, Bawana Road, Delhi-110042, India

ii

ACKNOWLEDGEMENT

I have a great pleasure in expressing my deep sense of gratitude and indebtedness to Dr. Rajesh Kumar of Mechanical Engineering Department, Delhi Technological University for his continuous guidance, invaluable suggestion and exquisite time at all stages from conceptualization to experimental and final completion of this project work. I also wish to place on record the patience and understanding shown by Sir at critical situations. Along with academics, I learnt from him the resilience to undertake challenges that the research world would be putting my way.

I am also grateful to Prof. (Dr.) R. S. Mishra, Head, Department of Mechanical Engineering, Delhi Technological University for providing the experimental facilities. His constant support, co-operation and encouragement for successful completion of this work.

My special thanks to Dr. R. S. Walia, Dr.Pushpendra Singh, Dr. Mohit Tyagi and Mr.Shailesh Mani Pandey for their valuable time and very useful critical comments from their experience has helped me to do the project work on time. They have guided me for fundamentals and provided many technical papers on the subject matter and thus inculcated the interest and quest for knowledge of this work.

I also express my deepest respect and obligation to Mr. Umakant Sahoo, (Senior

Scientist, NISE) for his assistance and facilities provided at National Institute of Solar

Energy formerly MNRE (Ministry of New and Renewable Energy) for experiments,

required for the completion of this special subject.

This research work would not have become possible without strong cooperation,

immense support and keen involvement of my friends and colleagues specially Mr.

Parvesh, Shailesh, Sandeep, Jigmet, Gyanendra, Rakesh, Manoj, Rajneesh and Ajay.

All my academic pursuits become a noticeable just because of my parents, Mr.

Subedar and Mrs. Sampada Devi, my younger brother Dr. Saurabh Kumar Prajapati

and special thanks to Rekha and Chhaya who played a crucial role at each step

providing encouragement and support. My sincere thanks to entire dear and near for

their contribution directly or indirectly for accomplishing this arduous task.

Above all, I owe it all to Almighty God for granting me the wisdom, health and

strength to undertake this research task and enabling me to its completion.

Santosh Kumar

University Roll Number: 2K13/RET/08

iv

ABSTRACT

Most of the distillation system works by consuming energy either by burning fossils fuels or electrical energy. In the case of portable solar distillation system no conventional form of energy is required except the solar energy. It works on the principle of simple evaporation and condensation process similar to the formation of clouds. It takes brackish or impure water as an input and gives pure distilled or drinkable water. Performance of this system provides the detailed information about the effect of variation of temperature, wind speed and solar irradiation on the overall performance of the system.

INDEX

TITLE		PAGE NO.
Certificate		ii
Acknowledge	ement	iii
Abstract		v
Index		vi
List of Figures		ix
List of Tables		xi
Abbreviation		xii
CHAPTER-1	Introduction	1-17
1.0	Solar Power	4
1.1	Technology of Solar Thermal	5
1.2	Solar Photovoltaic Technology	5

1.3	Solar Energy in Indian Scenario	6
1.4	Different Types of Solar Collector	6
1.4.1	Flat Plate Collector (FPCs)	6
1.4.2	Evacuated Tubular Collector (ETCs)	7
1.4.3	Parabolic Trough Collector (FTCs)	9
1.4.4	Parabolic Dish Collector	10
1.4.5	Linear Fresnel Reflector (LFRs)	12
1.5	Pyranometer	13
1.6	Data logger	14
CHAPTER-2	Literature Review	18-26
2.0	Introduction	18
2.1	Literature	18
2.2	Research Gap	26

CHAPTER-3	Experimental Setup	27-37
3.0	Solar Distillation	27
3.1	Types of Solar Distillation System	29
3.1.1	Thermal based Desalination System	29
3.1.2	Membrane based Process	29
3.2	Portable Solar Water Distillation System (PSWDs)	30
3.3	System Description	31
3.3.1	Technical System Specification	33
3.4	Process Involved in PSWD System	35
3.5	System Design	37
CHAPTER-4	Result and Discussion	38-59
4.0	Experimental Data of PSWD System	39
4.1	Criterion of the PSWD System	58
4.1.1	Criterion of Wind Velocity	58
4.1.2	Criterion of Ambient Air Temperature	58
4.1.3	Criterion of the Gap Distance	59

4.1.4	Criterion of Solar Radiation	59
CHAPTER-5	Conclusion and Scope for Future Improvement	60-61
5.0	Conclusion	60
5.1	Scope for Future Improvement	61
References		62-68

LIST OF FIGURES

S. No.	Title	Page No.
Figure 1.1	Clean water access around the world	2
Figure 1.2	Technologies of Solar Energy	4
Figure 1.3	Flat Plate Collectors	7
Figure 1.4	Evacuated Tubular Collectors	8
Figure 1.4.1	Detailed views of ETCs	8
Figure 1.5	Parabolic Trough Collectors	9
Figure 1.5.1	Concepts of PTCs	10
Figure 1.6	Parabolic Dish Collectors	11
Figure 1.7	Concepts of LFRs	12
Figure 1.7.1	Field view of Fresnel Reflector	13
Figure 1.8	Field Pyranometer	14
Figure 1.9	Channels of Data Logger	15
Figure 1.10	Field Data Logger	17
Figure 3.1	Types of Distillation Processes	30

Figure 3.2	Experimental Set-ups of PSWDs	32
Figure 3.3	Black membrane of PSWDs	34
Figure 3.4	Block diagram of PSWDs processes	35
Figure 3.5	Glazing sheet of PSWDs	36
Figure 3.6	Design of PSWDs	37
Figure 4.1	Graphical analysis of PSWDs, 14 April 2015	41
Figure 4.2	Graphical analysis of PSWDs, 22 April 2015	43
Figure 4.3	Graph Taken by Data Logger	44
Figure 4.4	Graphical analysis of PSWDs, 28 April 2015	46
Figure 4.5	Graphical analysis of PSWDs, 5 May 2015	48
Figure 4.6	Meteorological graph taken by taken Data Logger	49
Figure 4.7	Graphical analysis of PSWDs, 7 May 2015	51
Figure 4.8	Graphical analysis of PSWDs, 8 May 2015	53
Figure 4.9	Meteorological graph taken by data Logger	56
Figure 4.10	Graphical analysis of PSWDs, 22 May 2015	56

LIST OF TABLES

S. No.	Title	Page No.
Table 1.1	water Distribution	3
Table 1.1	Data taken by Data Logger	16
Table 3.1	Specification of Set-up	33
Table 4.1	Experimental data of 14 April 2015	40
Table 4.2	Experimental data of 22 April 2015	43
Table 4.3	Experimental data of 28 April 2015	46
Table 4.4	Experimental data of 5 May 2015	48
Table 4.5	Experimental data of 7 May 2015	50
Table 4.6	Experimental data of 8 May 2015	53
Table 4.7	Experimental data of 22 May 2015	55
Table 4.8	Readings of Data Logger	55

ABBREVIATION

FPCs Flat Plate Collector

ETCs Evacuated Tubular Collector

PTCs Parabolic Trough Collector

LFRs Linear Fresnel Reflector

PSWDs Portable Solar Water Distillation System

TDS Total Dissolved Solids

^oC Degree Celsius

mm Millimeter

ml Milliliter

m Meter

η Efficiency

hf_g Latent Heat of vaporization

M Condensate Production

I Solar Radiation

A Area of the Device

 \sum Summation

EHPTs Evacuated Heat Pipe Tubes

NISE National Institute of Solar Energy

MNRE Ministry of New and Renewable Energy

MSF Multiple-stage flash

MEB Multiple effect boiling

RO Reverse Osmosis

ED Electro-dialysis

VC Vapor Compression