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ABSTRACT 

Time series is a huge collection of data indexed sequentially with respect to time. It is 

being produced at an extremely high rate from almost every domain including stock 

market, music industry, biomedical industry, etc. Data mining from temporal database 

requires similarity measures which can distinguish between two or more time series. Many 

distance functions, such as Dynamic Time Warping, Edit distance on Real Sequences, 

Move Split Merge, etc., which work efficiently in software for retrieval of similarity in 

temporal sequences exist.  

Since the time series is a massive dataset, features need to be extracted before its analysis.  

In this work, synthesis of five similarity measures has been done using the device xc3s400-

4-pq208 in Xilinx with Verilog Hardware Description Language (HDL) and a comparison 

has been made to show the outperformance of one over the other based on the critical 

parameters of hardware utilization and delay. The purpose behind this project is to make 

these similarity measures available as portable devices for time series analysis in various 

domains. Simulations were performed in ModelSim. 

To compare the efficacy of these similarity measures in distinguishing the time series, an 

application of detection of plagiarism in music has been implemented in MATLAB, where 

all the five algorithms were used to compute distance between plagiarized, unplagiarized, 

and same pair of songs. Algorithm which could clearly distinguish these three sets of data, 

as well as performed fairly well in hardware performance, was given the highest score to 

be used as a separate entity in real time applications.  

Also, a comparison was made between the execution time in hardware and software to 

ensure the speed up of FPGA based implemented algorithms over software. The results 

showed that while hardware implemented DTW can attain the highest frequency of 18.9 

MHz, it is only 9.6 KHz for MATLAB implemented DTW for four element length 

sequence. 

Obtained results suggest that DTW was best for plagiarism detection and LCSS stood 

second. However, LCSS performed best in hardware utilization and delay. Thus, it is a 

bestfit algorithm for commercial use. 
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1 Introduction 

 

1.1 Motivation 

25
th

 April, 2015 was a devastating day for Nepal as it was hit by a major Earthquake. 

Scientists, soon after the quake, analyzed the seismic waves’ data and compared it with the 

past records. They, then concluded that the entire subcontinent of India is moving 

northward by 1.8 inches/ year. This was possible only after studying the seismic data, 

which is nothing, but a time series. 

Human beings have learnt a lot from birds and animals. Birds also talk to each other, 

though not in human languages. They produce sounds to allure their mates, to warn others 

of dangers, etc. Understanding their vocalization requires extraction of acoustic features 

and doing time series analysis on them which can aid to the human understanding of 

various species of nature. This requires searching of large temporal database against a 

query sequence. 

The starters at gym do not know how hard to push themselves, especially the heart patients. 

A heart beat tracker in the form of a small device can keep a track of their heart beats and 

can help them watch out on their progress. This requires a device which can record and 

compare the time series data over an interval of time. So, in this project, we have 

implemented similarity measures for time series on FPGA, so that they can be used as 

prototypes for their ASIC implementation, which in turn, can be commercialized as 

portable devices. 

Time series data generally emerge in a large variety of applications, such as, scientific 

domain (Weather activities), medical domain (Electrocardiographs (ECGs), 

Electroencephalograms (EEGs)), finance domain (stock market data), music industry, etc. 

Last decade has witnessed an increasing interest in mining time series database. The 

analysis of time series data generally requires a comparison to be made between two time 

series. This, in turn, requires similarity/ distance measures which show the extent of 

similarity between two time series. 

For the efficient computation of similarity, the distance measures should be adequate, 

simple and expressive. Besides, they should be able to incorporate the different lengths, 
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different speeds, anomalies in the time series to be compared. There are few existing 

similarity measures which are being used for time series analysis. 

1.2 Objective and problem statement 

 To study the existing similarity measures for time series 

 To study the features of music 

 To compare the most important similarity measures for their efficacy in detection of 

 plagiarism in music and show that they are feasible, as well as, practical. 

 To study the hardware implementation of software algorithms. 

 To show that the hardware implementation of similarity measures is feasible and 

 practical through a synthesizable FPGA implementation and comparison of timing 

 and hardware utilization. 

 To implement the similarity measure algorithms on FPGA and propose the best fit 

 algorithm for both software and hardware applications. 

Software algorithms, if implemented on hardware, can be used in real time applications. 

Time series is one of the most widely searched database. A time series T is mathematically 

defined as: 

T= ({a1,t1}, {a2,t2},......,{an,tn}), where a1,a2,...,an are the values (amplitude, position, 

energy, power, temperature, etc.) of the physical quantities at time samples t1,t2,....,tn 

respectively. Most of the queries in time series database are based on similarity search. 

Since the similarity requires only the values of the quantities, irrespective of their sampling 

rates, time dimension can be removed from the series, however, the sequence has to be 

kept undisturbed .We, in this project, pursue the study of various similarity search 

algorithms for time series. A real time application of Music industry, i.e., to detect if the 

two songs have been copied from one another is implemented in MATLAB to compare the 

efficacy of five similarity measures in plagiarism detection. The main focus of the project 

is to confirm if these algorithms can be implemented in hardware, so that they can be used 

as coprocessors in real time systems, for example, in voice password system. 

1.3 Previous Work 

In our daily lives, we deal with most of the data in the form of time series. In last few 

years, many similarity measures have been recommended to measure the distance between 

time series. The very first distance function which was proposed for similarity search of 
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time series data was Euclidean Distance [1]. However, soon after its introduction, need for 

a better distance function was felt as it didn’t go well with the local time shifting. 

As a result, Dynamic Time Warping (DTW), a benchmark algorithm in speech processing, 

was introduced to handle acceleration/deceleration. DTW is very efficient in software 

computing. Guo Yuying et al, in 2006, proposed a method of using “DTW with fusing 

Principle Component Analysis (PCA) for fault diagnosis in complex industrial systems” 

[2]. Tarar S, in 2010, proposed “the recognition and generation of the commands for 

desktop items activation using DTW algorithm” [3]. Chalmers N. et al, in 2011, used DTW 

distance metric for “the assessment of sensorimotor impairment resulting from stroke [4].” 

Pettjean F. et al, in 2012, used DTW for “Satellite image time series analysis.” High 

resolution images of earth from space are easily available to us because of space missions. 

But these time series are distorted because of meteorological phenomena. Thus, DTW was 

used for the comparison of pairs of time series which are irregularly sampled [5]. Xingzhe 

Xie, in 2014, suggested the use of DTW in “extracting the road between each two directly 

connected intersections while inferring the road network from Global Position System 

(GPS) traces” [6].    

Sart D. et al investigated the “Graphics Processing Unit (GPU) and FPGA based 

acceleration of subsequence similarity search under DTW” and acquired the maximum 

speed up of 4500× times for FPGA and 29× times for GPU over software [7].  

James Shueyen Tai, Kin Fun Li and Haytham Elmiligi proposed the hardware design for a 

DTW processing unit in VHDL [8]. They used Xilinx Virtex 7 xc7vx330t which provides 

408,000 programmable slices and 203,000 look-up tables. They showed that their 

simulated design used only 6,844 (≈ 1%) of slices and 10,287 (≈ 5%) of LUTs. A. 

Madhavan, in 2014, proposed race logic architecture for hardware acceleration of dynamic 

programming algorithms, but it was not found feasible for mapping on general purpose 

FPGA [9]. 

DTW, though a vital algorithm, does not handle the noise efficiently. Thus, Longest 

Common Subsequence (LCSS) was introduced to execute time series noisy data [10]. It 

computes the number of elements, which are alike, between two time series, thus 

minimizing the effect of noise [11]. In the last decade, a number of applications of LCSS 

have been proposed. Elhadi M. Et al, in 2009, proposed the use of LCSS in the calculation 

of similarity between texts on the basis of their syntactical structures to prevent duplicate 

documents and web pages [12]. Campos R.A.C., in 2012, suggested its use in source code 

plagiarism detection to provide highly accurate results on the basis of string based 
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comparison [13]. Jinn-Jian Liaw, in 2013, proposed its use in recognizing the ambulance 

siren sound in Taiwan using the high and low frequency features for comparison [14]. 

Paravinmia E. Introduced an improved form of LCSS for searching similar region in DNA 

sequences with an additional benefit of reducing memory space complexity [15]. 

Though the elastic measures are efficient enough to incorporate different lengths of the 

time series, their quadratic computational complexity is a drawback. So, Vladimir 

Kurbalija et. Al examined the effect of global constraints on DTW and LCSS to 

compensate for the computational complexity [16]. 

LCSS can handle noise and local time shifting, but does not give penalty to gaps. So, Edit 

Distance on Real Sequences (EDR) was popularized [17] which gives penalty to the gaps 

also. These three distance measures (DTW, LCSS, and EDR) do not meet the requirements 

of triangle inequality and hence, are not metric. Thus, Edit Distance with Real Penalty 

(ERP) was proposed by Chen and Ng, such that it assumes real penalty between two non-

gap elements, but a constant value for measuring the distance for gaps. It satisfies metricity 

property and can support local time shifting [18]. Move Split Merge (MSM) was 

introduced by Stefan, Athitsos and Das (2012) [19]. According to Stefan [19], MSM 

incorporates most of the desirable traits of a similarity measure: it is robust to temporal 

misalignments, translation invariant and a metric. These are the most important similarity 

measures which are being used extensively in information retrieval from time series and 

trajectory data. They are limited to software applications and have yet not been introduced 

in market as real time processors. Only, DTW’s implementation on FPGA has been 

suggested till now [7,8]. Since, there is enormous number of applications of these 

similarity measures, we have implemented one of them, i.e. to detect plagiarism in music. 

It has been an area of interest for many researchers during the past few years. Seifert F., in 

2003, proposed a model for the comparison of musical documents based on semantic 

relationship. Plagiarism detection was a byproduct of this functionality [20]. Soham De et 

al. presented a method of plagiarism detection in polyphonic music based on DTW by 

extracting the features using non- negative matrix factorization method [21]. Dittmar C, in 

2012, proposed a toolbox for plagiarism detection in music, but under the supervised 

scenario [22].  

 

 



5 
 

1.4 Tools Used 

In this thesis, we propose the hardware design of similarity measures using VERILOG 

Hardware Description Language (HDL).The system is implemented using Xilinx 

Integrated Software Environment (ISE) which is used to synthesize and process HDL 

algorithms on FPGA. FPGAs are prototypes for integrated circuit designs [1,2,4]. They are 

high density semiconductor devices which can be electrically programmed after 

manufacturing by the end user at any point of the design cycle to realize different logical 

problems. They are different from Application Specific Integrated Circuits (ASICs) in the 

sense that they provide high programmability and do not require replacement of hardware 

in the successive upgradation of designs in contrast to ASICs which are custom built for a 

particular design. The leading manufacturers of FPGA in market are Xilinx, Altera, Actel, 

Lattice, Quicklogic etc. Xilinx and Altera are most competitive one. Target device 

xc3s400-pq208 has the following properties: 3584 Slices, 7168 Look- Up Tables (LUTs), 

141 Input/ Output Blocks (IOBs). The application of plagiarism detection in music was 

implemented in MATLAB. 

 

Table 1.1 Tools used in the project 

 

Tool Purpose 

MATLAB R2009a For the comparison of five algorithms in 

their efficacy to detect plagiarism detection 

in music. 

Xilinx ISE For the synthesis of similarity measures on 

Spartan xc3s400-pq208 device. 

ModelSim For simulation of similarity measures to 

ensure their accuracy. 
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1.5 Organization of Thesis 

The rest of the thesis is formulated as follows: In Chapter 2, we describe Dynamic Time 

Warping (DTW) algorithm, an extensively used similarity measure in speech processing. 

Then, Longest Common Subsequence (LCSS) has been introduced, which can handle noise 

as well as local time shifting. It also provides the detailed explanation of Edit Distance on 

Real sequences, a solution to the shortcomings of LCSS in not giving penalty to gaps. 

Since the above described algorithms are not metric, the next explanation is of Edit 

Distance with Real Penalty (ERP), a metric distance measure which can handle noise as 

well as local time shifting. Finally, the most recently introduced similarity measure Move 

Split Merge (MSM) has been discussed along with its properties and advantages over other 

distance measures. Chapter 3 describes the dynamic programming approach, which we 

have used for the hardware implementation of the similarity measures. In Chapter 4, a 

comparative analysis of all the five algorithms has been done to show their efficacy in 

speech processing to detect plagiarism in music. Chapter 5 shows the results of the 

hardware utilization and delay on implementing the five algorithms. Finally, Chapter 6 

concludes the work and presents the directions for future work. 
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2 Time Series Similarity Measures 

 

2.1 Introduction 

Time series is a massive collection of data indexed sequentially with respect to time. It 

shows the measurements of a quantity taken at equal intervals of time. For example, daily 

temperature readings, market sales, ECG and EEG data, etc. Temporal database is a huge 

assembly of time series. One of the most common functions to be performed on time series 

database is the similarity analysis. If we take the example of ECG, the similarity problem 

will be defined as “Does the ECG of the patient had similar beat patterns over the past few 

days?” 

Other computations on time series include indexing, subsequence similarity, clustering, etc.  

They all require the efficient similarity measures to allow for imprecise matches. Examples 

of the above mentioned problems are given below: 

 Indexing problem – “Find all seismic zones whose seismic activity variations are 

 similar to high risk zone.” 

 Subsequence similarity problem – “Find all the songs that have the word ‘shining’ in 

 their lyrics.” 

 Clustering problem – “Group regions with similar weather patterns.” 

 

The primitive approach to the indexing problem is to select certain features and use them to 

find the similarity between two time series. For example, while comparing two speech 

pieces for similarity, features like tonality, mel-frequency cepstral coefficients (mfcc), etc. 

can be used. 

Given two time series A and B, a distance function Dist calculates the distance between the 

two time series, denoted by Dist(A, B). The distance measures which compare the j
th

 point 

of one time series to the j
th

 point of another are referred as lock-step measures (e.g., 

Euclidean distance and the other Lp norms), and distance measures which conduct 

comparison of one-to-many points (e.g., DTW) and one-to-many/ one-to-none points (e.g., 

LCSS) as elastic measures.  
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Following the categorization introduced by Esling P and Agon C [26], the time series 

distance measures are usually divided into four categories: shape based, edit based, 

features based, and structure based. 

2.2 Shape based distance measures 

This first category of distances is based on directly comparing the raw values and the shape 

of the series in different manners. 

2.2.1  Lp distances 

Lp distances are those that derive from the different Lp norms [27]. These distances are rigid 

metrics that can only compare series of the same length. However, due to their simplicity, they 

have been widely used in many tasks related to time series. Given two time series A= {a0, a1, 

......aN-1} and B={b0, b1,...........bN-1}, the different forms of the Lp distances and their formulas 

are provided in Table 2.1. It must be noted that the Euclidean Distance is a special case of the 

Minkowski distance, but it is explicitly included because it is a baseline distance measure in the 

area of time series data mining. 

Table 2.1   Lp Distances 

Serial No. Distance p Distance Formula 

 

1 

 

Manhattan 

 

p = 1 

 

     
   
   -     

 

2 

 

Minkowski 

 

1< p < inf 
         

 
 

   

   

 

 

 

3 

 

Euclidean 

 

p = 2          
 

   

   
 

 

4 

 

Infinite norm 

 

p = inf 

 

maxi = 0,......,N-1 |     | 
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2.2.2  Dissim Distance 

The Dissim distance was introduced by Frentzos, Gratsias, and Theodoridis [43] and is 

specifically designed for series collected at different sampling rates. This means that each 

series will be defined in finite set of time instants, but these can be different for each series. 

The Dissim distance requires a continuous representation of the series and so, the series 

that are being compared are assumed to be linear between sampling points. Once this is 

done, the definite integral of the Euclidean distance between them is calculated. 

                         Dissim(A,B) =       
    
  

   
                                                  .........2.1 

where, T = { t0,......,tK-1 } is a global time index that fuses the time indexes of both series by 

taking all the points that appear in both sets. DA,B(t) represents the Euclidean distance 

between the series at time-stamp t. 

2.3 Edit based distances 

Edit distance was initially presented to calculate the similarity between two sequences of 

strings and is based on the idea of counting the minimum number of edit operations 

(insertion, deletion and substitution) which are necessary to convert one sequence into the 

other. 

The problem of working with real numbers is that it is difficult to find exact matching 

points in two different sequences and, therefore, the edit distance is not directly applicable. 

Different adaptations have been proposed in the literature according to recent reviews, for 

eg. By Wang et al. [28].By using the delete and insert operations, all these distances are 

able to work with series of different length. LCSS, EDR and ERP come under this category 

of distance measures. 

2.4 Feature based distances 

This category of distance measures focuses on extracting a set of features from the time 

series and calculating the similarity between these features instead of using the raw values 

of the series. 
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2.4.1 Distances based on Pearson’s correlation 

Pearson’s correlation between two time series A= {a0, a1, ......aN-1} and B={b0, b1,...........bN-

1} is defined as 

 

                                 PC (A,B) = 
                   
   
   

                      
                                                  ......... 2.2         

 

where    and    are the mean values of the series. 

Based on this value, two distance measures were introduced by Golay, Kollias, Stoll, 

Meier, Valavanis, and Boesiger [29]. 

 

                             dPC1 (A,B) =  
    

    
 
 

                                                       ......... 2.3 

                            dPC2 (A,B) = 2(1-PC)                                                        ......... 2.4 

 

where β is a positive parameter defined by the user. 

 

2.4.2 Distance based on the cross- correlation 

This distance is presented in [30] and is based on the cross- correlation between two series. 

The cross- correlation between two series at lag k is calculated as 

                               CCk (A,B) = 
                 
     
   

                   
 

                                                ......... 2.5 

 

where    and    are the mean values of the series as in the previous case. Based on this, the 

distance measure is defined as: 

 

                                    dCC(A,B) =  
            

         
   
   

                                                       .......... 2.6 
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2.5 Fourier Coefficients based distance 

As its name indicates, the similarity calculation in this case is based on comparing the 

Discrete Fourier Transform (DFT) coefficients of the series. 

Given a numeric series A = {a0, a1, ......aN-1}, its DFT can be easily calculated and contains 

an array of Fourier Coefficients of the series. The value of each coefficient measures the 

contribution of its associated frequency to the series and, based on this, the Inverse Fourier 

Transform provides the means to represent the sequences as a combination of sinusoidal 

forms. 

In the case of real sequences such as time series, the Discrete Fourier Transform is 

symmetric and therefore it is sufficient to study the first N/2 +1 coefficients. Furthermore, 

it is commonly considered that, for many time series, most of the information is kept in 

their first n Fourier Coefficients, where n < 
 

 
 +1. 

Based on all this information, the distance between two time series A and B with Fourier 

Coefficients {(a0, b0),......,(aN/2 , bN/2)} and {(a0’,b0’),......,(a’N/2, b’N/2 )}is given by the 

Euclidean distance between the first n coefficients: 

                    F(A,B) =          
  
 
       

  
 
  

                                         ........... 2.7 

 

The most basic distance measure is the Euclidean distance which gives the (dis)similarity 

between sequences A and B as Lp(A,B), where Lp distance is given by 

 

                                        Lp(A,B) =            
 

    
   

 

                                           .........2.8 

It is easy to compute, but does not allow for translations on time axis and also for different 

rate of variations. Also, it does not provide good approximation in feature space as 

compared to the sequence distance in original space. Goldin and Kanellakis, in 1995, 

proposed normalization of sequences with respect to mean and variance [31]. But, still it 

did not allow for acceleration/ deceleration along the time dimension and phase shifts in 

time. 
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2.6 Dynamic Time Warping Algorithm 

2.6.1 Introduction 

When the distance between two sequences has to be found, the most intuitive approach is 

to use Euclidean Distance. However, in case of temporal sequences, it does not provide 

promising results because it does the one-to-one sample comparison and thus, very 

sensitive to translations across time axis. Dynamic Time Warping (DTW) is the benchmark 

algorithm in speech processing. It can be considered as the generalized form of Euclidean 

distance as it allows the elastic shifting of time axis i.e. a time series can be compressed or 

stretched to align with the other series. 

DTW is an edit distance based similarity measure. The basic idea behind it is to determine 

a set of edit operations that can be used to convert one sequence, which can be numerical, 

alphabetical or temporal sequence, into another. Each operation has an associated edit cost, 

and the DTW distance between two time series is determined by the lowest cost of the 

sequence of edit operations that converts one into another. It is very efficient in software 

computing. However, its applicability for real time processors is limited to literature 

because of space and time restrictions in its hardware implementation. In order to use 

dedicated hardware for similarity search using DTW, we need to examine the constraints of 

the target device and DTW computation.  

The edit operations used by DTW to transform one sequence to another are substitution, 

deletion, and insertion. It, also finds a warping path between the input and the template for 

the cheapest cost alignment. 

2.6.2 Definition of DTW Distance 

There are certain desirable properties that a similarity measure should satisfy. One such 

property is immunity against the misalignments of the sample values. Euclidean distance 

lacks this property as it does one-to-one comparison. Thus, cannot handle even the single 

point displacement on the time axis. 

Let A = (a1,.....,am) and B = (b1,.......,bn) be two time series of length m and n respectively. 

As shown in Fig 3.1, we use a simple Dynamic Programming (DP) approach to find the 

DTW distance between A and B. For i
th

 row and j
th

 column, where 1≤ i ≤ m and 1≤ j≤ n, 

we define DTW(i,j) as the DTW distance between the first i samples of A and the first j 
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samples of B, i.e., the value of DTW(i, j) depends upon DTW (i, j-1), DTW (i-1,j) and 

DTW(i-1,j-1) and is calculated recursively. In this way, the DTW distance between A and 

B is computed to be DTW (m,n).  

2.6.3 Definitions of DTW operations 

As mentioned in section 2.6.1, DTW uses three edit operations, namely substitution, 

insertion, and deletion to find the distance between two time series. These operations are 

explained below with the help of examples: 

 

 Substitution: a template letter or sample has been changed in the input. For eg.  

K I T E 

 

C I T E 

 Insertion: a spurious letter or sample has been introduced in the input. For eg. 

S C H O    L 

 

S C H O O L 

 Deletion: a template letter or sample is missing from the input. For eg. 

P O T A T O E 

 

P O T A T O 

 

The above mentioned examples are small enough to be aligned manually, but for the 

proper alignment of long sequences, a dynamic algorithm is mandatory which can provide 

the cost in terms of minimum number of fundamental operations required. An example is 

shown in Fig 2.1 

 

 A B C D E F G 

A        

B        

C        

X        

Y        

Z        

Fig 2.1 Cost of operations 

 0 Cost 

Substitution 

(Cost :1) 

Insertion 

(Cost:1) 

Total cost: = 

1+1+1+1 =4 
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2.7 Longest Common Subsequence 

2.7.1 Introduction 

Longest Common Subsequence (LCCS) is a similarity measure which is used to find the 

longest sequence present in both the sequences being compared. Given two sequences 

(numerical, alphabetical or temporal) A and B of lengths m and n respectively, LCSS (A, 

B) gives the length of the maximal length subsequence that appears in the same relative 

order in both A and B. 

For example: if A= [a b d f g h] and B = [a f b h], then LCSS (A,B) = 3 and the longest 

common subsequence is [a f h]. 

The most common use of LCSS is in studying genetic structures, where DNA sequences 

are compared for hereditary information [32]. Another use of LCSS is in “diff” utility of 

Unix program. It is used to compare two different versions of the same file by finding a 

longest common subsequence of the lines of the two files.  

The similarity function is shown in (2.9)              

LCSS(A,B)=    

                

                                             

                                             

              ......... 2.9 

where max is maximum. 

While using LCSS for time series, a matching threshold δ has to be set up because the 

features of time series can have real values, and not integers. So, if the two elements fall 

within the threshold limit, they can be assumed similar. 

 

2.7.2 Properties of LCSS 

LCSS can take up on noise because it provides the distance between two elements in the 

form of two values, 0 and 1, thus eliminating the large distance effects caused by noise 

[11]. 

Consider the following example: 

Let the input sequence A = [1 2 3 4 5] has to be compared with three other temporal 

sequences: 

B = [11 12 7 8 9] 

C = [1 2 100 3 4 5] 

D = [1 2 100 102 3 4 5] 
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The third element of C, as well as, the third and the fourth elements of D are noise because 

their values are abnormally higher than the values in its vicinity. According to the 

algorithm in 2.9, the legitimate ranking in terms of similarity to A is C/ D, B since except 

noise, the remaining elements of C and D match fully with the elements of A. The ranking, 

according to DTW, are B, C, D, because DTW demands each element of the input 

sequence to have a corresponding element in the template sequence, even for noise. 

 

2.8 Edit Distance on Real Sequences 

2.8.1 Introduction 

DTW can handle local time shifting but not noise. LCSS sacrifices accuracy in not giving 

penalty to gaps. It is possible that two query time series have the same LCSS distance to 

the template sequence, but their gap sizes in between elements differ from the matching 

subsequence. Thus it will consider the longest word in dictionary 

“pneumonoultramicroscopicsilicovolcanoconiosis” and the words “mono”, “microscopic”, 

“silico”, “volcano” same [33]. Thus, Edit Distance on Real Sequences (EDR) was 

popularized [17] which gives penalty to the gaps also. EDR is robust and accurate 

approach in computing the dis/similarity between two time series.  

 

2.8.2 Mathematical Formulation of EDR 

EDR is an edit distance based similarity measure which uses three operations (Insertion, 

Deletion, and Substitution) to convert one sequence to other. Given two sequences A and B 

of lengths m and n, respectively, the EDR between A and B is the number of edit 

operations (insertion, deletion and substitution) that are required to change A into B.  

EDR (A, B) is defined as: 

                

 
 
 

 
 
                                                                                                
                                                                                                 

                                             

                                                                                   

            ......... 2.10                

where d is 0 if        and 1 otherwise. 

The matching threshold δ can be used for time series, such that d is 0 if |       ≤ δ, and 1 

otherwise. 

 

 

http://en.wikipedia.org/wiki/Pneumonoultramicroscopicsilicovolcanoconiosis
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2.9 Edit Distance with Real Penalty 

2.9.1 Introduction 

We have seen that the distance functions for time series are build upon two classes: Lp 

norms, which cannot handle local time shifting but are metric functions, and those which 

can work well with local time shifting but lack the property of metricity (DTW, LCSS, 

EDR). 

Edit Distance with Real Penalty (ERP) is a distance function which is a metric and can 

handle local time shifting. Thus, Lei Chen and Raymond Ng called it “Marriage of L1-norm 

and the edit distance [18].” 

Edit distance on Real sequences(EDR) work well for strings- sequences of alphabets and 

symbols, but for time series where the elements are real numbers (varying from 0 to +∞), 

strict equality is not feasible. Thus a soft limit on equality is required. An alternative is to 

ease off equality to be within a certain tolerance limit δ. But this δ tolerance makes the edit 

distance a non- metric. The main reason of DTW not satisfying triangle inequality is that, 

when a gap has to be added, the previous element is replicated [18]. 

ERP inculcates the positive points of both DTW and EDR to make it a metric distance 

measure. It uses one of the Lp norms for non-gap elements, but a constant value is 

subtracted when a gap is encountered. It differs from EDR in averting δ tolerance and 

differs from DTW in not imitating the previous element. 

 

2.9.2 Mathematical formulation of ERP 

Let A and B be two time series of lengths m and n respectively. The ERP distance between 

the two is given by: 

                                   

               
 

                
 

                                      

                            

                                            

                            ......... 2.11 
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Where, 

 

            |ai – bj|     if ai,bj are not gaps, 

                                          derp (ai , bj) =        |ai – g|      if bj is a gap,                               ........ 2.12 

  |bj – g|      if ai is a gap. 

 

Similar to other edit distances, ERP uses a set of edit operations that can convert any time 

series to any other time series. The fundamental operations in ERP are Insertion, Deletion, 

and Substitution. It differs from other edit distances in the cost of operations. The cost of 

insertion and deletion of a value depends entirely on the absolute magnitude of that value. 

Thus, ERP does not deal with all the values equally. 

 

2.10 Move Split Merge 

2.10.1 Introduction 

Move Split Merge (MSM) is the most recent edit distance based similarity measure which 

uses three operations- move, split and merge to convert one time series into other. It was 

introduced by Stefan and Athitsos in 2012. Each operation incurs a cost and the cheapest 

cost of converting one sequence to other is given by MSM distance. It has an important 

trait of being metric. 

The fundamental operations used in this similarity measure are: Move, Split and Merge. A 

Move operation alters the value of an element in a sequence. A Split operation splits an 

element into two consecutive elements. The two generated elements have the value of the 

original element. A Merge operation merges two consecutive elements into a single 

element if they have the same values. Each operation has a cost associated with it. The 

Move operation incurs a cost which is equal to the absolute difference between the two 

elements. The cost incurred by the Split and the Merge operations are equal in value and 

constant. 

MSM was introduced to inculcate all the positive traits of distance measures. It is robust to 

temporal misalignments, is a metric and treats all values equally in contrast to ERP, where 

the insertion and deletion costs are determined by the magnitude of the value. 
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2.10.2 Definition of the MSM Distance 

In ERP, the cost of insertion and deletion solely depends on the absolute magnitude of the 

value being inserted or deleted. But in MSM, the cost does not only depend on that value 

but also its neighbours i.e. insertion of a 3 between two 3s should cost the same as insertion 

of a 1 between two 1s. However, this cost should be less than inserting a 3 between two 1s. 

Thus, here Insert operation is replaced by a Split, which creates a new element followed by 

a Move, which sets the value of the new element. In the similar fashion, a Delete is 

replaced by a Move, which makes an element equal to either following or proceeding 

element, followed by a Merge, which deletes the just moved element. 

 

2.10.3 Mathematical definitions of MSM operations 

Let time series A = (a1,....., an) be a real numbered finite sequence. The Move operation and 

its cost are determined as follows: 

              Move j,p(A) = (a1,.......,aj-1, aj+ k, aj+1,....,an)                         .........2.13 

                  Cost (Move j,k) = |k|                            .........2.14 

Here, a new time series A` is created by the Move j,p(A) operation which is similar to A, 

except that the j
th

 element is moved from value aj to value aj+k. The cost of this movement 

is given by the absolute value of k. 

 

Example: 

 

 

 

Fig 2.2 Example of Move Operation 

 

The Split operation, and its cost are defined as follows: 

   Split j (A) = (a1,.....,aj-1, aj, aj+1,.....,an)         .........2.15 

    Cost (Split j) = c             .........2.16 

Where, c is a constant. 

Here, a new time series A` is created by Splitj(A) operation, which is similar to A except 

that the j
th

 element of A is split into two consecutive elements. The cost of this split is a 

non negative constant c, which is a system parameter. 

 

 

Original sequence 12 14 15 18 

 

Result sequence 12 10 15 18      

M
o

ve 
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Example: 

 

 

 

 

Fig 2.3 Example of Split Operation 

 

The Merge operation, and its cost are defined as follows: 

   Merge j(A) = (a1,....,aj-1,aj+1,......an)    .........2.17 

   Cost (Merge j) = c      .........2.18 

Where, c is a non negative constant. 

It is applicable iff aj = aj+1 

Here, operation Merge j(A) creates a new time series A`, where the elements aj and aj+1 are 

merged into a single element if they are equal in value. 

Example: 

 

 

 

 

Fig 2.4 Example of Merge Operation 

 

Given two time series A and B, the MSM distance MSM (A, B) is defined as the cost of 

transformation of A into B. 

 

2.10.4 Properties of MSM 

 Symmetry 

Let S be one of the MSM operations and A and B be two time series such that S(A) = B. 

MSM being symmetric implies S
-1

(B) = A. The inverse of Move j,p is Move j,-p, while the 

Split j and Merge j are inverses of each other. S, a sequence of operations, is also reversible. 

Also, it is intuitive that Cost (S) = Cost (S
-1

). Therefore, MSM (A,B) = MSM (B,A).  

 

 

Original sequence 12 15 18 

 

Result sequence 12 15 15 18      

Split 

Original sequence 12 15 15 18 

 

Result sequence 12 15 18      

Merge 
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 Triangle Inequality 

It states that the sum of the two sides of a triangle is greater than or equal to the third side. 

Let A, B and C be three time series. Thus, 

MSM(A,B) + MSM(B,C) ≥ MSM(A,C) .It means that the cost of transformation of A into 

C is either less than or equal to the summation of the costs of transformations of A into B 

and then B into C. Clustering, which is a prevailing operation in data mining, is generally 

designed for metric spaces. Thus, distance measures for time series should be a metric. 

 Invariancy to the choice of origin 

Let A = (a1,....,an) be a real numbered time series. Translation of A by a real number t 

means t is added to each element of the time series, to produce A+t = {a1+t,......,an+t). If 

MSM distance is invariant to the choice of origin, then for given time series A and B, and a 

translation t, MSM (A, B) = MSM (A+t, B+t). The MSM distance is said to be invariant to 

the choice of origin since any transformation S which transforms A to B also transforms 

A+t to B+t. 
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3  Dynamic Programming Approach for Hardware         

 Implementation of Similarity Measures 

 
 

3.1 Introduction 

Dynamic programming is an effective method to solve recursive problems as it prevents 

the overhead of function calls. The approach is to arrange the computation in such a way 

that whenever the result of a subproblem is required, it has been computed in advance and 

can simply be found in a table. 

Let’s say the two time series to be compared are A and B of lengths m and n respectively 

[35]. The process of dynamic programming is as follows: First, an m × n two dimensional 

array M is formulated. Next, each element ai of A is compared with each element bj of B 

for all 1≤ i ≤ m and 1 ≤ j ≤ n. The result of the comparison of ai and bj is added to the best 

cumulative score between (a1,.....,ai-1) and (b1,.....,bj-1) and stored in M at position (i ,j). 

Once all the mn comparisons have been conducted and the array M is completely filled, the 

final cost is stored in M(m,n) [35]. 

In this project, all the five algorithms have been implemented using this approach as shown 

in the further sections. 
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3.2 Dynamic Time Warping 

3.2.1 Computation of DTW distance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.1 Mathematical formulation of DTW 

where, 

 d(A[i],B[j]) is the square of Euclidean Distance and DTW[i,j] is the minimum edit 

distance between i
th

 and j
th

 elements of sequences A and B respectively. 

In hardware implementation, the algorithm starts by developing a m×n matrix whose 

elements are the pair wise distances between A and B. First, the square of Euclidean 

distance is calculated for the first element of the matrix. Then, first row and first column 

elements, are calculated which require the previous elements’ values and no comparisons 

(coloured in dark grey). Finally, the rest of the entries in matrix are calculated which 

require comparison among three previously calculated elements  

Function DTW(A,B) 

Inputs: 

Time Series A = (a1,.......,am) 

Time Series B = (b1,.........,bn) 

Initialization: 

DTW[1,1]: = |a1 – b1|
2
 

For i=1.....m 

DTW[i,1]= d(A[i],B[1])+ DTW[i-1,1] 

For j= 1......n 

DTW[1,j] = d(A[1],B[j])+DTW[1,j-1] 

Main Loop: 

For i = 2.......m 

For j=2....n 

Cost: = d(A[i],B[j]) 

DTW[i,j]: = Cost+ min (DTW[i,j-1], DTW[i-1,j], DTW[i-1,j-1]) 

Result: 

DTW distance is DTW [m,n] 
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(coloured in light grey). Hence, starting from the origin and computing minimum path cost 

for every grid point entry, proceeding from top left to bottom right corner provides the 

minimum edit distance as the last entry. To determine the alignment, a back-pointer is 

maintained from A to its antecedent, which provides the minimum cost to it. At the end, 

back tracing gives the best alignment. 

Let’s take an example to show the procedure: 

Let A= [1 2 3 4 5 6 7 8 9 0] and B= [1 1 2 2 3 3 3 4 4 5] be two sequences to be compared. 

The accumulated distance matrix to find DTW (A, B) is shown in Table 3.1. 

Table 3.1 Accumulated distance matrix for DTW 

 

 

The distance between the two sequences is DTW (A, B) = 55. In time series analysis, DTW 

is an algorithm for computation of the extent of similarity between two temporal sequences 

which may differ in time or speed. If two sequences of similar nature, but running at 

different speeds are to be compared for similarity, dynamic time warping is an optimum 

approach. The sequences are "warped" non-linearly in the time dimension to determine a 

measure of their similarity. This sequence alignment process is generally used in 

classification problems. Despite the fact that DTW measures a distance-like quantity 

between two given sequences, it doesn't assure the triangle inequality to hold i.e. if A, B 

and C are three sequences, then DTW(A,B) + DTW(B,C) may not be greater than or equal 

to DTW (A,C) 

 

(6-2)2 + min (14, 30, 

14) 

= 16 +14   

= 30 

Minimum edit 

distance 

http://en.wikipedia.org/wiki/Time_series_analysis
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Non-linear
http://en.wikipedia.org/wiki/Sequence_alignment
http://en.wikipedia.org/wiki/Triangle_inequality
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3.3 Longest Common Subsequence 

3.3.1 Computation of LCSS distance 

Let A = [a1,...........,am] and B = [b1,...............,bn] be two sequences to be compared for 

similarity. Fig 3.2 shows a trivial dynamic programming approach for computing the LCSS 

distance between A and B. The LCSS distance between the first i elements of A and the 

first j elements of B is denoted by LCSS [i, j], for each (i, j) such that 1 ≤ i ≤ m and 1 ≤ j ≤ 

n. Consequently, the LCSS distance between A and B is LCSS [m, n]. As the algorithm in 

Fig 3.2 shows, for i > 1 and j > 1, LCSS [i, j] can be computed recursively based on LCSS 

[i, j-1] and LCSS [i-1, j]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                

 

              Fig 3.2 Algorithmic description of LCSS 

Function LCSS (A, B) 

Inputs: 

Time Series A = (a1,.......,am) 

Time Series B = (b1,.........,bn) 

Initialization: 

For i=1.....m 

LCSS[i,1]= d(A[i],B[1])+ LCSS[i-1,1] 

For j= 1......n 

DTW[1,j] = d(A[1],B[j])+LCSS[1,j-1] 

Main Loop: 

For i = 2.......m 

For j=2....n 

Cost: = d(A[i],B[j]) 

LCSS[i,j]: = Cost+ max (LCSS[i,j-1], LCSS[i-1,j]) 

D(A[i], B[j])= 0  if A[i]≠ B[j] 

                      1 if A[i]=B[j] 

Result: 

LCSS distance is LCSS [m,n] 
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A data flow model is used as a solution of our design as shown in Fig 3.3. The key to 

design the LCSS algorithm in Verilog is to recursively calculate each cell’s distance and 

then add it to the maximum value of its adjacent cells in the cost matrix. Fig 3.3 shows the 

control flow block diagram in our Verilog solution. 

 

 

 

Fig 3.3 Control flow diagram for LCSS 

 

The LCSS distance matrix is separated into four sections for ease of explanation as shown 

in Table 3.2 Only section 1 (highlighted in black) can be calculated with simple distance 

calculation from the first elements of two sequences because it is the only element that 

does not have dependency issue. Sections two and three (both highlighted in deeper grey) 

are the first row and first column in the matrix. For each element, the distance is calculated 

and added to the values of its previous elements. A simple design solution could be 

implemented by the use of case statements. However, Verilog only allows loops with static 

range, which means only definite number of iterations is allowed. Therefore, additional 

case statements are required for longer sequences. 

Section 4 (highlighted in lighter grey) in the distance matrix is more complicated to 

compute than sections 2 and 3. As shown in Table 3.2, each element in section 4 requires a 

process to find the maximum value among the two adjacent elements (if the elements do 

not match) or to access the diagonally opposite element (if the elements match). Data 

dependency is tightly coupled to the system clock cycles. Since data assignment to signal 

Initialize First Element Move row wise 

Calculate maximum 
if elements are not 

equal 

End State 

(Last element is the 
LCSS distance) 
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requires one clock cycle, it is not possible to compute all elements in one clock cycle 

without independent element calculations. 

 

Table 3.2 Accumulated distance matrix for LCSS 

 1 2 6 3 7 5 

6 0 0 1 1 1 1 

2 0 1 1 1 1 1 

1 1 1 1 1 1 1 

2 1 2 2 2 2 2 

7 1 2 2 2 3 3 

6 1 2 3 3 3 3 

5 1 2 3 3 3 4 

 

The minimum edit distance to transform A into B or B into A is obtained by doing |A| - 

LCSS (A, B) ‘deletions’ or |B| - LCSS (A, B) ‘insertions’. 

 

3.4 Edit distance on Real Sequence 

3.4.1 Computation of EDR distance 

Let A = [a1,...........,am] and B = [b1,...............,bn] be two real numbered temporal sequences 

to be compared for similarity. Fig 3.4 describes a simple dynamic programming algorithm 

for computing the EDR distance between A and B. The EDR distance between first i 

elements of A and first j elements of B is denoted as EDR [i, j], for each (i,j) such that 1 ≤ i 

≤ m and 1 ≤ j ≤ n. Consequently, the EDR distance between A and B is simply EDR [m, n]. 

As the algorithm in Fig 3.4 shows, for i > 1 and j > 1, EDR [i, j] can be computed 

recursively based on EDR [i, j-1] and EDR [i-1, j]. 

 

 

 

 

 

0 + max (1, 2) 

= 2 

Length of longest 

subsequence 
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Fig 3.4 Algorithmic description of EDR 

 

The EDR distance matrix is separated into four sections for ease of explanation as shown 

in Table 3.3 Only section 1 (highlighted in black) can be calculated with simple distance 

calculation from the first elements of two sequences because it is the only element that 

does not have dependency issue. Sections two and three (both highlighted in deeper grey) 

are the first row and first column in the matrix. For each element, the distance is calculated 

and added to the values of its previous elements. A simple design solution could be 

implemented by the use of case statements. However, Verilog only allows loops with static 

range, which means only definite number of iterations is allowed. Therefore, additional 

case statements are required for longer sequences. 

Function EDR (A,B) 

Inputs: 

Time Series A = (a1,.......,am) 

Time Series B = (b1,.........,bn) 

Initialization: 

EDR[1,1] = d(A[1], B[1]) 

For i=2.....m 

EDR[i,1]= d(A[i],B[1])+ EDR[i-1,1] 

For j= 2......n 

DTW[1,j] = d(A[1],B[j])+EDR[1,j-1] 

Main Loop: 

For i = 2.......m 

For j=2....n 

EDR[i,j]: =min (EDR[i,j-1]+1, EDR[i-1,j]+1, EDR[i-1, 

j-1]+d(A[i],B[j])) 

d(A[i], B[j])= 1  if A[i]≠ B[j] 

                      0 if A[i]=B[j] 

Result: 

LCSS distance is LCSS [m,n] 
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Section 4 (highlighted in lighter grey) in the distance matrix is more complicated to 

compute than sections 2 and 3. As shown in Table 3.3, each element in section 4 requires a 

process to find the maximum value among the two adjacent elements (if the elements do 

not match) or to access the diagonally opposite element (if the elements match). Data 

dependency is tightly coupled to the system clock cycles. Since data assignment to signal 

requires one clock cycle, it is not possible to compute all elements in one clock cycle 

without independent element calculations. 

 

Table 3.3 Accumulated distance matrix for EDR 

 1 1 1 1 1 

2 1 2 3 4 5 

2 2 2 3 4 5 

2 3 3 3 4 5 

2 4 4 4 4 5 

1 4 4 4 4 4 

 

EDR will soon be renowned by being extremely efficient as the time-series similarity 

measure in software as well as hardware as it minimizes the effects of shifting and 

distortion in time while detecting similar shapes with different phases. 

 

 

 

 

 

 

 

Min(3+1,3+1,4+1) 

= 4 

Minimum edit distance 
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3.5 Edit distance with Real Penalty 

3.5.1 Computation of ERP distance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig 3.5 Algorithmic description of ERP 

 

In hardware implementation, the algorithm starts by developing a m×n matrix whose 

elements are the pair wise distances between A and B. First, the L1 norm is calculated for 

the first element of the matrix. Then, first row and first column elements, are calculated 

which require the previous elements’ values (coloured in dark grey). Finally, the rest of the 

entries in matrix are calculated which require comparison among three previously 

calculated elements (coloured in light grey). Hence, starting from the origin and computing 

Function ERP (A,B) 

Inputs: 

Time Series A = (a1,.......,am) 

Time Series B = (b1,.........,bn) 

Initialization: 

ERP[1,1]: = |a1 – b1| 

For i=1.....m 

ERP[i,1]= |A[i]-g|+ ERP[i-1,1] 

For j= 1......n 

DTW[1,j] = |B[j]-g|+ERP1,j-1] 

Main Loop: 

For i = 2.......m 

For j=2....n 

ERP[i,j]: =  min (ERP[i,j-1]+ |B[j]-g|, ERP[i-1,j] 

+|A[i]-g|, ERP[i-1,j-1]+|A[i]-B[j]| ) 

Result: 

ERP distance is ERP [m,n] 
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minimum path cost for every grid point entry, proceeding from top left to bottom right 

corner provides the minimum edit distance as the last entry.  

 

Table 3.4 Accumulated distance matrix for ERP 

 1 2 3 3 4 6 

1 0 2 5 8 12 18 

1 1 1 4 7 11 17 

1 2 2 3 6 10 16 

2 4 2 3 4 8 14 

2 6 4 3 4 6 12 

2 8 6 5 4 6 10 

 

 

3.6 Move Split Merge 

3.6.1 Computation of MSM distance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.6 Algorithm to find MSM distance 

Function MSM_dist (A,B) 

Inputs: 

Time Series A = (a1,......,am) 

Time Series B = (b1,......,bn) 

Initialization: 

Cost(1,1)=|a1 – b1|. 

For i=2,...,m: 

Cost(i,1) = Cost(i-1 ,1)+C(ai,ai-1,b1) 

For j=2,....,n: 

Cost(1,j) = Cost(1,j-1)+C(bj,a1,bj-1) 

Main Loop: 

For i= 2,.........,m: 

For j=2,...,n: 

Cost(i,j) = min{Cost(i-1,j-1)+|ai – bj|, Cost(i-1,j)+C(ai,ai-1,bj), Cost(i,j-1)+C(bj,ai,bj-1)} 

Output : The MSM distance MSM(A,B)is Cost(m,n). 
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where, 

C (           =  

                   

            

                               

                              .........3.1 

where abs is the absolute value and c is a constant value. 

Let the two time series be A = {1 2 3 4 5} and B = {0 1 1 2 3}. 

The methodology used is to arrange the computation in the form of a table, so that 

whenever the solution of a subproblem is required, it is already available to us as shown 

below: 

Table 3.5 Accumulated distance matrix for MSM 

 1 2 3 4 5 

0  1 4 7 10 13 

1 3 2 4 6 9 

1 5 5 4 5 6 

2 8 8 7 6 6 

3 11 11 10 9 8 

 

The first cell, colored in blackish grey, is the easiest value to compute as it is the absolute 

difference of the two values i.e. |1 – 0|. 

The first row and the first column, coloured in dark grey, are recursively computed with 

the help of the previous results in the row and the column respectively. 

The middle section, coloured in light grey, is the most complicated part of the computation 

as it demands the comparison between three previously computed values. The last element 

of the table is the required distance. 

 

 

 

 

 

 

 

 

 



32 
 

4 Software Based Evaluation of Similarity Measures for 

 Plagiarism Detection in Music 

 
 

4.1 Introduction 

Music is present everywhere around us. It is present in car rides, hotels, homes, television 

shows, movies, etc. With a huge demand of songs for bands, movies, etc., writers and 

singers are pressurised to produce new songs, but face the challenge of ensuring that they 

are not copying an already existing song in any way. With the growing music industry, 

cases of plagiarism have become a critical concern for musicians. An enormous number of 

musical tracks are released every year. So, there must be a reliable and easier way to search 

through the huge database of songs that match the query song. If a real time processing tool 

for this purpose were exist, writers and singers could easily ensure that their songs are not 

already there in the market before releasing them to the public. Copyright infringement is 

an offence that, for the purpose of this project, refers to the writer or singer of a song 

reproducing some aspect of a prior copyrighted song, intentionally or unintentionally.   To 

prevent the violation of copyright, an automated approach to plagiarism detection is 

essential [33]. DTW has been used a number of times to find the similarity. But, before 

using it, features need to be extracted which can effectively characterize a song. 

The most important features of a song are tempo, rhythm, pitch, and melody. Tempo is the 

speed with which the notes are played. Rhythm is the time distance between each note in a 

melody. Each note has a different frequency, called pitch and melody is a succession of 

notes, varying in pitch, taking a recognizable and organized shape. These features are 

single valued, thus give an average approximation and do not require edit distance 

measures to find the distance. However, there are multi-valued features also, which can 

show the dynamic variations of the song. One of them is Mel Frequency Cepstral 

Coefficient (MFCC), which has been discussed in section 4.3. 
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4.2 Our contribution 

As a part of this project, we have implemented the five distance measures (DTW, LCSS, 

EDR, ERP, and MSM) in MATALB and did the comparative analysis of using them to 

distinguish among three sets of songs (MATLAB code is given in Appendix A): 

a. A pair of plagiarized songs, 

b. Same song with different lengths, and 

c. A random pair of songs 

Intuitively, if a, b and c represent the distances of these sets respectively, then 

 c > a > b, because the same song with different lengths should be detected as the same 

song. A plagiarized song may have some features close to the original one, but will not be 

exactly similar, while a random song pair will have highly distinguished features. We took 

50 pairs of each set and did the computation on them (Plagiarized song pairs are given in 

Appendix C). We have used MFCC feature for the comparison. 

4.3 Mel Frequency Cepstral Coefficient (MFCC) 

Features are those components of audio signal which identify the linguistic contents and 

eliminate all the other worthless data like background noise, emotions etc. 

Mel Frequency Cepstral Coefficients (MFCCs) are a feature widely used in Music 

Information Retrieval (MIR) systems. Introduced by Davis and Mermelstein in 1980 [39], 

MFCCs have become state- of-art. Computation of MFCCs is a five step process as shown 

below: 

The first step in finding MFCCs of an audio file is to break it in frames to analyze the 

dynamic evolution of the feature [36]. A frame is nothing but the position of the window 

that moves sequentially along the temporal signal (as shown in Fig 4.1). The default length 

of the window is 50msec with half overlapping [36].  
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Fig 4.1 Decomposition of audio waveform in frames 

The next step is to calculate the power spectrum of each frame [38]. It gives the power 

content of each frequency in a given frame. 

The next step is to apply the ‘mel’ filterbank and sum the energy in each frequency region. 

The first filter, in melfilterbank, is very narrow and gives an indication of how much 

energy exists near 0 Hertz. The filters get wider as the frequency increases [38] (as shown 

in Fig 4.2).  

 

Fig 4.2 ‘mel’ filterbank [38] 
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The next step is to take the logarithm of the filterbank energies. The last step is to compute 

Discrete Cosine Transform (DCT) of the log filterbank energies. A DCT is a fourier related 

transform similar to the Discrete Fourier Transform (DFT), but it differs from DFT in the 

sense that it uses real numbers [37]. It has a property of energy packing or compaction. 

Also, it decorrelates the overlapping filterbank energies. First 13 coefficients are retained 

because the increasing number of coefficients represent faster change in the estimated 

energies and thus have less information for classifying audio signals [37]. 

 

4.4 Comparison of the five algorithms 

The five algorithms were run on the 150 pairs of songs (50 pairs per set) successively, and 

the average distance was calculated as shown in Table 4.1. 

From the table, it is clear that DTW works exceptionally well in distinguishing the three 

sets of data as it gives a very less value of edit distance for Case2 (0.0564) while a 

significant value for random pair (4.5391). If we look at Fig 4.3, it is clear that DTW 

distances for same song with different length pair (red plot) is much lesser than the 

plagiarized song pairs (blue plot), which in turn, even lesser than random song pairs (green 

plot). 

 

Table 4.1 Average distance measures of five algorithms for plagiarism detection 

Similarity 

Measure 

Case 1: Pair of 

plagiarized 

songs 

Case 2: Same 

song with 

different 

lengths pair 

Case 3: A 

random pair 

of songs 

DTW 2.3355 0.0564 4.5391 

MSM 0.6856 0.0854 1.0718 

ERP 0.6856 0.0854 1.0718 

EDR 0.8000 0.1400 0.9800 

LCSS 0.6723 0.9815 0.6369 
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Fig 4.3 DTW distance for plagiarism detection 

 

MSM is the second most effective measure in this case. It also differentiates among the 

three sets (0.0854 (Case 2) < 0.6856 (Case 1) < 1.0718 (Case 3)). However, the difference 

is lesser than that of DTW, so it may give negative results in some cases as shown in Fig 

4.4. Here, though the distance for ‘same song with different length pair’ is considerably 

lower than the other two cases, but plagiarized pairs ( blue plot) have, in some pairs (1, 4, 

5, 7, 9, 10, 30, 36, 37, 40, 44, 47 as shown in Fig 4.4), more distance than the random pairs 

(green plot), which is not desirable. 

 

Fig 4.4 MSM distance for plagiarism detection 
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ERP gives the same results as MSM (as shown in Fig 4.5), because the cost value used in 

MSM makes it equivalent to ERP. 

 

Fig 4.5 ERP distance for plagiarism detection 

In EDR and LCSS, we have used a matching threshold of δ = 0.2 because the MFCC 

coefficients are real numbers and not a sequence of alphabets, which can be compared 

directly. 

As the results show in Fig 4.6, LCSS gives the length of the longest common sequence. 

Thus, the order of values should be opposite to the previous three cases, i.e., LCSSCASE 3 < 

LCSSCASE 1 < LCSSCASE 2. The average values in Table 4.1 gives the desired results 

(0.6369 < 0.6723 < 0.9815). 

 

Fig 4.6 LCSS distance measure for plagiarism detection 
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EDR does not give the promising results, as the distance values for the three cases are quite 

close to each other as shown in Table 4.1 and Fig 4.7. Thus, it will not be able to clearly 

differentiate among the plagiarized, unplagiarized, and same song pairs. 

 

Fig 4.7 EDR distance measure for plagiarism detection 
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5 Hardware based Design of Similarity Search Algorithms 

 

5.1 Experimental setup 

In this chapter, experimental results of the work done have been presented. The five 

algorithms were first implemented in MATLAB . Then, they were designed for hardware 

implementation using Verilog hardware description language in Xilinx (Verilog codes are 

given in Appendix B). The device used was xc3s400-pq208. The algorithms were then 

simulated using ModelSim to confirm their accurate functioning. 

5.2 Matlab and ModelSim Simulations 

In this section, the simulation results of the five algorithms (DTW, LCSS, EDR, ERP and 

MSM) have been presented to confirm their proper functioning. 

5.2.1 DTW simulations 

Let the two sequences to be compared are A = [1 2 3 4 7 8] and B = [1 1 2 2 3 3 3 4]. 

For ModelSim simulations, they were stored in array1 and array2 as the binary numbers. 

The accumulated DTW distance matrix was stored row wise in the form of a linear array 

‘test’, so that the last element of the array ( test[47] ) is DTW (6,8) = 011001, a binary 

number (as shown in Fig 5.1).  

The MATLAB simulations show the same results as shown in Fig 5.2. 

 

 

 

 

 

 

 

 

 

 

 

                                                       

Fig 5.1 ModelSim simulations of DTW 
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 Fig 5.2 MATLAB simulations of DTW 

 

 

5.2.2 LCSS simulations 

Let the two sequences to be compared are A = [1 2 6 3 7 5] and B = [6 2 1 2 7 6 5]. For 

ModelSim simulations, the two sequences were stored as binary numbers in array1 and 

array2 as shown in Fig 5.3. The accumulated distance matrix is stored as a linear array 

‘test’ whose last element is the last element of the matrix, thus the length of the longest 

common subsequence, i.e. test [41] = LCSS(6, 7) = 100, a binary number. MATLAB 

simulations show the same result (as shown in Fig 5.4). 
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Fig 5.3 ModelSim simulations of LCSS 

 

 

Fig 5.4 MATLAB simulations of LCSS 

 

5.2.3 EDR simulations 

Let the two sequences to be compared be A = [1 1 1 1] and B = [2 2 2 2]. 

They are stored in array1 and array2 as binary numbers and the elements of the 

accumulated distance matrix are stored in a linear array ‘test’. The minimum edit distance 
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is given by the last element of test i.e. test [15] = 100, a binary number (as shown in Fig 

5.5). MATLAB simulations sow te same result as shown in Fig 5.6. 

 

Fig 5.5 ModelSim simulations of EDR 

 

 

Fig 5.6 MATLAB simulations of EDR 

 

5.2.4 ERP simulations 

Let the sequences to be compared are A = [1 2 3 3 4 6] and B = [1 1 1 2 2 2]. For 

ModelSim simulations, they are stored in array1 and array2 in the form of binary numbers 
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(as shown in Fig. 5.7). The minimum edit distance is stored in the last element of the linear 

array ‘test’, i.e. ERP (A,B) = test [35] = 1010, a binary number. 

MATLAB simulations show the same results (as shown in Fig. 5.8). 

 

Fig 5.7 ModelSim simulations of ERP 

 

 

Fig 5.8 MATLAB simulations of ERP 

 

5.2.5 MSM simulations 

Let the sequences to be compared are A = [1 2 3 4 5] and B = [0 1 1 2 3]. For ModelSim 

simulations, they are stored in array1 and array2 in the form of binary numbers (as shown 

ERP(A, B) 
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in Fig. 5.9). The minimum edit distance is stored in the last element of the linear array 

‘test’, i.e. MSM (A,B) = test [24] = 1000, a binary number. 

MATLAB simulations show the same results (as shown in Fig. 5.10). 

 

Fig 5.9 ModelSim simulations of MSM 
 

 

Fig 5.10 MATLAB simulations of MSM 

 

5.3 Synthesis results in Xilinx 

The system is implemented using Xilinx Integrated Software Environment (ISE) which is 

used to synthesize and process HDL algorithms on FPGA. Target device Spartan3 with 

package pq208 has the following properties: 3584 Slices, 7168 Look- Up Tables (LUTs), 

141 Input/ Output Blocks (IOBs). The input is taken as an array of binary numbers. The 

design of an FPGA configuration requires a hardware description language 

MSM(A, B) 
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(VHDL/Verilog). In this work, we have used verilog for the programming of the 

processing units. 

5.3.1 Hardware utilization analysis of implemented Similarity Measures 

In the synthesis of DTW with input sequences of length 8, the hardware utilization in terms 

of slices, LUTs and IOBs is 32.7%, 46.7% and 49.6% respectively of the available 

resources. However, number of slices and LUTs increase exponentially with the increase in 

input size as shown in Fig 5.11 and Fig 5.12 respectively; and IOBs increase linearly as 

shown in Fig 5.13. LCSS has 8.06%, 7.07% and 34.7% utilization of the resources for the 

same input sequence, which is considerably lower than DTW (Exact values of the usage 

are given in Appendix D). EDR also shows satisfactory results with 14.0%, 12.6% and 

34.7% resource utilization. However, ERP and MSM do not give promising results as they 

require complex computations, thus extra hardware resources. 

 

 

 

 

Fig 5.11 Slices utilization versus no. of elements in sequence 
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Fig 5.12 LUTs utilization versus no. of elements in sequence 

 

In all the five algorithms, the pattern of change is same for slices and LUTs, i.e. 

exponential. However, EDR and LCSS perform exceptionally well in hardware utilization. 

MSM does not give satisfactory results as it requires extensive computation. 

 

 

Fig 5.13 IOBs utilization versus no. of elements in sequence 
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Again all the five algorithms’ IOBs utilization varies linearly with the number of elements. 

LCSS, ERP, and MSM have exactly similar IOBs utilization, EDR has a slight variation 

from linearity for n= 6 to 9, while DTW show perfect linear characteristics. 

 

5.3.2 Timing analysis of implemented similarity measures 

Delay is another critical parameter in real time systems. From the delay point of view, 

again LCSS outperforms other four algorithms as shown in Fig 5.14. The best point is they 

all are showing linear variation of delay with the number of elements in sequence. Thus, 

the hardware can be designed for relatively large sequences. 

Fig 5.15 shows the variation of execution time of these similarity measures with the 

number of elements in sequences in MATLAB. Here, LCSS, as well as, DTW perform 

satisfactorily. However, the hardware design shows a considerably high speed up over 

software implementation. Also, the execution time variation in MATLAB is not linear, but 

slightly exponential, which is not desirable for long length sequences.  

 

Fig 5.14 Delay versus no. of elements in sequence 
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Fig 5.15 Software execution time versus no. of elements 
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6 Conclusions and Future Directions 

 

6.1 Conclusion 

Time series are woven into the fabric of everyday life. There are a number of software 

algorithms available to process time series for information retrieval. Hardware design of 

software algorithms is a subject of critical research as it provides an appealing choice of 

using them in real time applications. 

In this project, we have chosen five critical similarity measures (DTW, LCSS, EDR, ERP, 

and MSM). DTW between two time series does not require the two series to be of same 

length, and it allows the local time shifting by repetition of elements. ERP uses a constant 

value for computing the distance for gaps and L1 norm for non gap elements. LCSS gives 

the match reward of 1 if the elements are same and no reward if they fail to match. The 

EDR technique uses gap and mismatch penalties. A comparison of these five algorithms on 

the basis of certain properties has been shown in Table 6.1. We proposed their hardware 

design based on FPGA with a comparative analysis on the basis of hardware utilization and 

delay. 

We show that despite being a non metric, LCSS provides the best solution for real time 

processors in the similarity retrieval of time series as seen in Fig 6.1. In terms of delay 

(logic + route), LCSS is again better than any other similarity measure (Fig.6.2). 

 

Table 6.1 Comparison of the properties of similarity measures 

Distance 

Function 

Handling 

local time 

shifting 

Different 

lengths 

Noise Requirement 

of matching 

threshold 

Metri

-city 

Matching 

alphabets 

as well as 

symbols  

DTW YES YES NO NO NO NO 

LCSS YES YES YES YES NO YES 

EDR YES YES YES YES NO YES 

ERP YES YES NO NO YES NO 

MSM YES YES NO NO YES NO 
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Fig 6.1 LUTs utilization summary for implemented similarity measures 

 

 

 

 

 

 

Fig 6.2 Delay variation summary for implemented similarity measures 
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For a device to be used in real time applications, it should be time efficient. Since we are 

suggesting the hardware implementation of the software algorithms, a comparison of time 

between the hardware and software execution is required. Thus, all the five similarity 

measures were implemented in MATLAB R2009a with Intel Core2Duo processor on PC 

and the results clearly show the speed up of hardware units over the software. For instance, 

when the two sequences have 4 elements each, on FPGA implementation of DTW to 

compute the distance between them, the minimum delay is 52.8 nsec which corresponds to 

the maximum frequency of 18.9 MHz, while the minimum execution time in MATLAB is 

104 µsec which corresponds to the maximum frequency of 9.6 kHz.  

The unification of the efficiency of these algorithms with the amenity of FPGA provides an 

excellent solution for leading edge speech processing applications. 

Although we did not produce running hardware, the hardware design was taken to a point 

where both the hardware and timing requirements for the implementation can be accurately 

predicted. It can be concluded that this designing process has a vast scope in the further 

development of these distance measures as an integral part of real time processors. 

DTW has been used a number of times in different applications related to time series, 

especially speech processing. To ensure the efficacy of other four algorithms, we have 

implemented an application in MATLAB. We chose three sets of songs, each containing 

100 songs (50 pairs). Set 1 had plagiarized songs, set 2 had the same song with different 

lengths and set 3 had pairs of non plagiarized songs. We applied all the five distance 

measures to distinguish among the three sets. The results clearly showed that DTW 

outperforms among the five algorithms (DTW, LCSS, EDR, ERP, and MSM) as the 

average distance for set1, set2 and set3 were 2.3355, 0.0564 and 4.5391 which are 

considerably far apart to ensure the detection of plagiarism.  

 

6.2 Future directions 

There are a number of issues, in this area, which require further research. One disadvantage 

of the introduced processing units is they cannot handle very large dimensions because of 

the limitation of hardware resources. The hardware performance of LCSS, EDR, DTW, 

ERP and MSM (in decreasing order) is a significant indicator of their remunerative nature 

of being feasible for complex hardware designs based on FPGAs. Future work includes the 

hybridization of two or more algorithms discussed above to inculcate all the properties of 

being efficient. Another problem with the above mentioned technique to implement these 
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similarity measures is its quadratic computational complexity. So, with the increase in the 

length of the data sequences, they become more and more computationally intensive. The 

future work includes the segmentation of long sequences into smaller ones and then 

applying these measures with cheap approximations. DTW is a benchmark algorithm in 

speech processing and has a potential to be used as an independent unit in embedded 

systems for music retrieval, plagiarism detection etc. So, there is a need to improve upon 

its hardware utilization which can be done by adapting a fast and efficient multiplication 

algorithm. The future work also includes integration of actual FPGA board with 

performance measurement and finding hardware design solution for handling large stream-

in data sets. The above mentioned similarity measure algorithms are software algorithms, 

where DTW performs better than LCSS and EDR. But, in hardware, LCSS has a better 

performance. Thus, to bring the software and hardware implementations on the same track 

and to develop a new hybrid algorithm having the best features of all the above five 

algorithms would be the part of our future investigation. 

FPGAs require reducing the cardinality/ precision of the data. In modern FPGAs, the 

floating point arithmetic does not scale well with larger applications due to the additional 

complexity for handling the mantissa and exponent separately. Since, time series has real 

numbered values, there is a requirement for optimization techniques before their 

implementation on FPGA, the most important area of future research. Besides, to study and 

explore the influence of global constraints on EDR, ERP and MSM to reduce 

computational time and complexity is a part of future work. 
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Appendix A 
 

MATLAB code for the detection of plagiarism in music 

 
 
clear all 
close all 
for i=1:50 
     
    a = strcat(int2str(i),'1'); 
    a1 = miraudio(a); 
    b1 = miraudio(a,'extract',-3,+3,'middle'); 
    f1 = mirframe(a1,'length',2) ; 
     

 
%Feature02 mfcc 
mfcc1=mirgetdata(mirmfcc(a1)) 
mfcc2=mirgetdata(mirmfcc(b1)) 
l1=strcat(a,'-mfcc.mat'); 
l2=strcat(a,'-newmfcc.mat'); 
save(l1,'mfcc1'); 
save(l2,'mfcc2'); 
  

  
   end 
    for i=1:50 
     

    
    t7=importdata(strcat(int2str(i),'1','-mfcc.mat')) 
     

     
    r7=importdata(strcat(int2str(i),'1','-newmfcc.mat')) 
      d0(2,i)=dtw2(t7,r7); 
 

      d1(2,i)=MSM(t7,r7); 
       
      d2(2,i)=ERP(t7,r7); 
 

      d3(2,i)=LCSS(t7,r7); 
 

      d4(2,i)=EDR(t7,r7); 

 
    save('distance0.mat','d0'); 
    save('distance1.mat','d1'); 
    save('distance2.mat','d2'); 
    save('distance3.mat','d3'); 
    save('distance4.mat','d4'); 
    close all; 
end 
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Appendix B 

Verilog codes for the hardware implementation of five similarity measures. 

Dtw 

module dtw(in1,in2); 

 

 //output reg out; 

 input[23:0]in1; 

 input[31:0]in2; 

 reg[3:0]array1[0:5]; 

 reg[3:0]array2[0:7]; 

 parameter STRINGS =10; 

 integer j,k;    //No. of elements in a string 

 integer i;  //No. of strings 

 //reg[1:0]state; 

 reg[5:0]test[47:0]; 

 reg[5:0]temp[47:0]; 

               

 reg[5:0]o;        

   

always@(in1 or in2)begin 

 {array1[5],array1[4],array1[3],array1[2],array1[1],array1[0]}=in1; 

{array2[7],array2[6],array2[5],array2[4],array2[3],array2[2],array2[1],array2[0]}=in2; 

 

 

for (j=0;j<8;j=j+1)begin  

 

 for(i=0;i<6;i=i+1) begin 

 k=(8*i)+j; 

temp[k]=(array1[i]>array2[j])?((array1[i]-array2[j])*(array1[i]-array2[j])):((array2[j]-array1[i])*(array2[j]-

array1[i])); 

 

 

        end 

  end 

      

    for(i=0;i<48;i=i+1)begin 

    if(i==0)begin 

    test[i]=temp[i]  ; 

    end 

                               else if((i>0) && (i<8))begin 

                                 test[i]=temp[i]+test[i-1]; 

                                end 

 else if((i>0) && (i%8==0)) begin 

 test[i]=temp[i]+test[i-8]; 

 end 

                            else if(i>0) begin 

  o=(test[i-1]<test[i-8])?((test[i-1]<test[i-9])?test[i-1]:test[i-9]):((test[i-8]<test[i-9])?test[i-8]:test[i-9]); 

   

                             test[i]=temp[i]+o; 

                             end 

    end   

     out=test[47]; 

 end 

  endmodule 
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LCSS 
 

module lcss(in1, in2); 

 //input clk; 

 input[17:0]in1; 

 input[23:0]in2; 

 reg[2:0]array1[0:5]; 

 reg[2:0]array2[0:7]; 

 //output reg out; 

 //parameter N =4; 

 integer j,k;    //No. of elements in a string 

 integer i;  //No. of strings 

    reg[2:0]test[47:0]; 

 //reg[5:0]temp[41:0]; 

    //reg[2:0]o;     

  

always@(in1 or in2)begin 

 {array1[5],array1[4],array1[3],array1[2],array1[1],array1[0]}=in1; 

{array2[7],array2[6],array2[5],array2[4],array2[3],array2[2],array2[1],array2[0]}=in2; 

 

   

   

for (j=0;j<8;j=j+1)begin  

 

 for(i=0;i<6;i=i+1) begin 

 

   //if (array1[i] == array2[j]) 

   //begin 

   if((i==0) || (j==0))begin 

       if (array1[i] == array2[j]) 

   begin 

      test[6*j+i]=3'b001; 

         end 

        else begin 

        test[6*j+i]=3'b000; 

        end 

        end 

    else begin 

    if(array1[i] == array2[j])begin 

    test[6*j+i]= 3'b001+test[6*(j-1)+(i-1)]; 

      end 

   

     else begin 

     if(i>0 && j>0)begin 

  test[6*j+i]=(test[6*(j-1)+i]>test[6*j+(i-1)]? test[6*(j-1)+i]:test[6*j+(i-1)]) ; 

            end 

           

  else if (i>0 && j==0) 

           

   begin 

           

     test[6*j+i]=test[6*j+(i-1)]; 

            

   end 

            

      else if  (i==0 && j>0)begin 

            

      test[6*j+i]=test[6*(j-1)+i]; 

      end 

end 
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end 

 end 

       

   

        end 

   

 //out=test[47]; 

     end 

endmodule 

 

 

EDR 

module EDR(in1, in2); 

input[23:0]in1; 

input[23:0]in2; 

reg[2:0]array1[0:7]; 

reg[2:0]array2[0:7]; 

  // output reg out; 

   //parameter N =4; 

 integer j,k;    //No. of elements in a string 

 integer i;  //No. of strings 

    reg[3:0]test[63:0]; 

 //reg[5:0]temp[41:0]; 

    //reg[2:0]o;     

  

always@(in1 or in2)begin 

{array1[7],array1[6],array1[5],array1[4],array1[3],array1[2],array1[1],array1[0]}=in1; 

{array2[7],array2[6],array2[5],array2[4],array2[3],array2[2],array2[1],array2[0]}=in2; 

 

   

 for (j=0;j<8;j=j+1)begin  

 

 for(i=0;i<8;i=i+1) begin 

 

   //if (array1[i] == array2[j]) 

   //begin 

   if((i==0) && (j==0))begin 

  if (array1[i] == array2[j]) begin 

      test[(8)*j+i]=3'b000; 

         end 

        else begin 

        test[(8)*j+i]=3'b001; 

        end 

        end 

    

     else begin  

     if (i>0 && j>0)begin 

 

     if(array1[i] == array2[j])begin 

     test[(8)*j+i]=(test[(8)*(j-1)+i]<test[8*j+(i-1)])? 

(((test[8*(j-1)+i]+3'b001)<test[8*(j-1)+(i-1)])?(test[8*(j-1)+i]+3'b001):test[8*(j-1)+(i-1)]):(((test[8*j+(i-

1)]+3'b001)<test[8*(j-1)+(i-1)])?(test[8*j+(i-1)]+3'b001):test[8*(j-1)+(i-1)]) ; 

            end 

          else begin 
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test[(8)*j+i]=(test[(8)*(j-1)+i]<test[(8)*j+(i-1)])? ((test[(8)*(j-1)+i]<test[(8)*(j-1)+(i-1)])?test[(8)*(j-

1)+i]+3'b001:test[(8)*(j-1)+(i-1)]+3'b001):((test[8*j+(i-1)]<test[(8)*(j-1)+(i-1)])?test[8*j+(i-

1)]+3'b001:test[(8)*(j-1)+(i-1)]+3'b001) ; 

           end 

           end 

           

           

  else if (i>0 && j==0) 

           

   begin 

           

     test[(8)*j+i]=3'b001+test[(8)*j+(i-1)]; 

            

   end 

          

    

            

      else if (i==0 && j>0) begin 

            

      test[(8)*j+i]=3'b001+test[(8)*(j-1)+i]; 

            

          

  end 

  end 

 end 

  end 

   

         

   

//out=test[47]; 

  end 

 

 

endmodule 

 

 

 

ERP 

 

module ERP(in1,in2); 

 

input[17:0]in1; 

input[17:0]in2; 

reg[2:0]array1[0:5]; 

reg[2:0]array2[0:5]; 

   //output reg out; 

   parameter N =6; 

 integer j,k;    //No. of elements in a string 

 integer i;  //No. of strings 

    reg[3:0]test[(N*N)-1:0]; 

 //reg[5:0]temp[41:0]; 

    reg[2:0]o;      

always@(in1 or in2)begin 

 {array1[5],array1[4],array1[3],array1[2],array1[1],array1[0]}=in1; 

 {array2[5],array2[4],array2[3],array2[2],array2[1],array2[0]}=in2; 
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for (j=0;j<N;j=j+1)begin  

 

 for(i=0;i<N;i=i+1) begin 

 

   //if (array1[i] == array2[j]) 

   //begin 

   if((i==0) && (j==0))begin 

   if (array1[i] == array2[j])  begin 

      test[(N)*j+i]=3'b000; 

         end 

        else begin 

       

 test[(N)*j+i]=((array1[i]>array2[j])?(array1[i]-array2[j]):(array2[j]-array1[i])); 

        end 

        end 

    

     else begin  

     if (i>0 && j>0)begin 

 

     if(array1[i] == array2[j])begin 

 

  test[(N)*j+i]=(test[N*(j-1)+i]+array2[j]<test[N*j+(i-1)]+array1[i])?((test[N*(j-1)+i]+array2[j]<test[N*(j-

1)+(i-1)])?test[N*(j-1)+i]+array2[j]:test[N*(j-1)+(i-1)]):((test[N*j+(i-1)]+array1[i]<test[N*(j-1)+(i-

1)])?test[N*j+(i-1)]+array1[i]:test[N*(j-1)+(i-1)]); 

           

          end 

 

          else begin 

           

o=((array1[i]>array2[j])?(array1[i]-array2[j]):(array2[j]-array1[i])); 

          

         

test[(N)*j+i]=(test[N*(j-1)+i]+array2[j]<test[N*j+(i-1)]+array1[i])?((test[N*(j-1)+i]+array2[j]<test[N*(j-

1)+(i-1)]+0)?test[N*(j-1)+i]+array2[j]:test[N*(j-1)+(i-1)]+o):((test[N*j+(i-1)]+array1[i]<test[N*(j-1)+(i-

1)])?test[N*j+(i-1)]+array1[i]:test[N*(j-1)+(i-1)]+o); 

           

           end 

           end 

           

           

  else if (i>0 && j==0)begin 

           

     test[(N)*j+i]=array1[i]+test[(N)*j+(i-1)]; 

            

   end 

          

   else if (i==0 && j>0) begin 

            

     test[(N)*j+i]=array2[j]+test[(N)*(j-1)+i]; 

            

    end 

        

      end 

end 

         end 

  //out=test[N*N-1]; 

end 

 endmodule 
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MSM 

 

module MSMS(in1,in2); 

input[14:0]in1; 

input[14:0]in2; 

reg[2:0]array1[0:4]; 

reg[2:0]array2[0:4]; 

reg[2:0]k,k1; 

reg[2:0]l,l1; 

   //output reg out; 

   parameter N =5; 

 integer j;    //No. of elements in a string 

 integer i;  //No. of strings 

    reg[4:0]test[N*N-1:0]; 

 //reg[5:0]temp[41:0]; 

    reg[2:0]o1,o2,o3,o4,o5; 

          

always@(in1 or in2)begin 

 {array1[4],array1[3],array1[2],array1[1],array1[0]}=in1; 

 {array2[4],array2[3],array2[2],array2[1],array2[0]}=in2; 

 test[0]=array1[0]>array2[0]?array1[0]-array2[0]:array2[0]-array1[0];    

 for(i=1;i<N;i=i+1) begin 

 k=(array1[i]>array1[i-1])?array1[i]-array1[i-1]:array1[i-1]-array1[i]; 

l=(array1[i]>array2[0])?array1[i]-array2[0]:array2[0]-array1[i]; 

if((array1[i-1]<=array1[i] && array1[i]<=array2[0])||(array1[i-1]>=array1[i] && array1[i]>=array2[0]))begin 

o1=3'b010; 

end 

else begin 

o1=3'b010 + (k>l?l:k); 

end 

 

  

 test[i]=test[i-1]+o1 ; 

 end 

 for(j=1;j<N;j=j+1)begin 

 k=(array2[j]>array1[0])?array2[j]-array1[0]:array1[0]-array2[j]; 

l=(array2[j]>array2[j-1])?array2[j]-array2[j-1]:array2[j-1]-array2[j]; 

if((array1[0]<=array2[j] && array2[j]<=array2[j-1])||(array1[0]>=array2[j] && array2[j]>=array2[j-1]))begin 

o2=3'b010; 

end 

else begin 

o2=3'b010 + (k>l?l:k); 

end 

 

 test[N*j]=test[N*(j-1)]+o2; 

 end 

 for(i=1;i<N;i=i+1) begin 

 for(j=1;j<N;j=j+1) begin 

 o3=array1[i]>array2[j]?array1[i]-array2[j]:array2[j]-array1[i]; 

 k=(array1[i]>array1[i-1])?array1[i]-array1[i-1]:array1[i-1]-array1[i]; 

l=(array1[i]>array2[j])?array1[i]-array2[j]:array2[j]-array1[i]; 

if((array1[i-1]<=array1[i] && array1[i]<=array2[j])||(array1[i-1]>=array1[i] && array1[i]>=array2[j]))begin 

o4=3'b010; 

end 

else begin 

o4=3'b010 + (k>l?l:k); 

end 
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k1=(array2[j]>array1[i])?array2[j]-array1[i]:array1[i]-array2[j]; 

l1=(array2[j]>array2[j-1])?array2[j]-array2[j-1]:array2[j-1]-array2[j]; 

if((array1[i]<=array2[j] && array2[j]<=array2[j-1])||(array1[i]>=array2[j] && array2[j]>=array2[j-1]))begin 

o5=3'b010; 

end 

else begin 

o5=3'b010 + (k1>l1?l1:k1); 

end 

 

  

test[N*i+j]=(test[N*(i-1)+(j-1)]+o3<test[N*(i-1)+j]+o4)?(test[N*(i-1)+(j-1)]+o3<test[N*i+(j-

1)]+o5?test[N*(i-1)+(j-1)]+o3:test[N*i+(j-1)]+o5):(test[N*(i-1)+j]+o4<test[N*i+(j-1)]+o5?test[N*(i-

1)+j]+o4:test[N*i+(j-1)]+o5); 

 

  end 

  end 

  //out=test[N*N-1]; 

  end 

endmodule 
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Appendix C 

Dataset of pair of songs for confirming the efficacy of similarity measures in plagiarism 

detection. 

Source: http://www.quora.com/What-are-the-worst-cases-of-plagiarism-in-music 

 

Index of 

song 

Song You tube link 

11 

 
Jay Z & Beyoncé "Drunk in Love" 

https://youtu.be/p1JPKLa-Ofc 

 

12 Mitsou "Bajba, Bajba Pelem 
https://youtu.be/A59LegFfYRw 

 

21 Eminem "Rap God" 
https://youtu.be/XbGs_qK2PQA 

 

22 Hot Stylz "Lookin' Boy" 
https://youtu.be/Mu4iYTrJbwk 

 

31 
Jay Z & Kanye West, ft. Frank Ocean "Made in 

America"  

https://youtu.be/zSDzPByjEuM 

 

32 Joel McDonald "Made in America" 
https://youtu.be/LiUHYrN4NDI 

 

41 The Beach Boys "Surfin' U.S.A." 
https://youtu.be/sNypbmPPDco 

 

42 Chuck Berry "Sweet Little Sixteen" 
https://youtu.be/ZLV4NGpoy_E 

 

51 Skillet "Monster"  
https://youtu.be/1mjlM_RnsVE 

 

52 Three Days Grace "Animal I Have Become" 
https://youtu.be/xqds0B_meys 

 

61 Nirvana "Come As You Are" 
https://youtu.be/vabnZ9-ex7o 

 

62 Killing Joke "Eighties" 
https://youtu.be/x1U1Ue_5kq8 

 

71 Katy Perry "Dark Horse" 
https://youtu.be/0KSOMA3QBU0 

 

72 Flame ft. Lecrae "Joyful Noise" 
https://youtu.be/QCcW-guAs_s 

 

81 Will.i.am "Let's Go"  https://youtu.be/pMpFN4k5piU 

http://www.quora.com/What-are-the-worst-cases-of-plagiarism-in-music
https://youtu.be/p1JPKLa-Ofc
https://youtu.be/A59LegFfYRw
https://youtu.be/XbGs_qK2PQA
https://youtu.be/Mu4iYTrJbwk
https://youtu.be/zSDzPByjEuM
https://youtu.be/LiUHYrN4NDI
https://youtu.be/sNypbmPPDco
https://youtu.be/ZLV4NGpoy_E
https://youtu.be/1mjlM_RnsVE
https://youtu.be/xqds0B_meys
https://youtu.be/vabnZ9-ex7o
https://youtu.be/x1U1Ue_5kq8
https://youtu.be/0KSOMA3QBU0
https://youtu.be/QCcW-guAs_s
https://youtu.be/pMpFN4k5piU
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82 
Arty & Mat Zo "Rebound" 

https://youtu.be/Kmp3MguaTSA 

 

91 Led Zeppelin "Whole Lotta Love" https://youtu.be/Q0utAHY3xo4 

 

92 Muddy Waters "You Need Love" https://youtu.be/pM8_HuQ0b34 

 

101 Coldplay "Viva La Vida"  https://youtu.be/dvgZkm1xWPE 

 

102 Joe Satriani's "If I Could Fly" https://youtu.be/nrEXnizgt9c 

 

111 Avril Lavigne "Girlfriend" https://youtu.be/Bg59q4puhmg 

 

112 The Rubinoos "I Wanna Be Your Boyfriend" https://youtu.be/j3t66Nrqteo 

 

121 One Direction "Live While We're Young" https://youtu.be/AbPED9bisSc 

 

122 The Clash "Should I Stay or Should I Go" https://youtu.be/xMaE6toi4mk 

 

131 Justin Bieber "Baby" https://youtu.be/kffacxfA7G4 

 

132 Perla "Tremendo Vacilão" https://youtu.be/2IMi3GwD9LI 

 

141 The Doors "Hello, I Love You"  https://youtu.be/hzM71scYw0M 

 

142 The Kinks "All Day and All of the Night" https://youtu.be/mMWNwHof0kc 

 

151 James Blunt "Heart to Heart" https://youtu.be/CsFb661EXsI 

 

152 Five for Fighting "100 Years" https://youtu.be/tR-qQcNT_fY 

 

161 Bruno Mars "Treasure" https://youtu.be/nPvuNsRccVw 

 

162 Breakbot "Baby I'm Yours" https://youtu.be/6okxuiiHx2w 

 

171 Oasis "Whatever"  https://youtu.be/EHfx9LXzxpw 

 

172 Neil Innes "How Sweet to Be an Idiot" https://youtu.be/nZ9EWcaS7II 

 

 

https://youtu.be/Kmp3MguaTSA
https://youtu.be/Q0utAHY3xo4
https://youtu.be/pM8_HuQ0b34
https://youtu.be/dvgZkm1xWPE
https://youtu.be/nrEXnizgt9c
https://youtu.be/Bg59q4puhmg
https://youtu.be/j3t66Nrqteo
https://youtu.be/AbPED9bisSc
https://youtu.be/xMaE6toi4mk
https://youtu.be/kffacxfA7G4
https://youtu.be/2IMi3GwD9LI
https://youtu.be/hzM71scYw0M
https://youtu.be/mMWNwHof0kc
https://youtu.be/CsFb661EXsI
https://youtu.be/tR-qQcNT_fY
https://youtu.be/nPvuNsRccVw
https://youtu.be/6okxuiiHx2w
https://youtu.be/EHfx9LXzxpw
https://youtu.be/nZ9EWcaS7II
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181 Simple Plan "Your Love is a Lie" https://youtu.be/XAbcgmwq3EU 

 

182 Green Day "Boulevard of Broken Dreams" https://youtu.be/Soa3gO7tL-c 

 

191 Katy Perry "Roar"  https://youtu.be/CevxZvSJLk8 

 

192 Sara Bareilles "Brave" https://youtu.be/QUQsqBqxoR4 

 

201 Led Zeppelin "Stairway to Heaven" https://youtu.be/w9TGj2jrJk8 

 

202 Taurus "Spirit" https://youtu.be/xd8AVbwB_6E 

 

211 Meghan Trainor "All About That Bass" https://youtu.be/7PCkvCPvDXk 

 

212 Koyote's "Happy Mode" https://youtu.be/Bg8dlyO7T3Y 

 

221 The Beatles "Come Together" https://youtu.be/axb2sHpGwHQ 

 

222 Chuck Berry "You Can't Catch Me" https://youtu.be/wfD4Eo7cA0Y 

 

231 Jennifer Lopez "On the Floor"  https://youtu.be/t4H_Zoh7G5A 

 

232 Kaoma "Lambada" https://youtu.be/WJTwgMTI704 

 

241 Rod Stewart "Do Ya Think I'm Sexy?" https://youtu.be/Hphwfq1wLJs 

 

242 Jorge Ben "Taj Mahal" https://youtu.be/ILZjZ85mASk 

 

251 Radiohead "Creep"  https://youtu.be/XFkzRNyygfk 

 

252 Albert Hammond "The Air That I Breathe" https://youtu.be/9HglphdXqMg 

 

261 Robin Thicke "Blurred Lines" https://youtu.be/yyDUC1LUXSU 

 

262 Marvin Gaye "Got to Give It Up" https://youtu.be/fp7Q1OAzITM 

 

271 Ray Parker Jr. "Ghostbusters Theme" https://youtu.be/Fe93CLbHjxQ 

 

272 Huey Lewis "I Want a New Drug" https://youtu.be/N6uEMOeDZsA 

https://youtu.be/XAbcgmwq3EU
https://youtu.be/Soa3gO7tL-c
https://youtu.be/CevxZvSJLk8
https://youtu.be/QUQsqBqxoR4
https://youtu.be/w9TGj2jrJk8
https://youtu.be/xd8AVbwB_6E
https://youtu.be/7PCkvCPvDXk
https://youtu.be/Bg8dlyO7T3Y
https://youtu.be/axb2sHpGwHQ
https://youtu.be/wfD4Eo7cA0Y
https://youtu.be/t4H_Zoh7G5A
https://youtu.be/WJTwgMTI704
https://youtu.be/Hphwfq1wLJs
https://youtu.be/ILZjZ85mASk
https://youtu.be/XFkzRNyygfk
https://youtu.be/9HglphdXqMg
https://youtu.be/yyDUC1LUXSU
https://youtu.be/fp7Q1OAzITM
https://youtu.be/Fe93CLbHjxQ
https://youtu.be/N6uEMOeDZsA
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281 Jet "Are You Gonna Be My Girl" https://youtu.be/tuK6n2Lkza0 

 

282 Iggy Pop "Lust for Life" https://youtu.be/jQvUBf5l7Vw 

 

291 David Guetta "Play Hard" https://youtu.be/5dbEhBKGOtY 

292 Alice Deejay "Better Off Alone" https://youtu.be/hneLe48CpEs 

 

301 Jay Z 'Big Pimpin'"  https://youtu.be/2ceEnFpU2m4 

 

302 Baligh Hamdi "Khosara Khosara" https://youtu.be/bKcVDJGOvNU 

 

311 “Kaho Na Kaho" – Murder https://youtu.be/5G4bqxClDqk 

 

312 "Tamaly Maak" - Amr Diab   https://youtu.be/EgmXTmj62ic 

 

321 "Neend Churayee Meri" - Ishq https://youtu.be/Y2Ne_C6dfOg 

 

322 "Sending All My Love" - Linear https://youtu.be/WE-5KBuDG4k 

 

331 "Raja Ko Rani Se" - Akele Hum Akele Tum https://youtu.be/t5JSLRB9ZAU 

 

332 "The Love Theme" - Godfather - Nino Rota https://youtu.be/zMGE8pks9UE 

 

341 "Chakle Chakle" - Deewane Huye Paagal https://youtu.be/r9KrHvr-SrE 

 

342 "Turn Me On" - Kevin Lyttle https://youtu.be/Vgy8vOzl-po 

 

351 "Dil Mera Churaya Kyon" - Akele Hum Akele 

Tum 

https://youtu.be/P3n6I91yhcs 

 

352 "Last Christmas" - Wham! https://youtu.be/E8gmARGvPlI 

 

361 "Aisa Milan Kal Ho Na Ho" - Hameshaa https://youtu.be/xIfYQaYsj6Y 

 

362 "The Phantom of the Opera" - Andrew Lloyd 

Webber 

https://youtu.be/Ej1zMxbhOO0 

 

371 "Dil Le Le Lena" - Auzaar https://youtu.be/0cMfviJD24I 

 

372 "Macarena" - Los Del Rio https://youtu.be/XiBYM6g8Tck 

https://youtu.be/tuK6n2Lkza0
https://youtu.be/jQvUBf5l7Vw
https://youtu.be/5dbEhBKGOtY
https://youtu.be/hneLe48CpEs
https://youtu.be/2ceEnFpU2m4
https://youtu.be/bKcVDJGOvNU
https://youtu.be/5G4bqxClDqk
https://youtu.be/EgmXTmj62ic
https://youtu.be/Y2Ne_C6dfOg
https://youtu.be/WE-5KBuDG4k
https://youtu.be/t5JSLRB9ZAU
https://youtu.be/zMGE8pks9UE
https://youtu.be/r9KrHvr-SrE
https://youtu.be/Vgy8vOzl-po
https://youtu.be/P3n6I91yhcs
https://youtu.be/E8gmARGvPlI
https://youtu.be/xIfYQaYsj6Y
https://youtu.be/Ej1zMxbhOO0
https://youtu.be/0cMfviJD24I
https://youtu.be/XiBYM6g8Tck
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381 "Aisa Zakhm Diya Hai" - Akele Hum Akele 

Tum 

https://youtu.be/P2bhDV8ZIpI 

 

382 "Child In Time" - Deep Purple https://youtu.be/PfAWReBmxEs 

 

391 "Jaane Jaana" - Murder https://youtu.be/EfBUj1JMmzI 

 

392 "Firiye Dao" - Miles https://youtu.be/79mm04ArWU0 

 

401 "Tu Waaqif Nahin" - Khiladiyon Ka Khiladi https://youtu.be/5KpH2Dck6CE 

 

402 "Fernando" - ABBA https://youtu.be/dQsjAbZDx-4 

 

411 "Yeh Kaali Kaali Ankhen" - Baazigar https://youtu.be/jyeR5tjZfiw 

 

412 "The Man who plays the Mandolino" - Dean 

Martin 

https://youtu.be/fSQRTo82--8 

 

421 "Is Tarah Aashiqui Ka" - Imtihaan https://youtu.be/XTTi3ivv8wg 

 

422 "Autumn Leaves" - Nat King Cole https://youtu.be/684eg6S8dCw 

 

431 "Tera Gussa" - Kareeb https://youtu.be/mXs32S_DREc 

 

432 "The Happy Birthday Song" https://youtu.be/qCJSNMqub8g 

 

441 "Jaane Kaise" - Raqeeb 

 

https://youtu.be/M5VgVam1GFk 

 

442 "Allem Alby" - Amr Diab https://youtu.be/u4bCK-M5TL0 

 

451 "Kya Mujhe Pyaar Hai" - Woh Lamhe https://youtu.be/nbkbk32UEh4 

 

452 "Tak Bisakah" - Peterpan https://youtu.be/n_rwZ3ETimI 

 

461 "Zara Zara Touch  Me" - Race https://youtu.be/Sv_kEdNwYtQ 

 

462 "Zhu Lin Shen Chu" - Leehom Wang https://youtu.be/8vzTAOttZec 

 

471 "Pehli Nazar Mein" - Race https://youtu.be/BadBAMnPX0I 

 

https://youtu.be/P2bhDV8ZIpI
https://youtu.be/PfAWReBmxEs
https://youtu.be/EfBUj1JMmzI
https://youtu.be/79mm04ArWU0
https://youtu.be/5KpH2Dck6CE
https://youtu.be/dQsjAbZDx-4
https://youtu.be/jyeR5tjZfiw
https://youtu.be/fSQRTo82--8
https://youtu.be/XTTi3ivv8wg
https://youtu.be/684eg6S8dCw
https://youtu.be/mXs32S_DREc
https://youtu.be/qCJSNMqub8g
https://youtu.be/M5VgVam1GFk
https://youtu.be/u4bCK-M5TL0
https://youtu.be/nbkbk32UEh4
https://youtu.be/n_rwZ3ETimI
https://youtu.be/Sv_kEdNwYtQ
https://youtu.be/8vzTAOttZec
https://youtu.be/BadBAMnPX0I
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472 "Sarang Hae Yo" -  Kim Hyung Sup https://youtu.be/4JaxfCUxofY 

 

481 "Badtameez Dil" - Yeh Jawaani Hai Deewani https://youtu.be/F7k_U1ZXybo 

 

482 "Ranjana Ami Aar Asbo Na" -  Anjan Dutt https://youtu.be/R3nyGm397k8 

 

491 "Hare Krishna Hare Ram" - Bhool Bhulaiya https://youtu.be/2Tb6Q1PH-_0 

 

492 "My Lecon" - JTL https://youtu.be/Mecp01YMrA 

501 "Yeh Ishq Hai" - Jab We Met https://youtu.be/p9dsPjx17Yw 

 

502 "Etra Una Femme" - Anggun https://youtu.be/T4poevqspsI 

 

https://youtu.be/4JaxfCUxofY
https://youtu.be/F7k_U1ZXybo
https://youtu.be/R3nyGm397k8
https://youtu.be/2Tb6Q1PH-_0
https://youtu.be/Mecp01YMrA
https://youtu.be/p9dsPjx17Yw
https://youtu.be/T4poevqspsI
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Appendix D 

Numerical values for the hardware utilization and delay obtained after synthesis. 

I         Slice utilization versus number of elements in sequence 

N DTW LCSS EDR ERP MSM 

4 360 35 49 368 579 

5 606 71 121 660 977 

6 915 117 220 1033 1463 

7 1285 174 354 1479 2093 

8 1722 289 502 2009 2802 

9 2122 356 656 2612 3666 

10 2660 447 864 3305 NA 

 

II         LUTs utilization versus number of elements in sequence 

 

 

 

 

 

III           IOBs utilization versus number of elements in sequence 

 

 

 

 

 

 

N DTW LCSS EDR ERP MSM 

4 699 60 88 621 963 

5 1177 124 218 1116 1633 

6 1778 204 398 1752 2471 

7 2501 304 641 2513 3490 

8 3353 507 906 3418 4670 

9 4162 623 1185 4446 6122 

10 5219 780 1560 5672 NA 

N DTW LCSS EDR ERP MSM 

4 38 25 37 25 25 

5 46 31 43 31 31 

6 54 37 49 37 37 

7 62 43 49 43 43 

8 70 49 49 49 49 

9 78 55 61 55 55 

10 86 61 67 61 NA 
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IV              Delay (in nsec) variation with no. of elements in sequence 

 

 

 

 

 

V            MATLAB execution time (in µ sec) variation with no. of elements in sequence 

 

             

               

 

 

 

 

 

 

 

 

 

 

 

N DTW LCSS EDR ERP MSM 

4 52.8 17.7 26.6 70.6 73.227 

5 67 23.5 38.8 94.9 94.82 

6 81.7 27.9 48 120.5 117.286 

7 96.4 32.6 64.8 145 138.42 

8 110.6 46.4 76.6 171.4 160.785 

9 124.4 46.8 89 195.1 182.798 

10 139.5 51.2 103.7 221 212.345 

N DTW LCSS EDR ERP MSM 

4 104 187 182 230 231 

5 139 195 201 249 390 

6 182 212 292 272 404 

7 232 222 301 356 449 

8 279 254 342 380 509 

9 342 314 391 399 555 

10 412 638 510 492 680 


